JP2016085073A - Laser type analysis device - Google Patents

Laser type analysis device Download PDF

Info

Publication number
JP2016085073A
JP2016085073A JP2014216524A JP2014216524A JP2016085073A JP 2016085073 A JP2016085073 A JP 2016085073A JP 2014216524 A JP2014216524 A JP 2014216524A JP 2014216524 A JP2014216524 A JP 2014216524A JP 2016085073 A JP2016085073 A JP 2016085073A
Authority
JP
Japan
Prior art keywords
intensity value
laser
map
light
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014216524A
Other languages
Japanese (ja)
Other versions
JP6269438B2 (en
Inventor
塁 加藤
Rui Kato
塁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014216524A priority Critical patent/JP6269438B2/en
Publication of JP2016085073A publication Critical patent/JP2016085073A/en
Application granted granted Critical
Publication of JP6269438B2 publication Critical patent/JP6269438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser type analysis device with which it is possible to create an appropriate reference line I(t).SOLUTION: Provided is a laser type analysis device 1 including an arithmetic unit 61a for calculating specific component amount information on the basis of the received light intensity value change I (t) of measurement light in a prescribed wavelength range of an n'th cycle and the reference intensity value change I(t) of the measurement light in the prescribed wavelength range of the n'th cycle that is assumed to have passed through a sample S to be measured that does not include a specific component, the analysis device further including a storage unit 62 for storing a reference intensity value creation map [MAP(P',P)=I] indicating relationship between a combination of an emission intensity value P and the first-order differential value P' of the emission intensity value P and a reference intensity value I, the arithmetic unit 61a finding the emission intensity value P and the first-order differential value P' from an emission intensity value change P (t) detected by a detection unit 10b, applying the emission intensity value P and the first-order differential value P' to the reference intensity value creation map [MAP(P',P)=I], and creating a reference intensity value change I(t).SELECTED DRAWING: Figure 2

Description

本発明は、レーザ吸収分光法を利用して特定成分量情報を計測するレーザ式分析装置に関し、特に、半導体製造装置における真空領域中や煙道中や燃焼プロセス中や自動車測定対象ガス中や燃料電池における流路中等の特定ガス量情報を計測するレーザ式ガス分析装置に関する。   The present invention relates to a laser-type analyzer that measures information on specific component amounts using laser absorption spectroscopy, and in particular, in a vacuum region, in a flue, in a combustion process, in a vehicle measurement target gas, or in a fuel cell in a semiconductor manufacturing apparatus. The present invention relates to a laser-type gas analyzer that measures specific gas amount information in a flow path or the like.

測定対象ガス中の水蒸気量(特定成分量情報)を計測する方法の1つとして、水分子が特定波長領域(例えば、1.3μm帯)の光のみを吸収することを利用した吸収分光法が挙げられる。この吸収分光法は、測定対象ガスに対し非接触で測定可能であるため、測定対象ガスの場を乱さずに測定対象ガス中の水蒸気量を計測することができる。   As one of the methods for measuring the amount of water vapor (specific component amount information) in the measurement target gas, absorption spectroscopy using the fact that water molecules absorb only light in a specific wavelength region (for example, 1.3 μm band) is used. Can be mentioned. Since this absorption spectroscopy can be measured without contact with the measurement target gas, the amount of water vapor in the measurement target gas can be measured without disturbing the field of the measurement target gas.

このような吸収分光法の中でも、特に光源に波長可変半導体レーザ(レーザ素子)を利用した「波長可変半導体レーザ吸収分光法」は、シンプルな装置構成で実現することができる。例えば、「波長可変半導体レーザ吸収分光法」を利用したレーザ式ガス分析装置では、測定対象ガスが所定方向に流れている配管に対して、配管に形成された入射用光学窓と出射用光学窓とを介して、配管を横切って光路(光路長L)が形成されるようにそれぞれ対向して設けられる波長可変半導体レーザと光検出センサ(受光部)とを追加することが一般的である(例えば、特許文献1及び特許文献2参照)。   Among such absorption spectroscopy, in particular, “tunable wavelength semiconductor laser absorption spectroscopy” using a tunable semiconductor laser (laser element) as a light source can be realized with a simple apparatus configuration. For example, in a laser-type gas analyzer using "tunable semiconductor laser absorption spectroscopy", an incident optical window and an emission optical window formed in a pipe with respect to a pipe in which a measurement target gas flows in a predetermined direction It is common to add a wavelength tunable semiconductor laser and a light detection sensor (light receiving part) provided to face each other so that an optical path (optical path length L) is formed across the pipe via ( For example, see Patent Literature 1 and Patent Literature 2).

このようなレーザ式ガス分析装置によれば、波長可変半導体レーザから発振された所定波長のレーザ光(測定光)は、配管内を通過する過程で測定対象ガス中に存在する水分子の遮光作用によってレーザ光の進行が阻害され、測定対象ガス中における水分子の濃度に対応して光検出センサに入射する光量(光強度値)が減少することを利用して、波長可変半導体レーザから発振されたレーザ光の光量に対する光検出センサに入射するレーザ光の光量を計測することによって水分子の濃度が算出される。図9は、レーザ式ガス分析装置で得られた吸収スペクトルの一例を示すグラフである。縦軸は受光強度値Iであり、横軸は周波数νである。なお、I(ν)は周波数νにおいて水分子の吸収を受けなかった場合の受光強度値変化であり、非吸収波長の受光強度値変化に基づいて近似多項式(基準線)を作成したり、カーブフィッティングしたりすることで導出されることになる。 According to such a laser type gas analyzer, laser light (measurement light) of a predetermined wavelength oscillated from a wavelength tunable semiconductor laser shields water molecules present in the measurement target gas while passing through the pipe. The laser beam is prevented from advancing, and the amount of light (light intensity value) incident on the photodetection sensor decreases corresponding to the concentration of water molecules in the gas to be measured. The concentration of water molecules is calculated by measuring the amount of laser light incident on the light detection sensor with respect to the amount of laser light. FIG. 9 is a graph showing an example of an absorption spectrum obtained by a laser gas analyzer. The vertical axis represents the received light intensity value I, and the horizontal axis represents the frequency ν. Note that I 0 (ν) is a change in received light intensity value when water molecules are not absorbed at the frequency ν, and an approximate polynomial (reference line) is created based on the change in the received light intensity value of the non-absorption wavelength. It is derived by curve fitting.

ここで、図9に示す吸収スペクトルを用いた演算処理の一例について説明する。Lambert-Beerの法則より下記式(1)が成り立つ。   Here, an example of arithmetic processing using the absorption spectrum shown in FIG. 9 will be described. From Lambert-Beer's law, the following formula (1) holds.

なお、I(ν)は周波数νにおいて水分子の吸収を受けなかった場合の光強度値変化、I(ν)は周波数νにおける透過光強度値変化(受光強度値変化)、c(mol/cm)は水分子の数密度、L(cm)は測定対象ガスを通過する光路の長さ、S(T)(cm−1/(mol/cm−2))は所定の吸収線強度におけるガス温度Tの関数である。 Here, I 0 (ν) is a change in light intensity value when water molecules are not absorbed at the frequency ν, I (ν) is a change in transmitted light intensity value (change in received light intensity value) at the frequency ν, and c (mol / cm 3 ) is the number density of water molecules, L (cm) is the length of the optical path passing through the gas to be measured, and S (T) (cm −1 / (mol / cm −2 )) is a predetermined absorption line intensity. It is a function of the gas temperature T.

ここで、図10は、縦軸をln(I(ν)/I(ν))とし、横軸を周波数νとしたグラフである。よって、式(1)の左辺の値は、図10に示すグラフの面積を求めることで得られる。図10のグラフの面積を求める方法として、長方形近似を一例に挙げると、式(1)の左辺は下記式(2)のように変形することができる。 Here, FIG. 10 is a graph in which the vertical axis is ln (I 00 ) / I (ν 0 )) and the horizontal axis is the frequency ν. Therefore, the value on the left side of Equation (1) can be obtained by determining the area of the graph shown in FIG. As an example of a method for obtaining the area of the graph of FIG. 10, rectangular approximation is taken as an example, and the left side of Equation (1) can be transformed as shown in Equation (2) below.

なお、νmaxは吸収帯(吸収ピーク)の周波数上限、νminは吸収帯の周波数下限、nは1波形あたりの測定点数である。 Note that ν max is the upper frequency limit of the absorption band (absorption peak), ν min is the lower frequency limit of the absorption band, and n is the number of measurement points per waveform.

一方、式(1)の右辺におけるS(T)に関しては下記式(3)が成り立つ。   On the other hand, the following equation (3) holds for S (T) on the right side of equation (1).

なお、Sは標準状態での線強度、Q(T)は分配関数、B(T)はボルツマン因子、SE(T)は誘導放射の補正式である。
さらに、式(3)の右辺におけるQ(T)、B(T)、SE(T)は、それぞれ下記式(4)、(5)、(6)のように表すことができる。
S 0 is the line intensity in the standard state, Q (T) is a partition function, B (T) is a Boltzmann factor, and SE (T) is a correction formula for stimulated emission.
Furthermore, Q (T), B (T), and SE (T) on the right side of Expression (3) can be expressed as the following Expressions (4), (5), and (6), respectively.

なお、S、定数a〜d、Eは、HITRANデータベース等から得られることができる。よって、ガス温度値Tと光強度値変化I(ν)、I(ν)とを得ることができれば、水分子の数密度cが算出できることになる。 Note that S 0 , constants a to d, and E 1 can be obtained from the HITRAN database or the like. Therefore, if the gas temperature value T and the light intensity value changes I (ν), I 0 (ν) can be obtained, the number density c of water molecules can be calculated.

ここで、図11は、波長可変半導体レーザ吸収分光法を利用したレーザ式ガス分析装置の一例を示す概略構成図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
レーザ式ガス分析装置201は、光源部(半導体レーザモジュール)210と、レーザ光受光部20と、光源部210を制御するレーザ制御部250と、マイコンやPCで構成される制御部260とを備える。
Here, FIG. 11 is a schematic configuration diagram showing an example of a laser type gas analyzer using wavelength tunable semiconductor laser absorption spectroscopy. One direction horizontal to the ground is defined as an X direction, a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction, and a direction perpendicular to the X direction and the Y direction is defined as a Z direction.
The laser gas analyzer 201 includes a light source unit (semiconductor laser module) 210, a laser light receiving unit 20, a laser control unit 250 that controls the light source unit 210, and a control unit 260 configured by a microcomputer or a PC. .

このようなレーザ式ガス分析装置201は、燃焼プロセスへの給排気の各ラインに連結されたサンプル流路70内を流れる測定対象ガスS中の水蒸気量を計測するために用いられる。サンプル流路70はZ方向に伸びており、サンプル流路70の側壁には、入射用光学窓71と、入射用光学窓71にX方向に距離L1を空けて対向する出射用光学窓72とが形成されている。そして、測定対象ガスSはサンプル流路70内をZ方向に流れている。   Such a laser gas analyzer 201 is used to measure the amount of water vapor in the measurement target gas S flowing in the sample flow path 70 connected to each line of supply and exhaust to the combustion process. The sample flow path 70 extends in the Z direction, and on the side wall of the sample flow path 70, there are an incident optical window 71, and an emission optical window 72 facing the incident optical window 71 with a distance L1 in the X direction. Is formed. The measurement target gas S flows in the Z direction in the sample flow path 70.

光源部210には、レーザ光を出射する半導体レーザ(例えば光通信用分布帰還系形(DFB:distributed feedback)半導体レーザダイオード等)10aと、光強度値(パワーモニタ信号)を検知するパワーモニタ10bと、レーザ光を2方向へ分割するビームスプリッタ10cとを備え、例えばバタフライモジュールやTO−CANタイプモジュール等が用いられる。
このような光源部210の構成において、半導体レーザ10aで発振されたレーザ光は、ビームスプリッタ10cで2方向へ分割される。ビームスプリッタ10cで分割されたレーザ光が進行する2方向のうちの1方向のレーザ光は、入射用光学窓71からサンプル流路70内にX方向で入射され、測定対象ガスSに対して照射されるようになっている。一方、ビームスプリッタ10cで分割されたレーザ光が進行する2方向のうちの残りのもう1つの方向のレーザ光の光強度値(パワーモニタ信号)は、パワーモニタ10bにより所定サンプリング間隔(例えば1MHz、0.001ミリ秒間隔)で検知されるようになっている。
The light source unit 210 includes a semiconductor laser (for example, a distributed feedback (DFB) semiconductor laser diode for optical communication) 10a that emits laser light, and a power monitor 10b that detects a light intensity value (power monitor signal). And a beam splitter 10c that splits the laser light in two directions, for example, a butterfly module or a TO-CAN type module.
In such a configuration of the light source unit 210, the laser light oscillated by the semiconductor laser 10a is divided into two directions by the beam splitter 10c. One of the two directions in which the laser beam split by the beam splitter 10c travels enters the sample channel 70 from the incident optical window 71 in the X direction and irradiates the measurement target gas S. It has come to be. On the other hand, the light intensity value (power monitor signal) of the remaining one of the two directions in which the laser beam split by the beam splitter 10c travels is determined by the power monitor 10b at a predetermined sampling interval (for example, 1 MHz, It is detected at intervals of 0.001 milliseconds.

また、このような光源部210を水蒸気量の連続モニタリングに使用するときには、半導体レーザ10aへ印加する駆動電流値を所定周期で変化させること、具体的には鋸歯形状となる駆動電流値が印加されることにより、所定波長範囲のレーザ光を所定周期で発振している。図12は、駆動電流値とレーザ光の発振波長との関係を示す概念図であり、図12(a)は、半導体レーザ10aへ印加される駆動電流値を示す波形図であり、図12(b)は、その駆動電流値が印加された半導体レーザ10aから発振されるレーザ光の発振波長を示す波形図である。図12(a)に示す駆動電流値の波形は、連続モニタリングの開始に際して測定者等が入力したり予め記憶させたりしており、レーザ制御部250からレーザ制御信号として光源部210にD/Aコンバータ80を介して出力されるようになっている。   Further, when such a light source unit 210 is used for continuous monitoring of the amount of water vapor, a drive current value applied to the semiconductor laser 10a is changed at a predetermined period, specifically, a drive current value having a sawtooth shape is applied. As a result, laser light in a predetermined wavelength range is oscillated at a predetermined period. FIG. 12 is a conceptual diagram showing the relationship between the drive current value and the oscillation wavelength of the laser beam, and FIG. 12A is a waveform diagram showing the drive current value applied to the semiconductor laser 10a. b) is a waveform diagram showing the oscillation wavelength of the laser beam oscillated from the semiconductor laser 10a to which the drive current value is applied. The waveform of the drive current value shown in FIG. 12A is input by a measurer or the like at the start of continuous monitoring or stored in advance, and the laser control unit 250 transmits a D / A to the light source unit 210 as a laser control signal. The signal is output via the converter 80.

レーザ光受光部20は、光強度を電気信号に変換できるものであればよく、例えばフォトダイオードが用いられる。レーザ光受光部20は、出射用光学窓72からサンプル流路70外にX方向で出射されたレーザ光を受光するように配置されており、測定対象ガスSを通過したレーザ光の受光強度値Iを受光する。   The laser light receiving unit 20 may be anything as long as it can convert light intensity into an electric signal. For example, a photodiode is used. The laser light receiving unit 20 is disposed so as to receive the laser light emitted in the X direction from the emission optical window 72 to the outside of the sample flow path 70, and the light reception intensity value of the laser light that has passed through the measurement target gas S. I is received.

そして、レーザ光の受光強度値IをA/Dコンバータ81によってデジタル値に所定サンプリング間隔(例えば1MHz、0.001ミリ秒間隔)で変換し、演算部261は、各周期において吸収ピークの中心波長部分のレーザ光の受光強度値変化と、中心波長部分の両側となる非吸収波長部分のレーザ光の受光強度値変化とを含む受光強度値変化I(t)を取得することで、基準強度値変化(基準線)I(t)を作成する。その後、演算部261は、作成した基準強度値変化I(t)と、レーザ光受光部20で検知された受光強度値変化I(t)とを式(1)、(2)に当てはめて数密度cを得る。 Then, the received light intensity value I of the laser beam is converted into a digital value by the A / D converter 81 at a predetermined sampling interval (for example, 1 MHz, 0.001 millisecond interval), and the calculation unit 261 has the center wavelength of the absorption peak in each cycle. A reference intensity value is obtained by obtaining a received light intensity value change I (t) including a received light intensity value change of a portion of the laser light and a received light intensity value change of the laser light of the non-absorption wavelength portion on both sides of the central wavelength portion. A change (reference line) I 0 (t) is created. Thereafter, the calculation unit 261 applies the generated reference intensity value change I 0 (t) and the received light intensity value change I (t) detected by the laser light receiving unit 20 to the expressions (1) and (2). The number density c is obtained.

特開2010−237075号公報JP 2010-237075 A 特開2012−237636号公報JP 2012-237636 A

ところで、上述したようなレーザ式ガス分析装置201では、基準線I(t)を作成する際に、測定対象ガスの状態(圧力、温度等)の大きな変化によって吸光線(水分子の吸収ピーク)幅が広がり非吸収波長部分が少なくなり、多項式近似の精度が落ちてしまうことがあった。
また、基準線I(t)を作成するために、光源部(半導体レーザモジュール)210内のパワーモニタ10bで検知されたパワーモニタ信号を、A/Dコンバータ82を介してそのまま用いる方法や、参照ガスを通過するような参照光路を設けて受光信号を用いる方法等があるが、パワーモニタ10bや参照光路を設けたとしても、多々ある非線形素子等が原因となって歪や信号のなまりが発生し、得られたパワーモニタ信号や受光信号を基準信号(基準強度値I)として用いるのは難しいことがあった。つまり、回路やレーザ光を受光するフォトダイオード等の多くが非線形素子で構成されているため、実際に得られるパワーモニタ信号や受光信号から基準線I(t)を解析して作成することは困難であった。
By the way, in the laser type gas analyzer 201 as described above, when the reference line I 0 (t) is created, an absorption line (absorption peak of water molecule) is generated due to a large change in the state (pressure, temperature, etc.) of the measurement target gas. ) The width increases and the non-absorption wavelength portion decreases, and the accuracy of the polynomial approximation may decrease.
Further, in order to create the reference line I 0 (t), a method of using the power monitor signal detected by the power monitor 10b in the light source unit (semiconductor laser module) 210 as it is via the A / D converter 82, There is a method of using a light reception signal by providing a reference optical path that passes through the reference gas. However, even if the power monitor 10b and the reference optical path are provided, distortion and signal rounding are caused by many nonlinear elements and the like. It is sometimes difficult to use the generated power monitor signal and the received light signal as a reference signal (reference intensity value I 0 ). That is, since many of the circuits and photodiodes that receive laser light are composed of non-linear elements, it is impossible to analyze and create the reference line I 0 (t) from the actually obtained power monitor signal or light reception signal. It was difficult.

上記を鑑みて、本出願人は、適切な基準線I(t)を作成する方法を検討した。そして、パワーモニタ信号(出射強度値)Pと、レーザ光受光部20で検知された受光信号(受光強度値)Iとの間には、非線形素子や回路を通過するため事前の解析は難しいが、何かしらの関係性があることから、測定対象ガス中の水蒸気の影響がない状態で、様々な数値としたパワーモニタ信号Pと受光信号Iとを取得し、受光信号Iとパワーモニタ信号Pとの関係を、基準信号作成マップ[MAP(P’,P)=I]として予め作成しておくことを見出した。 In view of the above, the present applicant has studied a method of creating an appropriate reference line I 0 (t). Further, since a power monitor signal (output intensity value) P and a light reception signal (light reception intensity value) I detected by the laser light receiving unit 20 pass through a non-linear element or circuit, it is difficult to perform a prior analysis. Since there is some relationship, the power monitor signal P and the light reception signal I having various values are obtained in a state where there is no influence of water vapor in the measurement target gas, and the light reception signal I and the power monitor signal P are obtained. It has been found that the above relationship is created in advance as a reference signal creation map [MAP (P ′, P) = I 0 ].

すなわち、本発明のレーザ式分析装置は、測定対象試料に測定光を照射するレーザ素子を有する光源部と、前記レーザ素子へ印加する駆動電流値を所定周期で変化させることにより、所定波長範囲の測定光をレーザ素子から所定周期で発振させるレーザ制御部と、前記測定対象試料中を通過した測定光の受光強度値Iを所定サンプリング間隔で検知する受光部と、測定光の出射強度値Pを所定サンプリング間隔で検知する検知部と、第n周期の所定波長範囲の測定光の受光強度値変化I(t)と、特定成分を含有しない測定対象試料中を通過したとされる第n周期の所定波長範囲の測定光の基準強度値変化I(t)とに基づいて、特定成分量情報を算出する演算部とを備えるレーザ式分析装置であって、出射強度値Pと出射強度値Pの1階微分値P’との組合わせと、基準強度値Iとの関係を示す基準強度値作成マップ[MAP(P’,P)=I]を記憶する記憶部を備え、前記演算部は、前記検知部で検知された出射強度値変化P(t)から出射強度値Pと1階微分値P’とを求め、出射強度値Pと1階微分値P’とを前記基準強度値作成マップ[MAP(P’,P)=I]に当てはめることにより、基準強度値変化I(t)を作成するようにしている。 That is, the laser analyzer of the present invention has a light source unit having a laser element that irradiates measurement light to a measurement target sample, and a drive current value applied to the laser element in a predetermined cycle, thereby changing the wavelength range. A laser control unit that oscillates measurement light from a laser element at a predetermined period, a light reception unit that detects a light reception intensity value I of the measurement light that has passed through the measurement target sample at a predetermined sampling interval, and an emission intensity value P of the measurement light. A detection unit that detects at a predetermined sampling interval, a received light intensity value change I (t) of measurement light in a predetermined wavelength range of the nth cycle, and an nth cycle that is assumed to have passed through a measurement target sample that does not contain a specific component. A laser-type analyzer that includes a calculation unit that calculates specific component amount information based on a reference intensity value change I 0 (t) of measurement light in a predetermined wavelength range, and includes an emission intensity value P and an emission intensity value P 1 of Differential value P 'and the combination of the reference intensity value creation map showing the relationship between the reference intensity value I 0 [MAP (P', P) = 0] includes a storage unit for storing the arithmetic unit, The emission intensity value P and the first-order differential value P ′ are obtained from the emission intensity value change P (t) detected by the detection unit, and the emission intensity value P and the first-order differential value P ′ are obtained as the reference intensity value creation map. By applying [MAP (P ′, P) = I 0 ], the reference intensity value change I 0 (t) is created.

ここで、「所定周期」とは、測定者等によって決められる任意の時間であり、所定波長範囲の測定光をレーザ素子から発振させるために、例えば数十Hz〜数十kHzとなり、1kHz等が挙げられる。また、「所定サンプリング間隔」とは、測定者等によって決められる任意の時間(所定データ取得間隔)であって所定周期よりも短く、1掃引にてデータが数百点必要なので、例えば数kHz〜数MHzとなり、1MHz等が挙げられる。
さらに、「特定成分」とは、測定者等によって決められる任意の成分であり、例えば水蒸気や二酸化炭素や一酸化炭素等である。
Here, the “predetermined period” is an arbitrary time determined by a measurer or the like. For example, in order to oscillate measurement light in a predetermined wavelength range from the laser element, the frequency becomes, for example, several tens Hz to several tens kHz. Can be mentioned. Further, the “predetermined sampling interval” is an arbitrary time (predetermined data acquisition interval) determined by a measurer or the like, which is shorter than a predetermined cycle and requires several hundred data points in one sweep. It is several MHz, and 1 MHz is exemplified.
Furthermore, the “specific component” is an arbitrary component determined by a measurer, for example, water vapor, carbon dioxide, carbon monoxide, or the like.

以上のように、本発明のレーザ式分析装置によれば、吸光線(特定成分の吸収ピーク)幅が広がった場合でも、出射強度値変化P(t)を基準強度値作成マップ[MAP(P’,P)=I]に当てはめることにより、適切な基準線I(t)を作成することができる。また、計測中に駆動電流値の波形の傾きや高さ等を特定成分の吸光に併せて可変させても、適切な基準線I(t)を作成することができる。 As described above, according to the laser analyzer of the present invention, even when the absorption line (absorption peak of a specific component) is widened, the emission intensity value change P (t) is represented by the reference intensity value creation map [MAP (P By fitting to ', P) = I 0 ], an appropriate reference line I 0 (t) can be created. Further, an appropriate reference line I 0 (t) can be created even if the slope or height of the waveform of the drive current value is varied in accordance with the absorption of the specific component during measurement.

(他の課題を解決するための手段及び効果)
また、上記の発明では、前記光源部は、前記検知部としてパワーモニタを有するようにしてもよい。
(Means and effects for solving other problems)
In the above invention, the light source unit may include a power monitor as the detection unit.

また、上記の発明では、測定対象試料に照射する分割測定光と、前記特定成分を含有しない参照試料に照射する参照光とに分割する測定光分割部を備え、前記検知部は、出射強度値Pとして前記参照試料中を通過した参照光の強度値を検知するようにしてもよい。   Further, in the above invention, the measurement unit includes a measurement beam splitting unit that splits the split measurement beam to be irradiated onto the measurement target sample and the reference beam to be irradiated onto the reference sample that does not contain the specific component, and the detection unit has an emission intensity value The intensity value of the reference light that has passed through the reference sample may be detected as P.

そして、上記の発明では、前記基準強度値作成マップ[MAP(P’,P)=I]は、前記特定成分を含有しない測定対象試料を用いて作成されたものであるようにしてもよい。 In the above invention, the reference intensity value creation map [MAP (P ′, P) = I 0 ] may be created using a measurement target sample that does not contain the specific component. .

さらに、上記の発明では、前記基準強度値作成マップ[MAP(P’,P)=I]は、出射強度値Pの2階微分値P’’の絶対値が所定閾値以下となるものを用いて作成されたものであるようにしてもよい。
本発明のレーザ式分析装置によれば、出射強度値Pの変化量の値が大きい場合には、回路や各素子等の非線形な特徴が大きく現れるため、基準線I(t)を作成するには適していないことから、出射強度値Pの2階微分値P’’の絶対値が所定閾値以上となる部分については、基準強度値作成マップ[MAP(P’,P)=I]に反映させないようにしている。なお、出射強度値Pの2階微分値P’’の絶対値が所定閾値以上となる部分は計測には使われないため、無視しても問題ない。
Further, in the above invention, the reference intensity value creation map [MAP (P ′, P) = I 0 ] is such that the absolute value of the second-order differential value P ″ of the emission intensity value P is equal to or less than a predetermined threshold value. It may be made by using.
According to the laser type analyzer of the present invention, when the change amount of the emission intensity value P is large, nonlinear features such as circuits and elements appear greatly, so the reference line I 0 (t) is created. Therefore, the reference intensity value creation map [MAP (P ′, P) = I 0 ] is used for a portion where the absolute value of the second-order differential value P ″ of the emission intensity value P is equal to or greater than a predetermined threshold value. Is not reflected in. Note that a portion where the absolute value of the second-order differential value P ″ of the emission intensity value P is equal to or greater than a predetermined threshold is not used for measurement, and can be ignored.

第一実施形態のレーザ式ガス分析装置の一例を示す概略構成図。The schematic block diagram which shows an example of the laser type gas analyzer of 1st embodiment. 基準強度値作成マップ[MAP(P’,P)=I]の一例を示す表。Reference intensity value creation map [MAP (P ', P) = 0] table showing an example of. 出射強度値変化P(t)と1階微分値変化P’(t)と2階微分値変化P’’(t)の一例を示すグラフ。The graph which shows an example of output intensity value change P (t), 1st-order differential value change P '(t), and 2nd-order differential value change P' '(t). 図3の部分拡大図。The elements on larger scale of FIG. 図3の部分拡大図。The elements on larger scale of FIG. 図3の部分拡大図。The elements on larger scale of FIG. 第二実施形態のレーザ式ガス分析装置の一例を示す概略構成図。The schematic block diagram which shows an example of the laser type gas analyzer of 2nd embodiment. 駆動電流値と吸収スペクトルとの関係を示す概念図。The conceptual diagram which shows the relationship between a drive current value and an absorption spectrum. レーザ式ガス分析装置で得られた吸収スペクトルの一例を示すグラフ。The graph which shows an example of the absorption spectrum obtained with the laser type gas analyzer. 縦軸をln(I(ν)/I(ν))とし、横軸を周波数νとしたグラフ。A graph in which the vertical axis is ln (I 00 ) / I (ν 0 )) and the horizontal axis is frequency ν. 波長可変半導体レーザ吸収分光法を利用したレーザ式ガス分析装置の一例を示す概略構成図。The schematic block diagram which shows an example of the laser type gas analyzer using a wavelength-tunable semiconductor laser absorption spectroscopy. 駆動電流値とレーザ光の発振波長との関係を示す概念図。The conceptual diagram which shows the relationship between a drive current value and the oscillation wavelength of a laser beam.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.

<第一実施形態>
図1は、本発明に係る第一実施形態のレーザ式ガス分析装置の一例を示す概略構成図である。なお、上述した従来のレーザ式ガス分析装置201と同様のものについては、同じ符号を付している。
レーザ式ガス分析装置1は、光源部(半導体レーザモジュール)10と、レーザ光受光部20と、光源部10を制御するレーザ制御部50と、マイコンやPCで構成される制御部60とを備える。
<First embodiment>
FIG. 1 is a schematic configuration diagram showing an example of a laser gas analyzer according to the first embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the thing similar to the conventional laser type gas analyzer 201 mentioned above.
The laser gas analyzer 1 includes a light source unit (semiconductor laser module) 10, a laser light receiving unit 20, a laser control unit 50 that controls the light source unit 10, and a control unit 60 that includes a microcomputer or a PC. .

レーザ制御部50は、「水蒸気量を計測する入力信号」が入力された際には、図12(a)に示すような所定の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号をD/Aコンバータ80によってデジタル値に変換し、光源部10の半導体レーザ10aに印加する制御を行う。
また、レーザ制御部50は、「基準強度値作成マップ[MAP(P’,P)=I]を作成する入力信号」が入力された際には、種々の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号をD/Aコンバータ80によってデジタル値に変換し、光源部10の半導体レーザ10aに印加する制御を行う。このレーザ制御信号は、実際に計測時に出力されると考えられる駆動電流値の波形を網羅するようになっていることが好ましい。
When the “input signal for measuring the amount of water vapor” is input, the laser control unit 50 has a laser control signal having a waveform of a drive current value having a predetermined inclination and height as shown in FIG. Is converted into a digital value by the D / A converter 80 and applied to the semiconductor laser 10 a of the light source unit 10.
Further, when the “input signal for creating the reference intensity value creation map [MAP (P ′, P) = I 0 ]” is input, the laser control unit 50 has drive currents having various inclinations and heights. A laser control signal having a value waveform is converted into a digital value by the D / A converter 80 and applied to the semiconductor laser 10 a of the light source unit 10. The laser control signal preferably covers a waveform of a drive current value that is considered to be actually output during measurement.

制御部60は、CPU61とメモリ62と入力装置(図示せず)とを備える。また、CPU61が処理する機能をブロック化して説明すると、測定対象ガス中の水蒸気量を算出する演算部61aと、基準強度値作成マップ[MAP(P’,P)=I]を作成する作成部61bとを有する。さらに、メモリ62には、基準強度値作成マップ[MAP(P’,P)=I]を記憶するための基準強度値作成マップ記憶領域62aを有する。図2は、基準強度値作成マップ[MAP(P’,P)=I]の一例を示す表である。縦欄は出射強度値Pを示し、横欄は出射強度値Pの1階微分値P’を示している。 The control unit 60 includes a CPU 61, a memory 62, and an input device (not shown). Further, the function processed by the CPU 61 will be described as a block. The calculation unit 61a for calculating the amount of water vapor in the measurement target gas and the creation for creating the reference intensity value creation map [MAP (P ′, P) = I 0 ]. Part 61b. Further, the memory 62 includes a reference intensity value creation map storage area 62a for storing a reference intensity value creation map [MAP (P ′, P) = I 0 ]. FIG. 2 is a table showing an example of the reference intensity value creation map [MAP (P ′, P) = I 0 ]. The vertical column indicates the emission intensity value P, and the horizontal column indicates the first-order differential value P ′ of the emission intensity value P.

作成部61bは、「基準強度値作成マップ[MAP(P’,P)=I]を作成する入力信号」が入力された際には、レーザ光受光部20で検知された受光強度値I、パワーモニタ(検知部)10bで検知された出射強度値(パワーモニタ信号)PをそれぞれA/Dコンバータ81、82によってデジタル値に所定サンプリング間隔(例えば1MHz)で変換し、基準強度値作成マップ[MAP(P’,P)=I]を作成してメモリ62の基準強度値作成マップ記憶領域62aに記憶させる制御を行う。
ここで、図3(a)は、出射強度値変化P(t)の一例を示すグラフであり、図3(b)は、図3(a)に示す出射強度値Pの1階微分値変化P’(t)のグラフであり、図3(c)は、図3(a)に示す出射強度値Pの2階微分値変化P’’(t)のグラフである。
When the “input signal for creating the reference intensity value creation map [MAP (P ′, P) = I 0 ]” is input, the creation unit 61b receives the received light intensity value I detected by the laser light receiving unit 20. The output intensity value (power monitor signal) P detected by the power monitor (detection unit) 10b is converted into a digital value by the A / D converters 81 and 82 at a predetermined sampling interval (for example, 1 MHz), and a reference intensity value creation map [MAP (P ′, P) = I 0 ] is created and stored in the reference intensity value creation map storage area 62a of the memory 62.
Here, FIG. 3A is a graph showing an example of the emission intensity value change P (t), and FIG. 3B is a first-order differential value change of the emission intensity value P shown in FIG. 3 is a graph of P ′ (t), and FIG. 3C is a graph of the second-order differential value change P ″ (t) of the emission intensity value P shown in FIG.

例えば、まず測定者等は、水蒸気を含有しない測定対象ガスをサンプル流路70内に流す。そして、測定者等は、「基準強度値作成マップ[MAP(P’,P)=I]を作成する入力信号」を、入力装置を用いて入力する。これにより、レーザ制御部50によって、種々の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号が半導体レーザ10aに印加される。
その結果、出射強度値Pが「120」と検知され、その1階微分値P’が「0.06」であるときに、受光強度値Iが「139」と検知されると、その値を基準強度値作成マップ[MAP(P’,P)=I]中に記録する。また、出射強度値Pが「130」と検知され、その1階微分値P’が「0.06」であるときに、受光強度値Iが「148」と検知されると、その値を基準強度値作成マップ[MAP(P’,P)=I]中に記録する。このようにして順次基準強度値作成マップ[MAP(P’,P)=I]中に記録していく。
For example, a measurer or the like first causes a measurement target gas that does not contain water vapor to flow into the sample flow path 70. Then, the measurer or the like inputs “an input signal for creating a reference intensity value creation map [MAP (P ′, P) = I 0 ]” using an input device. As a result, the laser control unit 50 applies laser control signals having waveforms of drive current values having various inclinations and heights to the semiconductor laser 10a.
As a result, when the emission intensity value P is detected as “120” and the first-order differential value P ′ is “0.06”, when the received light intensity value I is detected as “139”, the value is changed. Record in the reference intensity value creation map [MAP (P ′, P) = I 0 ]. Further, when the emission intensity value P is detected as “130” and the first-order differential value P ′ is “0.06”, when the received light intensity value I is detected as “148”, the value is used as a reference. Record in the intensity value creation map [MAP (P ′, P) = I 0 ]. In this way, the information is sequentially recorded in the reference intensity value creation map [MAP (P ′, P) = I 0 ].

基準強度値作成マップ[MAP(P’,P)=I]中へ記録していく際には、2階微分値P’’が閾値の絶対値(充分に小さい値、理想的には0であるが、実際には構成される素子や回路等による非線形的な動作が充分に無視できる変化量)以下となった出射強度値Pと1階微分値P’とを用いるようにすることが好ましい。なお、図4(a)〜(c)は、図3(a)〜(c)における数値範囲80〜120の拡大図であり、図5(a)〜(c)は、図3(a)〜(c)における数値範囲480〜520の拡大図であり、図6(a)〜(c)は、図3(a)〜(c)における数値範囲880〜920の拡大図である。 When recording in the reference intensity value creation map [MAP (P ′, P) = I 0 ], the second-order differential value P ″ is the absolute value of the threshold (a sufficiently small value, ideally 0). However, in practice, the output intensity value P and the first-order differential value P ′ that are less than or equal to the amount of change in which the non-linear operation by the configured elements or circuits is sufficiently negligible may be used. preferable. 4A to 4C are enlarged views of the numerical range 80 to 120 in FIGS. 3A to 3C, and FIGS. 5A to 5C are FIGS. It is an enlarged view of numerical range 480-520 in (c), and Drawing 6 (a)-(c) is an enlarged view of numerical range 880-920 in Drawing 3 (a)-(c).

演算部61aは、「水蒸気量を計測する入力信号」が入力された際には、レーザ光受光部20で検知された受光強度値I、パワーモニタ10bで検知された出射強度値(パワーモニタ信号)PをそれぞれA/Dコンバータ81、82によってデジタル値に所定サンプリング間隔(例えば1MHz)で変換し、各周期において、基準強度値作成マップ[MAP(P’,P)=I]に当てはめて基準強度値変化(基準線)I(t)を作成する制御を行う。
例えば、レーザ制御部50によって、図12(a)に示すような所定の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号が半導体レーザ10aに印加されたときに、第一サンプリング時間に検知された出射強度値Pが「120」であり、その1階微分値P’が「0.06」であれば、第一サンプリング時間における基準強度値Iは、基準強度値作成マップ[MAP(P’,P)=I]から「139」となる。また、第二サンプリング時間に検知された出射強度値Pが「130」であり、その1階微分値P’が「0.06」であれば、第二サンプリング時間における基準強度値Iは、基準強度値作成マップ[MAP(P’,P)=I]から「148」となる。このように各サンプリング時間における基準強度値Iを求めいくことで、基準強度値変化I(t)を作成する。
その後、演算部61aは、作成した基準強度値変化I(t)と、レーザ光受光部20で検知された受光強度値変化I(t)とを式(1)、(2)に当てはめて数密度cを得る制御を行う。
When the “input signal for measuring the amount of water vapor” is input, the calculation unit 61a receives the received light intensity value I detected by the laser light receiving unit 20 and the emission intensity value detected by the power monitor 10b (power monitor signal). ) P is converted into a digital value by A / D converters 81 and 82 at a predetermined sampling interval (for example, 1 MHz), and applied to the reference intensity value creation map [MAP (P ′, P) = I 0 ] in each cycle. Control to create a reference intensity value change (reference line) I 0 (t) is performed.
For example, when a laser control signal having a waveform of a drive current value having a predetermined inclination and height as shown in FIG. 12A is applied to the semiconductor laser 10a by the laser control unit 50, the first sampling time. If the output intensity value P detected at 1 is “120” and the first-order differential value P ′ is “0.06”, the reference intensity value I 0 at the first sampling time is determined as the reference intensity value creation map [ MAP (P ′, P) = I 0 ] is changed to “139”. Further, if the emission intensity value P detected at the second sampling time is “130” and the first-order differential value P ′ is “0.06”, the reference intensity value I 0 at the second sampling time is It becomes “148” from the reference intensity value creation map [MAP (P ′, P) = I 0 ]. Thus, the reference intensity value change I 0 (t) is created by obtaining the reference intensity value I 0 at each sampling time.
Thereafter, the calculation unit 61a applies the created reference intensity value change I 0 (t) and the received light intensity value change I (t) detected by the laser light receiving unit 20 to the expressions (1) and (2). Control for obtaining the number density c is performed.

以上のように、第一実施形態のレーザ式ガス分析装置1によれば、吸光線(水分子の吸収ピーク)幅が広がった場合でも、出射強度値変化P(t)を基準強度値作成マップ[MAP(P’,P)=I]に当てはめることにより、適切な基準線I(t)を作成することができる。 As described above, according to the laser gas analyzer 1 of the first embodiment, even when the absorption line (absorption peak of water molecule) width is widened, the emission intensity value change P (t) is used as the reference intensity value creation map. By applying [MAP (P ′, P) = I 0 ], an appropriate reference line I 0 (t) can be created.

<第二実施形態>
図7は、本発明に係る第二実施形態のレーザ式ガス分析装置の一例を示す概略構成図である。なお、上述したレーザ式ガス分析装置1と同様のものについては、同じ符号を付している。
レーザ式ガス分析装置101は、光源部(半導体レーザモジュール)110と、分割測定光と参照光とに分割する測定光分割部15と、レーザ光受光部20と、参照光受光部21と、水蒸気を含有しない標準ガス(参照ガス)が封入された参照ガスセル90と、光源部110を制御するレーザ制御部150と、マイコンやPCで構成される制御部160とを備える。
<Second embodiment>
FIG. 7 is a schematic configuration diagram showing an example of a laser gas analyzer according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the thing similar to the laser type gas analyzer 1 mentioned above.
The laser type gas analyzer 101 includes a light source unit (semiconductor laser module) 110, a measurement beam splitting unit 15 that splits into split measurement beam and reference beam, a laser beam receiver 20, a reference beam receiver 21, and water vapor. Reference gas cell 90 filled with a standard gas (reference gas) not containing a light source, a laser control unit 150 that controls the light source unit 110, and a control unit 160 that includes a microcomputer or a PC.

測定光分割部15は、例えばレーザ光を2方向へ分割するビームスプリッタであり、半導体レーザ10aから出射されたレーザ光の一部を透過することで測定対象ガスSに照射する分割測定光と、レーザ光の残りを反射することで測定対象ガスSに照射しない参照光とに分割する。そして、参照光は参照ガスセル90に対して照射されるようになっている。
参照光受光部(検知部)21は、光強度を電気信号に変換できるものであればよく、例えばフォトダイオードが用いられる。そして、参照光受光部21は、測定光分割部15でZ方向に反射され、参照ガスセル90を通過したレーザ光(参照光)の強度Pを受光する。
The measurement light splitting unit 15 is, for example, a beam splitter that splits laser light in two directions, and split measurement light that irradiates the measurement target gas S by transmitting part of the laser light emitted from the semiconductor laser 10a. By reflecting the remainder of the laser light, it is divided into reference light that is not irradiated onto the measurement target gas S. The reference light is applied to the reference gas cell 90.
The reference light receiving unit (detecting unit) 21 may be anything as long as it can convert light intensity into an electrical signal. For example, a photodiode is used. The reference light receiving unit 21 receives the intensity P of the laser light (reference light) reflected in the Z direction by the measurement light dividing unit 15 and passed through the reference gas cell 90.

レーザ制御部150は、「水蒸気量を計測する入力信号」が入力された際には、図8(a)に示すような所定の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号をD/Aコンバータ80によってデジタル値に変換し、光源部110の半導体レーザ10aに印加する制御を行う。
また、レーザ制御部150は、「基準強度値作成マップ[MAP(P’,P)=I]を作成する入力信号」が入力された際には、種々の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号をD/Aコンバータによってデジタル値に変換し、光源部110の半導体レーザ10aに印加する制御を行う。
When the “input signal for measuring the water vapor amount” is input, the laser control unit 150 has a laser control signal that has a waveform of a drive current value having a predetermined inclination and height as shown in FIG. Is converted into a digital value by the D / A converter 80 and applied to the semiconductor laser 10a of the light source unit 110.
In addition, when the “input signal for creating the reference intensity value creation map [MAP (P ′, P) = I 0 ]” is input, the laser control unit 150 has drive currents having various inclinations and heights. A laser control signal having a value waveform is converted into a digital value by a D / A converter and applied to the semiconductor laser 10 a of the light source unit 110.

制御部160は、CPU161とメモリ162と入力装置(図示せず)とを備える。また、CPU161が処理する機能をブロック化して説明すると、測定対象ガス中の水蒸気量を算出する演算部161aと、基準強度値作成マップ[MAP(P’,P)=I]を作成する作成部161bとを有する。 The control unit 160 includes a CPU 161, a memory 162, and an input device (not shown). Further, the function processed by the CPU 161 will be described as a block. The calculation unit 161a that calculates the amount of water vapor in the measurement target gas and the creation that creates the reference intensity value creation map [MAP (P ′, P) = I 0 ]. Part 161b.

作成部161bは、「基準強度値作成マップ[MAP(P’,P)=I]を作成する入力信号」が入力された際には、レーザ光受光部20で検知された受光強度値I、参照光受光部21で検知された出射強度値(受光信号)PをそれぞれA/Dコンバータ81、82によってデジタル値に所定サンプリング間隔(例えば1MHz)で変換し、基準強度値作成マップ[MAP(P’,P)=I]を作成してメモリ162に記憶させる制御を行う。 When the “input signal for creating the reference intensity value creation map [MAP (P ′, P) = I 0 ]” is input, the creation unit 161b receives the received light intensity value I detected by the laser light receiving unit 20. The output intensity values (light reception signals) P detected by the reference light receiving unit 21 are converted into digital values by A / D converters 81 and 82 at a predetermined sampling interval (for example, 1 MHz), respectively, and a reference intensity value creation map [MAP ( P ′, P) = I 0 ] is generated and stored in the memory 162.

例えば、まず測定者等は、水蒸気を含有しない測定対象ガスSをサンプル流路70内に流す。そして、測定者等は、「基準強度値作成マップ[MAP(P’,P)=I]を作成する入力信号」を、入力装置を用いて入力する。これにより、レーザ制御部150によって、種々の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号が半導体レーザ10aに印加される。
その結果、出射強度値Pが「120」と検知され、その1階微分値P’が「0.06」であるときに、受光強度値Iが「139」と検知されると、その値を基準強度値作成マップ[MAP(P’,P)=I]中に記録する。また、出射強度値Pが「130」と検知され、その1階微分値P’が「0.06」であるときに、受光強度値Iが「148」と検知されると、その値を基準強度値作成マップ[MAP(P’,P)=I]中に記録する。このようにして順次基準強度値作成マップ[MAP(P’,P)=I]中に記録していく。
For example, a measurer or the like first causes the measurement target gas S not containing water vapor to flow into the sample flow path 70. Then, the measurer or the like inputs “an input signal for creating a reference intensity value creation map [MAP (P ′, P) = I 0 ]” using an input device. Accordingly, the laser control unit 150 applies a laser control signal having a waveform of drive current values having various inclinations and heights to the semiconductor laser 10a.
As a result, when the emission intensity value P is detected as “120” and the first-order differential value P ′ is “0.06”, when the received light intensity value I is detected as “139”, the value is changed. Record in the reference intensity value creation map [MAP (P ′, P) = I 0 ]. Further, when the emission intensity value P is detected as “130” and the first-order differential value P ′ is “0.06”, when the received light intensity value I is detected as “148”, the value is used as a reference. Record in the intensity value creation map [MAP (P ′, P) = I 0 ]. In this way, the information is sequentially recorded in the reference intensity value creation map [MAP (P ′, P) = I 0 ].

演算部161aは、「水蒸気量を計測する入力信号」が入力された際には、レーザ光受光部20で検知された受光強度値I、参照光受光部21で検知された出射強度値PをそれぞれA/Dコンバータ81、82によってデジタル値に所定サンプリング間隔(例えば1MHz)で変換し、各周期において、基準強度値作成マップ[MAP(P’,P)=I]に当てはめて基準強度値変化I(t)を作成する制御を行う。
なお、第二実施形態のレーザ式ガス分析装置101では、周期間の所定時間において、図8(a)に示すように一定の駆動電流値を印加しているので、光路(光路長L)中のレンズ(入射用光学窓71や出射用光学窓72等)の汚れ等により、図8(b)に示すように、全体的に光量(光強度値I)が下がった場合に、計測開始時の周期間の光量(光強度値I)と比較することで減衰率を求めることができ、その減衰率によって、基準強度値作成マップ[MAP(P’,P)=I]により求めた基準強度値Iを補正する。例えば、減衰率が「10%」と算出され、第一サンプリング時間に検知された出射強度値Pが「120」であり、その1階微分値P’が「0.06」であれば、第一サンプリング時間における基準強度値Iは、基準強度値作成マップ[MAP(P’,P)=I]から「139」となり、さらに「125(=139×90%)」となる。また、第二サンプリング時間に検知された出射強度値Pが「130」であり、その1階微分値P’が「0.06」であれば、第二サンプリング時間における基準強度値Iは、基準強度値作成マップ[MAP(P’,P)=I]から「148」となり、さらに「133(=148×90%)」となる。このように各サンプリング時間における基準強度値Iを求めいくことで、基準強度値変化I(t)を作成する。
その後、演算部161aは、作成した基準強度値変化I(t)と、レーザ光受光部20で検知された受光強度値変化I(t)とを式(1)、(2)に当てはめて数密度cを得る制御を行う。
When the “input signal for measuring the amount of water vapor” is input, the calculation unit 161a uses the received light intensity value I detected by the laser light receiving unit 20 and the emission intensity value P detected by the reference light receiving unit 21. The A / D converters 81 and 82 respectively convert the digital values into digital values at a predetermined sampling interval (for example, 1 MHz), and apply the reference intensity values to the reference intensity value creation map [MAP (P ′, P) = I 0 ] in each cycle. Control to create the change I 0 (t) is performed.
In the laser gas analyzer 101 of the second embodiment, since a constant driving current value is applied as shown in FIG. 8A at a predetermined time between cycles, it is in the optical path (optical path length L). At the start of measurement when the amount of light (light intensity value I) decreases as a whole as shown in FIG. 8B due to contamination of the lens (incident optical window 71, outgoing optical window 72, etc.), etc. Attenuation rate can be obtained by comparing with the amount of light (light intensity value I) during the period of the reference, and the reference obtained from the reference intensity value creation map [MAP (P ′, P) = I 0 ] based on the attenuation rate. It corrects the intensity value I 0. For example, if the attenuation rate is calculated as “10%”, the emission intensity value P detected at the first sampling time is “120”, and the first-order differential value P ′ is “0.06”, The reference intensity value I 0 in one sampling time becomes “139” from the reference intensity value creation map [MAP (P ′, P) = I 0 ], and further becomes “125 (= 139 × 90%)”. Further, if the emission intensity value P detected at the second sampling time is “130” and the first-order differential value P ′ is “0.06”, the reference intensity value I 0 at the second sampling time is From the reference intensity value creation map [MAP (P ′, P) = I 0 ], “148” is obtained, and “133 (= 148 × 90%)” is obtained. Thus, the reference intensity value change I 0 (t) is created by obtaining the reference intensity value I 0 at each sampling time.
Thereafter, the calculation unit 161a applies the created reference intensity value change I 0 (t) and the received light intensity value change I (t) detected by the laser light receiving unit 20 to the expressions (1) and (2). Control for obtaining the number density c is performed.

以上のように、第二実施形態のレーザ式ガス分析装置101によれば、吸光線(水分子の吸収ピーク)幅が広がった場合でも、出射強度値変化P(t)を基準強度値作成マップ[MAP(P’,P)=I]に当てはめることにより、適切な基準線I(t)を作成することができる。 As described above, according to the laser gas analyzer 101 of the second embodiment, the emission intensity value change P (t) is used as the reference intensity value creation map even when the absorption line (absorption peak of water molecule) width is widened. By applying [MAP (P ′, P) = I 0 ], an appropriate reference line I 0 (t) can be created.

<他の実施形態>
(1)上述したレーザ式ガス分析装置1においては、「水蒸気量を計測する入力信号」が入力された際には、図12(a)に示すような所定の傾き及び高さを有する駆動電流値の波形となるレーザ制御信号を半導体レーザ10aに印加する構成としたが、計測中に駆動電流値の波形の傾きや高さ等を水分子の吸光度によって変動させるような構成としてもよい。このようなレーザ式ガス分析装置によれば、計測中に駆動電流値の波形の傾きや高さ等を水分子の吸光度によって変動させても、適切な基準線I(t)を作成することができる。
<Other embodiments>
(1) In the laser gas analyzer 1 described above, when an “input signal for measuring the amount of water vapor” is input, a drive current having a predetermined inclination and height as shown in FIG. Although the laser control signal having a waveform of the value is applied to the semiconductor laser 10a, the configuration may be such that the slope and height of the waveform of the drive current value are varied according to the absorbance of water molecules during the measurement. According to such a laser gas analyzer, an appropriate reference line I 0 (t) can be created even if the slope or height of the waveform of the drive current value is varied depending on the absorbance of water molecules during measurement. Can do.

(2)また、基準強度値作成マップ[MAP(P’,P)=I]による基準線I(t)の作成と、従来技術(多項式近似)による基準線I(t)の作成とを場合により切り替えるような構成としてもよい。このようなレーザ式ガス分析装置によれば、特に吸光線(水分子の吸収ピーク)幅が狭い場合には、多項式近似を用いる方法により基準線I(t)を作成し、吸光線幅が広い場合には本発明の方法にて基準線I(t)を作成することができる。 (2) Creation of the reference line I 0 (t) by the reference intensity value creation map [MAP (P ′, P) = I 0 ] and creation of the reference line I 0 (t) by the conventional technique (polynomial approximation) It is good also as a structure which switches with depending on the case. According to such a laser gas analyzer, particularly when the absorption line (absorption peak of water molecule) is narrow, the reference line I 0 (t) is created by a method using polynomial approximation, and the absorption line width is In the wide case, the reference line I 0 (t) can be created by the method of the present invention.

本発明は、レーザ吸収分光法を利用して気体中の特定ガス量情報を計測するレーザ式ガス分析装置等に利用することができる。   The present invention can be used in a laser type gas analyzer that measures specific gas amount information in a gas by using laser absorption spectroscopy.

1 レーザ式ガス分析装置
10 光源部
10a 半導体レーザ(レーザ素子)
10b パワーモニタ(検知部)
20 レーザ光受光部
50 レーザ制御部
61a 演算部
61b 作成部
62 メモリ(記憶部)
DESCRIPTION OF SYMBOLS 1 Laser type gas analyzer 10 Light source part 10a Semiconductor laser (laser element)
10b Power monitor (detector)
20 laser light receiving unit 50 laser control unit 61a calculation unit 61b creation unit 62 memory (storage unit)

Claims (5)

測定対象試料に測定光を照射するレーザ素子を有する光源部と、
前記レーザ素子へ印加する駆動電流値を所定周期で変化させることにより、所定波長範囲の測定光をレーザ素子から所定周期で発振させるレーザ制御部と、
前記測定対象試料中を通過した測定光の受光強度値Iを所定サンプリング間隔で検知する受光部と、
測定光の出射強度値Pを所定サンプリング間隔で検知する検知部と、
第n周期の所定波長範囲の測定光の受光強度値変化I(t)と、特定成分を含有しない測定対象試料中を通過したとされる第n周期の所定波長範囲の測定光の基準強度値変化I(t)とに基づいて、特定成分量情報を算出する演算部とを備えるレーザ式分析装置であって、
出射強度値Pと出射強度値Pの1階微分値P’との組合わせと、基準強度値Iとの関係を示す基準強度値作成マップ[MAP(P’,P)=I]を記憶する記憶部を備え、
前記演算部は、前記検知部で検知された出射強度値変化P(t)から出射強度値Pと1階微分値P’とを求め、出射強度値Pと1階微分値P’とを前記基準強度値作成マップ[MAP(P’,P)=I]に当てはめることにより、基準強度値変化I(t)を作成することを特徴とするレーザ式分析装置。
A light source unit having a laser element that irradiates the measurement target sample with measurement light;
A laser controller that oscillates measurement light in a predetermined wavelength range from the laser element at a predetermined period by changing a drive current value applied to the laser element at a predetermined period;
A light receiving unit that detects a light receiving intensity value I of the measurement light that has passed through the measurement target sample at a predetermined sampling interval;
A detector for detecting the emission intensity value P of the measurement light at a predetermined sampling interval;
Change in received light intensity value I (t) of the measurement light in the predetermined wavelength range of the nth period and the reference intensity value of the measurement light in the predetermined wavelength range of the nth period that is assumed to have passed through the measurement target sample not containing the specific component A laser-type analyzer including a calculation unit that calculates specific component amount information based on the change I 0 (t),
A reference intensity value creation map [MAP (P ′, P) = I 0 ] indicating the relationship between the combination of the emission intensity value P and the first-order differential value P ′ of the emission intensity value P and the reference intensity value I 0 A storage unit for storing,
The calculation unit obtains an emission intensity value P and a first-order differential value P ′ from the emission intensity value change P (t) detected by the detection unit, and calculates the emission intensity value P and the first-order differential value P ′. A laser-type analyzer characterized by creating a reference intensity value change I 0 (t) by applying it to a reference intensity value creation map [MAP (P ′, P) = I 0 ].
前記光源部は、前記検知部としてパワーモニタを有することを特徴とする請求項1に記載のレーザ式分析装置。   The laser-type analyzer according to claim 1, wherein the light source unit includes a power monitor as the detection unit. 測定対象試料に照射する分割測定光と、前記特定成分を含有しない参照試料に照射する参照光とに分割する測定光分割部を備え、
前記検知部は、出射強度値Pとして前記参照試料中を通過した参照光の強度値を検知することを特徴とする請求項1に記載のレーザ式分析装置。
A measurement light dividing unit that divides the divided measurement light to be irradiated onto the measurement target sample and the reference light to be irradiated onto the reference sample that does not contain the specific component;
The laser analysis apparatus according to claim 1, wherein the detection unit detects an intensity value of reference light that has passed through the reference sample as an emission intensity value P.
前記基準強度値作成マップ[MAP(P’,P)=I]は、前記特定成分を含有しない測定対象試料を用いて作成されたものであることを特徴とする請求項1〜請求項3のいずれか1項に記載のレーザ式分析装置。 The reference intensity value creation map [MAP (P ′, P) = I 0 ] is created using a measurement sample that does not contain the specific component. The laser analysis apparatus according to any one of the above. 前記基準強度値作成マップ[MAP(P’,P)=I]は、出射強度値Pの2階微分値P’’の絶対値が所定閾値以下となるものを用いて作成されたものであることを特徴とする請求項4に記載のレーザ式分析装置。 The reference intensity value creation map [MAP (P ′, P) = I 0 ] is created using the map in which the absolute value of the second-order differential value P ″ of the emission intensity value P is equal to or less than a predetermined threshold value. The laser type analyzer according to claim 4, wherein the laser type analyzer is provided.
JP2014216524A 2014-10-23 2014-10-23 Laser type analyzer Expired - Fee Related JP6269438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216524A JP6269438B2 (en) 2014-10-23 2014-10-23 Laser type analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216524A JP6269438B2 (en) 2014-10-23 2014-10-23 Laser type analyzer

Publications (2)

Publication Number Publication Date
JP2016085073A true JP2016085073A (en) 2016-05-19
JP6269438B2 JP6269438B2 (en) 2018-01-31

Family

ID=55973617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216524A Expired - Fee Related JP6269438B2 (en) 2014-10-23 2014-10-23 Laser type analyzer

Country Status (1)

Country Link
JP (1) JP6269438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059452A1 (en) * 2018-09-20 2020-03-26 株式会社島津製作所 Gas measurement device and gas measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684258A (en) * 1985-07-31 1987-08-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for enhancing laser absorption sensitivity
JPH0262938A (en) * 1988-08-29 1990-03-02 Fujitsu Ltd Response characteristic correction system for gas sensor
JPH08338805A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Method and apparatus for measuring concentration of gas
JP2009156815A (en) * 2007-12-27 2009-07-16 Mitsubishi Heavy Ind Ltd Gas concentration measurement device and gas concentration measurement method
JP2012237636A (en) * 2011-05-11 2012-12-06 Shimadzu Corp Gas analyzer
JP2013228296A (en) * 2012-04-26 2013-11-07 Shimadzu Corp Gas concentration measuring device
JP2014010092A (en) * 2012-07-02 2014-01-20 Shimadzu Corp Gas analyzer
US20140125993A1 (en) * 2012-11-02 2014-05-08 Li-Cor, Inc. Cavity enhanced laser based gas analyzer systems and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684258A (en) * 1985-07-31 1987-08-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for enhancing laser absorption sensitivity
JPH0262938A (en) * 1988-08-29 1990-03-02 Fujitsu Ltd Response characteristic correction system for gas sensor
JPH08338805A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Method and apparatus for measuring concentration of gas
JP2009156815A (en) * 2007-12-27 2009-07-16 Mitsubishi Heavy Ind Ltd Gas concentration measurement device and gas concentration measurement method
JP2012237636A (en) * 2011-05-11 2012-12-06 Shimadzu Corp Gas analyzer
JP2013228296A (en) * 2012-04-26 2013-11-07 Shimadzu Corp Gas concentration measuring device
JP2014010092A (en) * 2012-07-02 2014-01-20 Shimadzu Corp Gas analyzer
US20140125993A1 (en) * 2012-11-02 2014-05-08 Li-Cor, Inc. Cavity enhanced laser based gas analyzer systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059452A1 (en) * 2018-09-20 2020-03-26 株式会社島津製作所 Gas measurement device and gas measurement method
JPWO2020059452A1 (en) * 2018-09-20 2021-08-30 株式会社島津製作所 Gas measuring device and gas measuring method
JP7006800B2 (en) 2018-09-20 2022-01-24 株式会社島津製作所 Gas measuring device and gas measuring method

Also Published As

Publication number Publication date
JP6269438B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5983779B2 (en) Gas absorption spectroscopy apparatus and gas absorption spectroscopy method
EP2440893B1 (en) Optical absorbance measurements with self-calibration and extended dynamic range
JP5907442B2 (en) Laser gas analyzer
JP6513762B2 (en) Analyzer, program for analyzer and analysis method
US9335257B2 (en) Tunable diode laser absorption spectroscopy with water vapor determination
KR101923003B1 (en) Method for determining the concentration of a gas component and spectrometer therefor
JP2013050403A (en) Gas analyzer
JP2013130509A (en) Calibration method and calibration device for moisture concentration measurement device
US8891085B2 (en) Gas analyzer
JP5347983B2 (en) Gas analyzer
JPWO2017029791A1 (en) Concentration measuring device
US9459209B2 (en) Gas analysis device
JP2012237636A (en) Gas analyzer
JP6044136B2 (en) Gas analyzer
US20140022542A1 (en) Gas Analyzer
US11796468B2 (en) Gas measurement device and gas measurement method
JP5163360B2 (en) Laser gas analyzer and gas concentration measuring method
JP6269438B2 (en) Laser type analyzer
JP5170034B2 (en) Gas analyzer
CN111413295A (en) Analysis device, storage medium, and analysis method
JP6201551B2 (en) Gas analyzer
JP6314605B2 (en) Gas analyzer
JP5678452B2 (en) Laser gas analyzer
JP2015040820A (en) Gas analyzing apparatus
JP2013127385A (en) Laser gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees