JP2016084243A - Method for producing silica composite particle dispersion - Google Patents

Method for producing silica composite particle dispersion Download PDF

Info

Publication number
JP2016084243A
JP2016084243A JP2014215724A JP2014215724A JP2016084243A JP 2016084243 A JP2016084243 A JP 2016084243A JP 2014215724 A JP2014215724 A JP 2014215724A JP 2014215724 A JP2014215724 A JP 2014215724A JP 2016084243 A JP2016084243 A JP 2016084243A
Authority
JP
Japan
Prior art keywords
silica
particle dispersion
composite particle
polishing
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014215724A
Other languages
Japanese (ja)
Other versions
JP6371193B2 (en
Inventor
祐二 俵迫
Yuji Tawarasako
祐二 俵迫
若宮 義憲
Yoshinori Wakamiya
義憲 若宮
真吾 柏田
Shingo Kashiwada
真吾 柏田
一昭 井上
Kazuaki Inoue
一昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2014215724A priority Critical patent/JP6371193B2/en
Publication of JP2016084243A publication Critical patent/JP2016084243A/en
Application granted granted Critical
Publication of JP6371193B2 publication Critical patent/JP6371193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silica composite particle dispersion that not only enables polishing of an Si wafer and a hard-to-work material but also achieves high surface accuracy (low scratch and the like) and can be suitably used for polishing the surface of a semiconductor device because it is free from impurities.SOLUTION: A method for producing a silica composite particle dispersion includes the steps as given below: a step of adding a metal salt of cerium while stirring a silica sol having silica fine particles having an average particle size of 40 to 600 nm, a minor axis/major axis ratio of 0.95 to 1.0, a content of each element of Na and the like of 20 ppm or less and a content of each element of U and Th of 1 ppm or less dispersed therein in a temperature range of 5 to 98°C and a pH range of 7.0 to 9.0 to produce a precursor particle dispersion; a step of drying the precursor particle dispersion, firing at 400 to 1,200°C and then crushing/pulverizing to produce a powder; and a step of subjecting the powder dispersed in water to centrifugal separation treatment at 11,000 G or more for 10 minutes or more and recovering a supernatant liquid to produce a silica composite particle dispersion.SELECTED DRAWING: None

Description

本発明は、シリカ系複合粒子分散液の製造方法に関する。   The present invention relates to a method for producing a silica-based composite particle dispersion.

半導体基板、配線基板などの半導体デバイスなどにおいては、平坦性、シーム、スクラッチ傷、研磨砥粒の付着、不純物の汚染等が半導体特性に影響するため、これらの部品の表面や端面を極めて高精度に研磨することが要求される。
従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
In semiconductor devices such as semiconductor substrates and wiring boards, flatness, seams, scratches, adhesion of abrasive grains, contamination of impurities, etc. affect semiconductor characteristics, so the surfaces and end faces of these components are extremely accurate. Polishing is required.
Conventionally, as a polishing method for such a member, after performing a relatively rough primary polishing process, and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get done.
Conventionally, for example, the following methods have been proposed for the abrasive used for the secondary polishing as the finish polishing.

例えば特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする粒径が10〜80nmの酸化セリウム単結晶からなる酸化セリウム超微粒子の製造方法が記載されている。そして、このような製造方法によって、平均粒径が10〜80nmになっているだけではなく、粒径が揃っており、且つ各粒子の形状ができるだけ同じに揃っている酸化セリウム超微粒子を提供できると記載されている。   For example, Patent Document 1 discloses that an aqueous solution of cerium nitrate and a base are stirred and mixed at a quantitative ratio of pH 5 to 10, followed by rapid heating to 70 to 100 ° C. and aging at that temperature. A method for producing cerium oxide ultrafine particles comprising a cerium oxide single crystal having a characteristic particle size of 10 to 80 nm is described. And by such a manufacturing method, it is possible to provide cerium oxide ultrafine particles that not only have an average particle size of 10 to 80 nm, but also have a uniform particle size and the same shape as possible. It is described.

また、非特許文献1には、特許文献1に記載の製造方法と類似している、セリアコートシリカの製造方法であって、特許文献1に記載の製造方法における焼成−分散工程を有さない製造方法が記載されている。   Further, Non-Patent Document 1 is a method for producing ceria-coated silica similar to the production method described in Patent Document 1, and does not have a firing-dispersing step in the production method described in Patent Document 1. A manufacturing method is described.

さらに、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速度を向上させる効果に特に優れると記載されている。   Furthermore, Patent Document 2 discloses that the surface of the amorphous silica particles A has at least one selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium. A silica-based composite particle characterized by having a crystalline oxide layer B containing an element is described. As a preferred embodiment, an amorphous oxide layer containing an element such as aluminum on the surface of the amorphous silica particles A, which is different from the amorphous silica layer A crystalline oxide layer having C and further containing one or more elements selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium Silica-based composite particles characterized by having B are described. And since such a silica type composite particle has the crystalline oxide layer B on the surface of the amorphous silica particle A, it can improve a grinding | polishing speed and pre-process on a silica particle. By suppressing the sintering of particles during firing, the dispersibility in the polishing slurry can be improved, and further, the amount of cerium oxide used can be greatly reduced without containing cerium oxide. Therefore, it is described that it is possible to provide an abrasive that is inexpensive and has high polishing performance. Further, it is described that those having an amorphous oxide layer C between the silica-based particles A and the oxide layer B are particularly excellent in the effect of suppressing the sintering of particles and the effect of improving the polishing rate.

特許第2746861号公報Japanese Patent No. 2746861 特開2013−119131号公報JP 2013-119131 A

Seung−Ho Lee, Zhenyu Lu, S. V. Babu and Egon Matijevic、“Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria”、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744−2749Seung-Ho Lee, Zhenyu Lu, S .; V. Babu and Egon Matijevic, “Chemical mechanical polishing of thermal oxide films using sir te sir te s i s e s s e s e s e n e s e s e n i e s e s e e n e s e n e s e n e i e n e s e i e n e e m e n e s e i e m e n e n i e n e n i e n i e n i e n i e n i e n i e n i e n i e n i e n i e n i e n i n e n e n i.

しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の低下(スクラッチの増加を含む)、研磨基材の表面への研磨材の残留)を生じやすいことが判明した。これは、液相より結晶化させたのみで、セリア粒子の結晶度が焼成法に比べて低いこと等により研磨基材の表面にこれが残留すること、さらに、焼成による粗大粒子の発生や粒子同士の結合により粒子形状がいびつになりスクラッチの増加の主要因であると、本発明者は推定している。   However, when the present inventors actually manufactured and studied the ultrafine cerium oxide particles described in Patent Document 1, the polishing rate was low, and the surface of the polishing base material had defects (decrease in surface accuracy (increased scratches). It has been found that the residual of the abrasive on the surface of the polishing substrate is likely to occur. This is because the ceria particles are only crystallized from the liquid phase and remain on the surface of the polishing substrate due to the low crystallinity of the ceria particles compared to the firing method. The present inventor presumes that the particle shape becomes distorted due to the combination of these, which is the main factor of the increase in scratches.

また、非特許文献1に記載のセリアコートシリカは焼成していないため、現実の研磨速度は低いと考えられ、また、研磨基材の表面への粒子の残留も懸念される。   In addition, since the ceria-coated silica described in Non-Patent Document 1 is not fired, it is considered that the actual polishing rate is low, and there is a concern that particles remain on the surface of the polishing substrate.

さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。   Furthermore, when polishing using the silica-based composite particles having the oxide layer C described in Patent Document 2, impurities such as aluminum remain on the surface of the semiconductor device, which may adversely affect the semiconductor device. The inventor found out.

本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ等)を達成でき、さらに不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合粒子分散液の製造方法を提供することを目的とする。   An object of the present invention is to solve the above problems. That is, the present invention can polish Si wafers and difficult-to-work materials at high speed, and at the same time, can achieve high surface accuracy (low scratch, etc.) and does not contain impurities. An object of the present invention is to provide a method for producing a silica-based composite particle dispersion that can be preferably used for polishing the surface of a semiconductor device.

本発明者は上記の課題を解決するため鋭意検討し、本発明を完成させた。
本発明は、以下の(1)〜(6)である。
(1)下記の工程1〜工程3を含むことを特徴とするシリカ系複合粒子分散液の製造方法。
工程1:レーザー回折散乱法により測定された平均粒子径が40〜600nm、画像解析法で測定された短径/長径比が0.95〜1.0、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率が20ppm以下、U及びThの各元素の含有率が1ppm以下のシリカ微粒子が溶媒に分散してなるシリカゾルを撹拌条件下、温度範囲5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、その後、解砕・粉砕し、粉体を得る工程。
工程3:水に分散させた状態の前記粉体について、11,000G以上にて10分以上の遠心分離処理を行って、上澄液を回収し、シリカ系複合粒子分散液を得る工程。
(2)前記工程1において、シリカゾルの温度範囲を48〜52℃として、前駆体粒子分散液を調製し、更に該前駆体粒子分散液を温度90〜98℃で熟成することを特徴とする上記(1)に記載のシリカ系複合粒子分散液の製造方法。
(3)前記工程1における、セリウムの金属塩の添加を0.5〜24時間かけて行うことを特徴とする上記(1)又は(2)に記載のシリカ系複合粒子分散液の製造方法。
(4)前記工程1において、シリカゾルのpH範囲を7.0〜9.0に維持するためにアルカリを添加することを特徴とする上記(1)〜(3)の何れかに記載のシリカ系複合粒子分散液の製造方法。
(5)前記工程2において、更に、乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることを特徴とする上記(1)〜(4)の何れかに記載のシリカ系複合粒子分散液の製造方法。
(6)上記(1)〜(5)の何れかに記載の製造方法によって得られるシリカ系複合粒子分散液を、更に乾燥させてシリカ系複合粒子を得る、シリカ系複合粒子の製造方法。
The inventor has intensively studied in order to solve the above problems, and has completed the present invention.
The present invention includes the following (1) to (6).
(1) A method for producing a silica-based composite particle dispersion, comprising the following steps 1 to 3.
Step 1: The average particle diameter measured by the laser diffraction scattering method is 40 to 600 nm, the minor axis / major axis ratio measured by the image analysis method is 0.95 to 1.0, Na, Ag, Al, Ca, Cr, Stirring a silica sol formed by dispersing silica fine particles in which the content of each element of Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 20 ppm or less and the content of each element of U and Th is 1 ppm or less in a solvent A step of adding a cerium metal salt continuously or intermittently to obtain a precursor particle dispersion while maintaining a temperature range of 5 to 98 ° C. and a pH range of 7.0 to 9.0.
Process 2: The process of drying the said precursor particle dispersion liquid, baking at 400-1200 degreeC, and then crushing and grind | pulverizing and obtaining powder.
Step 3: A step of subjecting the powder in a state of being dispersed in water to a centrifugation treatment at 11,000 G or more for 10 minutes or more to collect the supernatant and obtain a silica-based composite particle dispersion.
(2) In the step 1, the temperature range of the silica sol is set to 48 to 52 ° C., a precursor particle dispersion is prepared, and the precursor particle dispersion is aged at a temperature of 90 to 98 ° C. The manufacturing method of the silica type composite particle dispersion liquid as described in (1).
(3) The method for producing a silica-based composite particle dispersion as described in (1) or (2) above, wherein the addition of the cerium metal salt in Step 1 is carried out over 0.5 to 24 hours.
(4) In the step 1, the silica system according to any one of (1) to (3) above, wherein an alkali is added to maintain the pH range of the silica sol at 7.0 to 9.0. A method for producing a composite particle dispersion.
(5) The silica according to any one of (1) to (4) above, wherein, in the step 2, the pH of the precursor particle dispersion before drying is 6.0 to 7.0. Method for producing a composite particle dispersion.
(6) A method for producing silica-based composite particles, wherein silica-based composite particles obtained by the production method according to any one of (1) to (5) above are further dried to obtain silica-based composite particles.

本発明によれば、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ等)を達成でき、さらに不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合粒子分散液の製造方法を提供することができる。   According to the present invention, even a Si wafer or a difficult-to-process material can be polished at high speed, and at the same time, high surface accuracy (low scratch, etc.) can be achieved, and further, no impurities are contained. It is possible to provide a method for producing a silica-based composite particle dispersion that can be preferably used for polishing the surface of a semiconductor device.

本発明のシリカ系複合粒子分散液の製造方法(以下、本発明の製造方法ともいう)について説明する。   A method for producing the silica-based composite particle dispersion of the present invention (hereinafter also referred to as the production method of the present invention) will be described.

<製造原料>
本発明のシリカ系複合粒子分散液の製造方法においては、原料として、シリカ微粒子が溶媒に分散してなるシリカゾルとセリウムの金属塩を使用する。
1)シリカゾル
原料として使用するシリカゾルは、非晶質のシリカ微粒子が溶媒に分散してなるものである。
<Production raw materials>
In the method for producing a silica-based composite particle dispersion of the present invention, a silica sol obtained by dispersing silica fine particles in a solvent and a metal salt of cerium are used as raw materials.
1) Silica sol The silica sol used as a raw material is obtained by dispersing amorphous silica fine particles in a solvent.

前記シリカ微粒子は非晶質シリカを主成分とし、その他のもの、例えば、結晶性シリカや、ケイ素を含み使用上の疎外とならない不純物元素を含んでもよい。
シリカ微粒子において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率が20ppm以下であり、さらに10ppm以下であることが好ましく、5ppm以下であることがより好ましく、1ppm以下であることがさらに好ましい。また、U及びThの各元素の含有率は1ppm以下であり一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来するNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの各元素は合計で数千ppm程度含有する。このようなシリカ微粒子が溶媒に分散してなるシリカゾルの場合、イオン交換処理を行ってNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの含有率を下げることは可能であるが、その場合でも数ppmから数百ppmのNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、ZrとU及びThが残留する。これに対し、アルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカゾルの場合、通常、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの各元素の含有率は20ppm以下である。
シリカ微粒子におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの各々の含有率は、ICPを用いて測定して求める値とする。
The silica fine particles are mainly composed of amorphous silica, and may contain other impurities such as crystalline silica or an impurity element that contains silicon and does not become a margin for use.
In the silica fine particles, the content of each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 20 ppm or less, and preferably 10 ppm or less, More preferably, it is 5 ppm or less, and further preferably 1 ppm or less. In addition, the content of each element of U and Th is 1 ppm or less, and silica fine particles prepared using water glass as a raw material are generally derived from Na, Ag, Al, Ca, Cr, Cu, Fe, K, water glass. Each element of Mg, Ni, Ti, Zn, Zr, U, and Th is contained in a total of about several thousand ppm. In the case of a silica sol in which such silica fine particles are dispersed in a solvent, ion exchange treatment is performed to perform Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, and It is possible to reduce the Th content, but even in that case, several ppm to several hundred ppm Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr and U And Th remain. On the other hand, in the case of silica sol in which silica fine particles synthesized using alkoxysilane as a raw material are dispersed in a solvent, usually, Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, The content of each element of Zr, U and Th is 20 ppm or less.
The content of each of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, and Th in the silica fine particles is a value obtained by measurement using ICP. .

ここで主成分とは、含有率が90質量%以上であることを意味する。すなわち、シリカ微粒子において、非晶質シリカの含有率は90質量%以上である。この含有率は95質量%以上であることが好ましく、98質量%以上であることがより好ましく、100質量%である、すなわち、シリカ微粒子は、実質的に非晶質シリカからなることがさらに好ましい。ここで「実質的になる」とは、原料や製造過程から不可避的に含まれる不純物や破損物は含まれ得るが、それ以外は含まないことを意味する。なお、以下に示す本発明の説明において「主成分」および「実質的に」は、このような意味で用いるものとする。   Here, the main component means that the content is 90% by mass or more. That is, in the silica fine particles, the content of amorphous silica is 90% by mass or more. This content is preferably 95% by mass or more, more preferably 98% by mass or more, and more preferably 100% by mass, that is, the silica fine particles are more preferably substantially composed of amorphous silica. . Here, “becomes substantially” means that impurities and damages inevitably included from the raw materials and the manufacturing process can be included, but other than that are not included. In the following description of the present invention, “main component” and “substantially” are used in this sense.

前記シリカ微粒子の平均粒子径は40〜600nmであり、60〜200nmであることが好ましい。
シリカ微粒子の平均粒子径が40〜600nmの範囲にある場合、スクラッチが少なくなる。シリカ微粒子の平均粒子径が40nm未満の場合、研磨レートが不足したり、粒子の安定性に問題が生じたりするので好ましくない。同じく平均粒子径が600nmを超える場合、スクラッチが生じやすくなる傾向がある。
The average particle diameter of the silica fine particles is 40 to 600 nm, preferably 60 to 200 nm.
When the average particle diameter of the silica fine particles is in the range of 40 to 600 nm, scratches are reduced. When the average particle diameter of the silica fine particles is less than 40 nm, the polishing rate is insufficient, or problems are caused in the stability of the particles. Similarly, when the average particle diameter exceeds 600 nm, scratches tend to occur.

シリカ微粒子の平均粒子径は、次の方法で測定して得た値を意味するものとする。シリカ微粒子を水に分散させ、固形分濃度で1質量%含む水分散液を得た後、この水分散液を、公知のレーザー回折・散乱装置(例えば、日機装株式会社製、マイクロトラックUPA装置)を用いて、レーザー回折・散乱法により積算粒度分布を測定し、その粒度分布から平均粒子径(メジアン径)を求める。   The average particle diameter of the silica fine particles means a value obtained by measurement by the following method. After dispersing silica fine particles in water to obtain an aqueous dispersion containing 1% by mass in solid content, this aqueous dispersion is mixed with a known laser diffraction / scattering device (for example, Microtrack UPA device manufactured by Nikkiso Co., Ltd.). Is used to measure the integrated particle size distribution by the laser diffraction / scattering method, and the average particle size (median diameter) is determined from the particle size distribution.

原料として使用するシリカ微粒子の形状は球状のものが使用される。具体的には、シリカ微粒子の短径/長径比が0.95〜1の範囲のものが使用される。   A spherical fine particle is used as a raw material. Specifically, silica fine particles having a minor axis / major axis ratio in the range of 0.95 to 1 are used.

シリカ微粒子については、乳鉢を用いて10分粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得ると、非晶質であることを確認できる。   The silica fine particles are pulverized for 10 minutes using a mortar and, for example, when an X-ray diffraction pattern is obtained with a conventionally known X-ray diffractometer (for example, RINT1400, manufactured by Rigaku Corporation), the silica fine particles are amorphous. I can confirm.

2)セリウムの金属塩
本発明のシリカ系複合粒子分散液の製造方法で原料として使用されるセリウムの金属塩としては、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。
2) Cerium metal salt Examples of the cerium metal salt used as a raw material in the method for producing a silica-based composite particle dispersion of the present invention include cerium nitrate, cerium carbonate, cerium sulfate, and cerium chloride. Can be mentioned.

<本発明の製造方法>
本発明の製造方法について説明する。
本発明の製造方法は、以下に記載する工程1〜工程3を備える。
<Production method of the present invention>
The production method of the present invention will be described.
The production method of the present invention includes steps 1 to 3 described below.

<工程1>
工程1は、レーザー回折散乱法により測定された平均粒子径が40〜600nm、画像解析法で測定された短径/長径比が0.95〜1.0、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率が20ppm以下、U及びThの各元素の含有率が1ppm以下であるシリカ微粒子が溶媒に分散してなるシリカゾルを撹拌条件下、温度範囲5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を得る工程である。
<Step 1>
In step 1, the average particle diameter measured by the laser diffraction scattering method is 40 to 600 nm, the short diameter / major diameter ratio measured by the image analysis method is 0.95 to 1.0, Na, Ag, Al, Ca, Cr Silica sol obtained by dispersing silica fine particles in which the content of each element of Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 20 ppm or less and the content of each element of U and Th is 1 ppm or less in a solvent Is a process of obtaining a precursor particle dispersion by continuously or intermittently adding a metal salt of cerium while maintaining a temperature range of 5 to 98 ° C. and a pH range of 7.0 to 9.0 under stirring conditions. .

工程1では、シリカ微粒子が溶媒に分散してなるシリカゾルを用意する。
前記のとおり、このようなシリカゾルとして、アルコキシシランの加水分解により製造したシリカゾルを用いることが好ましい。また、例えば従来公知のシリカゾルを酸処理したものを用いることができる場合もある。この場合、シリカ微粒子における、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が少なくなり、具体的には、20ppm以下となり得るからである。複合粒子の安定が増してスクラッチの発生を抑制することを、本発明者は見出した。
In step 1, a silica sol in which silica fine particles are dispersed in a solvent is prepared.
As described above, it is preferable to use a silica sol produced by hydrolysis of alkoxysilane as such a silica sol. Further, for example, a conventionally known silica sol obtained by acid treatment may be used. In this case, the content of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr in the silica fine particles decreases, and specifically, it can be 20 ppm or less. is there. The present inventor has found that the stability of the composite particles is increased and the generation of scratches is suppressed.

シリカゾルにおける分散媒は水を含むことが好ましく、水ゾルを使用することが好ましい。   The dispersion medium in the silica sol preferably contains water, and it is preferable to use a water sol.

シリカゾルにおける固形分濃度は、SiO2換算基準で20〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。 The solid concentration in the silica sol is preferably 20 to 40% by mass in terms of SiO 2 . When this solid content concentration is too low, the silica concentration in the production process becomes low, and the productivity may deteriorate.

シリカゾルのpHは、7.0〜9.5の範囲に調整する。pHが7.0未満またはpHが9.5を超える場合は、安定性がより低下するからである。   The pH of the silica sol is adjusted to a range of 7.0 to 9.5. This is because when the pH is less than 7.0 or the pH exceeds 9.5, the stability is further lowered.

また、陽イオン交換樹脂または陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカゾルの脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカゾルは、ゾルがより長期に安定する点、および基板汚染がより防止される点から好ましい。   Further, impurities can be extracted with a cation exchange resin or an anion exchange resin, mineral acid, organic acid, or the like, and silica sol can be deionized using an ultrafiltration membrane or the like, if necessary. A silica sol from which impurity ions and the like are removed by deionization is preferable from the viewpoint that the sol is stable for a longer period of time and that contamination of the substrate is further prevented.

工程1は、上記のようなシリカゾルに、セリウムの金属塩を添加する。   In step 1, a cerium metal salt is added to the silica sol as described above.

セリウムの金属塩としては、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。
なかでも、硝酸第一セリウムが好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは速やかにシリカ微粒子に凝集沈着機構で付着するので結合性酸化物形成の効率が高く好ましい。
As the metal salt of cerium, cerium chloride, nitrate, sulfate, acetate, carbonate, metal alkoxide and the like can be used.
Of these, ceric nitrate is preferred. Crystalline cerium oxides are formed from a solution that becomes supersaturated at the same time as neutralization, and they quickly adhere to the silica fine particles by an agglomeration and deposition mechanism.

シリカゾルに対するセリウムの金属塩の添加量は、本発明の製造方法によって得られるシリカ系複合粒子におけるシリカ微粒子と結晶性セリアとの質量比が、後述の特定範囲となる量とする。   The amount of the cerium metal salt added to the silica sol is such that the mass ratio between the silica fine particles and the crystalline ceria in the silica-based composite particles obtained by the production method of the present invention falls within the specific range described later.

シリカゾルにセリウムの金属塩を添加した後、攪拌する際の温度は5〜98℃であり、50〜95℃であることが好ましい。この温度が低すぎると水酸化物との混合あるいは低酸化物を形成し、結晶化させる反応が著しく遅くなるので好ましくない。逆に、この温度が高すぎると反応器壁面にスケールなどが生じやすくなり好ましくない。   After adding the cerium metal salt to the silica sol, the temperature at the time of stirring is 5 to 98 ° C, preferably 50 to 95 ° C. If the temperature is too low, the reaction of mixing with a hydroxide or forming a low oxide and crystallizing is remarkably slow, which is not preferable. On the other hand, if this temperature is too high, scale and the like are easily generated on the reactor wall surface, which is not preferable.

また、攪拌する際の時間は0.5〜24時間であり、0.5〜18時間であることが好ましい。この時間が短すぎると結晶性の酸化セリウムが充分に形成できないので好ましくない。逆に、この時間が長すぎても結晶性の酸化セリウムの形成はそれ以上反応が進まず不経済となる。   Moreover, the time at the time of stirring is 0.5 to 24 hours, and it is preferable that it is 0.5 to 18 hours. If this time is too short, crystalline cerium oxide cannot be sufficiently formed, which is not preferable. Conversely, even if this time is too long, the formation of crystalline cerium oxide is uneconomical because the reaction does not proceed any further.

このような工程1によって、本発明の複合粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。   By such step 1, a dispersion liquid (precursor particle dispersion liquid) containing particles (precursor particles) which are precursors of the composite particles of the present invention is obtained.

工程1で得られた前駆体粒子分散液を、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。   The precursor particle dispersion obtained in step 1 may be further diluted or concentrated using pure water, ion-exchanged water, or the like, and used for the next step 2.

前駆体粒子分散液における固形分濃度は5〜27質量%であることが好ましい。   The solid concentration in the precursor particle dispersion is preferably 5 to 27% by mass.

前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜などを用いて脱イオン処理してもよい。   The precursor particle dispersion may be deionized using a cation exchange resin, an anion exchange resin, an ultrafiltration membrane, or the like.

工程1は、より好適には、シリカゾルの温度範囲を48〜52℃とし、pH範囲を7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を調製し、更に該前駆体粒子分散液を温度90〜98℃で熟成することにより行われる。工程1をこのような条件で行った場合、シリカ微粒子の表面に低結晶度の酸化セリウムが均一に付着し、酸化セリウム同士の凝集体を形成する事を防ぐことが出来る。   More preferably, in Step 1, the temperature range of the silica sol is 48 to 52 ° C., and the pH range is maintained at 7.0 to 9.0, while the metal salt of cerium is added continuously or intermittently, It is carried out by preparing a body particle dispersion and further aging the precursor particle dispersion at a temperature of 90 to 98 ° C. When Step 1 is performed under such conditions, it is possible to prevent cerium oxide having a low crystallinity from uniformly attaching to the surface of the silica fine particles and forming an aggregate of cerium oxides.

工程1において、シリカゾルのpH範囲を7.0〜9.0に維持するために、所望によりアルカリを添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。   In step 1, in order to maintain the pH range of the silica sol at 7.0 to 9.0, it is preferable to adjust the pH by adding an alkali as desired. A publicly known alkali can be used as an example of such an alkali. Specific examples include aqueous ammonia, alkali hydroxide, alkaline earth metal, and aqueous amines, but are not limited thereto.

<工程2>
工程2では、前駆体粒子分散液を乾燥させ、400〜1200℃で焼成し、その後、解砕・粉砕し、粉体を得る。
<Step 2>
In step 2, the precursor particle dispersion is dried, baked at 400 to 1200 ° C., and then crushed and pulverized to obtain a powder.

乾燥する方法は特に限定されない。例えば従来公知の乾燥機を用いて乾燥させることができる。   The method for drying is not particularly limited. For example, it can be dried using a conventionally known dryer.

乾燥後、焼成する温度は400〜1200℃であり、800〜1100℃であることが好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、シリカ微粒子と結晶性セリアとが強固に結合する。この温度が高すぎると、セリアの結晶が異常成長したり、シリカ微粒子を構成する非晶質シリカが結晶化したり、セリア同士の融着が進み、セリアコートシリカ粒子としての解砕が困難になる可能性がある。   After drying, the firing temperature is 400 to 1200 ° C, and preferably 800 to 1100 ° C. When fired in such a temperature range, crystallization of ceria proceeds sufficiently, and silica fine particles and crystalline ceria are firmly bonded. If this temperature is too high, ceria crystals grow abnormally, the amorphous silica constituting the silica fine particles crystallizes, and fusion between the ceria proceeds, making it difficult to crush as ceria-coated silica particles. there is a possibility.

前記工程2において、好適には、更に乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、表面活性を抑制できるからである。   In the step 2, it is recommended that the pH of the precursor particle dispersion before drying is further preferably 6.0 to 7.0. It is because surface activity can be suppressed when the pH of the precursor particle dispersion before drying is 6.0 to 7.0.

工程2では、上記の焼成後、解砕・粉砕し、粉体を得る。解砕・粉砕する方法は特に限定されないが、従来公知の湿式粉砕が好ましい。湿式粉砕を行った場合、粉体は液体中に分散した状態となるが、工程2で得られる「粉体」は、このように液体中に分散した状態であってもよい。   In step 2, the powder is pulverized and pulverized after the above baking. The method for crushing and pulverizing is not particularly limited, but conventionally known wet pulverization is preferable. When wet pulverization is performed, the powder is dispersed in the liquid. However, the “powder” obtained in step 2 may be dispersed in the liquid as described above.

<工程3>
工程3では、水に分散させた状態の前記粉体について、11,000G以上にて10分以上の遠心分離処理を行って、上澄液を回収し、シリカ系複合粒子分散液を得る。
<Step 3>
In step 3, the powder in a state of being dispersed in water is subjected to a centrifugation treatment at 11,000 G or more for 10 minutes or more, and the supernatant is recovered to obtain a silica-based composite particle dispersion.

まず、水に分散させた状態の粉体を用意する。この水として、例えば純水、超純水、イオン交換水が挙げられる。粉体に対する水の質量は、粉体が分散できれば特に限定されないが、粉体の固形分濃度が10〜30質量%となる量とすることが好ましい。工程2において湿式粉砕を行い、粉体が既に水に分散した状態である場合は、そのまま工程3に供することができる。   First, powder in a state of being dispersed in water is prepared. Examples of the water include pure water, ultrapure water, and ion exchange water. The mass of water with respect to the powder is not particularly limited as long as the powder can be dispersed, but it is preferable that the solid content concentration of the powder is 10 to 30% by mass. When wet pulverization is performed in Step 2 and the powder is already dispersed in water, it can be directly used in Step 3.

次に、水に分散させた状態の粉体について、遠心分離処理による分級を行い、上澄液を回収する。
遠心分離処理における遠心加速度は11,000G以上である。また、処理時間は10分以上であり、15分以上であることが好ましい。
遠心分離処理後、上澄液を回収する。回収した上澄液はシリカ系複合粒子分散液とする。
Next, the powder in a state of being dispersed in water is classified by centrifugation, and the supernatant is recovered.
The centrifugal acceleration in the centrifugal separation process is 11,000 G or more. Further, the treatment time is 10 minutes or more, preferably 15 minutes or more.
After centrifugation, the supernatant is collected. The recovered supernatant is a silica-based composite particle dispersion.

工程3では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度又は処理時間が上記の条件に満たない場合は、シリカ系複合粒子分散液中に粗大粒子が残存するため、シリカ系複合粒子分散液を用いた研磨材として使用した際に、スクラッチが発生する原因となる。   In step 3, it is necessary to provide a centrifugal separation process that satisfies the above conditions. When centrifugal acceleration or processing time does not meet the above conditions, coarse particles remain in the silica-based composite particle dispersion, and scratches occur when used as an abrasive using the silica-based composite particle dispersion. Cause.

本発明では、上記の製造方法によって得られるシリカ系複合粒子分散液を、更に乾燥させて、シリカ系複合粒子を得ることができる。乾燥方法は特に限定されず、例えば従来公知の乾燥機を用いて乾燥させることができる。   In the present invention, silica-based composite particles can be obtained by further drying the silica-based composite particle dispersion obtained by the above production method. A drying method is not specifically limited, For example, it can dry using a conventionally well-known dryer.

<本発明のシリカ系複合粒子分散液の製造方法で得られるシリカ系複合粒子>
本発明の製造方法により得られたシリカ系複合粒子分散液(以下、「本発明の複合粒子分散液」ともいう)に含まれるシリカ系複合粒子は、具体的にはシリカ・セリア複合酸化物からなるシリカ系複合粒子である。
このようなシリカ系複合粒子を、以下では、「本発明の複合粒子」ともいう。「本発明の複合粒子」は、本発明の複合粒子分散液を乾燥させて得ることができる。
本発明の複合粒子は、例えば、球状粒子、略球状粒子などの混合物である。本発明の複合粒子は、後記の分析結果によれば、シリカ微粒子の表面に、粒子状の結晶性セリアが結合したものといえる。
<Silica-based composite particles obtained by the method for producing a silica-based composite particle dispersion of the present invention>
The silica-based composite particles contained in the silica-based composite particle dispersion obtained by the production method of the present invention (hereinafter also referred to as “the composite particle dispersion of the present invention”) are specifically composed of silica-ceria composite oxide. This is a silica-based composite particle.
Hereinafter, such silica-based composite particles are also referred to as “composite particles of the present invention”. The “composite particles of the present invention” can be obtained by drying the composite particle dispersion of the present invention.
The composite particles of the present invention are, for example, a mixture of spherical particles and substantially spherical particles. According to the analysis results described later, it can be said that the composite particles of the present invention have particulate crystalline ceria bound to the surface of the silica fine particles.

本発明の複合粒子における結晶性セリアの大きさは、10〜30nmが好ましく、15〜25nmがより好ましい。この結晶性セリアの大きさは、走査型電子顕微鏡(例えば、日立製作所社製、型番「S−5500」)を用いて測定したものとする。   The size of the crystalline ceria in the composite particle of the present invention is preferably 10 to 30 nm, and more preferably 15 to 25 nm. The size of the crystalline ceria is measured using a scanning electron microscope (for example, model number “S-5500” manufactured by Hitachi, Ltd.).

本発明の複合粒子を、乳鉢を用いて10分粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得ると、セリアの結晶相のみが検出される。
セリアの結晶相としては、Cerianiteが挙げられる。
When the composite particles of the present invention are pulverized for 10 minutes using a mortar and an X-ray diffraction pattern is obtained by, for example, a conventionally known X-ray diffraction apparatus (for example, RINT1400, manufactured by Rigaku Corporation), only the ceria crystal phase is obtained. Is detected.
Ceriaite is an example of the ceria crystal phase.

本発明の複合粒子をX線回折に供すると、先述したようにセリアの結晶相のみが検出される。このことは、本発明の複合粒子がセリア以外の結晶相を含んでいたとしても、X線回折の検出能の範囲外となる程度の微量に過ぎないことを示している。
なお、「主成分」の定義は前述の通りである。
When the composite particles of the present invention are subjected to X-ray diffraction, only the ceria crystal phase is detected as described above. This indicates that even if the composite particle of the present invention contains a crystal phase other than ceria, it is only a minute amount that is out of the detection range of X-ray diffraction.
The definition of “principal component” is as described above.

X線回折に供して測定される、結晶性セリアの(111)面の結晶子径は、10〜25nmであることが好ましく、12〜16nmであることがより好ましい。   The crystallite diameter of the (111) plane of crystalline ceria, measured by X-ray diffraction, is preferably 10 to 25 nm, and more preferably 12 to 16 nm.

結晶性セリアの(111)面の結晶子径は、次に説明する方法によって得られる値を意味するものとする。
初めに、本発明の複合粒子を、乳鉢を用いて10分粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求める。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数
λ:X線波長(1.7889オングストローム Cuランプ)
β:半価幅(rad)
θ:反射角
The crystallite diameter of the (111) plane of crystalline ceria means a value obtained by the method described below.
First, the composite particles of the present invention are pulverized for 10 minutes using a mortar, and an X-ray diffraction pattern is obtained by, for example, a conventionally known X-ray diffractometer (for example, RINT1400, manufactured by Rigaku Corporation). Then, the half width of the peak of the (111) plane near 2θ = 28 degrees in the obtained X-ray diffraction pattern is measured, and the crystallite diameter is obtained by the following Scherrer equation.
D = Kλ / βcos θ
D: Crystallite diameter (angstrom)
K: Scherrer constant λ: X-ray wavelength (1.7789 Å Cu lamp)
β: Half width (rad)
θ: Reflection angle

本発明の複合粒子では、シリカ微粒子と結晶性セリアが結合している。   In the composite particles of the present invention, silica fine particles and crystalline ceria are bonded.

本発明の複合粒子において、シリカ微粒子と結晶性セリアの質量比は100:11〜230であり、100:20〜150であることが好ましい。
シリカ微粒子に対する結晶性セリアの量が少なすぎると、シリカ微粒子同士が結合し、粗大粒子の発生や粒子同士の結合により粒子形状がいびつになり、また、解砕が困難になる。この場合に本発明の複合粒子から得る研磨剤は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカ微粒子に対する結晶性セリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、結晶性セリア粒子コートシリカ粒子の融着が進み、粗大化し、解砕が困難となり、研磨基材の表面に欠陥(スクラッチ)を発生させる可能性がある。
In the composite particles of the present invention, the mass ratio between the silica fine particles and the crystalline ceria is 100: 11 to 230, preferably 100: 20 to 150.
If the amount of crystalline ceria with respect to the silica fine particles is too small, the silica fine particles are bonded to each other, and the particle shape becomes distorted due to the generation of coarse particles and the bonding between the particles, and crushing becomes difficult. In this case, the abrasive obtained from the composite particles of the present invention may cause defects (decrease in surface accuracy such as an increase in scratches) on the surface of the polishing substrate. Further, if the amount of crystalline ceria with respect to the silica fine particles is too large, not only is the cost high, but also the resource risk increases. Furthermore, the fusion of the crystalline ceria particle-coated silica particles progresses, becomes coarse, becomes difficult to disintegrate, and may cause defects (scratches) on the surface of the polishing substrate.

本発明の製造方法で得られる本発明の複合粒子は、比表面積が典型的には、10〜200m/gであることが好ましく、15〜80m2/gであることがより好ましく、20〜70m2/gであることがさらに好ましい。 Composite particles of the present invention obtained by the process of the present invention, the specific surface area typically is preferably 10 to 200 m 2 / g, more preferably 15~80m 2 / g, 20~ More preferably, it is 70 m 2 / g.

比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
A method for measuring the specific surface area (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put in a measurement cell, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is a mixed gas of 30% by volume of nitrogen and 70% by volume of helium. Liquid nitrogen temperature is maintained in a stream of air, and nitrogen is adsorbed to the sample by equilibrium. Next, the temperature of the sample is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured using a calibration curve prepared in advance.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.
In the present invention, the specific surface area means a value obtained by such a method unless otherwise specified.

本発明の製造方法で得られる本発明の複合粒子の平均粒子径は、通常、600nm以下となることが好ましい。典型的には、40nm〜600nmであることがより好ましく、150〜300nmであることがより好ましく、170〜260nmであることがさらに好ましい。   The average particle size of the composite particles of the present invention obtained by the production method of the present invention is usually preferably 600 nm or less. Typically, it is more preferably 40 nm to 600 nm, more preferably 150 to 300 nm, and further preferably 170 to 260 nm.

本発明の複合粒子の平均粒子径は、次の方法で測定して得た値を意味するものとする。
本発明の複合粒子分散液を水で希釈し、固形分濃度で1質量%含む水分散液を得た後、この水分散液に公知のレーザー回折・散乱装置(例えば、日機装株式会社製、マイクロトラックUPA装置)を用いて、レーザー回折・散乱法により積算粒度分布を測定し、その粒度分布から平均粒子径(メジアン径)を求める。
The average particle size of the composite particles of the present invention means a value obtained by measurement by the following method.
After diluting the composite particle dispersion of the present invention with water to obtain an aqueous dispersion containing 1% by mass in solid content concentration, a known laser diffraction / scattering device (for example, Microdevices manufactured by Nikkiso Co., Ltd. The integrated particle size distribution is measured by a laser diffraction / scattering method using a track UPA apparatus), and the average particle diameter (median diameter) is obtained from the particle size distribution.

このように本発明の複合粒子は、電子顕微鏡での観察で大きさが約20nmでかつX線回折での結晶子径が好ましくは10〜25nmであるセリアの結晶子がシリカ粒子の表面に接合し、融着しており、凹凸の表面形状を有している。   Thus, in the composite particles of the present invention, ceria crystallites having a size of about 20 nm as observed with an electron microscope and a crystallite diameter of X-ray diffraction of preferably 10 to 25 nm are bonded to the surface of silica particles. However, it is fused and has an uneven surface shape.

<研磨用スラリー>
研磨用スラリーについて説明する。
本発明の複合粒子分散液、または本発明の複合粒子を用いて、研磨用スラリーを得ることができる。以下では「本発明の研磨用スラリー」ともいう。
<Slurry for polishing>
The polishing slurry will be described.
A polishing slurry can be obtained using the composite particle dispersion of the present invention or the composite particles of the present invention. Hereinafter, it is also referred to as “the polishing slurry of the present invention”.

本発明の研磨用スラリーは半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ないなどの効果に優れている。   The polishing slurry of the present invention is excellent in effects such as a high polishing rate when polishing a semiconductor substrate and the like, and few scratches (scratches) on the polishing surface during polishing.

本発明の研磨用スラリーは分散溶媒として、水および/または有機溶媒を含む。コートしたセリアと同等の大きさの無機酸化物微粒子を用いると、Raがさらに向上する。   The polishing slurry of the present invention contains water and / or an organic solvent as a dispersion solvent. When inorganic oxide fine particles having the same size as the coated ceria are used, Ra is further improved.

前記分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用スラリーは、所望により、添加剤として、研磨促進剤、界面活性剤、pH調整剤およびpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   As the dispersion solvent, for example, water such as pure water, ultrapure water, or ion exchange water is preferably used. Furthermore, the polishing slurry of the present invention may optionally contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a pH adjuster, and a pH buffer as an additive.

また、本発明の研磨用スラリーの分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent for the polishing slurry of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-but Glycol ether acetates such as ciethyl acetate; Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and ethylene carbonate; Aromatic hydrocarbons such as benzene, toluene and xylene; Hexane, heptane and isooctane Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl Organic solvents such as pyrrolidones such as -2-pyrrolidone can be used. These may be used by mixing with water.

本発明の研磨用スラリーに含まれる、本発明の複合粒子の固形分濃度は0.3〜50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。本発明の研磨用スラリーに無機酸化物粒子を、セリアコート粒子(本発明の複合粒子)に対して5〜20質量%含ませることにより、Raが向上する。   The solid content concentration of the composite particles of the present invention contained in the polishing slurry of the present invention is preferably in the range of 0.3 to 50% by mass. If this solid content concentration is too low, the polishing rate may decrease. Conversely, even if the solid content concentration is too high, the polishing rate is rarely improved further, which can be uneconomical. Ra is improved by including the inorganic oxide particles in the polishing slurry of the present invention in an amount of 5 to 20% by mass based on the ceria-coated particles (composite particles of the present invention).

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

初めに、実施例および比較例における各測定方法および試験方法の詳細について説明する。   First, details of each measurement method and test method in Examples and Comparative Examples will be described.

[X線回折法、結晶子径の測定]
前述の方法に則り、実施例および比較例で得られたシリカ系複合粒子分散液を乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述のように、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、Scherrerの式により、結晶子径を求めた。
[X-ray diffraction method, measurement of crystallite diameter]
In accordance with the method described above, the silica-based composite particle dispersions obtained in Examples and Comparative Examples were dried, and the obtained powder was pulverized in a mortar for 10 minutes, and an X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.) , RINT 1400) to obtain an X-ray diffraction pattern to identify the crystal form.
Further, as described above, the half width of the peak of the (111) plane in the vicinity of 2θ = 28 degrees in the obtained X-ray diffraction pattern was measured, and the crystallite diameter was determined by the Scherrer equation.

[比表面積の測定方法]
実施例および比較例で得られたシリカ系複合粒子分散液について、HNO3を用いてpHを3.5に調整した後、110℃に調整した乾燥機内に一晩載置し、乾燥した。そして、その後、デシケーター中で放冷した。
次に、乾固した試料約8mlを乳鉢に採取し、乳棒で1分間粉砕した。
次に、粉砕した試料を磁性ルツボ(15ml)に約1/2採取し、500℃の電気炉で1時間焼成し、その後、デシケーター中で放冷した。
[Measurement method of specific surface area]
The silica-based composite particle dispersions obtained in the examples and comparative examples were adjusted to pH 3.5 using HNO3, then placed in a dryer adjusted to 110 ° C. overnight and dried. And after that, it stood to cool in a desiccator.
Next, about 8 ml of the dried sample was collected in a mortar and ground with a pestle for 1 minute.
Next, about 1/2 of the pulverized sample was collected in a magnetic crucible (15 ml), fired in an electric furnace at 500 ° C. for 1 hour, and then allowed to cool in a desiccator.

このようにして得た試料をBET比表面積測定方法(窒素吸着法)にて比表面積を測定した。具体的な方法は前述の通りである。   The specific surface area of the sample thus obtained was measured by the BET specific surface area measurement method (nitrogen adsorption method). The specific method is as described above.

<平均粒子径>
実施例および比較例で得られたシリカ系複合粒子分散液について、前述の方法でシリカ系複合粒子の平均粒子径(メジアン径)を測定した。レーザー回折・散乱装置として、日機装株式会社製、マイクロトラックUPA装置を用いた。
<Average particle size>
About the silica type composite particle dispersion liquid obtained by the Example and the comparative example, the average particle diameter (median diameter) of the silica type composite particle was measured by the above-mentioned method. As a laser diffraction / scattering device, a Microtrack UPA device manufactured by Nikkiso Co., Ltd. was used.

<短径/長径比率>
走査型電子顕微鏡(日立製作所社製、型番「S−5500」)により、シリカゾルを倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とした。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とした。そして、比(DS/DL)を求めた。この測定を任意の50個の粒子について行い、その平均値を短径/長径比とした。
<Short diameter / Long diameter ratio>
In the photograph projection drawing obtained by photographing a silica sol at a magnification of 250,000 times (or 500,000 times) with a scanning electron microscope (manufactured by Hitachi, Ltd., model number “S-5500”), the maximum axis of the particle is the major axis. The length was measured, and the value was defined as the long diameter (DL). Further, a point that bisects the major axis on the major axis was determined, two points where a straight line perpendicular to the major axis intersected with the outer edge of the particle were determined, and a distance between the two points was measured to obtain a minor axis (DS). And ratio (DS / DL) was calculated | required. This measurement was performed on any 50 particles, and the average value was defined as the minor axis / major axis ratio.

[研磨試験方法]
実施例および比較例の各々において得られたシリカ系複合粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は9質量%とした。
次に、被研磨基板として、ハードディスク用アルミノシリケート製ガラス基板を準備した。この基板はドーナツ形状で、外径65mm、内径20mm、厚み0.635mmである。この基板は一次研磨ずみで、表面粗さ(Ra)は0.3nmであった。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ナノファクター社製「ポリテックスφ12」)を使用し、基板荷重0.18MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で10分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。
[Polishing test method]
A slurry (polishing slurry) containing the silica-based composite particle dispersion obtained in each of Examples and Comparative Examples was prepared. Here, the solid content concentration was 9% by mass.
Next, an aluminosilicate glass substrate for a hard disk was prepared as a substrate to be polished. This substrate has a donut shape, an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.635 mm. This substrate was pre-polished and had a surface roughness (Ra) of 0.3 nm.
Next, this substrate to be polished is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), a polishing pad (“Polytex φ12” manufactured by Nano Factor Co., Ltd.) is used, a substrate load of 0.18 MPa, and a table rotation speed of 30 rpm The polishing slurry was supplied for 10 minutes at a rate of 20 g / min.
And the grinding | polishing speed | rate was calculated by calculating | requiring the weight change of the to-be-polished base material before and behind grinding | polishing.
Moreover, the smoothness (surface roughness Ra) of the surface of the polishing substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Co., Ltd.).

<実施例1>
《シリカゾル(60nm)》の調製
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液aとした。
次に、超純水6,120gと29%アンモニア水444.9gとを混合し、混合液bとした。
次に、超純水192.9gとエタノール444.9gとを混合して敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液aおよび混合液bを、各々10時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、レーザー回折・散乱法により測定された平均粒子径60nmのシリカゾルを9,646.3g得た。
<Example 1>
Preparation of << Silica sol (60 nm) >> 12,090 g of ethanol and 6,3.93.9 g of normal ethyl silicate were mixed to obtain a mixed solution a.
Next, 6,120 g of ultrapure water and 444.9 g of 29% ammonia water were mixed to obtain a mixed solution b.
Next, 192.9 g of ultrapure water and 444.9 g of ethanol were mixed and used as bedding water.
And it adjusted to 75 degreeC, stirring floor water, and added simultaneously so that the addition of the liquid mixture a and the liquid mixture b might be completed here in 10 hours, respectively. When the addition is completed, the liquid temperature is kept at 75 ° C. for 3 hours and ripened, then the solid content concentration is adjusted, the SiO 2 solid content concentration is 19% by mass, and the average particle diameter measured by the laser diffraction / scattering method 9,646.3 g of 60 nm silica sol was obtained.

《シリカゾル(100nm)》の調製
メタノール2,733.3gと正珪酸エチル1,822.2gとを混合し、混合液aとした。
次に、超純水1,860.7gと29%アンモニア水40.6gとを混合し、混合液bとした。
次に、超純水59gとメタノール1,208.9gとを混合して敷き水として、前工程で得た60nmのシリカゾル922.1gを加えた。
そして、シリカゾルを含んだ敷き水を撹拌しながら65℃に調整し、ここへ、混合液aおよび混合液bを、各々18時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を65℃のまま3時間保持して熟成させた後、固形分濃度を調整し、(SiO2固形分濃度19質量%、レーザー回折・散乱法により測定された平均粒子径100nm、透過型電子顕微鏡写真観察による短径/長径比=0.98、ICP測定によるアルカリ、アルカリ土類金属含有率は1ppm以下)の高純度シリカゾルを得た。
この高純度シリカゾルの固形分濃度を調整し、SiO2固形分濃度19質量%で3,600gの高純度シリカゾルを得た。
この高純度シリカゾル1,053gに陽イオン交換(三菱化学社製SK−1BH)114gを徐々に添加して30分間攪拌し樹脂を分離した。
この時のpHは1.8であった。次に陰イオン交換樹脂(三菱化学社製SANUPC)30gを徐々に添加し樹脂を分離した。
この時のpHは4.2であった。
得られたシリカゾルに超純水を加えて、SiO2固形分濃度3質量%のA液を得た。
Preparation of << Silica sol (100 nm) >> 2,733.3 g of methanol and 1,822.2 g of normal ethyl silicate were mixed to obtain a mixed solution a.
Next, 1,860.7 g of ultrapure water and 40.6 g of 29% ammonia water were mixed to obtain a mixed solution b.
Next, 592.1 g of ultrapure water and 1,208.9 g of methanol were mixed and used as a bedding water, and 922.1 g of 60 nm silica sol obtained in the previous step was added.
Then, the water containing the silica sol was adjusted to 65 ° C. while stirring, and the mixed solution a and the mixed solution b were simultaneously added so that the addition was completed in 18 hours. When the addition is completed, the liquid temperature is kept at 65 ° C. for 3 hours to ripen, and the solid content concentration is adjusted. (SiO 2 solid content concentration 19% by mass, average particle measured by laser diffraction / scattering method) A high-purity silica sol having a diameter of 100 nm, a minor axis / major axis ratio of 0.98 by observation with a transmission electron micrograph, and an alkali and alkaline earth metal content of 1 ppm or less by ICP measurement was obtained.
The solid content concentration of this high-purity silica sol was adjusted to obtain 3,600 g of high-purity silica sol with a SiO 2 solid content concentration of 19% by mass.
114 g of cation exchange (SK-1BH manufactured by Mitsubishi Chemical Corporation) was gradually added to 1,053 g of this high-purity silica sol and stirred for 30 minutes to separate the resin.
The pH at this time was 1.8. Next, 30 g of an anion exchange resin (SANUPC manufactured by Mitsubishi Chemical Corporation) was gradually added to separate the resin.
The pH at this time was 4.2.
Ultrapure water was added to the obtained silica sol to obtain a liquid A having a SiO 2 solid content concentration of 3% by mass.

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。 Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc., 4N high-purity reagent) to obtain 2.5 mass% B liquid in terms of CeO 2 .

次に、A液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB液(2,153g、SiO2の100質量部に対して、CeO2が29.9質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85を維持するようにした。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、電導度が67μs/cm(25℃にて)であった。
Next, the liquid A (6,000 g) was heated to 50 ° C. and stirred, while the liquid B (2,153 g, 100 parts by mass of SiO 2 ) was 29.9 parts by mass of CeO 2. Was added over 18 hours. During this time, the liquid temperature was maintained at 50 ° C., and 3% ammonia water was added as necessary to maintain pH 7.85.
And when addition of B liquid was complete | finished, the liquid temperature was raised to 93 degreeC and ageing | curing | ripening was performed for 4 hours. After aging, the product was allowed to cool by allowing it to stand indoors, and after cooling to room temperature, washing was performed while supplying ion-exchanged water with an outer membrane. The precursor particle dispersion obtained after the washing was finished had a solid content concentration of 7% by mass, a pH of 9.1 (at 25 ° C.), and an electric conductivity of 67 μs / cm (at 25 ° C.). .

次に得られた前駆体粒子分散液に5質量%酢酸を加えてpHを7に調整して、100℃の乾燥機中で16時間乾燥させた後、1090℃のマッフル炉を用いて2時間焼成を行い、粉体を得た。   Next, 5 mass% acetic acid was added to the obtained precursor particle dispersion to adjust the pH to 7, and after drying in a dryer at 100 ° C. for 16 hours, using a muffle furnace at 1090 ° C. for 2 hours. Firing was performed to obtain a powder.

得られた粉体125gにイオン交換水375gを加え、さらに3%アンモニア水溶液を用いてpHを約9に調整した後、φ0.22mmの高純度シリカビーズ(大研化学工業株式会社製)にて湿式解砕、粉砕を行い、固形分濃度20質量%の粉体分散液540gを得た。   After adding 375 g of ion-exchanged water to 125 g of the obtained powder and further adjusting the pH to about 9 using a 3% ammonia aqueous solution, φ0.22 mm high-purity silica beads (manufactured by Daiken Chemical Industry Co., Ltd.) Wet crushing and pulverization were performed to obtain 540 g of a powder dispersion having a solid content concentration of 20% by mass.

この粉体分散液を、遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、11,000Gで15分遠心分離処理し、上澄液を回収し、シリカ系複合粒子分散液を得た。   This powder dispersion is centrifuged at 11,000 G for 15 minutes using a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number “CR21G”), and the supernatant is recovered to obtain a silica-based composite particle dispersion. Got.

得られたシリカ系複合粒子分散液は、シリカ・セリア複合酸化物からなるシリカ系複合粒子を含む。このシリカ系複合粒子についてX線回折法によって測定したところ、Cerianiteの回折パターンが見られた。   The obtained silica-based composite particle dispersion contains silica-based composite particles made of silica / ceria composite oxide. When this silica-based composite particle was measured by an X-ray diffraction method, a Ceriaite diffraction pattern was observed.

次にシリカ系複合粒子分散液をロータリーエバポレーターで濃縮し、次いでイオン交換水で希釈して濃度調整を行い、9質量%の研磨用スラリーを得て、研磨試験を行った。また、研磨スラリーに含まれるシリカ系複合粒子の平均粒子径を測定した。結果を第1表に示す。   Next, the silica-based composite particle dispersion was concentrated with a rotary evaporator and then diluted with ion-exchanged water to adjust the concentration to obtain a 9% by mass polishing slurry, and a polishing test was performed. Moreover, the average particle diameter of the silica type composite particle contained in polishing slurry was measured. The results are shown in Table 1.

<実施例2>
B液の添加量の条件を8,453g(SiO2の100質量部に対して、CeO2が117.4質量部に相当)とし、他の条件は実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。そして、実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。
<Example 2>
The condition of the addition amount of the liquid B is 8,453 g (CeO 2 is equivalent to 117.4 parts by mass with respect to 100 parts by mass of SiO 2 ). A silica-based composite particle dispersion containing a composite oxide was prepared. And operation similar to Example 1 was performed and the same measurement was performed. The results are shown in Table 1.

<比較例1>
比較例1では、実施例で用いた100nmのシリカゾル(SiO2固形分濃度19質量%、BET比表面積換算の平均粒子径76nm、同じくTEM像観察による短径/長径比=0.98、ICP測定によるアルカリ、アルカリ土類金属含有率は1ppm以下)について評価を行った。
<Comparative Example 1>
In Comparative Example 1, the silica sol of 100 nm used in the examples (SiO 2 solid content concentration 19% by mass, average particle diameter 76 nm in terms of BET specific surface area, the short diameter / long diameter ratio by TEM image observation = 0.98, ICP measurement The content of alkali and alkaline earth metal was 1 ppm or less.

そして、このシリカゾルについてX線回折法によって測定したところ、アモルファスの回折パターンが見られた。   And when this silica sol was measured by the X-ray diffraction method, an amorphous diffraction pattern was observed.

次に上記シリカゾルをイオン交換水で希釈し、9質量%の研磨用スラリーを得て、研磨試験を行った。また、実施例1と同様の方法で、比表面積および平均粒子径を測定した。結果を第1表に示す。
実施例1と比較して、平均粒子径は小さく、研磨速度はかなり低い結果であった。
Next, the silica sol was diluted with ion exchange water to obtain a polishing slurry of 9% by mass, and a polishing test was performed. Further, the specific surface area and average particle diameter were measured in the same manner as in Example 1. The results are shown in Table 1.
Compared to Example 1, the average particle size was small and the polishing rate was considerably low.

<比較例2>
比較例1にて用いたシリカゾルを、比較例2では硝酸セリウム(III)6水和物を用いずに実施例1、2と同様にして乾燥し焼成した。
次に実施例1,2と同様に、得られたシリカ粒子の焼成サンプルについてX線回折法によって測定したところ、非晶質の回折パターンが見られた。
次に、シリカ粒子の焼成サンプル125gにイオン交換水375gを加え、さらに3%アンモニア水溶液を用いてpHを約9に調整した後、φ0.22mmの高純度シリカビーズ(大研化学工業株式会社製)にて湿式解砕、粉砕を行い、20質量%のスラリー540gを得た。
<Comparative Example 2>
The silica sol used in Comparative Example 1 was dried and calcined in the same manner as in Examples 1 and 2 without using cerium (III) nitrate hexahydrate in Comparative Example 2.
Next, in the same manner as in Examples 1 and 2, when the fired sample of the obtained silica particles was measured by X-ray diffraction, an amorphous diffraction pattern was observed.
Next, 375 g of ion-exchanged water was added to 125 g of the calcined sample of silica particles, and the pH was adjusted to about 9 using a 3% aqueous ammonia solution, and then high-purity silica beads of φ0.22 mm (manufactured by Daiken Chemical Industries, Ltd.) ) Was subjected to wet crushing and pulverization to obtain 540 g of a 20% by mass slurry.

次に上記スラリーをロータリーエバポレーターで濃縮し、次いでイオン交換水で希釈し、濃度調整を行い9質量%の研磨用スラリーを得て、研磨試験を行った。また、実施例1と同様の方法で、比表面積および平均粒子径を測定した。結果を第1表に示す。
実施例1と比較して、平均粒子径が非常に大きいが、これはシリカ粒子表面にセリアがないため、焼成中にシリカ粒子同士の焼結が少し進んだためと考えられる。
一方、研磨速度は低く、表面粗さが非常に大きく面精度が悪化する結果であった。
Next, the slurry was concentrated with a rotary evaporator, then diluted with ion-exchanged water, the concentration was adjusted to obtain a 9% by mass polishing slurry, and a polishing test was performed. Further, the specific surface area and average particle diameter were measured in the same manner as in Example 1. The results are shown in Table 1.
Compared to Example 1, the average particle size is very large, but this is probably because the silica particles did not have ceria on the surface, and the sintering of the silica particles progressed slightly during firing.
On the other hand, the polishing rate was low, and the surface roughness was very large, resulting in poor surface accuracy.

<比較例3>
実施例2と同様の条件で調製した前駆体粒子分散液に5質量%酢酸を加えてpHを7に調整して、100℃の乾燥機中で16時間乾燥させ、前駆体粒子の乾燥粉末を得た。
<Comparative Example 3>
The precursor particle dispersion prepared under the same conditions as in Example 2 was adjusted to pH 7 by adding 5% by mass acetic acid and dried in a dryer at 100 ° C. for 16 hours. Obtained.

得られた前駆体粒子乾燥粉末についてX線回折法によって測定したところ、僅かにCerianiteの回折パターンが見られた。   When the obtained precursor particle dry powder was measured by the X-ray diffraction method, a slight Ceriaite diffraction pattern was observed.

得られた前駆体粒子乾燥粉末125gにイオン交換水375gを加え、さらに3%アンモニア水溶液を用いてpHを約9に調整した後、φ0.22mmの高純度シリカビーズ(大研化学工業株式会社製)にて湿式解砕、粉砕を行い、20質量%のスラリー540gを得た。   After adding 375 g of ion-exchanged water to 125 g of the obtained precursor particle dry powder and further adjusting the pH to about 9 using a 3% aqueous ammonia solution, φ0.22 mm high-purity silica beads (manufactured by Daiken Chemical Industries, Ltd.) ) Was subjected to wet crushing and pulverization to obtain 540 g of a 20% by mass slurry.

次に上記スラリーをロータリーエバポレーターで濃縮し、イオン交換水で希釈し、濃度調整を行い9質量%の研磨用スラリーを得て、研磨試験を行った。また、研磨スラリーに含まれる前駆体粒子の平均粒子径を測定した。結果を第1表に示す。   Next, the slurry was concentrated with a rotary evaporator, diluted with ion-exchanged water, the concentration was adjusted to obtain a 9% by weight polishing slurry, and a polishing test was performed. Moreover, the average particle diameter of the precursor particle | grains contained in polishing slurry was measured. The results are shown in Table 1.

実施例2と比較して、平均粒子径はさほど変わらないが研磨速度は非常に低く、表面粗さも高く面精度が悪化している。
これは、研磨粒子表面のセリアが低結晶度であるため、基材表面に研磨粒子が付着し残留したものと推察される。
Compared to Example 2, the average particle diameter is not so different, but the polishing rate is very low, the surface roughness is high, and the surface accuracy is deteriorated.
This is presumably because the ceria on the surface of the abrasive particles has a low crystallinity, so that the abrasive particles adhered and remained on the surface of the substrate.

Figure 2016084243
Figure 2016084243

本発明の複合粒子は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。
Since the composite particle of the present invention does not contain impurities, it can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate.

Claims (6)

下記の工程1〜工程3を含むことを特徴とするシリカ系複合粒子分散液の製造方法。
工程1:レーザー回折散乱法により測定された平均粒子径が40〜600nm、画像解析法で測定された短径/長径比が0.95〜1.0、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素の含有率が20ppm以下、U及びThの各元素の含有率が1ppm以下のシリカ微粒子が溶媒に分散してなるシリカゾルを撹拌条件下、温度範囲5〜98℃、pH範囲7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、その後、解砕・粉砕し、粉体を得る工程。
工程3:水に分散させた状態の前記粉体について、11,000G以上にて10分以上の遠心分離処理を行って、上澄液を回収し、シリカ系複合粒子分散液を得る工程。
The manufacturing method of the silica type composite particle dispersion characterized by including the following process 1-process 3.
Step 1: The average particle diameter measured by the laser diffraction scattering method is 40 to 600 nm, the minor axis / major axis ratio measured by the image analysis method is 0.95 to 1.0, Na, Ag, Al, Ca, Cr, Stirring a silica sol formed by dispersing silica fine particles in which the content of each element of Cu, Fe, K, Mg, Ni, Ti, Zn and Zr is 20 ppm or less and the content of each element of U and Th is 1 ppm or less in a solvent A step of adding a cerium metal salt continuously or intermittently to obtain a precursor particle dispersion while maintaining a temperature range of 5 to 98 ° C. and a pH range of 7.0 to 9.0.
Process 2: The process of drying the said precursor particle dispersion liquid, baking at 400-1200 degreeC, and then crushing and grind | pulverizing and obtaining powder.
Step 3: A step of subjecting the powder in a state of being dispersed in water to a centrifugation treatment at 11,000 G or more for 10 minutes or more to collect the supernatant and obtain a silica-based composite particle dispersion.
前記工程1において、シリカゾルの温度範囲を48〜52℃として、前駆体粒子分散液を調製し、更に該前駆体粒子分散液を温度90〜98℃で熟成することを特徴とする請求項1に記載のシリカ系複合粒子分散液の製造方法。   In the step 1, the temperature range of the silica sol is set to 48 to 52 ° C, a precursor particle dispersion is prepared, and the precursor particle dispersion is aged at a temperature of 90 to 98 ° C. The manufacturing method of the silica type composite particle dispersion liquid of description. 前記工程1における、セリウムの金属塩の添加を0.5〜24時間かけて行うことを特徴とする請求項1又は請求項2に記載のシリカ系複合粒子分散液の製造方法。   The method for producing a silica-based composite particle dispersion according to claim 1 or 2, wherein the metal salt of cerium in Step 1 is added over 0.5 to 24 hours. 前記工程1において、シリカゾルのpH範囲を7.0〜9.0に維持するためにアルカリを添加することを特徴とする請求項1〜請求項3の何れかに記載のシリカ系複合粒子分散液の製造方法。   4. The silica-based composite particle dispersion according to claim 1, wherein an alkali is added in the step 1 in order to maintain the pH range of the silica sol at 7.0 to 9.0. 5. Manufacturing method. 前記工程2において、更に、乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることを特徴とする請求項1〜請求項4の何れかに記載のシリカ系複合粒子分散液の製造方法。   The silica-based composite particle dispersion according to any one of claims 1 to 4, wherein, in the step 2, the pH of the precursor particle dispersion before drying is set to 6.0 to 7.0. Liquid manufacturing method. 請求項1〜請求項5の何れかに記載の製造方法よって得られるシリカ系複合粒子分散液を、更に乾燥させてシリカ系複合粒子を得る、シリカ系複合粒子の製造方法。   The manufacturing method of the silica type composite particle which further dries the silica type composite particle dispersion liquid obtained by the manufacturing method in any one of Claims 1-5, and obtains a silica type composite particle.
JP2014215724A 2014-10-22 2014-10-22 Method for producing silica-based composite particle dispersion Active JP6371193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215724A JP6371193B2 (en) 2014-10-22 2014-10-22 Method for producing silica-based composite particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215724A JP6371193B2 (en) 2014-10-22 2014-10-22 Method for producing silica-based composite particle dispersion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018132183A Division JP2018168063A (en) 2018-07-12 2018-07-12 Method for producing silica composite particle dispersion

Publications (2)

Publication Number Publication Date
JP2016084243A true JP2016084243A (en) 2016-05-19
JP6371193B2 JP6371193B2 (en) 2018-08-08

Family

ID=55971809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215724A Active JP6371193B2 (en) 2014-10-22 2014-10-22 Method for producing silica-based composite particle dispersion

Country Status (1)

Country Link
JP (1) JP6371193B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159167A1 (en) * 2015-03-31 2016-10-06 日揮触媒化成株式会社 Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
EP3101076A1 (en) 2015-06-05 2016-12-07 Air Products And Chemicals, Inc. Barrier chemical mechanical planarization slurries using ceria-coated silica abrasives
EP3608378A1 (en) 2018-08-09 2020-02-12 Versum Materials US, LLC Chemical mechanical planarization composition for polishing oxide materials and method of use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6598719B2 (en) * 2016-03-30 2019-10-30 日揮触媒化成株式会社 Method for producing silica-based composite particle dispersion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298537A (en) * 1997-04-25 1998-11-10 Mitsui Mining & Smelting Co Ltd Abrasive material, its production and production of semiconductor device
JP2003297781A (en) * 2002-02-05 2003-10-17 Degussa Ag Aqueous dispersion liquid, its producing method and its use
JP2005060219A (en) * 2003-07-25 2005-03-10 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
JP2008074635A (en) * 2006-09-19 2008-04-03 Konica Minolta Opto Inc Core-shell type silicon oxide particle, method for producing the same, inorganic particulate-dispersed resin composition and optical element using the same
JP2009078935A (en) * 2007-09-26 2009-04-16 Jgc Catalysts & Chemicals Ltd "konpeito" (pointed sugar candy ball)-like composite silica sol
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same
JP2013133255A (en) * 2011-12-26 2013-07-08 Jgc Catalysts & Chemicals Ltd Silica composite particle and abrasive slurry containing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298537A (en) * 1997-04-25 1998-11-10 Mitsui Mining & Smelting Co Ltd Abrasive material, its production and production of semiconductor device
JP2003297781A (en) * 2002-02-05 2003-10-17 Degussa Ag Aqueous dispersion liquid, its producing method and its use
US20030215639A1 (en) * 2002-02-05 2003-11-20 Degussa Ag Aqueous dispersion containing cerium oxide-coated silicon powder, process for the production thereof and use thereof
JP2005060219A (en) * 2003-07-25 2005-03-10 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
JP2008074635A (en) * 2006-09-19 2008-04-03 Konica Minolta Opto Inc Core-shell type silicon oxide particle, method for producing the same, inorganic particulate-dispersed resin composition and optical element using the same
JP2009078935A (en) * 2007-09-26 2009-04-16 Jgc Catalysts & Chemicals Ltd "konpeito" (pointed sugar candy ball)-like composite silica sol
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same
JP2013133255A (en) * 2011-12-26 2013-07-08 Jgc Catalysts & Chemicals Ltd Silica composite particle and abrasive slurry containing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159167A1 (en) * 2015-03-31 2016-10-06 日揮触媒化成株式会社 Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
US10730755B2 (en) 2015-03-31 2020-08-04 Jgc Catalysts And Chemicals Ltd. Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
EP3101076A1 (en) 2015-06-05 2016-12-07 Air Products And Chemicals, Inc. Barrier chemical mechanical planarization slurries using ceria-coated silica abrasives
EP3608378A1 (en) 2018-08-09 2020-02-12 Versum Materials US, LLC Chemical mechanical planarization composition for polishing oxide materials and method of use thereof

Also Published As

Publication number Publication date
JP6371193B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
KR102090984B1 (en) Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
US10920120B2 (en) Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
WO2017183452A1 (en) Silica-based composite fine particle dispersion and method for manufacturing same
JP6603142B2 (en) Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion
JP6358899B2 (en) Metal oxide particles and method for producing the same
JP6829007B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
TWI656098B (en) Oxide-based composite fine particle dispersion, method for producing the same, and abrasive dispersion for polishing containing cerium oxide-based composite fine particle dispersion
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP6371193B2 (en) Method for producing silica-based composite particle dispersion
JP2017193692A (en) Silica-based composite fine particle fluid dispersion, method for producing same and polishing slurry including silica-based composite fine particle fluid dispersion
JP6598719B2 (en) Method for producing silica-based composite particle dispersion
JP6710100B2 (en) Method for producing silica-based composite fine particle dispersion
JP2019089670A (en) Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP2018168063A (en) Method for producing silica composite particle dispersion
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP6616794B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP6648064B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion
JP2020050571A (en) Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP7215977B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP6588050B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP6616795B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP2023080995A (en) Composite type ceria based composite fine particle liquid dispersion, and method of producing the same
JP2022116977A (en) Particle-linked ceria-based composite particulate dispersion, method for producing the same, and abrasive dispersion containing particle-linked ceria-based composite particulate dispersion
JP2022079433A (en) Particle-connected ceria-based composite fine particle dispersion, preparation method thereof, and abrasive particle dispersion for polishing containing particle-connected ceria-based composite fine particle dispersion

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180712

R150 Certificate of patent or registration of utility model

Ref document number: 6371193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250