JP2016084510A - Corrosion-resistant film formation method - Google Patents

Corrosion-resistant film formation method Download PDF

Info

Publication number
JP2016084510A
JP2016084510A JP2014217993A JP2014217993A JP2016084510A JP 2016084510 A JP2016084510 A JP 2016084510A JP 2014217993 A JP2014217993 A JP 2014217993A JP 2014217993 A JP2014217993 A JP 2014217993A JP 2016084510 A JP2016084510 A JP 2016084510A
Authority
JP
Japan
Prior art keywords
film
zinc
corrosion
resistant
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014217993A
Other languages
Japanese (ja)
Other versions
JP5840278B1 (en
Inventor
合田 裕一
Yuichi Aida
裕一 合田
弘朗 鈴木
Hiroaki Suzuki
弘朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUKI SHOTEN KK
BBM Co Ltd
Kaimon KK
Miwa Tech Co Ltd
Original Assignee
SUZUKI SHOTEN KK
BBM Co Ltd
Kaimon KK
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZUKI SHOTEN KK, BBM Co Ltd, Kaimon KK, Miwa Tech Co Ltd filed Critical SUZUKI SHOTEN KK
Priority to JP2014217993A priority Critical patent/JP5840278B1/en
Application granted granted Critical
Publication of JP5840278B1 publication Critical patent/JP5840278B1/en
Publication of JP2016084510A publication Critical patent/JP2016084510A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion-resistant film structure excellent in adhesion to galvanization, including a barrier coating for blocking a corrosive factor to galvanization, and capable of thinning film thickness of the whole coating, while maintaining corrosion resistance.SOLUTION: A mixed film of zinc, aluminum and a silica compound is formed by baking finish on a substrate material surface to which electroplating of zinc or a zinc alloy is applied, and, as a top coat thereon, polyorganosiloxane thin film obtained by a sol-gel method containing an organic material is hardened and then fired, to thereby form a porous silica coating.SELECTED DRAWING: Figure 1

Description

本発明は、クロムを含まない環境負荷を軽減し、トップコートを半導体製造技術を用いた薄膜とし耐食性を維持しつつ皮膜全体の膜厚を薄くした耐食皮膜構造に関する。   The present invention relates to a corrosion-resistant coating structure that reduces the environmental load that does not contain chromium, and the top coat is made a thin film using a semiconductor manufacturing technique to maintain the corrosion resistance while reducing the thickness of the entire coating.

従来、下地材の耐食性の向上のため溶融亜鉛メッキが多用されているが、湿潤雰囲気、排ガス雰囲気、海岸近傍の雰囲気等に長期間に渡って曝される表面に白錆が発生する。白錆は、亜鉛が犠牲防食となって鉄生地を保護する機能を有するが外観が悪化する。   Conventionally, hot dip galvanizing has been frequently used to improve the corrosion resistance of the base material, but white rust is generated on the surface exposed to a humid atmosphere, an exhaust gas atmosphere, an atmosphere in the vicinity of the coast, etc. for a long time. White rust has the function of protecting the iron fabric by sacrificial protection of zinc, but the appearance is deteriorated.

白錆の発生の防止には、亜鉛メッキの上にクロメート処理する方法が通常採用されているが、クロメート処理にはクロムイオンを含む廃液の処理に多大な負担がかかるという問題を有する。そこで、チタン系、モリブデン系、リン酸塩系等の薬液を使用したクロムフリーの表面処理方法が検討されている。   In order to prevent the occurrence of white rust, a method of chromate treatment on galvanizing is usually employed. However, the chromate treatment has a problem that a large burden is imposed on the treatment of waste liquid containing chromium ions. Therefore, a chromium-free surface treatment method using a chemical solution such as titanium, molybdenum, or phosphate has been studied.

たとえば、硫酸チタン水溶液及びリン酸を含む処理液を亜鉛メッキ鋼板に塗布して加熱乾燥することにより耐食性に優れたチタン化合物含有皮膜を形成するものや、マンガン化合物及びチタン化合物を含む酸性溶液を亜鉛メッキ鋼板に塗布して加熱乾燥することにより耐食性に優れたマンガン及びチタンの複合化合物皮膜を形成するものが提案されている。   For example, a coating solution containing titanium sulfate aqueous solution and phosphoric acid is applied to a galvanized steel sheet and dried by heating to form a titanium compound-containing film having excellent corrosion resistance, or an acidic solution containing a manganese compound and a titanium compound is zinc. There has been proposed one that forms a composite film of manganese and titanium excellent in corrosion resistance by applying to a plated steel sheet and drying by heating.

特開平11−61431号公報Japanese Patent Laid-Open No. 11-61431

しかしながら、硫酸チタン水溶液及びリン酸を含む処理液を亜鉛メッキ鋼板に塗布して加熱乾燥することにより耐食性に優れたチタン化合物含有皮膜を形成するものや、マンガン化合物及びチタン化合物を含む酸性溶液を亜鉛メッキ鋼板に塗布して加熱乾燥することにより耐食性に優れたマンガン及びチタンの複合化合物皮膜を形成するものは、亜鉛メッキとの密着性に問題があり、さらに、亜鉛メッキされた下地材表面にクロメート処理同様の薄膜処理を行う場合、均一な塗布が難しく、不均一な皮膜が形成され易く、皮膜に残存する酸性根が耐食性に悪影響を及ぼすという問題を有する。   However, a coating solution containing a titanium sulfate aqueous solution and phosphoric acid is applied to a galvanized steel sheet and heated and dried to form a titanium compound-containing film excellent in corrosion resistance, or an acidic solution containing a manganese compound and a titanium compound is zinc. Those that form a composite film of manganese and titanium with excellent corrosion resistance when applied to a plated steel sheet and dried by heating have problems in adhesion to galvanized steel, and in addition, chromate is applied to the surface of the galvanized base material. When a thin film treatment similar to the treatment is performed, there is a problem that uniform coating is difficult, a non-uniform film is easily formed, and acidic roots remaining in the film adversely affect the corrosion resistance.

本発明の耐食皮膜構造は、従来技術のもつ問題点を解決する、亜鉛メッキとの密着性に優れ、亜鉛メッキへの腐食因子を阻止するバリヤー皮膜を備え、耐食性を維持しつつ皮膜全体の膜厚を薄くする耐食皮膜構造を提供することを目的とする。   The corrosion-resistant coating structure of the present invention is provided with a barrier coating that solves the problems of the prior art, has excellent adhesion to galvanizing, and inhibits corrosion factors to galvanizing, and maintains the corrosion resistance while maintaining the corrosion resistance. An object is to provide a corrosion-resistant film structure for reducing the thickness.

本発明の耐食皮膜構造は、前記課題を解決するために、亜鉛又は亜鉛合金の電気メッキを施した下地材表面に、亜鉛、アルミ、シリカ化合物の混合皮膜を焼き付け塗装で形成し、その上のトップコートとして、有機物質を含む、ゾルゲル法で得られたポリオルガノシロキサン薄膜を硬化処理し、次いで焼成処理し多孔質シリカ皮膜を形成することを特徴とする。   In order to solve the above problems, the corrosion-resistant coating structure of the present invention is formed by baking a mixed coating of zinc, aluminum, and a silica compound on the surface of a base material that has been electroplated with zinc or a zinc alloy. As a top coat, a polyorganosiloxane thin film obtained by a sol-gel method containing an organic substance is cured and then baked to form a porous silica film.

また、本発明の耐食皮膜構造は、亜鉛、アルミ、シリカ化合物の焼き付け塗装を二度繰り返して混合皮膜を形成することを特徴とする。   The corrosion resistant coating structure of the present invention is characterized in that a mixed coating is formed by repeating baking coating of zinc, aluminum, and a silica compound twice.

また、本発明の耐食皮膜構造は、トップコートとしての多孔質シリカ皮膜の形成に際し、ポリオルガノシロキサン薄膜として、焼成処理の条件下で揮発又は分解するポリエーテルを含むものを用い、且つ硬化処理を塩基性物質雰囲気下で行うことを特徴とする。   In addition, the corrosion-resistant film structure of the present invention uses a polyorganosiloxane thin film containing a polyether that volatilizes or decomposes under the conditions of the baking treatment and a curing treatment when forming a porous silica film as a top coat. It is characterized by being performed in a basic substance atmosphere.

また、本発明の耐食皮膜構造は、トップコートとしての多孔質シリカ皮膜にチタンを含有させることを特徴とする。   Moreover, the corrosion-resistant film structure of the present invention is characterized in that titanium is contained in a porous silica film as a top coat.

また、本発明の耐食皮膜構造は、耐食皮膜構造をボルト表面に形成することを特徴とする。   Moreover, the corrosion-resistant film structure of the present invention is characterized in that the corrosion-resistant film structure is formed on the bolt surface.

亜鉛又は亜鉛合金の電気メッキを施した下地材表面に、亜鉛、アルミ、シリカ化合物の混合皮膜を焼き付け塗装で形成し、その上のトップコートとして、有機物質を含む、ゾルゲル法で得られたポリオルガノシロキサン薄膜を硬化処理し、次いで焼成処理し多孔質シリカ皮膜を形成することで、亜鉛、アルミ、シリカ化合物の混合皮膜は亜鉛又は亜鉛合金の皮膜との密着性に優れ、水や塩素イオン等の腐食因子の侵入を阻止するバリヤーとして機能し、トップコートの半導体製造技術を用いて薄膜化した多孔質シリカ皮膜が耐食性を向上させ、傷に対して膜を拡散させて傷を覆う自己修復性を備えることで耐傷性を向上することが可能となり、皮膜全体の膜厚を薄くすることが可能となる。
亜鉛、アルミ、シリカ化合物の焼き付け塗装を二度繰り返して混合皮膜を形成することで、混合皮膜の膜厚を増加させ耐食性をより向上させることが可能となる。
トップコートとしての多孔質シリカ皮膜の形成に際し、ポリオルガノシロキサン薄膜として、焼成処理の条件下で揮発又は分解するポリエーテルを含むものを用い、且つ硬化処理を塩基性物質雰囲気下で行うことで、多孔質シリカ皮膜を容易に形成することが可能となる。
トップコートとしての多孔質シリカ皮膜にチタンを含有させることで、トップコートの耐摩耗性及び耐久性を向上させることが可能となる。
耐食皮膜構造をボルト表面に形成することで、皮膜の膜厚が薄くボルトに適用すると締め付けトルクを低減することが可能で、トップコートの多孔質シリカ皮膜が締め付け傷を自己修復することが可能となる。
A zinc, aluminum, and silica compound mixed film is formed on the surface of the base material that has been electroplated with zinc or zinc alloy by baking, and the top coat on top of it is a polysol obtained by the sol-gel method containing organic substances. The organosiloxane thin film is cured and then baked to form a porous silica film. The mixed film of zinc, aluminum, and silica compound has excellent adhesion to the zinc or zinc alloy film, such as water and chloride ions. It functions as a barrier to prevent the invasion of corrosive factors, and the porous silica film thinned using the topcoat semiconductor manufacturing technology improves the corrosion resistance, and the film diffuses against the scratch and self-healing to cover the scratch It becomes possible to improve scratch resistance and to reduce the film thickness of the entire coating.
By forming the mixed film by repeating the baking coating of zinc, aluminum and silica compound twice, it becomes possible to increase the film thickness of the mixed film and further improve the corrosion resistance.
When forming a porous silica film as a top coat, using a polyorganosiloxane thin film containing a polyether that volatilizes or decomposes under the conditions of the firing treatment, and performing a curing treatment in a basic substance atmosphere, It becomes possible to easily form a porous silica film.
By including titanium in the porous silica film as the top coat, the wear resistance and durability of the top coat can be improved.
By forming a corrosion-resistant film structure on the bolt surface, it is possible to reduce the tightening torque when the film thickness is thin and applied to the bolt, and the top coat's porous silica film can self-repair the tightening flaw. Become.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の実施の形態を図により説明する。図1は、本発明の耐食皮膜構造1の第一実施形態を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the corrosion-resistant coating structure 1 of the present invention.

下地材2の表面に電気メッキで亜鉛又は亜鉛合金皮膜3を形成する。亜鉛又は亜鉛合金皮膜3の形成には溶融メッキにより形成することができるが、膜厚の制御や表面の滑らかさにおいて電気メッキの方が優れているので電気メッキによる皮膜の形成を採用する。下地材2としては鋼、鋼合金等である。亜鉛合金としては、亜鉛、ニッケル合金が耐食性、耐久性からみて好ましい。亜鉛、ニッケル合金とする場合、亜鉛88重量%、ニッケル12重量%とする。電気メッキによる亜鉛又は亜鉛合金皮膜3の膜厚は約6.0μmとする。   A zinc or zinc alloy film 3 is formed on the surface of the base material 2 by electroplating. The zinc or zinc alloy film 3 can be formed by hot dipping. However, since electroplating is superior in terms of film thickness control and surface smoothness, film formation by electroplating is employed. The base material 2 is steel, a steel alloy, or the like. As the zinc alloy, zinc and nickel alloys are preferable from the viewpoint of corrosion resistance and durability. In the case of zinc or nickel alloy, the zinc content is 88% by weight and nickel content is 12% by weight. The thickness of the zinc or zinc alloy film 3 by electroplating is about 6.0 μm.

電気メッキによる亜鉛又は亜鉛合金皮膜3の上に、亜鉛、アルミ、シリカ化合物の混合皮膜4を焼き付け塗装により形成する。亜鉛、アルミ、シリカ化合物の混合皮膜4は、電気メッキによる亜鉛又は亜鉛合金皮膜3との密着性が良好である。また、亜鉛、アルミ、シリカ化合物の混合皮膜4は、電気メッキによる亜鉛又は亜鉛合金皮膜3上で強固なバリヤーとして機能し、水、塩素イオン等の腐食因子の電気メッキによる亜鉛又は亜鉛合金皮膜3への侵入を防止するとともに腐食反応を抑制する機能を有する。亜鉛、アルミ、シリカ化合物の混合皮膜4の混合比率は、亜鉛75重量%、アルミ15重量%、シリカ化合物15重量%とする。亜鉛、アルミ、シリカ化合物の混合皮膜4の膜厚は約8.0μmとする。   On the zinc or zinc alloy film 3 by electroplating, a mixed film 4 of zinc, aluminum and silica compound is formed by baking. The mixed film 4 of zinc, aluminum, and silica compound has good adhesion to the zinc or zinc alloy film 3 by electroplating. The mixed film 4 of zinc, aluminum, and silica compound functions as a strong barrier on the zinc or zinc alloy film 3 formed by electroplating, and the zinc or zinc alloy film 3 formed by electroplating of a corrosive factor such as water and chlorine ions. It has the function of preventing the intrusion into the water and suppressing the corrosion reaction. The mixing ratio of the mixed film 4 of zinc, aluminum, and silica compound is 75 wt% zinc, 15 wt% aluminum, and 15 wt% silica compound. The film thickness of the mixed film 4 of zinc, aluminum and silica compound is about 8.0 μm.

亜鉛、アルミ、シリカ化合物の混合皮膜4の上に、トップコートとしての多孔質シリカ皮膜5を形成する。多孔質シリカ皮膜4は半導体製造技術を用いて形成される。多孔質シリカ皮膜4の形成は、有機物質を含む、ゾルゲル法で得られたポリオルガノシロキサン薄膜を硬化処理し、次に焼成処理して多孔質シリカ皮膜を形成するが、その際、ポリオルガノシロキサン薄膜として焼成処理の条件下で揮発又は分解する有機物質を含むものを用い、且つ、硬化処理を塩基性下で行う。   A porous silica film 5 as a top coat is formed on the mixed film 4 of zinc, aluminum and silica compound. The porous silica film 4 is formed using a semiconductor manufacturing technique. The porous silica film 4 is formed by curing a polyorganosiloxane thin film obtained by a sol-gel method containing an organic substance, followed by baking to form a porous silica film. A thin film containing an organic substance that volatilizes or decomposes under the conditions of the firing treatment is used, and the curing treatment is performed under basic conditions.

トップコートとしての多孔質シリカ皮膜5は、傷に対して膜を拡散させて傷部を覆う自己修復性を備えている。多孔質シリカ皮膜5にチタンを含有させることにより、多孔質シリカ皮膜の機械的強度と耐摩耗性を向上することが可能となる。チタンを含有する場合の混合比率はシリカ化合物75重量%、チタン25重量%とする。多孔質シリカ皮膜5の膜厚は約1.0μmとする。   The porous silica film 5 as the top coat has a self-repairing property of diffusing the film against the scratch to cover the wound. By including titanium in the porous silica film 5, the mechanical strength and wear resistance of the porous silica film can be improved. When titanium is contained, the mixing ratio is 75% by weight of silica compound and 25% by weight of titanium. The film thickness of the porous silica film 5 is about 1.0 μm.

第一実施形態では、電気メッキによる亜鉛又は亜鉛合金膜3の膜厚が約6.0μmで、亜鉛、アルミ、シリカ化合物の混合皮膜4の膜厚が約8.0μmで、トップコートとしての多孔質シリカ皮膜5の膜厚が1.0μmなので、耐食皮膜構造1全体の膜厚は、約15.0μmと従来の耐食皮膜構造に比較して耐食性維持しつつ飛躍的に薄くすることが可能となる。   In the first embodiment, the thickness of the zinc or zinc alloy film 3 formed by electroplating is about 6.0 μm, the thickness of the mixed film 4 of zinc, aluminum, and silica compound is about 8.0 μm, and the top coat is porous. Since the film thickness of the porous silica film 5 is 1.0 μm, the total film thickness of the corrosion-resistant film structure 1 is about 15.0 μm, which can be drastically reduced while maintaining the corrosion resistance compared to the conventional corrosion-resistant film structure. Become.

図2は、本発明の耐食皮膜構造1の第二実施形態を示す。この実施形態では、第一実施形態と同様に、下地材2の表面に電気メッキで亜鉛又は亜鉛合金皮膜3を形成する。亜鉛合金としては、亜鉛、ニッケル合金が耐食性、耐久性からみて好ましい。亜鉛、ニッケル合金とする場合、亜鉛88重量%、ニッケル12重量%とする。電気メッキによる亜鉛又は亜鉛合金皮膜3の膜厚は約6.0μmとする。   FIG. 2 shows a second embodiment of the corrosion-resistant coating structure 1 of the present invention. In this embodiment, as in the first embodiment, the zinc or zinc alloy film 3 is formed on the surface of the base material 2 by electroplating. As the zinc alloy, zinc and nickel alloys are preferable from the viewpoint of corrosion resistance and durability. In the case of zinc or nickel alloy, the zinc content is 88% by weight and nickel content is 12% by weight. The thickness of the zinc or zinc alloy film 3 by electroplating is about 6.0 μm.

電気メッキによる亜鉛又は亜鉛合金皮膜3の上に、亜鉛、アルミ、シリカ化合物の焼き付け塗装を2度実施し、亜鉛、アルミ、シリカ化合物の混合皮膜4を形成する。亜鉛、アルミ、シリカ化合物の混合皮膜4の混合比率は、亜鉛75重量%、アルミ15重量%、シリカ化合物15重量%とする。亜鉛、アルミ、シリカ化合物の混合皮膜4の膜厚は、焼き付け塗装を2度繰り返すことにより、約16.0μmとする。亜鉛、アルミ、シリカ化合物の混合皮膜4の膜厚を厚くすることにより、電気メッキによる亜鉛又は亜鉛合金皮膜3上で強固なバリヤーとして機能し、水、塩素イオン等の腐食因子の電気メッキによる亜鉛又は亜鉛合金皮膜3への侵入を防止するとともに腐食反応を抑制する機能がより向上し、耐食性をより向上させる。   On the zinc or zinc alloy film 3 by electroplating, baking coating of zinc, aluminum and silica compound is performed twice to form a mixed film 4 of zinc, aluminum and silica compound. The mixing ratio of the mixed film 4 of zinc, aluminum, and silica compound is 75 wt% zinc, 15 wt% aluminum, and 15 wt% silica compound. The film thickness of the mixed film 4 of zinc, aluminum and silica compound is set to about 16.0 μm by repeating the baking coating twice. By increasing the film thickness of the mixed film 4 of zinc, aluminum and silica compound, it functions as a strong barrier on the zinc or zinc alloy film 3 by electroplating, and zinc by electroplating of corrosion factors such as water and chloride ions Or the function which suppresses a corrosion reaction while preventing the penetration | invasion to the zinc alloy membrane | film | coat 3 improves more, and improves corrosion resistance more.

亜鉛、アルミ、シリカ化合物の混合皮膜4の上に、第一実施形態と同様にトップコートとしての多孔質シリカ皮膜5を形成する。チタンを含有する場合の混合比率はシリカ化合物75重量%、チタン25重量%とする。多孔質シリカ皮膜5の膜厚は約1.0μmとする。   A porous silica film 5 as a top coat is formed on the mixed film 4 of zinc, aluminum, and silica compound as in the first embodiment. When titanium is contained, the mixing ratio is 75% by weight of silica compound and 25% by weight of titanium. The film thickness of the porous silica film 5 is about 1.0 μm.

第二実施形態では、電気メッキによる亜鉛又は亜鉛合金膜3の膜厚が約6.0μmで、亜鉛、アルミ、シリカ化合物の混合皮膜4の膜厚が約16.0μmで、トップコートとしての多孔質シリカ皮膜5の膜厚が1.0μmなので、耐食皮膜構造1全体の膜厚は、約23.0μmと従来の耐食皮膜構造に比較して耐食性維持しつつ飛躍的に薄くすることが可能となる。   In the second embodiment, the thickness of the zinc or zinc alloy film 3 formed by electroplating is about 6.0 μm, the thickness of the mixed film 4 of zinc, aluminum, and silica compound is about 16.0 μm, and the porous top coat is used. Since the film thickness of the porous silica film 5 is 1.0 μm, the total film thickness of the corrosion-resistant film structure 1 is about 23.0 μm, which can be drastically reduced while maintaining the corrosion resistance as compared with the conventional corrosion-resistant film structure. Become.

本発明の耐食皮膜構造1をボルトに適用した場合について説明する。ボルト表面に形成される耐食皮膜構造1の膜厚が厚いと、ボルトのねじ外径と雌ねじのねじ溝との設計寸法に誤差が生じ、ボルト締め付け時に耐食皮膜構造1が傷つく回数が増加する。本発明の耐食皮膜構造1は全体膜厚が薄く、ボルトのねじ外径と雌ねじのねじ溝との設計寸法に誤差が生じることがなく、ボルト締め付け時に耐食皮膜構造1が傷つく回数が著しく減少する。たとえ、耐食皮膜構造1が傷ついても、トップコートとしての多孔質シリカ皮膜5が、傷に対して膜を拡散させて傷部を覆う自己修復性を備えているので傷部を修復することが可能である。さらに、膜厚が薄いためボルトの回転トルクを低減することも可能である。   The case where the corrosion resistant coating structure 1 of the present invention is applied to a bolt will be described. When the film thickness of the corrosion-resistant coating structure 1 formed on the bolt surface is large, an error occurs in the design dimensions of the screw outer diameter of the bolt and the thread groove of the female screw, and the number of times the corrosion-resistant coating structure 1 is damaged during bolt tightening increases. The corrosion-resistant coating structure 1 of the present invention has a thin overall film thickness, so that there is no error in the design dimensions of the screw outer diameter of the bolt and the thread groove of the female screw, and the number of times the corrosion-resistant coating structure 1 is damaged when tightening the bolt is remarkably reduced. . Even if the corrosion-resistant film structure 1 is damaged, the porous silica film 5 as a top coat has a self-healing property that diffuses the film with respect to the wound and covers the wound, so that the wound can be repaired. Is possible. Furthermore, since the film thickness is thin, it is possible to reduce the rotational torque of the bolt.

以上のように本発明の耐食皮膜構造によれば、亜鉛、アルミ、シリカ化合物の混合皮膜は亜鉛又は亜鉛合金の皮膜との密着性に優れ、水や塩素イオン等の腐食因子の侵入を阻止するバリヤーとして機能し、トップコートの半導体製造技術を用いて薄膜化した多孔質シリカ皮膜が耐食性を向上させ、傷に対して膜を拡散させて傷を覆う自己修復性を備えることで耐傷性を向上することが可能となり、皮膜全体の膜厚を薄くすることが可能となる。   As described above, according to the corrosion-resistant coating structure of the present invention, the mixed coating of zinc, aluminum, and silica compound has excellent adhesion with the coating of zinc or zinc alloy, and prevents the entry of corrosion factors such as water and chloride ions. The porous silica coating that functions as a barrier and thinned using topcoat semiconductor manufacturing technology improves the corrosion resistance and improves the scratch resistance by providing a self-healing property that covers the wound by diffusing the membrane against the scratch. It is possible to reduce the film thickness of the entire film.

1:耐食皮膜構造、2:下地材、3:電気メッキによる亜鉛又は亜鉛合金膜、4:亜鉛、アルミ、シリカ化合物の混合皮膜、5:トップコートとしての多孔質シリカ皮膜   1: Corrosion-resistant coating structure, 2: Base material, 3: Zinc or zinc alloy film by electroplating, 4: Mixed coating of zinc, aluminum, silica compound, 5: Porous silica coating as top coat

本発明の耐食皮膜構造は、前記課題を解決するために、亜鉛又は亜鉛合金の電気メッキを施した下地材表面に、亜鉛、アルミ、シリカ化合物の混合皮膜を焼き付け塗装で形成し、その上のトップコートとして、有機物質を含む、ゾルゲル法で得られた焼成処理の条件下で揮発又は分解するポリエーテルを含むポリオルガノシロキサン薄膜を塩基性物質雰囲気下で硬化処理し、次いで焼成処理し多孔質シリカ皮膜を形成することを特徴とする。 In order to solve the above problems, the corrosion-resistant coating structure of the present invention is formed by baking a mixed coating of zinc, aluminum, and a silica compound on the surface of a base material that has been electroplated with zinc or a zinc alloy. As a top coat, a polyorganosiloxane thin film containing an organic substance and containing a polyether that volatilizes or decomposes under the conditions of baking treatment obtained by a sol-gel method is cured in a basic substance atmosphere , and then fired and porous. A silica film is formed.

発明は、クロムを含まない環境負荷を軽減し、トップコートを半導体製造技術を用いた薄膜とし耐食性を維持しつつ皮膜全体の膜厚を薄くした耐食皮膜形成方法に関する。
The present invention relates to a method for forming a corrosion-resistant film that reduces the environmental load that does not contain chromium, reduces the film thickness of the entire film while maintaining corrosion resistance by using a top coat as a thin film using semiconductor manufacturing technology.

本発明の耐食皮膜構造は、従来技術のもつ問題点を解決する、亜鉛メッキとの密着性に優れ、亜鉛メッキへの腐食因子を阻止するバリヤー皮膜を備え、耐食性を維持しつつ皮膜全体の膜厚を薄くする耐食皮膜形成方法を提供することを目的とする。
The corrosion-resistant coating structure of the present invention is provided with a barrier coating that solves the problems of the prior art, has excellent adhesion to galvanizing, and inhibits corrosion factors to galvanizing, and maintains the corrosion resistance while maintaining the corrosion resistance. It aims at providing the corrosion-resistant film formation method which makes thickness thin.

本発明の耐食皮膜形成方法は、前記課題を解決するために、亜鉛又は亜鉛合金の電気メッキを施した下地材表面に、亜鉛、アルミ、シリカ化合物の混合皮膜を焼き付け塗装で形成し、その上のトップコートとして、有機物質を含む、ゾルゲル法で得られた焼成処理の条件下で揮発又は分解するポリエーテルを含むポリオルガノシロキサン薄膜を塩基性物質雰囲気下で硬化処理し、次いで焼成処理し多孔質シリカ皮膜を形成することを特徴とする。
In order to solve the above problems, the corrosion-resistant film forming method of the present invention forms a mixed film of zinc, aluminum, and a silica compound on the surface of a base material that has been electroplated with zinc or a zinc alloy by baking coating, As a topcoat, a polyorganosiloxane thin film containing an organic substance and containing a polyether that volatilizes or decomposes under the conditions of the baking treatment obtained by the sol-gel method is cured in a basic substance atmosphere, then baked and porous. It is characterized by forming a porous silica film.

また、本発明の耐食皮膜形成方法は、亜鉛、アルミ、シリカ化合物の焼き付け塗装を二度繰り返して混合皮膜を形成することを特徴とする。
Moreover, the corrosion-resistant film forming method of the present invention is characterized in that a mixed film is formed by repeating baking and coating of zinc, aluminum, and a silica compound twice.

また、本発明の耐食皮膜形成方法は、前記耐食皮膜形成方法によりボルト表面に耐食皮膜を形成することを特徴とする。
The corrosion-resistant film forming method of the present invention is characterized in that a corrosion-resistant film is formed on the bolt surface by the corrosion-resistant film forming method .

亜鉛又は亜鉛合金の電気メッキを施した下地材表面に、亜鉛、アルミ、シリカ化合物の混合皮膜を焼き付け塗装で形成し、その上のトップコートとして、有機物質を含む、ゾルゲル法で得られた焼成処理の条件下で揮発又は分解するポリエーテルを含むポリオルガノシロキサン薄膜を塩基性物質雰囲気下で硬化処理し、次いで焼成処理し多孔質シリカ皮膜を形成することで、亜鉛、アルミ、シリカ化合物の混合皮膜は亜鉛又は亜鉛合金の皮膜との密着性に優れ、水や塩素イオン等の腐食因子の侵入を阻止するバリヤーとして機能し、トップコートの半導体製造技術を用いて薄膜化した多孔質シリカ皮膜が耐食性を向上させ、傷に対して膜を拡散させて傷を覆う自己修復性を備えることで耐傷性を向上することが可能となり、皮膜全体の膜厚を薄くすることが可能となる。
亜鉛、アルミ、シリカ化合物の焼き付け塗装を二度繰り返して混合皮膜を形成することで、混合皮膜の膜厚を増加させ耐食性をより向上させることが可能となる。
耐食皮膜形成方法によりボルト表面に耐食皮膜を形成することで、皮膜の膜厚が薄くボルトに適用すると締め付けトルクを低減することが可能で、トップコートの多孔質シリカ皮膜が締め付け傷を自己修復することが可能となる。
Baking obtained by the sol-gel method, in which a mixed film of zinc, aluminum, and silica compound is formed by baking coating on the surface of the base material that has been electroplated with zinc or zinc alloy, and an organic substance is included as a top coat on top A polyorganosiloxane thin film containing polyether that volatilizes or decomposes under the conditions of the treatment is cured in a basic substance atmosphere, then baked to form a porous silica film, thereby mixing zinc, aluminum and silica compounds The coating has excellent adhesion to zinc or zinc alloy coatings, functions as a barrier to prevent the entry of corrosion factors such as water and chlorine ions, and a porous silica coating that has been thinned using topcoat semiconductor manufacturing technology. It is possible to improve the scratch resistance by improving the corrosion resistance and providing self-healing ability to cover the wound by diffusing the film against the scratch and reducing the film thickness of the entire film. It becomes possible Kusuru.
By forming the mixed film by repeating the baking coating of zinc, aluminum and silica compound twice, it becomes possible to increase the film thickness of the mixed film and further improve the corrosion resistance.
By forming a corrosion-resistant film on the bolt surface by a corrosion-resistant film formation method , the tightening torque can be reduced when the film thickness is thin and applied to the bolt, and the porous silica film on the top coat self-repairs the wound. It becomes possible.

Claims (5)

亜鉛又は亜鉛合金の電気メッキを施した下地材表面に、亜鉛、アルミ、シリカ化合物の混合皮膜を焼き付け塗装で形成し、その上のトップコートとして、有機物質を含む、ゾルゲル法で得られたポリオルガノシロキサン薄膜を硬化処理し、次いで焼成処理し多孔質シリカ皮膜を形成することを特徴とする耐食皮膜構造。   A zinc, aluminum, and silica compound mixed film is formed on the surface of the base material that has been electroplated with zinc or zinc alloy by baking, and the top coat on top of it is a polysol obtained by the sol-gel method containing organic substances. A corrosion-resistant film structure characterized in that an organosiloxane thin film is cured and then baked to form a porous silica film. 亜鉛、アルミ、シリカ化合物の焼き付け塗装を二度繰り返して混合皮膜を形成することを特徴とする請求項1に記載の耐食皮膜構造。   The corrosion-resistant film structure according to claim 1, wherein a mixed film is formed by repeating baking and coating of zinc, aluminum, and a silica compound twice. トップコートとしての多孔質シリカ皮膜の形成に際し、ポリオルガノシロキサン薄膜として、焼成処理の条件下で揮発又は分解するポリエーテルを含むものを用い、且つ硬化処理を塩基性物質雰囲気下で行うことを特徴とする請求項1又は2に記載の耐食皮膜構造。   When forming a porous silica film as a top coat, a polyorganosiloxane thin film containing a polyether that volatilizes or decomposes under the conditions of the firing treatment is used, and the curing treatment is performed in a basic substance atmosphere. The corrosion-resistant film structure according to claim 1 or 2. トップコートとしての多孔質シリカ皮膜にチタンを含有させることを特徴とする請求項1ないし3のいずれか1項に記載の耐食皮膜構造。   The corrosion-resistant film structure according to any one of claims 1 to 3, wherein titanium is contained in the porous silica film as a top coat. 前記耐食皮膜構造をボルト表面に形成することを特徴とする請求項1ないし4のいずれか1項に記載の耐食皮膜構造。   The corrosion-resistant coating structure according to any one of claims 1 to 4, wherein the corrosion-resistant coating structure is formed on a bolt surface.
JP2014217993A 2014-10-27 2014-10-27 Corrosion-resistant film formation method Active JP5840278B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217993A JP5840278B1 (en) 2014-10-27 2014-10-27 Corrosion-resistant film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217993A JP5840278B1 (en) 2014-10-27 2014-10-27 Corrosion-resistant film formation method

Publications (2)

Publication Number Publication Date
JP5840278B1 JP5840278B1 (en) 2016-01-06
JP2016084510A true JP2016084510A (en) 2016-05-19

Family

ID=55069302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217993A Active JP5840278B1 (en) 2014-10-27 2014-10-27 Corrosion-resistant film formation method

Country Status (1)

Country Link
JP (1) JP5840278B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186636A (en) * 2017-04-25 2018-11-22 日新製鋼株式会社 Solar cell panel installation frame and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230375A (en) * 1992-02-24 1993-09-07 Suzuki Sangyo Kk Heating type solvent-free, catalyst-free organosiloxane composition and its use
JP4490133B2 (en) * 2004-02-24 2010-06-23 株式会社放電精密加工研究所 Anti-rust coated metal products
JP2006036598A (en) * 2004-07-28 2006-02-09 Ube Nitto Kasei Co Ltd Method for producing porous silica-based thin film, porous silica-based thin film, and structure
EP2236283B2 (en) * 2008-01-24 2017-04-19 Yuken Industry Co., Ltd. Member with corrosion-resistant coating film, process for production of the same, and coating composition for the production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186636A (en) * 2017-04-25 2018-11-22 日新製鋼株式会社 Solar cell panel installation frame and manufacturing method thereof

Also Published As

Publication number Publication date
JP5840278B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
Tomachuk et al. Morphology and corrosion resistance of Cr (III)-based conversion treatments for electrogalvanized steel
US5283131A (en) Zinc-plated metallic material
KR20110059710A (en) Wear and corrosion resistant layered composite
US20200087796A1 (en) Corrosion barrier
CA2941123A1 (en) Passivation of micro-discontinuous chromium deposited from a trivalent electrolyte
JP2005146377A (en) Chemical conversion-treated metallic sheet
US6768249B1 (en) Spark plug and producing method therefor
JP5840278B1 (en) Corrosion-resistant film formation method
JP2022023231A (en) High corrosion resistance plating method
CN105499108A (en) Process for coating surfaces of metal components with composite anticorrosion coatings
KR100371554B1 (en) Coating composition for dacrotized film with excellent corrosion resistance
KR102110222B1 (en) Composition for pretreating plated steel sheet containing magnesium and method for manufacturing pcm steel sheet using the same
EP2880108B1 (en) Organic-inorganic hybrid coating solution composition and organic-inorganic hybrid coated steel sheet
KR100872479B1 (en) Trivalent chromate solution, trivalent chromate-treated metal body and preparation method thereof
Saarimaa et al. Improvement of barrier properties of Cr-free pretreatments for coil-coated products
KR100660235B1 (en) A cerium composition for forming film, a method for preparing cerium film having superior anti-corrosion by using the same and steel-sheet prepared thereby
JP5381902B2 (en) Surface-treated steel sheet and manufacturing method thereof
KR102300792B1 (en) Black color plated sheet and manufacturing method thereof
JP2020193387A (en) Method for manufacturing metal component and metal component
JP2007262561A (en) Coated steel product
EP3591092A1 (en) High-design sliding member
JP6158648B2 (en) Chromium-free chemical conversion treatment liquid and chemical conversion treatment method
KR20200096980A (en) Pretreatment method for corrosion prevention and cleaning of metal parts
RU2771927C1 (en) Flat steel products with multi-layer protective coating
JP5309648B2 (en) Painted metal parts

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5840278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250