JP2016085867A - Particle detector - Google Patents

Particle detector Download PDF

Info

Publication number
JP2016085867A
JP2016085867A JP2014218137A JP2014218137A JP2016085867A JP 2016085867 A JP2016085867 A JP 2016085867A JP 2014218137 A JP2014218137 A JP 2014218137A JP 2014218137 A JP2014218137 A JP 2014218137A JP 2016085867 A JP2016085867 A JP 2016085867A
Authority
JP
Japan
Prior art keywords
superconducting
bias
particle
bias current
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218137A
Other languages
Japanese (ja)
Other versions
JP6388815B2 (en
Inventor
伸幸 全
Nobuyuki Zen
伸幸 全
成友 志岐
Shigetomo Shiki
成友 志岐
大久保 雅隆
Masataka Okubo
雅隆 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014218137A priority Critical patent/JP6388815B2/en
Publication of JP2016085867A publication Critical patent/JP2016085867A/en
Application granted granted Critical
Publication of JP6388815B2 publication Critical patent/JP6388815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a detector which prevents a DC bias current from flowing out to a superconducting strip line that is connected in parallel, when a particle is detected.SOLUTION: In a particle/photon detector, when a particle or a photon collides with a superconducting strip that is kept in a superconducting state, the superconducting state is shifted to an ordinary conducting state by the collision, such that the particle or the photon is detected by an electric signal to be generated by occurrence of a resistance change. Components generated by grounding one-side ends of a plurality of superconducting strips in common and connecting capacitors and bias resistors to other-side ends of the superconducting strips in series are combined in parallel and outputted as the electric signal. At the same time, a DC bias current source is connected between each of the superconducting strips and the capacitor or the bias resistor connected thereto in series via a coil, and a DC bias current lower than a critical current is supplied from the DC bias current source to each of the superconducting strips.SELECTED DRAWING: Figure 2

Description

本発明は、粒子(荷電粒子を含む)・光子検出器に関し、特に、超伝導ストリップ型粒子・光子検出器に関する。   The present invention relates to a particle (including charged particles) / photon detector, and more particularly to a superconducting strip type particle / photon detector.

超伝導検出器は、厚さ数nm〜数μmの超伝導薄膜から構成されるが、光や粒子(荷電粒子を含む)が超伝導薄膜に入射した際のクーパー対の破壊によって生じる準粒子生成を検出原理としている。クーパー対の束縛エネルギーが極めて小さいため、超高感度な光・粒子検出器として期待されている。
特に、飛行時間型質量分析計では、粒子の質量が大きくなるほど飛行速度が低下するが、質量分析計に広く用いられている二次電子生成を基本原理とする検出器では、飛行速度が遅い粒子に対する検出感度が劣化するのに対し、超伝導検出器では、質量の大きな(飛行速度が遅い)分子に対しても検出感度を有しており、分子の質量に依存しない質量分析を実現できる。
本出願人は、質量に依存しない検出感度と、粒子径同等の有感面積を持つ超伝導ストリップ線に直流バイアス電流をかけた超伝導ストリップ型粒子・光子検出器を既に出願しており(特許文献1〜3参照)、このうち特許文献2、3では、超伝導ストリップ線の並列配置に取り組んできた。
なお、超伝導ストリップ型粒子・光子検出器は、超伝導状態に保たれた超伝導ストリップ線に光子又は粒子が衝突すると該衝突箇所が常伝導状態に転移し抵抗変化を生じることにより光子又は粒子が検出されたことを示す電気信号を出力する構成であるから、直流バイアス電流の大きさは超伝導臨界電流、すなわち、これ以上の電流を流すと抵抗が生じる臨界電流より低い直流バイアス電流を用いる。
A superconducting detector is composed of a superconducting thin film with a thickness of several nanometers to several μm, but it generates quasiparticles caused by the destruction of Cooper pairs when light or particles (including charged particles) enter the superconducting thin film. Is the detection principle. Because the binding energy of the Cooper pair is extremely small, it is expected as an ultra-sensitive light / particle detector.
In particular, in the time-of-flight mass spectrometer, the flight speed decreases as the mass of the particle increases, but in the detector based on the generation of secondary electrons widely used in the mass spectrometer, the flight speed is low. In contrast, the superconducting detector has detection sensitivity even for a molecule having a large mass (slow flight speed), and mass spectrometry independent of the mass of the molecule can be realized.
The present applicant has already applied for a superconducting strip type particle / photon detector in which a DC bias current is applied to a superconducting strip wire having a detection sensitivity independent of mass and a sensitive area equivalent to the particle diameter (patent) Among these, Patent Documents 2 and 3 have worked on parallel arrangement of superconducting strip lines.
The superconducting strip type particle / photon detector is configured such that when a photon or particle collides with a superconducting strip line kept in a superconducting state, the colliding portion is changed to a normal conducting state and a resistance change is caused. Therefore, the DC bias current has a superconducting critical current, that is, a DC bias current lower than the critical current that causes resistance when a current higher than this is applied. .

特開2004−214293号公報JP 2004-214293 A 特開2009−021478号公報JP 2009-021478 A 特開2011−185642号公報JP 2011-185642 A

N. Zen et al., Applied Physics Letters 104, 012601 (2014).N. Zen et al., Applied Physics Letters 104, 012601 (2014).

粒子径同等の面積を実現するためには、図1に示すような超伝導ストリップ線の並列配置が必須であるが、本発明者等の研究によって、図1に示した従来の直流バイアス電流回路では、粒子を検出する毎に、超伝導ストリップ線を流れていた直流バイアス電流が、並列に接続された超伝導ストリップ線に流れ込むことが明らかとなった(非特許文献1参照)。検出器の感度を上げるためには、さらに直流バイアス電流を増加させる必要があるが、バイアス電流が並列超伝導ストリップ線に流れ込むことにより全超伝導ストリップ線のカスケード的な超伝導−常伝導転移が誘発された。また、本発明者等は、光子や粒子を検出した際に、バイアス電流が並列に接続された超伝導ストリップ線に流出することを抑制するために、各超伝導ストリップ線にバイアス抵抗を直列に接続することが有効であることもシミュレーションによって明らかにした(非特許文献1参照)が、しかしながら、図1に示した回路構成の各超伝導ストリップ線に対してバイアス抵抗を直列に接続したのでは、直流バイアス電流がバイアス抵抗を流れてしまい、発生するジュール発熱によって検出器の特性が劣化することも明らかになった。
このため、従来の構成では、量子効率100%を保証する領域まで直流バイアス電流を検出器に印加することは不可能であった。
したがって、本発明が解決しようとする課題は、検出器の特性を劣化させることなく、粒子を検出した際に直流バイアス電流が並列に接続された超伝導ストリップ線に流出することを抑制した超伝導ストリップ型粒子検出器を提供することにある。
In order to realize an area equivalent to the particle diameter, a parallel arrangement of superconducting strip lines as shown in FIG. 1 is indispensable, but the conventional DC bias current circuit shown in FIG. Thus, it has been clarified that the DC bias current flowing through the superconducting strip line flows into the superconducting strip lines connected in parallel each time particles are detected (see Non-Patent Document 1). In order to increase the sensitivity of the detector, it is necessary to further increase the DC bias current. However, when the bias current flows into the parallel superconducting strip line, a cascaded superconducting-normal conducting transition of all superconducting strip lines occurs. Induced. In addition, the present inventors have set a bias resistor in series with each superconducting strip line in order to prevent the bias current from flowing out to the superconducting strip line connected in parallel when detecting photons and particles. It was also clarified by simulation that the connection is effective (see Non-Patent Document 1). However, if a bias resistor is connected in series to each superconducting strip line having the circuit configuration shown in FIG. It has also been clarified that the characteristics of the detector deteriorate due to Joule heat generated by the DC bias current flowing through the bias resistor.
For this reason, with the conventional configuration, it is impossible to apply a DC bias current to the detector up to a region that guarantees a quantum efficiency of 100%.
Therefore, the problem to be solved by the present invention is to prevent superconductivity in which a DC bias current is prevented from flowing out to a superconducting strip line connected in parallel when particles are detected without degrading the characteristics of the detector. It is to provide a strip type particle detector.

上記課題を解決するために、本発明は、超伝導状態に保たれた超伝導ストリップに粒子又は光子が衝突すると該衝突により超伝導状態から常伝導状態に転移することにより抵抗変化を生じて生成される電気信号により粒子又は光子を検出する粒子・光子検出器であって、複数の超伝導ストリップの一端を共通に接地し、各超伝導ストリップの他端にコンデンサとバイアス抵抗を直列に接続したものを並列に合成して前記電気信号として出力するとともに、直流バイアス電流源を、各超伝導ストリップとこれに直列に接続された前記コンデンサまたはバイアス抵抗との間にコイルを介して接続し、前記直流バイアス電流源から臨界電流より低い直流バイアス電流を各超伝導ストリップに供給することを特徴とする。
また、本発明は、上記粒子・光子検出器において、前記粒子は荷電粒子を含むことを特徴とする。
In order to solve the above problems, the present invention generates a change in resistance by causing a transition from a superconducting state to a normal state by collision when particles or photons collide with a superconducting strip kept in a superconducting state. A particle / photon detector for detecting particles or photons by an electric signal generated, one end of a plurality of superconducting strips is grounded in common, and a capacitor and a bias resistor are connected in series to the other end of each superconducting strip And a DC bias current source connected via a coil between each superconducting strip and the capacitor or bias resistor connected in series therewith, A DC bias current lower than a critical current is supplied to each superconducting strip from a DC bias current source.
In the particle / photon detector according to the present invention, the particles include charged particles.

本発明によれば、直流バイアス電流がバイアス抵抗を流れない回路構成であるためバイアス抵抗でジュール発熱は発生せず、かつ、バイアス抵抗によって、光子や粒子を検出した際の並列ストリップ線へのバイアス電流の流出を抑制することができるので、検出器の特性を劣化させることなく、直流バイアス電流の値を大きくして感度を上げることができる。   According to the present invention, since the DC bias current does not flow through the bias resistor, no Joule heat is generated in the bias resistor, and the bias to the parallel strip line when the photon or particle is detected by the bias resistor. Since current outflow can be suppressed, the sensitivity can be increased by increasing the value of the DC bias current without degrading the detector characteristics.

図1は、従来の直流バイアスを用いた並列超伝導ストリップ粒子検出器の説明図である。直流バイアス電流はコイルを介して各超伝導ストリップに供給される。粒子や光子が超伝導ストリップに衝突し、超伝導ストリップが常伝導転移すると、直流バイアス電流の一部がコンデンサを介して電流パルスとして負荷へ出力される。ここで、並列に接続された超伝導ストリップの抵抗がゼロであるので、直流バイアス電流の一部は同時に、並列に接続された超伝導ストリップに流出する。FIG. 1 is an explanatory diagram of a parallel superconducting strip particle detector using a conventional DC bias. A DC bias current is supplied to each superconducting strip via a coil. When particles or photons collide with the superconducting strip and the superconducting strip transitions to the normal conduction, a part of the DC bias current is output as a current pulse to the load through the capacitor. Here, since the resistance of the superconducting strips connected in parallel is zero, a part of the DC bias current flows out to the superconducting strips connected in parallel at the same time. 図2は、本発明の直流バイアスを用いた並列超伝導ストリップ粒子検出器の一実施例を説明した図である。超伝導ストリップに粒子や光子が衝突した際に、各超伝導ストリップを流れていた直流バイアス電流が、並列に接続された超伝導ストリップに流出することを抑制するために、超伝導ストリップに直列に有限の抵抗(バイアス抵抗)を接続している。ジュール発熱を回避するため、直流バイアス電流がバイアス抵抗を流れないようにコンデンサとコイルを配置する。超伝導ストリップに直列に接続されたコンデンサとバイアス抵抗は、これらの順序が逆であっても同様の効果が得られる。コイルは、超伝導ストリップとコンデンサまたはバイアス抵抗との間に接続する。FIG. 2 is a diagram for explaining an embodiment of a parallel superconducting strip particle detector using a DC bias according to the present invention. In order to prevent the DC bias current flowing through each superconducting strip from flowing into the superconducting strip connected in parallel when particles or photons collide with the superconducting strip, the superconducting strip is connected in series. A finite resistance (bias resistance) is connected. In order to avoid Joule heat generation, capacitors and coils are arranged so that the DC bias current does not flow through the bias resistor. A capacitor and a bias resistor connected in series with the superconducting strip can achieve the same effect even if their order is reversed. The coil is connected between the superconducting strip and a capacitor or bias resistor. 図3は、図1の従来の検出器で測定した測定結果(■でプロット)と図2の本発明の検出器で測定した測定結果(●でプロット)を比較したグラフである。FIG. 3 is a graph comparing the measurement results (plotted with ■) measured with the conventional detector of FIG. 1 and the measurement results (plotted with ●) measured with the detector of the present invention of FIG.

図2は、本発明の直流バイアスを用いた並列超伝導ストリップ粒子検出器の一実施例を示した図である。図に示すごとく、本発明では、複数の超伝導ストリップの一方の端子は共通に接地され、各超伝導ストリップの他方の端子にコンデンサとバイアス抵抗を直列に接続されたものが、負荷に対して共通に接続されており、負荷において読み出しを行う。直流バイアス電流源は、コイルを介して各超伝導ストリップの他方の端子とコンデンサまたはバイアス抵抗の間に接続されており、直流バイアス電流源からは臨界電流以下のバイアス電流が供給される。
図2に示した本発明の検出器では、直流のバイアス電流がバイアス抵抗を流れない回路構成によってジュール発熱は発生せず、バイアス抵抗によって、光子や粒子を検出した際の並列ストリップ線へのバイアス電流の流出を抑制することが可能となった。従来の図1の回路構成では、並列ストリップ線のカスケードスイッチングのために、十分な検出感度が得られる領域までバイアス電流を印加することが不可能であったが、本発明により、量子効率100%を保証する領域までバイアス電流を印加してもストリップ線のカスケードスイッチは観測されず、大きな有感面積と100%の検出感度を同時に実現することが可能となった。
図2では、超伝導ストリップに直列に接続されたコンデンサとバイアス抵抗の配置は、「超伝導ストリップ−コンデンサ−バイアス抵抗」の順で、コイルは超伝導ストリップとコンデンサの間に接続したものが図示されているが、配置が「超伝導ストリップ−バイアス抵抗−コンデンサ」の順である場合にも、コイルを超伝導ストリップとバイアス抵抗の間に接続すれば同様の効果が得られる。すなわち、バイアス抵抗によって、超伝導ストリップに粒子や光子が衝突した際に、各超伝導ストリップを流れていた直流バイアス電流が、並列に接続された超伝導ストリップに流出することを抑制することができ、さらに、コンデンサとコイルの配置によって、直流バイアス電流がバイアス抵抗を流れないようにしてジュール発熱を回避することができるのである。
図3は、横軸がバイアス電流/臨界電流、縦軸が計数率[s-1]を表し(ここで臨界電流とは、超伝導状態に保たれた超伝導ストリップ線にこれ以上直流バイアス電流を流すと抵抗が生じて常伝導状態に転移する電流値のことを意味する)、■でプロットしたものが図1の従来の検出器で測定した測定結果であり、●でプロットしたものが図2の本発明の検出器で測定した測定結果を表すグラフである。図3によれば、本発明の検出器により量子効果100%を保証する領域まで検出できることが確認でき、従来なし得なかった100メガダルトンを超える質量を持つウイルスの凝集体の検出に成功した。
FIG. 2 is a diagram showing an embodiment of a parallel superconducting strip particle detector using a DC bias according to the present invention. As shown in the figure, in the present invention, one terminal of a plurality of superconducting strips is grounded in common, and a capacitor and a bias resistor are connected in series to the other terminal of each superconducting strip. They are connected in common and read at the load. The DC bias current source is connected between the other terminal of each superconducting strip and a capacitor or a bias resistor via a coil, and a bias current less than the critical current is supplied from the DC bias current source.
In the detector of the present invention shown in FIG. 2, Joule heat is not generated by a circuit configuration in which a DC bias current does not flow through the bias resistor, and the bias to the parallel strip line when a photon or particle is detected by the bias resistor. It has become possible to suppress the outflow of current. In the conventional circuit configuration of FIG. 1, it is impossible to apply a bias current to a region where sufficient detection sensitivity can be obtained due to cascade switching of parallel strip lines. However, according to the present invention, the quantum efficiency is 100%. Even when a bias current is applied up to the region that guarantees the above, no strip line cascade switch is observed, and a large sensitive area and 100% detection sensitivity can be realized simultaneously.
In FIG. 2, the capacitor and bias resistor connected in series to the superconducting strip are arranged in the order of “superconducting strip-capacitor-bias resistor”, and the coil is connected between the superconducting strip and the capacitor. However, even when the arrangement is in the order of “superconducting strip-bias resistor-capacitor”, the same effect can be obtained by connecting the coil between the superconducting strip and the bias resistor. That is, when a particle or photon collides with the superconducting strip, the bias resistance can prevent the DC bias current flowing through each superconducting strip from flowing out to the superconducting strip connected in parallel. Furthermore, the arrangement of the capacitor and the coil prevents Joule heat generation by preventing the DC bias current from flowing through the bias resistor.
In FIG. 3, the horizontal axis represents the bias current / critical current, and the vertical axis represents the count rate [s −1 ] (here, the critical current is a DC bias current no more than a superconducting strip line kept in a superconducting state). Means the current value that causes resistance and transitions to the normal conduction state when flowing through), and the results plotted with ■ are the measurement results measured with the conventional detector of FIG. 1, and the values plotted with ● are It is a graph showing the measurement result measured with the detector of 2 of the present invention. According to FIG. 3, it was confirmed that the detector of the present invention can detect a region that guarantees 100% of the quantum effect, and succeeded in detecting a virus aggregate having a mass exceeding 100 megadaltons, which could not be achieved conventionally.

遺伝子治療におけるウイルスベクターの品質管理、ウイルスディスプレイによる抗体医薬品の開発、抗体医薬品の凝集形成評価、工業用ナノ粒子の凝集形成評価等の巨大分子を評価する手法として、エレクトロスプレーイオン化法を用いた質量分析が行われており、当該手法は、多価のイオンを生成するために、超伝導検出器のような超高感度な検出器を必要としないが、分子の質量によって帯電量が異なっており、質量を一意に決定することが従来の検出器では困難であった。しかしながら、本発明の検出器であれば、巨大分子の1価であっても十分に検出感度があり、質量を一意に決定することが可能である。また、二次電子生成を基本原理とする検出器において、2メガダルトンの1価を測定可能な検出器が従来市販されているが、本発明の検出器により実証された100メガダルトンの1価の検出は、それらの性能を大きく上回る。   Mass using electrospray ionization as a method for evaluating macromolecules such as quality control of viral vectors in gene therapy, development of antibody drugs by virus display, evaluation of aggregate formation of antibody drugs, and evaluation of aggregate formation of industrial nanoparticles Analysis has been carried out, and this method does not require an ultrasensitive detector such as a superconducting detector in order to generate multivalent ions, but the charge amount varies depending on the mass of the molecule. It has been difficult to determine the mass uniquely with conventional detectors. However, with the detector of the present invention, even a monovalent macromolecule has sufficient detection sensitivity, and the mass can be determined uniquely. In addition, as a detector based on the basic principle of secondary electron generation, a detector capable of measuring a monovalence of 2 megadaltons is commercially available in the past, but a monovalence of 100 megadaltons demonstrated by the detector of the present invention. The detection of these greatly exceeds their performance.

Claims (2)

超伝導状態に保たれた超伝導ストリップに粒子又は光子が衝突すると該衝突により超伝導状態から常伝導状態に転移することにより抵抗変化を生じて生成される電気信号により粒子又は光子を検出する粒子・光子検出器であって、
複数の超伝導ストリップの一端を共通に接地し、各超伝導ストリップの他端にコンデンサとバイアス抵抗を直列に接続したものを並列に合成して前記電気信号として出力するとともに、
直流バイアス電流源を、各超伝導ストリップとこれに直列に接続された前記コンデンサまたはバイアス抵抗との間にコイルを介して接続し、前記直流バイアス電流源から臨界電流より低い直流バイアス電流を各超伝導ストリップに供給することを特徴とする粒子・光子検出器。
Particles that detect particles or photons by electrical signals generated when a particle or photon collides with a superconducting strip maintained in a superconducting state, causing a change in resistance due to the transition from the superconducting state to the normal conducting state due to the collision. A photon detector,
One end of the plurality of superconducting strips is grounded in common, and the other end of each superconducting strip is combined in parallel with a capacitor and a bias resistor to be output in parallel and output as the electrical signal,
A DC bias current source is connected via a coil between each superconducting strip and the capacitor or bias resistor connected in series therewith, and a DC bias current lower than the critical current is supplied from the DC bias current source to each superconducting strip. Particle / photon detector, characterized in that it is supplied to a conductive strip.
前記粒子は荷電粒子を含むことを特徴とする請求項1記載の粒子・光子検出器。   The particle / photon detector according to claim 1, wherein the particles include charged particles.
JP2014218137A 2014-10-27 2014-10-27 Particle detector Active JP6388815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218137A JP6388815B2 (en) 2014-10-27 2014-10-27 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218137A JP6388815B2 (en) 2014-10-27 2014-10-27 Particle detector

Publications (2)

Publication Number Publication Date
JP2016085867A true JP2016085867A (en) 2016-05-19
JP6388815B2 JP6388815B2 (en) 2018-09-12

Family

ID=55973208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218137A Active JP6388815B2 (en) 2014-10-27 2014-10-27 Particle detector

Country Status (1)

Country Link
JP (1) JP6388815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065288A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227690A (en) * 1989-01-13 1990-09-10 Thomson Csf Radiation detector
JP2004214293A (en) * 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology Particle detector
JP2008134153A (en) * 2006-11-28 2008-06-12 Japan Science & Technology Agency Neutron detection device and its using method
JP2009021478A (en) * 2007-07-13 2009-01-29 National Institute Of Advanced Industrial & Technology Particle and photon detector
JP2011185642A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology High-speed particle detector for discriminating ionic valence
JP2014196983A (en) * 2013-03-29 2014-10-16 独立行政法人産業技術総合研究所 Particle/photon detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227690A (en) * 1989-01-13 1990-09-10 Thomson Csf Radiation detector
JP2004214293A (en) * 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology Particle detector
JP2008134153A (en) * 2006-11-28 2008-06-12 Japan Science & Technology Agency Neutron detection device and its using method
JP2009021478A (en) * 2007-07-13 2009-01-29 National Institute Of Advanced Industrial & Technology Particle and photon detector
JP2011185642A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology High-speed particle detector for discriminating ionic valence
JP2014196983A (en) * 2013-03-29 2014-10-16 独立行政法人産業技術総合研究所 Particle/photon detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065288A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same

Also Published As

Publication number Publication date
JP6388815B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
US10338104B2 (en) Leakage current detection device for conducting wires
JP2015075348A (en) Ion mobility spectrometer
JP2022037688A5 (en)
JP6388815B2 (en) Particle detector
Burenkov et al. Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors
JP5093654B2 (en) Particle / photon detector
Yan et al. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control
US20150194540A1 (en) Optical detector
KR101381425B1 (en) Super high-capacity shunt
CN103518140B (en) For measuring the system of electric charge
Sano et al. Demonstration of single-flux-quantum readout circuits for time-of-flight mass spectrometry systems using superconducting strip ion detectors
JP6015948B2 (en) Particle / photon detector
JPWO2021066153A5 (en)
SE427704B (en) STRALNINGSDETEKTORANORDNING
US10276359B2 (en) Ion mobility spectrometer
Nakano et al. Discharge characteristics and mechanisms under the medium vacuum region in a vacuum interrupter
KR102325909B1 (en) earth leakage detection device
CN102623287A (en) Device and method for detecting ion current of vacuum discharge plasma
US6654217B2 (en) Quick responding instantaneous trip system
US20180356537A1 (en) Radiation measurement device
Moody et al. A Comprehensive Counting System for Nuclear Physics Research Part IV. Introduction to Pulse Amplitude Analyzers
Dash et al. A Study on the time resolution of Glass RPC
Shirvani et al. A transient model of lightning breakdown process based on photographic measurements
Kamiji et al. Development of amplifier with pulse shaper for high rate MWPC
JP2019021496A (en) Discharge frequency meter and current measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6388815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250