JP2014196983A - Particle/photon detector - Google Patents

Particle/photon detector Download PDF

Info

Publication number
JP2014196983A
JP2014196983A JP2013073460A JP2013073460A JP2014196983A JP 2014196983 A JP2014196983 A JP 2014196983A JP 2013073460 A JP2013073460 A JP 2013073460A JP 2013073460 A JP2013073460 A JP 2013073460A JP 2014196983 A JP2014196983 A JP 2014196983A
Authority
JP
Japan
Prior art keywords
particle
parallel
photon detector
detection unit
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013073460A
Other languages
Japanese (ja)
Other versions
JP6015948B2 (en
Inventor
成友 志岐
Shigetomo Shiki
成友 志岐
大久保 雅隆
Masataka Okubo
雅隆 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013073460A priority Critical patent/JP6015948B2/en
Publication of JP2014196983A publication Critical patent/JP2014196983A/en
Application granted granted Critical
Publication of JP6015948B2 publication Critical patent/JP6015948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle/photon detector compatibly having a high response speed, a large sensitive area, less heat generation, and high signal strength, while capable of preventing generation of a non-sensing region.SOLUTION: When particles or photons collide with a detection unit 12 that is retained in a superconductive state to transfer the detection unit to a normal conductive state, a particle/photon detector 10 outputs an electric signal indicating a detection of particles or photons. The particle/photon detector 10 includes: a plurality of detection units 12 connected in series; and two wiring lines 26 and 28 arranged in parallel that are provided in parallel with the plurality of detection units 12 that are connected in series. Respective connection parts of adjacent detection units 12 are alternately connected to the two wiring lines 26 and 28 arranged in parallel via resistors 14, and electric signals from the plurality of detection units are read through at least one of the two wiring lines 26 and 28 arranged in parallel.

Description

本発明は、超伝導状態の検出部を用いて粒子や光子を検出する粒子・光子検出器に関する。   The present invention relates to a particle / photon detector that detects particles and photons using a detection unit in a superconducting state.

超伝導体の薄膜で微細な配線を形成してなる検出部を用いた粒子・光子検出器の研究が行われている。この粒子・光子検出器は、超伝導体の検出部が超伝導転移温度以下に冷却され、検出部をなす配線に臨界電流(超伝導状態を破壊する電流)よりも小さい電流を流した状態で使用される。このように超伝導状態とされた検出部の配線に粒子または光子が衝突すると、衝突箇所の微小領域における臨界電流の値が低下することにより、当該微小領域は超伝導状態が破れて常伝導状態に転移する。この結果、検出部をなす配線がわずかな抵抗値を有するようになり、この抵抗値変化を反映したパルス状の電圧変化が電気信号として検出部から出力される。この電気信号を観測することにより、検出部に到来した粒子または光子を検出することができる(例えば特許文献1参照)。   Research on particle / photon detectors using a detector formed by forming fine wiring with a thin film of superconductor has been conducted. In this particle / photon detector, the detection part of the superconductor is cooled below the superconducting transition temperature, and a current smaller than the critical current (current that destroys the superconducting state) flows through the wiring forming the detection part. used. When particles or photons collide with the wiring of the detection unit thus made in the superconducting state, the value of the critical current in the microregion at the collision point decreases, so that the superconducting state is broken in the microregion, and the normal conducting state To metastasize. As a result, the wiring forming the detection unit has a slight resistance value, and a pulse-like voltage change reflecting this change in resistance value is output from the detection unit as an electrical signal. By observing this electrical signal, it is possible to detect particles or photons that have arrived at the detector (see, for example, Patent Document 1).

一般に粒子・光子検出器においては、応答(すなわち、検出部が常伝導状態から粒子又は光子の衝突前の超伝導状態に戻り再び粒子又は光子の検出が可能な状態に回復するまでの時間)が速いことと、有感面積が大きいことが必要とされる。粒子・光子検出器における粒子や光子を検出する際の応答速度は、超伝導体の検出部が持つカイネティックインダクタンスLと、検出部からの電気信号を受ける読み出し回路の抵抗値Rによって決定され、その応答速度の指標である時定数(読み出し回路においてパルス状の電気信号が立ち下がる時定数)τはτ=L/Rで与えられる(例えば非特許文献1)。ところで、高速信号の読出回路および伝送線路では、反射を避けるためにインピーダンス整合が行われ、特性インピーダンスは典型的には50Ωまたは75Ωであり、大きく変えることができないので、読み出し回路の抵抗値Rを変えることはあまりできない。このため、粒子・光子検出器の応答速度を高めるには、カイネティックインダクタンスLを小さく設計することが一般的である。一方、検出部をなす超伝導体配線におけるカイネティックインダクタンスLは配線の長さに比例し、線幅、厚みに反比例する。線幅および厚みを大きくすると検出効率が下がること、常伝導常態に転移した後に超伝導状態に戻りにくくなることから、カイネティックインダクタンスLを小さくする際には、一般に長さを短くすることが広く行われる。例えば、数ミクロンのサイズを有する検出部により50ピコ秒程度の応答速度が報告されている(非特許文献2)。この応答速度は既存の検出器であるマイクロチャンネルプレート、光電子増倍管やアバランシェフォトダイオードよりも速く、上記超伝導体配線の検出部を用いた粒子・光子検出器は粒子または光子の到来時刻を精密に検出できる。   In general, in the particle / photon detector, the response (that is, the time until the detection unit returns from the normal state to the superconducting state before the collision of the particle or the photon to the state where the particle or the photon can be detected again). It must be fast and have a large sensitive area. The response speed when detecting particles and photons in the particle / photon detector is determined by the kinetic inductance L of the superconductor detector and the resistance value R of the readout circuit that receives the electrical signal from the detector, A time constant (time constant at which the pulsed electric signal falls in the readout circuit) τ, which is an index of the response speed, is given by τ = L / R (for example, Non-Patent Document 1). By the way, in the high-speed signal readout circuit and transmission line, impedance matching is performed in order to avoid reflection, and the characteristic impedance is typically 50Ω or 75Ω and cannot be changed greatly. I can't change that much. Therefore, in order to increase the response speed of the particle / photon detector, it is common to design the kinetic inductance L to be small. On the other hand, the kinetic inductance L in the superconductor wiring forming the detection unit is proportional to the length of the wiring and inversely proportional to the line width and thickness. Increasing the line width and thickness lowers the detection efficiency and makes it difficult to return to the superconducting state after transitioning to the normal conducting state. Therefore, when the kinetic inductance L is reduced, the length is generally shortened. Done. For example, a response speed of about 50 picoseconds has been reported by a detection unit having a size of several microns (Non-Patent Document 2). This response speed is faster than that of existing detectors such as microchannel plates, photomultiplier tubes and avalanche photodiodes. The particle / photon detector using the superconductor wiring detection unit determines the arrival time of particles or photons. It can be detected precisely.

特開2004−214293号公報JP 2004-214293 A 特開2009−021478号公報JP 2009-021478 A

Andrew 他,"Kinetic-inductance-limited reset time of superconducting nanowire photon counter",Applied Physics Letters,2006,vol.88,pp111-116Andrew et al., "Kinetic-inductance-limited reset time of superconducting nanowire photon counter", Applied Physics Letters, 2006, vol.88, pp111-116 Komeev 他,"Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors",Applied Physics Letters,2004,vol.84,p5388Komeev et al., "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors", Applied Physics Letters, 2004, vol.84, p5388 Casaburi 他,"Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions",Appl. Phys. Lett. 94,212502(2009)Casaburi et al., “Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions”, Appl. Phys. Lett. 94, 212502 (2009) Zen 他,"1mm ultrafast superconducting stripline molecule detector",Appl. Phys. Lett. 95,172508(2009)Zen et al., "1mm ultrafast superconducting stripline molecule detector", Appl. Phys. Lett. 95, 172508 (2009) Suzuki 他,"Time Resolution Improvement of Superconducting NbN Stripline Detectors for Time-of-Flight Mass Spectrometry",Appl. Phys. Express,Vol.1,p.031702,2009Suzuki et al., “Time Resolution Improvement of Superconducting NbN Stripline Detectors for Time-of-Flight Mass Spectrometry”, Appl. Phys. Express, Vol.1, p.031702, 2009

上述したように、一般の粒子・光子検出器には、応答が速いことともに、有感面積が大きいことが求められる。ところが、上述したように、高速応答性を追求して検出部をなす超伝導体配線の長さを短くすると、必然的に有感面積が小さくなり、検出器としての実用性が損なわれる。この課題は、検出部を並列に接続し、実効的なインダクタンスを低下させることにより解決されてきた(例えば特許文献2、非特許文献3、非特許文献4)。   As described above, a general particle / photon detector is required to have a fast response and a large sensitive area. However, as described above, if the length of the superconductor wiring forming the detection portion is shortened in pursuit of high-speed response, the sensitive area is inevitably reduced, and the practicality as a detector is impaired. This problem has been solved by connecting the detection units in parallel and reducing the effective inductance (for example, Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4).

しかしながら、並列に接続することは次の三つの問題を生じさせる。
(1)第一の問題は、検出器全体に流す電流が大きくなって、発熱が増え、低温を保てなくなることである。検出器において、超伝導体を用いた配線すなわち検出部上では抵抗値がゼロであるため発熱はない。一方、外部から検出器に電流を導入する経路(以下、伝送線路と記載する。)は、当該伝送線路を介した外部からの熱の流入により低温部(特にその検出部)の温度が上昇することを防ぐために、熱伝導率が低い材料、たとえば真鍮やステンレスを用いて構成されている。真鍮やステンレスは、伝導率は低いが、伝送線路の配線が1Ω前後の抵抗値を有する。伝送線路における発熱量Qは、電流値をIc、抵抗値をRcとすると、Q=Ic2Rcと表され、M個の検出部を並列に接続して各検出部に同じ電流値Iを供給するようにすると、Ic=MIとなり、伝送線路における発熱量はQ=(MI)2×Rc=M22×Rcとなって、検出部の並列数Mの二乗すなわちM2に比例するので、並列化には限界がある。例えば、抵抗値が1Ωの配線の場合、伝送線路の配線における発熱量Qは上述したようにQ=I2Rcと表されるので、100mAの電流を流すと発熱量は10mWに達する。一方、検出部を冷却するための冷凍機の冷却能力は典型的には1W以下で、安定に低温を維持するには、発熱量は10mW以下としなければならない。したがって、超伝導体配線を用いた粒子・光子検出器の一つの検出部に供給される電流の値が典型的にmA程度であることを考慮すると、並列にする検出部の数は100程度が限界となる。
However, connecting in parallel causes the following three problems.
(1) The first problem is that the current flowing through the entire detector increases, heat generation increases, and the low temperature cannot be maintained. In the detector, there is no heat generation because the resistance value is zero on the wiring using the superconductor, that is, on the detection unit. On the other hand, the path (hereinafter referred to as a transmission line) for introducing a current into the detector from the outside increases the temperature of the low temperature part (particularly the detection part) due to the inflow of heat from the outside through the transmission line. In order to prevent this, a material having a low thermal conductivity, such as brass or stainless steel, is used. Brass and stainless steel have low conductivity, but the transmission line wiring has a resistance value of around 1Ω. The heat generation amount Q in the transmission line is expressed as Q = Ic 2 Rc where the current value is Ic and the resistance value is Rc, and M detection units are connected in parallel to supply the same current value I to each detection unit. Then, Ic = MI, and the amount of heat generated in the transmission line is Q = (MI) 2 × Rc = M 2 I 2 × Rc, which is proportional to the square of the number M of parallel detectors, that is, M 2 . There are limits to parallelization. For example, in the case of a wiring having a resistance value of 1Ω, the heat generation amount Q in the transmission line wiring is expressed as Q = I 2 Rc as described above. Therefore, when a current of 100 mA is passed, the heat generation amount reaches 10 mW. On the other hand, the cooling capacity of the refrigerator for cooling the detection unit is typically 1 W or less, and the heat generation amount must be 10 mW or less in order to stably maintain a low temperature. Therefore, considering that the value of the current supplied to one detection unit of the particle / photon detector using the superconductor wiring is typically about mA, the number of detection units arranged in parallel is about 100. It becomes a limit.

(2)第二の問題は、不感領域が発生することである。粒子・光子を検出した際、超伝導体配線で構成される検出部は常伝導状態に転移して、そこを流れる電流が減少する。減少した電流は、多くは並列に接続された別の検出部に分配されることになる。その後、常伝導状態に転移した検出部が再び超伝導状態に回復すると、これらの超伝導体配線の検出部は抵抗ゼロの閉回路を形成する。常伝導体であれば閉回路を流れる電流は、並列に接続される他の回路部分における電圧降下に起因した誘導起電力により電流が回復するが、超伝導体の閉回路では他の回路部分の抵抗値がゼロであるために閉回路を形成する他の部分において電圧降下が生じておらず、一度常伝導状態に転移した検出部を流れる電流は減少したままとなる。超伝導体配線からなる検出部を用いた粒子・光子検出器では、各検出部の電流値が臨界電流に近い場合にのみ各検出部が検出器として動作するため、電流が流れていない状態になった検出部は不感領域となり、実効的な有感面積が低下するという問題が生じる。なお、不感領域となった検出部は、並列に接続した他の検出部(配線部)が粒子または光子を検出すると電流が分配され、再び検出器として動作するようになる。   (2) The second problem is that a dead area occurs. When particles / photons are detected, the detection unit composed of the superconductor wiring shifts to a normal state, and the current flowing therethrough decreases. The reduced current is often distributed to other detection units connected in parallel. After that, when the detection units that have transitioned to the normal conduction state are restored to the superconducting state again, the detection units of these superconductor wirings form a closed circuit with zero resistance. In the case of a normal conductor, the current flowing through the closed circuit recovers due to the induced electromotive force caused by the voltage drop in the other circuit parts connected in parallel. Since the resistance value is zero, there is no voltage drop in the other parts forming the closed circuit, and the current flowing through the detection unit once shifted to the normal conduction state remains reduced. In particle / photon detectors using a superconductor wiring detector, each detector operates as a detector only when the current value of each detector is close to the critical current. The detected part becomes a non-sensitive area, which causes a problem that an effective sensitive area is reduced. Note that the detection unit that has become the insensitive region is re-operated as a detector because the current is distributed when another detection unit (wiring unit) connected in parallel detects particles or photons.

(3)第三の問題は、信号強度が低下することである。非特許文献3においては、複数の超伝導体配線を検出部として並列に配置したユニットを、更に直列に接続して、一端を接地し、他端から信号を読み出す。単一の検出部の場合には出力電圧はおよそバイアス電流Iと読み出し回路のインピーダンスRを用いて概ねI×Rと表されるが、直列接続の配置と並列接続の配置を併用した場合には、一つの検出部に流す電流をI、直列数N、並列数Mとすると、出力電圧はおよそIR/Nで、直列数を増やすと信号強度は減少する(非特許文献4)。   (3) The third problem is that the signal strength is reduced. In Non-Patent Document 3, units in which a plurality of superconductor wires are arranged in parallel as detection units are further connected in series, one end is grounded, and a signal is read from the other end. In the case of a single detection unit, the output voltage is approximately expressed by I × R using the bias current I and the impedance R of the readout circuit. However, when the arrangement of series connection and the arrangement of parallel connection are used together, Assuming that the current passed through one detector is I, the number of series N, and the number of parallel M, the output voltage is about IR / N, and the signal intensity decreases when the number of series increases (Non-patent Document 4).

よって、本発明の目的は、従来技術に存する課題を解決して、高速な応答速度と大きな有感面積と少ない発熱と大きな信号強度とを兼ね備え且つ不感領域の発生を防ぐことができる粒子・光子検出器を提供することにある。   Therefore, an object of the present invention is to solve the problems existing in the prior art, and to provide particles / photons that have a high response speed, a large sensitive area, a small amount of heat generation, and a large signal intensity and can prevent the generation of insensitive areas. It is to provide a detector.

上記目的に鑑み、本発明は、超伝導状態に保たれた検出部に粒子又は光子が衝突して該検出部が常伝導状態に転移することにより、粒子又は光子が検出されたことを示す電気信号を出力する粒子・光子検出器であって、直列に接続された複数の検出部と、該直列に接続された複数の検出部と並列に設けられた二つの並行配線とを備え、該直列に接続された複数の検出部の各接続部が交互に前記二つの並行配線に抵抗器を介して接続されており、前記二つの並行配線のうちの少なくとも一方を通して、前記複数の検出部からの電気信号を読み出すようにした粒子・光子検出器を提供する。   In view of the above-described object, the present invention provides an electric signal indicating that particles or photons have been detected when particles or photons collide with a detection unit maintained in a superconducting state and the detection unit transitions to a normal conduction state. A particle / photon detector for outputting a signal, comprising: a plurality of detectors connected in series; and two parallel wires provided in parallel with the plurality of detectors connected in series; Each of the plurality of detection units connected to each other is connected to the two parallel wirings alternately via a resistor, and through at least one of the two parallel wirings, Provided is a particle / photon detector configured to read out an electric signal.

前記粒子・光子検出器において、前記抵抗器の抵抗値は、常伝導状態に転移したときの前記検出部の抵抗値よりも小さくなっていることが好ましい。   In the particle / photon detector, it is preferable that a resistance value of the resistor is smaller than a resistance value of the detection unit when transitioning to a normal state.

さらに、前記並行配線のうちの一方は、バイアスT回路を介して電流源に接続され且つバイアスインダクタを介して前記直列に接続された複数の検出部の一端に接続されており、前記電流源から前記直列に接続された複数の検出部にバイアス電流を供給するためのバイアス電流供給配線として機能すると共に、前記直列に接続された複数の検出部から並列に電気信号を読み出すための読み出し配線として機能することが好ましい。   Further, one of the parallel wirings is connected to a current source via a bias T circuit and connected to one end of the plurality of detection units connected in series via a bias inductor, and is connected to the current source. Functions as a bias current supply wiring for supplying a bias current to the plurality of detection units connected in series, and functions as a readout wiring for reading out an electric signal in parallel from the plurality of detection units connected in series It is preferable to do.

前記並行配線のうちの他方は、接地されたグランド配線であってもよく、前記複数の検出部から電気信号を読み出すための読み出し配線であってもよい。   The other of the parallel wires may be a ground wire that is grounded, or may be a read wire for reading an electric signal from the plurality of detection units.

上記粒子・光子検出器では、複数の検出部を用いることにより、検出部の個数に比例して有感面積が増大する。また、複数の検出部を直列に接続し、出力される電気信号の読み出し方法に工夫を凝らさない場合には、回路全体のカイネティックインダクタンスが、[一つの検出部のカイネティックインダクタンス]×[直列接続した検出部の数]となるので、粒子・光子検出器の動作速度(回路出力で見た応答時間)は検出部の直列数に比例して遅くなる。これに対して、上記粒子・光子検出器では、直列に接続された複数の検出部の各接続部を交互に二つの並行配線に抵抗器を介して接続することにより、粒子又は光子が衝突した検出部が超伝導状態から常伝導状態に転移したときに、その手前で抵抗器を介して二つの並行配線の何れかに電流が流れるので、動作速度の低下を防ぐばかりでなく、応答を早くすることができる。   In the particle / photon detector, the use of a plurality of detection units increases the sensitive area in proportion to the number of detection units. In addition, when a plurality of detection units are connected in series and the method of reading the output electric signal is not devised, the kinetic inductance of the entire circuit is calculated as follows: [kinetic inductance of one detection unit] × [series The number of connected detection units], the operation speed of the particle / photon detector (response time as viewed from the circuit output) becomes slower in proportion to the number of detection units in series. On the other hand, in the particle / photon detector, particles or photons collide by connecting each connecting portion of a plurality of detecting portions connected in series alternately to two parallel wirings via a resistor. When the detector transitions from the superconducting state to the normal conducting state, a current flows through one of the two parallel wires through the resistor before the detection unit. can do.

また、このような配置にすることで、従来のように検出部を並列接続した配置における発熱の問題を解決することができる。すなわち、発熱は低温部と常温部をつなぐ伝送線路において起こるが、検出部が直列に接続されているために、直列に接続した検出部の数によらず、一個の粒子・光子検出器と同じ電流値で動作させることができ、この結果、発熱量はN個の検出部を並列に接続する場合に比べてN2分の1と極めてきわめて小さくなる。 Further, with such an arrangement, it is possible to solve the problem of heat generation in an arrangement in which detection units are connected in parallel as in the prior art. In other words, heat generation occurs in the transmission line connecting the low temperature part and the normal temperature part, but because the detection part is connected in series, it is the same as one particle / photon detector regardless of the number of detection parts connected in series. The operation can be performed with a current value, and as a result, the amount of heat generation is extremely small, that is, 1/2 of N 2 compared to the case where N detection units are connected in parallel.

さらに、従来のように複数の検出部を並列に接続する配置では、一度ある検出部が粒子又は光子を検出すると、並列に接続された他の検出部が粒子又は光子を検出するまで、その検出部は検出器として動作しない不感領域となっていた。これに対して、本発明による粒子・光子検出器では、粒子又は光子が衝突した検出部が超伝導状態から常伝導状態に転移したときにその検出部の手前の接続部から抵抗器を介して二つの並行配線のうちの何れかに電流が流れ、電圧降下を生じさせるので、速やかに超伝導状態に回復することができる。したがって、検出部の接続部と二つの並行配線との間に接続される抵抗器の値を適切に選択することで、個々の検出部の不感時間を調節することができる。   Furthermore, in a conventional arrangement in which a plurality of detection units are connected in parallel, once a detection unit detects particles or photons, the detection is performed until another detection unit connected in parallel detects particles or photons. The part was a dead area that did not operate as a detector. On the other hand, in the particle / photon detector according to the present invention, when the detection unit where the particle or photon collides changes from the superconducting state to the normal conducting state, the connection unit before the detecting unit passes through the resistor. Since a current flows through one of the two parallel wirings to cause a voltage drop, the superconducting state can be quickly recovered. Accordingly, the dead time of each detection unit can be adjusted by appropriately selecting the value of the resistor connected between the connection unit of the detection unit and the two parallel wirings.

加えて、非特許文献3のように、並列接続と直列接続を組み合わせて用いた場合に比べ、信号強度も大きくなる。   In addition, as in Non-Patent Document 3, the signal strength is increased as compared with the case where parallel connection and series connection are used in combination.

本発明によれば、複数の検出部の接続部を交互に二つの並行配線に抵抗を介して接続することにより、高速応答、大面積、低発熱、大信号強度を兼ね備え、不感領域がない粒子・光子検出器を実現することができる。   According to the present invention, particles having no insensitive area, having high-speed response, large area, low heat generation, and large signal intensity by connecting the connecting portions of a plurality of detecting portions alternately to two parallel wirings via resistors.・ A photon detector can be realized.

単一の超伝導体配線を用いた従来の粒子・光子検出器の構成図である。It is a block diagram of the conventional particle | grain and photon detector using a single superconductor wiring. 図1に示される粒子・光子検出器の検出部の概略形状を(a)に、等価回路を(b)に示している。A schematic shape of the detection unit of the particle / photon detector shown in FIG. 1 is shown in (a), and an equivalent circuit is shown in (b). 並列接続・直列接続を併用した他の従来の粒子・光子検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the other conventional particle | grain / photon detector which used parallel connection and series connection together. 本発明による粒子・光子検出器の一実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of one Embodiment of the particle | grain / photon detector by this invention. 本発明による粒子・光子検出器の他の実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of other embodiment of the particle | grain / photon detector by this invention. 図4に示される粒子・光子検出器の出力電圧波形のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the output voltage waveform of the particle | grain and photon detector shown by FIG. 図4に示される粒子・光子検出器の各検出部を流れる電流波形のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the current waveform which flows through each detection part of the particle | grain / photon detector shown by FIG.

以下、図面を参照して、本発明による粒子・光子検出器の実施形態を説明する。   Embodiments of a particle / photon detector according to the present invention will be described below with reference to the drawings.

最初に、本発明との対比のために、図1から図3を参照して、従来の粒子・光子検出器110について説明する。
図1は単一の検出部112を用いた従来の粒子・光子検出器の構成図である。粒子・光子検出器110は、1つの検出部112と、1つのシャント抵抗114と、同軸ケーブルからなる伝送線路116と、バイアスT回路118と、増幅器120とによって構成されており、粒子や光子が検出部112に衝突すると検出部112から電気信号を出力するようになっている。検出部112とシャント抵抗114とは並列に接続されており、この並列接続の一端が接地され、他端は伝送線路116に接続されている。また、伝送線路116はバイアスT回路118を介して増幅器120に接続されている。なお、図1中の点線150で囲まれた部分(検出部112とシャント抵抗114)は超伝導転移温度より低い温度(典型的には液体ヘリウム温度4.2K)に冷却される。
First, a conventional particle / photon detector 110 will be described with reference to FIGS. 1 to 3 for comparison with the present invention.
FIG. 1 is a configuration diagram of a conventional particle / photon detector using a single detector 112. The particle / photon detector 110 includes one detection unit 112, one shunt resistor 114, a transmission line 116 including a coaxial cable, a bias T circuit 118, and an amplifier 120. When it collides with the detection unit 112, an electric signal is output from the detection unit 112. The detection unit 112 and the shunt resistor 114 are connected in parallel. One end of the parallel connection is grounded, and the other end is connected to the transmission line 116. The transmission line 116 is connected to the amplifier 120 via a bias T circuit 118. 1 is cooled to a temperature lower than the superconducting transition temperature (typically a liquid helium temperature of 4.2 K) surrounded by a dotted line 150 in FIG.

検出部112の概略形状を図2(a)に、等価回路を図2(b)に示す。検出部112は、所定のパターンを有し超伝導体によって形成された配線(以下、超伝導体配線と記載する。)112aであり、この超伝導体配線112aの両端にはボンディングパッド112bが形成されている。超伝導体配線112a及びボンディングパッド112bは例えばNbN(チッ化ニオブ)の薄膜によって形成される。NbN薄膜の膜厚は典型的には10nm以下であり、超伝導体配線112aの線幅は典型的には数十nmから1μm程度である。超伝導体配線112aは、図2(a)ではミアンダ状パターンに形成されているが、これに限定されるものではなく、任意のパターンとすることができる。この超伝導体配線112aのパターン領域が、粒子および光子を検出できる有感面積に対応し、その大きさは数μm2から数万μm2である。例えば非特許文献5に開示されている粒子・光子検出器の場合、検出部112の薄膜の材質がNbN、厚さが10nmであり、超伝導体配線112aの線幅が800nm、検出部12のサイズが200μm×200μm、超伝導臨界電流が581μA、カイネティックインダクタンスが1.1μH、有感面積が0.02mm2である。 A schematic shape of the detection unit 112 is shown in FIG. 2A, and an equivalent circuit is shown in FIG. The detection unit 112 is a wiring 112a (hereinafter referred to as a superconductor wiring) 112a having a predetermined pattern and formed of a superconductor, and bonding pads 112b are formed at both ends of the superconductor wiring 112a. Has been. The superconductor wiring 112a and the bonding pad 112b are formed of, for example, a thin film of NbN (niobium nitride). The film thickness of the NbN thin film is typically 10 nm or less, and the line width of the superconductor wiring 112a is typically about several tens of nm to 1 μm. The superconductor wiring 112a is formed in a meandering pattern in FIG. 2A, but is not limited to this, and can be an arbitrary pattern. The pattern region of the superconductor wiring 112a corresponds to a sensitive area where particles and photons can be detected, and the size is several μm 2 to several tens of thousands μm 2 . For example, in the case of the particle / photon detector disclosed in Non-Patent Document 5, the material of the thin film of the detection unit 112 is NbN, the thickness is 10 nm, the line width of the superconductor wiring 112a is 800 nm, and the detection unit 12 The size is 200 μm × 200 μm, the superconducting critical current is 581 μA, the kinetic inductance is 1.1 μH, and the sensitive area is 0.02 mm 2 .

検出部112の等価回路は、図2(b)に示されているように、コイル122と、スイッチ124と、抵抗126とによって表すことができ、スイッチ124と抵抗126が並列に接続され、この並列接続されたスイッチ124及び抵抗126に対してコイル122が直列に接続された回路構成を有している。検出部112が超伝導状態に保たれているときは、スイッチ124が導通されている状態であり、検出部112の抵抗はゼロとなる。
一方、粒子や光子が検出部112の超伝導体配線112aに衝突すると、その衝突箇所の微小領域部分が常伝導状態となることに対応して、スイッチ124が開放状態とされて、抵抗126の抵抗値が超伝導体配線112aに現れ、この抵抗値変化に応じた電気信号が出力される。
As shown in FIG. 2B, the equivalent circuit of the detection unit 112 can be represented by a coil 122, a switch 124, and a resistor 126. The switch 124 and the resistor 126 are connected in parallel. A coil 122 is connected in series to a switch 124 and a resistor 126 connected in parallel. When the detection unit 112 is kept in the superconducting state, the switch 124 is in a conductive state, and the resistance of the detection unit 112 becomes zero.
On the other hand, when a particle or photon collides with the superconductor wiring 112a of the detection unit 112, the switch 124 is opened corresponding to the minute region portion of the collision portion being in a normal conduction state, and the resistance 126 A resistance value appears in the superconductor wiring 112a, and an electric signal corresponding to the change in the resistance value is output.

図3は非特許文献3及び非特許文献4に開示されている粒子・光子検出器110´の構成図である。以下では、図3に示されている構造の粒子・光子検出器110´を並列・直列接続配置の粒子・光子検出器と記載する。   FIG. 3 is a configuration diagram of the particle / photon detector 110 ′ disclosed in Non-Patent Document 3 and Non-Patent Document 4. Hereinafter, the particle / photon detector 110 ′ having the structure shown in FIG. 3 is described as a particle / photon detector arranged in parallel and in series.

並列・直列接続配置の粒子・光子検出器110´では、超伝導体配線からなる検出部112が並列にM個、直列にN個、接続されている(図3では、各検出部をDM,Nで表している)。直列接続の一端は接地されており、他端はシャント抵抗114を介して接地されるとともに、伝送線路116、バイアスT回路118を介して増幅器120に接続されている。かかる構成の粒子・光子検出器110´では、例えばM=8、N=8として、前述した非特許文献5に記載されている粒子・光子検出器を接続した場合、合成インダクタンスは1μHとなり、単一の検出部(超伝導体配線)112を用いた粒子・光子検出器と同じになる。一方、面積は64倍になるので、感度が向上する。また、臨界電流値は8倍となるため、動作させるために必要なバイアス電流も8倍となり、伝送線路116で消費される電力は64倍と大きくなる。 In the particle / photon detector 110 ′ arranged in parallel / series connection, M detection units 112 made of superconductor wiring are connected in parallel, and N detection units 112 are connected in series (in FIG. 3, each detection unit is represented by D M , N ). One end of the series connection is grounded, and the other end is grounded via the shunt resistor 114 and is connected to the amplifier 120 via the transmission line 116 and the bias T circuit 118. In the particle / photon detector 110 ′ having such a configuration, for example, when M = 8 and N = 8 and the particle / photon detector described in Non-Patent Document 5 described above is connected, the combined inductance is 1 μH, This is the same as the particle / photon detector using one detector (superconductor wiring) 112. On the other hand, since the area is 64 times, the sensitivity is improved. Further, since the critical current value is 8 times, the bias current necessary for the operation is also 8 times, and the power consumed in the transmission line 116 is 64 times as large.

次に、図4を参照して、本発明による粒子・光子検出器10について説明する。図4は本発明による粒子・光子検出器10の構成図である。
粒子・光子検出器10は、N個の検出部D1,…,DN(参照符号12)と、N個の抵抗器14と、伝送線路16と、バイアスT回路18と、増幅器20と、バイアスインダクタ22と、シャント抵抗24と、二つの並行配線26,28とを備え、図4中で点線50で囲まれた部分(N個の検出部D1,…,DN、N個の抵抗器14、バイアスインダクタ22、シャント抵抗24及び二つの並行配線26,28)が超伝導転移温度より低い温度(典型的には液体ヘリウム温度4.2K)に冷却されている。
Next, the particle / photon detector 10 according to the present invention will be described with reference to FIG. FIG. 4 is a block diagram of the particle / photon detector 10 according to the present invention.
The particle / photon detector 10 includes N detectors D 1 ,..., D N (reference numeral 12), N resistors 14, a transmission line 16, a bias T circuit 18, an amplifier 20, 4 includes a bias inductor 22, a shunt resistor 24, and two parallel wirings 26 and 28, and a portion surrounded by a dotted line 50 in FIG. 4 (N detection units D 1 ,..., D N , N resistors 14, the bias inductor 22, the shunt resistor 24 and the two parallel wires 26, 28) are cooled to a temperature lower than the superconducting transition temperature (typically liquid helium temperature 4.2 K).

検出部D1,…,DN(参照符号12)の各々は、前述した検出部112と同一の構成を有するものであり、超伝導体配線によって形成されている。したがって、ここでは、各検出部D1,…,DNの構成についての詳しい説明は省略する。N個の検出部D1,…,DNは接続部によって直列に接続されており、直列に接続された検出部D1,…,DNと並列に二つの並列配線26,28が設けられている。直列に接続された検出部D1,…,DNの各接続部は、交互に、二つの並行配線26,28に抵抗器14を介して接続されている。抵抗器14の抵抗値は、常伝導状態に転移したときの検出部D1,…,DNの抵抗値よりも小さくなるように選択される。図4に示されている実施形態では、二つの並行配線26,28のうちの一方の並行配線26を伝送線路16に接続して、検出部D1,…,DNからの電気信号を抵抗器14を通して並列に外部へ読み出すための読み出し配線として機能させる一方、他方の並行配線28を接地させてグランド配線として機能させている。 Each of the detection units D 1 ,..., D N (reference numeral 12) has the same configuration as the detection unit 112 described above, and is formed of a superconductor wiring. Thus, where each detector D 1, ..., a detailed description of the configuration of a D N omitted. N number of detector D 1, ..., D N are connected in series by connecting portions, detector D 1 connected in series, ..., two parallel wires 26, 28 are provided in parallel with the D N ing. Detector D 1 connected in series, ..., the connecting portions of the D N are alternately connected through a resistor 14 into two parallel lines 26, 28. Resistance value of the resistor 14, the detection unit D 1 of the time that has metastasized to the normal state, ..., is selected to be smaller than the resistance value of the D N. In the embodiment shown in FIG. 4, by connecting one of the parallel wiring 26 of the two parallel lines 26, 28 to the transmission line 16, detector D 1, ..., resistance to electrical signals from the D N The other parallel wiring 28 is grounded to function as a ground wiring while functioning as a readout wiring for reading out to the outside in parallel through the device 14.

伝送線路16は、その一端が上述したように並行配線26に接続されていると共に、他端がバイアスT回路18を介してバイアス電流源(図示せず)と増幅器20とに接続されている。バイアスT回路18は、コイルとコンデンサとによって構成されており、伝送線路16がコイルとコンデンサとに共通に接続されていると共に、コイルにおける伝送線路16と反対側の端子がバイアス電流源(図示せず)に接続され且つコンデンサの伝送線路16と反対側の端子が増幅器20に接続されている。このようなバイアスT回路の構成はすでに知られたものであり、ここでは詳しい説明を省略する。   One end of the transmission line 16 is connected to the parallel wiring 26 as described above, and the other end is connected to a bias current source (not shown) and the amplifier 20 via the bias T circuit 18. The bias T circuit 18 includes a coil and a capacitor. The transmission line 16 is commonly connected to the coil and the capacitor, and a terminal on the opposite side of the coil from the transmission line 16 is a bias current source (not shown). And the terminal of the capacitor opposite to the transmission line 16 is connected to the amplifier 20. The configuration of such a bias T circuit is already known, and detailed description thereof is omitted here.

粒子・光子検出器10を動作させるには超伝導臨界電流よりも少し低い電流(バイアス電流)Iを各検出部D1,…,DN(参照符号12)に与える必要がある。そこで、図4に示されている実施形態では、直列に接続された検出部D1,…,DNの一端を接地すると共に、他端をバイアスインダクタ22を介して並行配線26に接続している。 In order to operate the particle / photon detector 10, it is necessary to apply a current (bias current) I slightly lower than the superconducting critical current to each of the detectors D 1 ,..., D N (reference numeral 12). Therefore, in the embodiment shown in FIG. 4, detector D 1 connected in series, ..., with grounding the one end of the D N, and the other end thereof is connected to the parallel wiring 26 through the bias inductor 22 Yes.

このような構成により、バイアス電流Iは、バイアス電流源から、バイアスT回路18、伝送線路16、並行配線26及びバイアスインダクタ22を通して個々の検出部D1,…,DNに供給され、粒子・光子検出器10を動作させることができる。すなわち、並行配線26は、各検出部D1,…,DNにバイアス電流を供給するバイアス電流供給配線として機能している。なお、バイアスインダクタ22の抵抗値は、並行配線26と直列に接続された検出部D1,…,DN(検出部12)とを接続する抵抗器14の抵抗値よりも十分に小さいので、バイアス電流は、並行配線26からバイアスインダクタ22を通して直列に接続された検出部D1,…,DNに供給されることになる。 With this configuration, the bias current I from the bias current source, the bias T circuit 18, the transmission line 16, the individual through parallel wiring lines 26 and bias the inductor 22 detector D 1, ..., is supplied to D N, the particle- The photon detector 10 can be operated. That is, parallel wiring 26, each detector D 1, ..., functions as a bias current supply wires for supplying a bias current to D N. The resistance value of the bias inductor 22 is sufficiently smaller than the resistance value of the resistor 14 connecting the detection units D 1 ,..., D N (detection unit 12) connected in series with the parallel wiring 26. The bias current is supplied from the parallel wiring 26 to the detection units D 1 ,..., D N connected in series through the bias inductor 22.

また、直列に接続された複数の検出部D1,…,DNの各接続部が交互に二つの並行配線26,28に抵抗器14を介して接続されており、抵抗器14の抵抗値が常伝導状態に転移したときの検出部D1,…,DNの抵抗値よりも小さいので、粒子又は光子が衝突した検出部D,…,Dが超伝導状態から常伝導状態に転移すると、その手前で抵抗器14を介して二つの並行配線26,28の何れかに電流が流れて電圧降下が生じ、これが並行線路26を介して電気信号として読み出される。さらに、粒子や光子を検出した検出部D1,…,DNからの電気信号(高周波信号となる)は、並行配線26及び伝送線路16を通してバイアスT回路18に伝達され、バイアス電流源の側へはコイルによって遮断される一方、バイアスT回路18のコンデンサを介して増幅器20へ出力されて増幅され、増幅された電気信号を利用して増幅されて粒子・光子が検出部12に衝突したことが検出される。すなわち、並行配線26は、読み出し配線として機能し、各検出部D1,…,DNからの電気信号が、抵抗器14を通して並行配線26へ並列に読み出された後、伝送線路16、バイアスT回路18を通して増幅器20に伝達され、検出部12に粒子や光子が衝突したことが検出される。 In addition, the connection parts of the plurality of detection parts D 1 ,..., D N connected in series are alternately connected to the two parallel wirings 26, 28 via the resistor 14, and the resistance value of the resistor 14 There detector D 1 of the time that has metastasized to the normal state, ..., is smaller than the resistance value of D N, detector D 1 in which the particles or photons collide, ..., D N is the normal state from the superconducting state When the transition occurs, a current flows through one of the two parallel wirings 26 and 28 via the resistor 14 before the voltage drop occurs, and this voltage is read out through the parallel line 26 as an electrical signal. Further, the electrical signals (which become high-frequency signals) from the detection units D 1 ,..., D N that have detected particles and photons are transmitted to the bias T circuit 18 through the parallel wiring 26 and the transmission line 16, and are on the side of the bias current source. Is blocked by the coil, and is output to the amplifier 20 through the capacitor of the bias T circuit 18 and amplified, and is amplified using the amplified electric signal, and the particle / photon collides with the detection unit 12. Is detected. That is, parallel wiring 26 functions as a read line, each detector D 1, ..., after the electrical signal from the D N has been read in parallel through resistor 14 to the parallel lines 26, the transmission line 16, bias It is transmitted to the amplifier 20 through the T circuit 18 and it is detected that particles and photons collide with the detection unit 12.

抵抗器14の抵抗値Rは個々の検出部D1,…,DNが常伝導状態から超伝導状態に回復するまでの時間(回復時間)τに影響を与え、直列に接続される検出部D1,…,DNの数Nが十分に大きい場合には、回復時間τは概ねL/2Rとなる。抵抗器14の抵抗値Rは、高速動作の観点からは高い方が望ましい一方、安定的に動作させる観点からは低い方が望ましく、目的に応じて、1〜1kΩ程度の範囲で、検出器14が動作する範囲において任意に選択すればよい。 The resistance value R of the resistor 14 affects the time (recovery time) τ until each detection unit D 1 ,..., D N recovers from the normal conduction state to the superconducting state, and the detection units connected in series. D 1, ..., when the number N of D N is sufficiently large, the recovery time τ becomes approximately L / 2R. The resistance value R of the resistor 14 is preferably high from the viewpoint of high-speed operation, but is preferably low from the viewpoint of stable operation. Depending on the purpose, the detector 14 has a resistance value R in the range of about 1 to 1 kΩ. Any selection may be made within the range in which.

さらに、伝送線路16に接続されている並行配線26の伝送線路16側の端部には、シャント抵抗24が接続されている。シャント抵抗24は、検出部12をなす超伝導体配線全体が常伝導状態に転移した際の発熱を防ぐ機能を果たす。   Further, a shunt resistor 24 is connected to the end of the parallel wiring 26 connected to the transmission line 16 on the transmission line 16 side. The shunt resistor 24 functions to prevent heat generation when the entire superconductor wiring forming the detection unit 12 is transferred to the normal conduction state.

このように、粒子・光子検出器10は、N個の検出部D1,…,DNを用いているので、有感面積が増加する利点を有する。また、N個の検出部D1,…,DNが直列に接続されているので、一つの検出部を用いる場合と同じ電流値で粒子・光子検出器10を動作させることができる。発熱は、低温部(図1中の点線50で囲まれた部分)と常温部とを接続する伝送線路16において起こるが、粒子・光子検出器10で使用する電流値を低く保つことができるので、N個の検出部D1,…,DNを並列に接続した場合と比較して、伝送線路16における発熱量は1/N2と極めて低くなる。 Thus, the particle-photon detector 10, N pieces of detector D 1, ..., because of the use of D N, has the advantage that the sensitive area increases. Further, since the N detectors D 1 ,..., DN are connected in series, the particle / photon detector 10 can be operated with the same current value as when one detector is used. Heat generation occurs in the transmission line 16 connecting the low temperature part (the part surrounded by the dotted line 50 in FIG. 1) and the normal temperature part, but the current value used in the particle / photon detector 10 can be kept low. Compared with the case where N detectors D 1 ,..., DN are connected in parallel, the amount of heat generated in the transmission line 16 is extremely low at 1 / N 2 .

さらに、前述したように、粒子・光子検出器の応答速度は、カイネティックインダクタンスに比例するので、N個の検出部D1,…,DNを単に直列に接続した場合、各検出部D1,…,DNのカイネティックインダクタンス(以下、単にインダクタンスと記載する。)をLとすると、検出部12の全体のインダクタンスはN×Lとなり、直列接続した検出部D1,…,DNの数Nに比例して応答速度が低下する。これに対して、図4に示されている実施形態の粒子・光子検出器10では、直列に接続した検出部D1,…,DNの接続部が交互に二つの並行配線26,28に接続されており、全ての検出部D1,…,DNが超伝導状態のときには並行配線26,28にほとんど電流が流れないが、一部の検出部D1,…,DNが常伝導状態になって抵抗値が増加すると、抵抗器14を通して並行配線26又は28に電流が流れるようになる。したがって、読み出し回路の抵抗値を大きくしたのと同じ効果が得られ、応答速度を速くすることができる。 Further, as described above, the response speed of the particle / photon detector is proportional to the kinetic inductance. Therefore, when N detectors D 1 ,..., DN are simply connected in series, each detector D 1 ,..., DN, where the kinetic inductance (hereinafter simply referred to as “inductance”) is L, the entire inductance of the detection unit 12 is N × L, and the detection units D 1 ,. The response speed decreases in proportion to the number N. In contrast, in the particle-photon detector 10 of the embodiment illustrated in Figure 4, detector D 1 connected in series, ..., the two parallel lines 26 and 28 connecting portions of the D N are alternately are connected, all the detector D 1, ..., but D N is not little current flows through the parallel wiring lines 26 and 28 when the superconducting state, a part of the detector D 1, ..., D N are normal conducting When the resistance value increases in the state, a current flows through the resistor 14 to the parallel wiring 26 or 28. Therefore, the same effect as increasing the resistance value of the readout circuit can be obtained, and the response speed can be increased.

また、常伝導状態から超伝導状態に回復する原動力となるのは、検出部12が超伝導状態から常伝導状態になることにより検出部12に生じた抵抗値の変化に起因する誘導起電力(V=−L×di/dt)であり、回復時間は検出部12のインダクタンスに比例する。各検出部D1,…,DNを並列に接続した場合、一つの検出部に粒子又は光子が衝突して常伝導状態に転移したことによってその検出部の抵抗値が増加すると、その検出部を流れていた電流は並列に接続されている他の検出部に分配されることになるが、他の検出部は超伝導状態であり、抵抗がほとんどなく、電流の増加による電圧降下がほとんど生じないので、常伝導状態に転移した検出部には電流が流れず、不感領域になる。これに対して、図4に示されている実施形態の粒子・光子検出器10では、直列に接続した検出部D1,…,DNの接続部が抵抗器14を介して交互に二つの並行配線26,28に接続されており、一部の検出部D1,…,DNが常伝導状態になって抵抗値が増加すると、抵抗器14を通して二つの並行配線26、28の何れかに電流が流れ込み、電圧降下が生じるので、常伝導状態になった検出部D1,…,DNがすばやく超伝導状態に復帰する。また、検出部12からの出力電圧の変化も大きくなるので、信号強度も増加する。 The driving force for recovering from the normal state to the superconducting state is the induced electromotive force due to the change in the resistance value generated in the detecting unit 12 when the detecting unit 12 changes from the superconducting state to the normal conducting state ( V = −L × di / dt), and the recovery time is proportional to the inductance of the detection unit 12. Each detector D 1, ..., when connecting D N in parallel, the resistance of the detection portion by the particles or photons is transferred to the normal conducting state by colliding with the one detection unit is increased, the detection unit The current that was flowing through the current is distributed to other detectors connected in parallel, but the other detectors are superconducting, have almost no resistance, and almost no voltage drop occurs due to the increase in current. Since there is no current, no current flows through the detection unit that has transitioned to the normal conduction state, which results in a dead zone. On the other hand, in the particle / photon detector 10 of the embodiment shown in FIG. 4, the connection parts of the detection parts D 1 ,..., D N connected in series are alternately two via the resistor 14. When some of the detection units D 1 ,..., D N are connected to the parallel wirings 26 and 28 and the resistance value increases, one of the two parallel wirings 26 and 28 passes through the resistor 14. , And a voltage drop occurs, so that the detection units D 1 ,..., D N in the normal conduction state quickly return to the superconducting state. Moreover, since the change of the output voltage from the detection part 12 also becomes large, signal strength also increases.

以上、図4に示されている実施形態を参照して本発明による粒子・光子検出器10を説明したが、本発明は図示される実施形態に限定されるものではない。例えば、図4に示されている実施形態では、一方の並行配線26を読み出し配線とし、検出部D1,…,DNからの電気信号を並列に読み出しているが、図5に示されている実施形態の粒子・光子検出器10´のように、並行配線26に加えて、他方の並行配線28にも伝送線路30を介して増幅器32と接続すると共にシャント抵抗34を介して接地することにより、二つの並行配線26,28の両方から電気信号を読み出すようにしてもよい。 The particle / photon detector 10 according to the present invention has been described above with reference to the embodiment shown in FIG. 4, but the present invention is not limited to the illustrated embodiment. For example, in the embodiment shown in FIG. 4, and reads out one of the parallel wiring 26 wiring, detector D 1, ..., but is read in parallel electrical signals from the D N, it is shown in Figure 5 As in the particle / photon detector 10 ′ of the present embodiment, in addition to the parallel wiring 26, the other parallel wiring 28 is connected to the amplifier 32 via the transmission line 30 and grounded via the shunt resistor 34. Thus, an electrical signal may be read from both of the two parallel wirings 26 and 28.

図4に示されている実施形態(以下、本実施形態と記載する。)において、検出部D1,…,DNの直列数を64、バイアス電流Iを200μA、シャント抵抗24の抵抗値を50Ω、抵抗器14の抵抗値Rを50Ω、伝送線路16の電気長を2nsとし、各検出部D1,…,DNについて、カイネティックインダクタンスすなわち図2(b)に示されている等価回路のコイル122のインダクタンスを1μH、スイッチ時の抵抗すなわち図2(b)に示されている等価回路の抵抗126の抵抗値を500Ω、スイッチ時間を1nsとして、増幅器20に入力される電圧波形を計算したシミュレーション結果を図6に示す。比較のため、図6には、図1に示されているように検出部を一つだけ用いた粒子・光子検出器110において、本実施形態の粒子・光子検出器10の各検出部12と同じ特性の検出部112を用い、検出部112のバイアス電流を200μAとした場合、および、図3に示されている並列・直列接続配置の粒子・光子検出器110´において、有感面積を同一とするために並列数8・直列数8で、本実施形態の粒子・光子検出器10と同じ特性の検出部112を用い、個々の検出部112のバイアス電流が本実施形態による粒子・光子検出器10の各検出部D1,…,DNと同じく200μAとなるように伝送線路116におけるバイアス電流を1600μAとした場合について、同様に行ったシミュレーションの結果を示している。図6中の実線1が図1に示されている単一の検出部を用いた粒子・光子検出器110からの出力電圧の波形であり、破線2が本実施形態による粒子・光子検出器10からの出力電圧の波形であり、点線3が図3に示されている並列・直列接続配置の粒子・光子検出器110’からの出力電圧の波形である。 The embodiment shown in FIG. 4 (hereinafter referred to as the present embodiment.) In the detection unit D 1, ..., serial number 64 of D N, 200 .mu.A bias current I, the resistance value of the shunt resistor 24 50Ω, the resistance value R of the resistor 14 is 50Ω, the electrical length of the transmission line 16 is 2 ns, and each detection unit D 1 ,..., DN has a kinetic inductance, that is, an equivalent circuit shown in FIG. The voltage waveform input to the amplifier 20 is calculated assuming that the inductance of the coil 122 is 1 μH, the resistance at the time of switching, that is, the resistance value of the resistance 126 of the equivalent circuit shown in FIG. 2B is 500Ω, and the switching time is 1 ns. The simulation results are shown in FIG. For comparison, FIG. 6 shows a particle / photon detector 110 using only one detector as shown in FIG. 1, and each detector 12 of the particle / photon detector 10 of the present embodiment. When the detection unit 112 having the same characteristics is used and the bias current of the detection unit 112 is 200 μA, and in the particle / photon detector 110 ′ arranged in parallel / series connection shown in FIG. Therefore, the detection unit 112 having the same number of characteristics as the particle / photon detector 10 of the present embodiment with the parallel number 8 and the serial number 8 is used, and the bias current of each detection unit 112 is the particle / photon detection according to the present embodiment. each detector D 1 of the vessel 10, ..., for the case where the 1600μA the bias current in the transmission line 116 so that the same 200μA and D N, shows the results of simulation performed similarly. The solid line 1 in FIG. 6 is the waveform of the output voltage from the particle / photon detector 110 using the single detector shown in FIG. 1, and the broken line 2 is the particle / photon detector 10 according to the present embodiment. The dotted line 3 is the waveform of the output voltage from the particle / photon detector 110 'in the parallel / series connection arrangement shown in FIG.

図4に示されている本実施形態による粒子・光子検出器10では、図1に示されている単一の検出部112を用いた粒子・光子検出器110の場合よりも出力電圧の波高が半分程度になっているが、有感面積が大きく、かつ、応答速度が極めて速い。また、図3に示されている並列・直列接続配置の粒子・光子検出器110´の出力電圧は、波高が本実施形態による粒子・光子検出器10の3分の1以下であり、応答速度も遅い。さらに、並列・直列接続配置の粒子・光子検出部110と本実施形態の粒子・光子検出器10とは何れも64個の検出部を用いており、有感面積は同一となるが、本実施形態による粒子・光子検出器10では、並列・直列接続配置の粒子・光子検出器110’と比較して、電流値が1/8、伝送線路における発熱量は1/64となり、発熱量が極めて小さくなる。   The particle / photon detector 10 according to the present embodiment shown in FIG. 4 has a higher output voltage wave height than the particle / photon detector 110 using the single detector 112 shown in FIG. Although it is about half, the sensitive area is large and the response speed is extremely fast. Further, the output voltage of the particle / photon detector 110 ′ arranged in parallel / series connection shown in FIG. 3 has a wave height less than one third of that of the particle / photon detector 10 according to the present embodiment, and the response speed. Is too slow. Furthermore, the particle / photon detection unit 110 arranged in parallel / series connection and the particle / photon detector 10 of the present embodiment both use 64 detection units and have the same sensitive area. In the particle / photon detector 10 according to the form, the current value is 1/8 and the heat generation amount in the transmission line is 1/64 as compared with the particle / photon detector 110 ′ arranged in parallel / series connection. Get smaller.

図7は上述したシミュレーションにおいて、粒子・光子を検出した際に、検出部を流れる電流がどのように減少・回復するかを示したグラフである。図7において、実線1は並列・直列接続配置の粒子・光子検出器110´における各検出部DM,N(検出部112)を流れる電流の波形を示し、点線2は本実施形態による粒子・光子検出器10における各検出部DN(検出部12)を流れる電流の波形を示す。実線1で示されている電流波形から分かるように、並列・直列接続配置の粒子・光子検出器110´では、いったん減少した電流値が回復しないため、不感領域が発生する。これに対して、点線2に示されている電流波形から分かるように、本実施形態による粒子・光子検出器10では、速やかに電流値が回復し、電流値が元に戻る時間スケールは10ns程度と早い。この回復時間は、1個の検出部DNのカイネティックインダクタンスLkと挿入した抵抗器14値の抵抗値Rを用いてLk/2Rと表される。 FIG. 7 is a graph showing how the current flowing through the detector decreases and recovers when particles and photons are detected in the simulation described above. In FIG. 7, a solid line 1 indicates a waveform of a current flowing through each detection unit D M, N (detection unit 112) in the particle / photon detector 110 ′ arranged in parallel / series connection, and a dotted line 2 indicates a particle / photon detector according to the present embodiment. The waveform of the electric current which flows through each detection part DN (detection part 12) in the photon detector 10 is shown. As can be seen from the current waveform indicated by the solid line 1, in the particle / photon detector 110 ′ arranged in parallel and in a series connection, the current value once reduced does not recover, and therefore a dead region occurs. On the other hand, as can be seen from the current waveform shown by the dotted line 2, in the particle / photon detector 10 according to the present embodiment, the current value quickly recovers and the time scale at which the current value returns to about 10 ns. And early. The recovery time is expressed as Lk / 2R with the resistance value R of the single resistor 14 value inserted kinetic inductance Lk of detector D N.

このように、本発明により、大面積・高速応答・大信号強度を兼ね備え、なおかつ不感領域がなく、少ない電流値で動作する、粒子・光子検出器を実現することができる。   As described above, according to the present invention, it is possible to realize a particle / photon detector which has a large area, a high-speed response, and a large signal intensity, and which has no dead region and operates with a small current value.

10 粒子・光子検出器
12 検出部
14 抵抗器
16 伝送線路
18 バイアスT回路
20 増幅器
22 バイアスインダクタ
24 シャント抵抗
26 並行配線
28 並行配線
10 Particle / Photon Detector 12 Detector 14 Resistor 16 Transmission Line 18 Bias T Circuit 20 Amplifier 22 Bias Inductor 24 Shunt Resistance 26 Parallel Wiring 28 Parallel Wiring

Claims (5)

超伝導状態に保たれた検出部に粒子又は光子が衝突して該検出部が常伝導状態に転移することにより、粒子又は光子が検出されたことを示す電気信号を出力する粒子・光子検出器であって、直列に接続された複数の検出部と、該直列に接続された複数の検出部と並列に設けられた二つの並行配線とを備え、前記直列に接続された複数の検出部の各接続部が交互に前記二つの並行配線に抵抗器を介して接続されており、前記二つの並行配線のうちの少なくとも一方を通して、前記複数の検出部からの電気信号を読み出すことを特徴とした粒子・光子検出器。   A particle / photon detector that outputs an electrical signal indicating that a particle or photon has been detected when a particle or photon collides with the detection unit maintained in a superconducting state and the detection unit transitions to a normal conducting state. A plurality of detectors connected in series, and a plurality of detectors connected in series and two parallel wirings provided in parallel, the plurality of detectors connected in series Each connection portion is alternately connected to the two parallel wirings via a resistor, and the electrical signals from the plurality of detection units are read out through at least one of the two parallel wirings. Particle / photon detector. 前記抵抗器の抵抗値は、常伝導状態に転移したときの前記検出部の抵抗値よりも小さい、請求項1に記載の粒子・光子検出器。   2. The particle / photon detector according to claim 1, wherein a resistance value of the resistor is smaller than a resistance value of the detection unit when transitioning to a normal conduction state. 前記並行配線のうちの一方は、バイアスT回路を介して電流源に接続され且つバイアスインダクタを介して前記直列に接続された複数の検出部の一端に接続されており、前記電流源から前記直列に接続された複数の検出部にバイアス電流を供給するためのバイアス電流供給配線として機能すると共に、前記直列に接続された複数の検出部から並列に電気信号を読み出すための読み出し配線として機能する、請求項1に記載の粒子・光子検出器。   One of the parallel wirings is connected to a current source via a bias T circuit and is connected to one end of the plurality of detection units connected in series via a bias inductor, and is connected to the series from the current source. Functions as a bias current supply wiring for supplying a bias current to a plurality of detection units connected to the same, and functions as a readout wiring for reading out an electrical signal in parallel from the plurality of detection units connected in series. The particle / photon detector according to claim 1. 前記並行配線のうちの他方が、接地されたグランド配線である、請求項3に記載の粒子・光子検出器。   The particle / photon detector according to claim 3, wherein the other of the parallel wires is a ground wire that is grounded. 前記並行配線のうちの他方が、前記複数の検出部から電気信号を読み出すための読み出し配線である、請求項3に記載の粒子・光子検出器。   The particle / photon detector according to claim 3, wherein the other of the parallel wirings is a readout wiring for reading out an electrical signal from the plurality of detection units.
JP2013073460A 2013-03-29 2013-03-29 Particle / photon detector Expired - Fee Related JP6015948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073460A JP6015948B2 (en) 2013-03-29 2013-03-29 Particle / photon detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073460A JP6015948B2 (en) 2013-03-29 2013-03-29 Particle / photon detector

Publications (2)

Publication Number Publication Date
JP2014196983A true JP2014196983A (en) 2014-10-16
JP6015948B2 JP6015948B2 (en) 2016-10-26

Family

ID=52357867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073460A Expired - Fee Related JP6015948B2 (en) 2013-03-29 2013-03-29 Particle / photon detector

Country Status (1)

Country Link
JP (1) JP6015948B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085867A (en) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 Particle detector
JP2020008353A (en) * 2018-07-04 2020-01-16 キオクシア株式会社 Superconductive strip, particle detector, and particle detection method
WO2023171057A1 (en) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 Energy beam detecting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534930A (en) * 2002-08-02 2005-11-17 ケスト クヴァンテンエレクトローニーシェ システーメ テュービンゲン ゲーエムベーハー ズィッツ ボブリンゲン Magnetometer
JP2009021478A (en) * 2007-07-13 2009-01-29 National Institute Of Advanced Industrial & Technology Particle and photon detector
JP2012104772A (en) * 2010-11-15 2012-05-31 Nippon Signal Co Ltd:The Superconducting tunnel junction detector
JP2013019777A (en) * 2011-07-12 2013-01-31 National Institute Of Information & Communication Technology Superconducting single photon detection system and superconducting single photon detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534930A (en) * 2002-08-02 2005-11-17 ケスト クヴァンテンエレクトローニーシェ システーメ テュービンゲン ゲーエムベーハー ズィッツ ボブリンゲン Magnetometer
JP2009021478A (en) * 2007-07-13 2009-01-29 National Institute Of Advanced Industrial & Technology Particle and photon detector
JP2012104772A (en) * 2010-11-15 2012-05-31 Nippon Signal Co Ltd:The Superconducting tunnel junction detector
JP2013019777A (en) * 2011-07-12 2013-01-31 National Institute Of Information & Communication Technology Superconducting single photon detection system and superconducting single photon detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085867A (en) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 Particle detector
JP2020008353A (en) * 2018-07-04 2020-01-16 キオクシア株式会社 Superconductive strip, particle detector, and particle detection method
JP7066554B2 (en) 2018-07-04 2022-05-13 キオクシア株式会社 Superconducting strips, particle detectors and particle detection methods
WO2023171057A1 (en) * 2022-03-09 2023-09-14 浜松ホトニクス株式会社 Energy beam detecting system

Also Published As

Publication number Publication date
JP6015948B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
US11621714B2 (en) Superconducting logic circuits
Zhao et al. A compact superconducting nanowire memory element operated by nanowire cryotrons
Kerman et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters
US10972104B2 (en) Superconducting logic components
JP5846626B2 (en) Superconducting single photon detection system and superconducting single photon detection method
CN102353464B (en) Superconductive nanowire single-photon detector capable of distinguishing photon number and preparation method thereof
Tarkhov et al. Ultrafast reset time of superconducting single photon detectors
US10388696B2 (en) Photon detection device with superconducting nanowire array
JP6015948B2 (en) Particle / photon detector
Warburton et al. Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode
JP5093654B2 (en) Particle / photon detector
JP5973445B2 (en) Detector of single microwave photons propagating in a guide
Mattioli et al. Electrical characterization of superconducting single-photon detectors
Tao et al. Characterize the speed of a photon-number-resolving superconducting nanowire detector
JP6684400B2 (en) Superconducting single photon detector
Foltyn et al. Gambling with superconducting fluctuations
Foster et al. A superconducting nanowire binary shift register
JP5076051B2 (en) Electromagnetic wave detecting element and electromagnetic wave detecting device using the same
Heath et al. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector
US11747196B1 (en) Integrated superconducting nanowire digital photon detector
Zen et al. Ion-induced dynamical change of supercurrent flow in superconducting strip ion detectors with parallel configuration
Haas et al. Spectral sensitivity and spectral resolution of superconducting single-photon detectors
Leoni et al. Fabrication and test of superconducting single photon detectors
Semenov et al. Energy resolution of a superconducting nanowire single-photon detector
Quaranta et al. Superconductive three-terminal amplifier/discriminator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6015948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees