JP2016086460A - Semiconductor AC switch - Google Patents

Semiconductor AC switch Download PDF

Info

Publication number
JP2016086460A
JP2016086460A JP2014215952A JP2014215952A JP2016086460A JP 2016086460 A JP2016086460 A JP 2016086460A JP 2014215952 A JP2014215952 A JP 2014215952A JP 2014215952 A JP2014215952 A JP 2014215952A JP 2016086460 A JP2016086460 A JP 2016086460A
Authority
JP
Japan
Prior art keywords
phase
switch
degrees
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014215952A
Other languages
Japanese (ja)
Inventor
嶋田 隆一
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014215952A priority Critical patent/JP2016086460A/en
Publication of JP2016086460A publication Critical patent/JP2016086460A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To block an AC power supply at a current zero point by softly turning on the AC power supply using a semiconductor switch.SOLUTION: Four MOSFETs made of a reverse conduction semiconductor device are used and a capacitor is used as an AC switch by being connected to a DC terminal, then a gate control device thereof detects the phase of a voltage to turn on S1, S3 at 270 degrees of the voltage phase at the turning-on time and then further turns on S2, S4 with a delay of 180 degrees. Though S1, S2, S3 are turned off with the delay of 270 degrees of the voltage phase when blocked, S4 is turned off with the delay of 180 degrees.SELECTED DRAWING: Figure 1

Description

本発明は、半導体デバイスによる交流電源の投入・遮断スイッチに関するものである。     The present invention relates to an AC power supply on / off switch using a semiconductor device.

交流電源の投入、遮断を行う開閉器は金属接点を電磁コイルで駆動してオン、オフする方法が従来からある。近年、半導体スイッチを用いて電流をオン・オフできるようになったがオン損失がまだまだ大きく、金属接点の低い抵抗には及ばないことや、遮断時のリーク電流、コストの問題などで半導体スイッチは普及していない。近年、SiC(シリコン・カーバイド)のMOSFET半導体デバイスでは、高耐圧で大きな電流、低いオン抵抗が実現できるようになった。   Conventionally, a switch for turning on and off an AC power source has been conventionally turned on and off by driving a metal contact with an electromagnetic coil. In recent years, it has become possible to turn on and off the current using a semiconductor switch, but the on-loss is still large, and it does not reach the low resistance of metal contacts, the leakage current at the time of interruption, the problem of cost, etc. Not popular. In recent years, SiC (silicon carbide) MOSFET semiconductor devices have been able to achieve a high current, a large current, and a low on-resistance.

MOSFET半導体デバイスは逆導通ダイオードが寄生ダイオードまたはボディダイオードと呼ばれているが、並列に存在しているが、そのオン電圧は低くはないのが欠点である。そこでMOSFET半導体スイッチの特徴であるがゲートオン信号によって順逆双方向に低いオン抵抗で、しかも温度に対して正特性で並列動作が可能なので並列接続でオン抵抗をさらに下げることも可能である。このスイッチを交流のスイッチにするには、図1に示すようにブリッジ構成が知られている。この場合、全スイッチをオンすればオン抵抗はスイッチ1つ分になっている。 Although MOSFET semiconductor devices have reverse conducting diodes called parasitic diodes or body diodes, they exist in parallel, but their on-voltage is not low. Therefore, as a feature of the MOSFET semiconductor switch, a parallel operation is possible with a low on-resistance in both forward and reverse directions by a gate-on signal and a positive characteristic with respect to temperature, so that the on-resistance can be further reduced by parallel connection. In order to make this switch an AC switch, a bridge configuration is known as shown in FIG. In this case, if all the switches are turned on, the on-resistance is equivalent to one switch.

また、交流電流を遮断する際に発生する再起電圧の上昇を抑えるために例えば図6はサイリスタ交流スイッチであるが、抵抗とコンデンサからなるスナバ回路を必要としている。スナバ回路は遮断時の電流のエネルギーを消費する機能で、半導体スイッチの過電圧破壊やノイズの発生を防いでいる。図6に示すサイリスタ交流スイッチでは,遮断時も抵抗とコンデンサの直列スナバ回路のコンデンサの充放電によるリーク電流が流れ続ける問題があった。 Further, for example, FIG. 6 shows a thyristor AC switch in order to suppress an increase in the regenerative voltage generated when the AC current is cut off, but a snubber circuit including a resistor and a capacitor is required. The snubber circuit is a function that consumes the energy of the current at the time of interruption, preventing overvoltage breakdown and noise generation of the semiconductor switch. The thyristor AC switch shown in FIG. 6 has a problem that leakage current due to charging / discharging of the capacitor in the series snubber circuit of the resistor and the capacitor continues to flow even when cut off.

これは、磁気エネルギー回生回路(以下Magnetic Energy Recovery Switch以後MERS)と呼ばれる構成ですでに「スナバーエネルギーを回生する電流順逆両方向スイッチ」などとして
特許登録されている。
This has already been patent-registered as a “current forward / reverse bidirectional switch for regenerating snubber energy” in a configuration called a magnetic energy regenerative circuit (hereinafter referred to as Magnetic Energy Recovery Switch, hereinafter referred to as MERS).

特開2000−358359JP 2000-358359 A

MERSスイッチのMOSFETを4つ、すべてオンにした場合、逆方向の電流にも低オン抵抗であって、2直列、2並列であるから、従来のサイリスタ等の半導体のACスイッチ構成では出来なかった低いオン抵抗が実現できるが、電源投入、遮断の交流電圧とのタイミングなど詳細な検討によるシーケンスとその効果は未だに開示されていない。
When all four MOSFETs of the MERS switch are turned on, they have low on-resistance in reverse current and are 2 series and 2 parallel, so it was not possible with the conventional AC switch configuration of semiconductors such as thyristors. Although a low on-resistance can be realized, the sequence based on detailed studies such as the timing of turning on and off the AC voltage and the effect thereof have not yet been disclosed.

解決しようとする問題点は、MERSを交流電源のスイッチとして用いる場合、電源の投入時のシーケンス、電源遮断時のシーケンスを明らかにすることにある。投入時に負荷へ電圧ショックを極力与えないようにし、遮断時には遮断サージ電圧が発生しないように動作させなければならない。なぜなら、MERSは投入時にゲートを全数同時にオン状態にするではコンデンサの電荷が短絡放電されることになり、全数同時遮断では時にはタイミングによっては電流が瞬時に裁断され、全電流のエネルギーがコンデンサに蓄積されスイッチの耐電圧を越える高電圧になる恐れがある。
The problem to be solved is to clarify the sequence when the power is turned on and the sequence when the power is shut off when MERS is used as a switch for the AC power supply. It must be operated so that a voltage shock is not applied to the load as much as possible at the time of turning on, and no interruption surge voltage is generated at the time of interruption. Because, when MERS is turned on, all of the gates are turned on at the same time, the capacitor charge is short-circuited, and when all the gates are turned off simultaneously, the current is instantaneously cut depending on the timing, and the energy of the total current is accumulated in the capacitor. There is a risk of high voltage exceeding the withstand voltage of the switch.

本発明は、電源電圧の位相を検出して、MERS回路の4つのスイッチを電圧位相に合わせて個々にオン、またはオフさせてより理想的な交流スイッチとなるように動作させるために、電圧波形に会わせてシーケンス制御をおこなう。   The present invention detects the phase of the power supply voltage and operates the voltage waveform in order to operate the four switches of the MERS circuit individually on or off in accordance with the voltage phase to become a more ideal AC switch. Perform sequence control by meeting

本発明のMERS交流スイッチの制御法ならびに制御回路は、負荷に対して電圧ショックの少ない電圧位相で電源の投入を行い、かつ遮断時は、電流遮断によるサージ電圧を電流ゼロ時に遮断してコンデンサに吸収する。また導通時は4つのスイッチにオン信号を与えて全オン状態にして交流スイッチの抵抗をスイッチ1つ分のオン抵抗になる。スイッチがオフの場合、リーク電流がないことが特徴である。
特に低電圧大電流電源では、従来のサイリスタ、トライアックの場合はオン電圧が約1V以上で並列接続にしても変化しないが本発明のMOSFET交流スイッチは、半導体デバイスを並列接続にすることにより、さらに低損失にすることができる。
The control method and control circuit of the MERS AC switch according to the present invention turns on the power at a voltage phase with little voltage shock with respect to the load. Absorb. Further, when conducting, an on signal is given to the four switches to turn them all on, and the resistance of the AC switch becomes the on resistance of one switch. It is characterized by no leakage current when the switch is off.
In particular, in the case of a low voltage and large current power source, in the case of a conventional thyristor or triac, the on-voltage is about 1 V or more and does not change even when connected in parallel. Low loss can be achieved.

は本発明の実施方法を示した説明図である。These are the explanatory views showing the method of carrying out the present invention. は本発明のシミュレーション回路である。Is a simulation circuit of the present invention. は、ゲート信号のシーケンス制御の例Example of gate signal sequence control は投入時のシミュレーション結果である。Iacinは電源の電流、Ioutは負荷電流、Vcはコンデンサ電圧、Vin1は電源電圧、Voutは負荷電圧、I(S1)からI(S4)はMOSFETのS1からS4の電流、Vg1からVg4はそれぞれMOSFETのゲート指令、1でオン、0でオフである。Is the simulation result at the time of input. Iacin is a power supply current, Iout is a load current, Vc is a capacitor voltage, Vin1 is a power supply voltage, Vout is a load voltage, I (S1) to I (S4) are MOSFET currents S1 to S4, and Vg1 to Vg4 are MOSFETs, respectively. The gate command is 1 for ON and 0 for OFF. は遮断時のシミュレーション結果である。Is a simulation result at the time of interruption. は従来のサイリスタ交流スイッチの回路例である。Is a circuit example of a conventional thyristor AC switch.

電源は交流50Hz100Vで負荷は、10オームと30mHの直列を想定している。   The power supply is assumed to be AC 50 Hz 100 V and the load is 10 ohm and 30 mH in series.

図1は、本発明装置の1実施例の回路図と実施方法を示した説明であって、図1に示すようにMOSFETはS1,からS4まで4つあって、それぞれゲート制御装置でオン・オフされる。ゲート電圧高でオン、ゲート電圧低でオフになる。4の制御装置は、電源の電圧位相を検出して、スイッチ全体の投入指令、遮断指令を受け取って各MOSFETのゲート制御を行う。ここには電源電圧の位相を検出する回路を内蔵している。   FIG. 1 is a diagram showing a circuit diagram and an implementation method of an embodiment of the device of the present invention. As shown in FIG. 1, there are four MOSFETs S1 to S4, each of which is turned on / off by a gate control device. Turned off. Turns on when the gate voltage is high and turns off when the gate voltage is low. The control device 4 detects the voltage phase of the power supply, receives the switch-on command and the shut-off command for the entire switch, and performs gate control of each MOSFET. Here, a circuit for detecting the phase of the power supply voltage is incorporated.

電源の投入指令がくると電圧位相の270度で、すなわち交流電圧が最小になる位相で、まずS1とS3のMOSFETをオンさせる。これにより電源電圧のピークまで充電されていたコンデンサCの電圧が直列の加わり電源電圧のマイナスの最大と合わさって電圧ゼロで負荷に通電が始まる。これにより負荷にパルス的電圧が印加することが回避できる。その後、位相で180度遅れて、50Hzでは10mS遅れてS2、S4をオンにして全てのMOSFETをオン状態にし、遮断指令がくるまでこの状態を維持する。   When a power-on command is received, the MOSFETs of S1 and S3 are first turned on at a voltage phase of 270 degrees, that is, at a phase where the AC voltage is minimized. As a result, the voltage of the capacitor C charged up to the peak of the power supply voltage is added in series and combined with the negative maximum of the power supply voltage to start energizing the load at a voltage of zero. This avoids applying a pulsed voltage to the load. After that, the phase is delayed by 180 degrees, and at 50 Hz, 10 ms later, S2 and S4 are turned on to turn on all the MOSFETs, and this state is maintained until a cutoff command is received.

遮断指令が来ると、制御装置は電圧の位相を検出し、270度でS1、S2、S3をオフにする。電流はS1からS2へ流れるルートは阻止されるが、もう1つの電流ルートであるS3、S4のルートを流れることで全体電流はそのまま流れ続ける。その後、電流はゼロを交差して逆転しようとするが、S3は逆導通ダイオードの通電状態なのでその順方向の電流を阻止して、電流ゼロでスナバに自然転流で遮断される。その後、S1、S2、S3のオフに180度(10mS)遅れてS4もオフにする。電流ゼロを自動的にクロスすることのために10mSの遅れがあるので可能になる。負荷電流が遅れ電流であるから位相が遅れ、必ずS2の逆導通ダイオードで遮断がなされる。遮断時の再起電圧は電流ゼロ点で遮断され、この再起電圧は、2のスナバコンデンサで吸収される。   When the cutoff command comes, the control device detects the phase of the voltage and turns off S1, S2, and S3 at 270 degrees. Although the route of current flowing from S1 to S2 is blocked, the entire current continues to flow as it is through the routes of S3 and S4, which are another current route. Thereafter, the current crosses zero and tries to reverse, but since S3 is a current-carrying state of the reverse conducting diode, the forward current is blocked and the snubber is interrupted by natural commutation at zero current. Thereafter, S4 is also turned off with a delay of 180 degrees (10 mS) from the turn-off of S1, S2, and S3. This is possible because there is a 10 ms delay for automatically crossing zero current. Since the load current is a lagging current, the phase is lagging and is always cut off by the reverse conducting diode of S2. The reactivation voltage at the time of interruption is interrupted at the current zero point, and this reactivation voltage is absorbed by the two snubber capacitors.

今回の実施例は50Hzの交流を想定しているが60Hzであっても電圧位相の270度のタイミング、180度の間の遅れ時間は、それに合わせて動作させれば同様である。電子、制御系の説明は省略する。また、S2とS4は交換することが可能であることは自明である。 In this embodiment, an alternating current of 50 Hz is assumed. Even at 60 Hz, the timing of the voltage phase of 270 degrees and the delay time between 180 degrees are the same if operated in accordance with the timing. Description of the electronics and control system is omitted. Obviously, S2 and S4 can be exchanged.

図1の回路を適用する場合を回路シミュレーションプログラムで解析する。   The case where the circuit of FIG. 1 is applied is analyzed by a circuit simulation program.

図2にPSIMシミュレーションコードの回路図を示す。実施例1の負荷は30mHと10Ωの直列である。
解析結果を図4に示すが投入指令が来て、電圧位相の270度でゲート信号Vg1,Vg3を高にして、その180度(10mS)遅れてVg2,Vg4を高にする。負荷の電圧Vout,Iac1を図4に示すが、ピーク電圧を充電しているコンデンサの電圧が負の最大電圧時にスタートするので負荷にはその差電圧である約ゼロ電圧が印加され、負荷電流が主として流れだすのは電圧位相の0度からであるのがわかる。コンデンサはこの間にゆっくり90度かけて放電して、スイッチ、負荷ともに電圧・電流のパルス的変化が無いのがわかる。
FIG. 2 shows a circuit diagram of the PSIM simulation code. The load of Example 1 is a series of 30 mH and 10Ω.
The analysis result is shown in FIG. 4, and the input command comes, and the gate signals Vg1 and Vg3 are made high at the voltage phase of 270 degrees, and Vg2 and Vg4 are made high 180 degrees (10 mS) later. The load voltage Vout, Iac1 is shown in FIG. 4. Since the voltage of the capacitor that charges the peak voltage starts at the maximum negative voltage, a difference voltage of about zero voltage is applied to the load, and the load current is It can be seen that the flow starts mainly from 0 degree of the voltage phase. The capacitor discharges slowly over 90 degrees during this period, and it can be seen that there is no pulse-like change in voltage and current in both the switch and the load.

図5に遮断指令が来て本発明のシーケンスで遮断する場合を示すが電圧位相の270度でゲート信号をS1,S2,S3を同時にOFFにして、MOSFETのS1、S2の電流を遮断し、負荷電流はS3のダイオードに電流が、S4には順方向に流れ続ける。その後、電流はS3のダイオードによって自動的に電流ゼロ点付近で遮断される。これによりS4は電流が遮断された後にゲートがOFFになっているので遮断動作には関与しないでダイオードで自然に遮断されたことがわかる。   FIG. 5 shows a case where a shut-off command comes and shuts off in the sequence of the present invention, but the gate signals S1, S2, and S3 are simultaneously turned off at the voltage phase of 270 degrees to shut off the currents S1 and S2 of the MOSFET The load current continues to flow in the forward direction in S4 and in S4. Thereafter, the current is automatically cut off near the current zero point by the diode of S3. Thus, it can be seen that S4 is naturally cut off by the diode without being involved in the cut-off operation because the gate is turned off after the current is cut off.

3相交流の場合、投入には始めに2相を投入するが線間電圧を見て同様に電圧の最小値(270度)で同時にONを開始する。最後の相は90度遅れてONを開始するとよい。これにより投入後の電流にDC分が発生しないので、変圧器への励磁突入現象を防ぐことができる。   In the case of three-phase alternating current, first, two phases are turned on, but when the line voltage is seen, the ON is simultaneously started at the same minimum voltage value (270 degrees). The last phase should be turned ON after 90 degrees. As a result, a DC component does not occur in the current after being turned on, so that it is possible to prevent the excitation rush phenomenon to the transformer.

半導体化した交流スイッチは逆導通MOSFETを4つ用いた交流スイッチで構成すると最小のオン抵抗が実現できるが個々のスイッチのオン、オフを電圧位相にあわせて行うことで負荷に対して、より理想的な電圧波形を実現できるシーケンスを示した。そこでは、電源投入時には,電流波形がゼロからサイン波状に立ち上がり、遮断時は電流ゼロ点で遮断される。今後、コンピュータ制御の半導体交流スイッチが多く使用されるがそのときに用いられるのがこのシーケンスである。   A semi-conductor AC switch can be realized with a minimum of on-resistance when it is composed of four reverse conducting MOSFETs, but it is more ideal for the load by turning on and off each switch in accordance with the voltage phase. A sequence that can realize a typical voltage waveform is presented. In this case, the current waveform rises from zero to a sine wave when the power is turned on, and is cut off at the zero current point when cut off. In the future, computer-controlled semiconductor AC switches will be frequently used, but this sequence is used at that time.

このスイッチは交流電圧位相に合わせて運転出来るので、3相交流電源の投入時のトランスへの突入電流(偏磁による飽和現象)を回避することができる。それは,相間電圧の270度でその2相を投入し,その90度遅れて残りの相の投入を開始すればよいが,従来の機械接点では不可能な制御である。 Since this switch can be operated in accordance with the AC voltage phase, it is possible to avoid an inrush current (saturation phenomenon due to magnetic bias) to the transformer when the three-phase AC power supply is turned on. That is, the two phases are turned on at the interphase voltage of 270 degrees, and the remaining phases may be turned on after a delay of 90 degrees. However, this control is impossible with conventional mechanical contacts.

本スイッチを採用した産業上の利点は遮断指令の後、1サイクルの高速遮断により、事故電流の影響以前に回避できることであり、励磁突入回避など機器の耐量を軽減できるのでコスト的利点も多い。本発明の交流スイッチ、制御法、制御装置は、今後、ICT制御される高度な配電系統に必要不可欠な半導体デバイスを用いた交流スイッチシステムである。 The industrial advantage of adopting this switch is that it can be avoided before the influence of the accident current by one cycle of high-speed cutoff after the cutoff command, and there are many cost advantages because it can reduce the tolerance of the equipment such as avoiding excitation inrush. The AC switch, control method, and control apparatus of the present invention are AC switch systems that use semiconductor devices that are indispensable for advanced power distribution systems that will be ICT controlled in the future.

1 逆導通半導体スイッチMOSFET
2 スナバコンデンサ
3 交流電源
4 制御装置
5 負荷
1 Reverse conducting semiconductor switch MOSFET
2 Snubber capacitor 3 AC power supply 4 Control device 5 Load

Claims (4)

MOSFETを4つ用いた電流双方向スイッチを交流スイッチとして電流の投入に使用するとき、交流電圧の最小時(マイナスの最大になる時間)にすなわち電気角270度でS1,S3のMOSFETにゲート信号をオンにして導通させ、その後180度、50Hzの場合は10mSだけ遅れてS2,S4にゲートオン信号を送って全スイッチを導通状態にさせる交流スイッチ。 When a current bidirectional switch using four MOSFETs is used as an AC switch to input current, the gate signal is applied to the MOSFETs of S1 and S3 at the time when the AC voltage is minimum (the time when the negative voltage becomes maximum), that is, at an electrical angle of 270 degrees. An AC switch that turns on and conducts, and then sends a gate-on signal to S2 and S4 with a delay of 10 mS in the case of 180 degrees and 50 Hz, thereby bringing all the switches into conduction. MOSFETを4つ用いた電流双方向スイッチを交流スイッチとして電流の遮断に使用するとき、電圧の最小時(マイナスの最大になる時間)にすなわち電気角270度で、S1、S2、S3にゲートオフ信号を送って、S1、S3の電流をS2,S4のパスに集中して流し、その電流はS2の逆導通ダイオードによって電流ゼロ点で電流が遮断され、その後180度、50Hzの場合は10mSだけ遅れてS4にもゲートオフ信号を送って遮断する交流スイッチ。 When a current bidirectional switch using four MOSFETs is used as an AC switch for interrupting current, a gate-off signal is applied to S1, S2, and S3 when the voltage is minimum (the time when the voltage becomes negative), that is, at an electrical angle of 270 degrees. , And the current of S1 and S3 is concentrated in the path of S2 and S4, and the current is cut off by the reverse conducting diode of S2 at the current zero point, and then delayed by 10 mS at 180 degrees and 50 Hz. AC switch that shuts off by sending a gate-off signal to S4. 3相交流には請求項1,2の交流スイッチを3セット用いるが、変圧器への励磁突入電流を防ぐために、A,B,C相のAとC相のスイッチをCA間の線間電圧の位相270度で同時に投入し、その後90度遅れて(50Hzの場合は5mS遅れて)B相のスイッチを投入する投入位相を制御する請求項1,2の交流スイッチとその制御装置。 Three sets of AC switches according to claims 1 and 2 are used for three-phase AC, but in order to prevent excitation inrush current to the transformer, the A and B phase C and A phase C switches are connected to the line voltage between CA. The AC switch and its control device according to claim 1 and 2 for controlling a closing phase in which a B-phase switch is turned on at the same time at a phase of 270 degrees and then delayed by 90 degrees (5 ms delay in the case of 50 Hz). 3相交流に請求項1,2に記載の交流スイッチを3セット用いるが、遮断時は遮断指令が来てから、A,B,C相のAとC相のスイッチをCA間の線間電圧の位相270度で同時に遮断し、その後180度遅れて(50Hzの場合は10mS遅れて)B相のスイッチを遮断する投入位相を制御する請求項1,2の交流スイッチとその請求項3に記載に制御装置。   Three sets of AC switches according to claims 1 and 2 are used for three-phase AC. When a cutoff command is issued, the A, B and C phase A and C phase switches are connected to the line voltage between CAs. 4. The AC switch according to claim 1 and 2, wherein the AC phase is controlled at the same time with a phase of 270 degrees, and then the closing phase for controlling the B-phase switch is controlled with a delay of 180 degrees thereafter (10 ms delay in the case of 50 Hz). To control device.
JP2014215952A 2014-10-23 2014-10-23 Semiconductor AC switch Pending JP2016086460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215952A JP2016086460A (en) 2014-10-23 2014-10-23 Semiconductor AC switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215952A JP2016086460A (en) 2014-10-23 2014-10-23 Semiconductor AC switch

Publications (1)

Publication Number Publication Date
JP2016086460A true JP2016086460A (en) 2016-05-19

Family

ID=55973506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215952A Pending JP2016086460A (en) 2014-10-23 2014-10-23 Semiconductor AC switch

Country Status (1)

Country Link
JP (1) JP2016086460A (en)

Similar Documents

Publication Publication Date Title
EP3035532B1 (en) Gate drive circuit and method of operating same
CN109983680B (en) Solid state switching system
JP6329944B2 (en) Control device for insulated gate semiconductor element and power conversion device using the same
US10020731B2 (en) Power switch circuit
US10103729B2 (en) Auxiliary commutated silicon-controlled rectifier circuit methods and systems
US9998116B2 (en) Auxiliary commutated silicon-controlled rectifier circuit methods and systems
WO2013115000A1 (en) Drive circuit for semiconductor switching element and power conversion circuit using same
US20160301351A1 (en) Gate driving circuit, inverter circuit, and motor control device
CN109950866B (en) Current breaker
TWI533603B (en) Rapid cutoff device and operation method for scr ac switches
JP6065721B2 (en) Drive circuit, semiconductor integrated circuit, and drive circuit control method
US11489333B2 (en) Inrush current limiting transformer energization apparatuses, methods, systems, and technique
JP2005328668A (en) Drive circuit of self arc-extinguishing semiconductor device
JP2016086460A (en) Semiconductor AC switch
JPWO2017064848A1 (en) Power converter and power conditioner using the same
JP6447944B2 (en) Power converter and power conditioner using the same
KR20210102428A (en) INTRINSICALLY SAFE CIRCUITRY
JP6115026B2 (en) Induction heating power supply
KR20130127082A (en) Sscb circuit for high speed breaking current
EP4113810A1 (en) Soft turn-off for motor controllers
JP7063082B2 (en) Switching element control circuit
KR20170066860A (en) Apparatus and method of protecting inverter for vehicle
KR101580771B1 (en) Inrush current suppression circuit
GB2530334A (en) Phase Synchronised Switch
JP2014090660A (en) System and method for controlling electric motor