JP2016083703A - Continuous casting method of molten steel and continuous casting cast piece - Google Patents

Continuous casting method of molten steel and continuous casting cast piece Download PDF

Info

Publication number
JP2016083703A
JP2016083703A JP2015123751A JP2015123751A JP2016083703A JP 2016083703 A JP2016083703 A JP 2016083703A JP 2015123751 A JP2015123751 A JP 2015123751A JP 2015123751 A JP2015123751 A JP 2015123751A JP 2016083703 A JP2016083703 A JP 2016083703A
Authority
JP
Japan
Prior art keywords
mass
molten steel
continuous casting
mold
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123751A
Other languages
Japanese (ja)
Other versions
JP6500630B2 (en
Inventor
笹井 勝浩
Katsuhiro Sasai
勝浩 笹井
原田 寛
Hiroshi Harada
寛 原田
中島 潤二
Junji Nakajima
潤二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2016083703A publication Critical patent/JP2016083703A/en
Application granted granted Critical
Publication of JP6500630B2 publication Critical patent/JP6500630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method which can turn both of crude equiaxed crystal in the neighborhood of center and crude columnar crystal surrounding the crude equiaxed crystal to fine equiaxed crystal in a casting cast piece for high-strength steel, and to provide a continuous casting cast piece for high-strength steel which has a fine solidification structure cast by using the continuous casting method.SOLUTION: A continuous casting method is characterized in that molten steel which contains C of 0.03 to 0.20%, Si of 0.08 to 1.5%, Mn of 0.5 to 3.0%, Nb of 0.2% or less, V of 0.2% or less, Mo of 0.5% or less, acid-soluble Al of 0.03% or less, acid-soluble Ti less than 0.1% and the sum of at least one kind of Ce, La, Nd and Pr of 0.0003 to 0.02% is poured into a casting mold and at least one kind of Bi and Sn is added to the molten steel in the casting mold such that the sum gets to 0.0005 to 0.01% by using a continuous casting device having an induction electromagnetic agitation device between a position of a meniscus in the casting mold and a position of 10 m-lower than the casting mold, and the casting is performed while turning the molten steel in a horizontal plane by the induction electromagnetic agitation device.SELECTED DRAWING: Figure 2

Description

通常の連続鋳造鋳片の横断面には、中心にポロシティや偏析を伴う最終凝固部を取り囲むように配された中心近傍の粗い粒状晶部と、粗い粒状晶部を取り囲む粗い柱状晶部とが観察される。この粗い粒状晶と柱状晶とを微細な等軸晶にし、中心偏析やミクロ偏析を大幅に軽減することができれば、例えばスラブを薄板にした際には成形加工性が顕著に優れた薄板になり、また例えば厚板にした際には低温靱性に優れた厚板となる。本発明は、この粗い粒状晶と柱状晶を微細な等軸晶にできる溶鋼の連続鋳造方法およびそれを用いて鋳造した微細な凝固組織を有する連続鋳造鋳片に関するものである。   In the cross section of a normal continuous cast slab, there are a coarse granular crystal part near the center arranged to surround the final solidified part with porosity and segregation in the center, and a coarse columnar crystal part surrounding the coarse granular crystal part. Observed. If this coarse granular crystal and columnar crystal can be made into fine equiaxed crystals and central segregation and microsegregation can be greatly reduced, for example, when a slab is made into a thin plate, it becomes a thin plate with remarkably excellent moldability. For example, when a thick plate is used, the plate has excellent low-temperature toughness. The present invention relates to a molten steel continuous casting method capable of turning coarse grain crystals and columnar crystals into fine equiaxed crystals, and a continuous cast slab having a fine solidified structure cast using the molten steel.

非特許文献1には、等軸晶は溶鋼過熱度が低いと増加することから、等軸晶化には低温鋳造が有効であることが示されている。また、特許文献1には、誘導電磁攪拌装置を用いて、凝固界面近傍の溶鋼に一方向の旋回流を与え、柱状デンドライトを分断することにより柱状晶を等軸晶にする技術が記載されている。さらに、特許文献2には、タンディッシュ内でプラズマ加熱装置を用いて等軸晶化促進剤(Ceの酸化物、硫化物等)を溶鋼表面に吹き付け、鋳型内で等軸晶核を多数生成させることにより、鋳片中心近傍の粗い粒状晶を微細化する技術が開示されている。   Non-Patent Document 1 shows that low temperature casting is effective for equiaxed crystallization because equiaxed crystals increase when the degree of superheated molten steel is low. Patent Document 1 describes a technique for making columnar crystals equiaxed by applying a unidirectional swirling flow to the molten steel near the solidification interface using an induction electromagnetic stirrer and dividing the columnar dendrite. Yes. Furthermore, in Patent Document 2, an equiaxed crystallization accelerator (Ce oxide, sulfide, etc.) is sprayed on the surface of molten steel using a plasma heating device in a tundish, and a large number of equiaxed nuclei are generated in the mold. Thus, a technique for refining coarse granular crystals in the vicinity of the center of the slab is disclosed.

特開昭50−23338号公報Japanese Patent Laid-Open No. 50-23338 特開2001−225153号公報JP 2001-225153 A

鉄鋼便覧第3版、II 製銑・製鋼、p.653Steel Handbook 3rd Edition, II Steelmaking and Steelmaking, p. 653

しかしながら、低温鋳造では、溶融金属の過熱度を液相線に近い温度にし、これを浸漬ノズルから鋳型内に注入する必要があるため、浸漬ノズルの閉塞や鋳型内でのディッケル生成等の凝固異常を招く場合がある。このため、現状の連続鋳造では注入する溶融金属の過熱度は20〜30K程度を採用しており、このような温度条件では近年軽量化ニーズで生産量が増加してきている高強度薄鋼板の成形加工性や高強度厚板の低温靱性を改善できる程の微細等軸晶化は達成されていない。また、誘導電磁攪拌を用いる方法や等軸晶化促進剤を添加する方法についても、高強度鋼の材質が改善できるまでの十分な微細等軸晶が安定して得られているわけではなく、例えば等軸晶が生成し難いC含有率が0.1%以下の溶鋼に対しては、鋳片表層部の柱状晶を十分に等軸晶化することは難しい。   However, in low-temperature casting, it is necessary to set the superheat degree of the molten metal to a temperature close to the liquidus and to inject it into the mold from the immersion nozzle, so solidification abnormalities such as clogging of the immersion nozzle and deckle formation in the mold May be invited. For this reason, the current continuous casting employs a superheat degree of the molten metal to be injected of about 20 to 30 K. Under such temperature conditions, the production of high-strength thin steel sheets whose production volume has been increasing due to the need for weight reduction in recent years. Fine equiaxed crystallization that can improve workability and low-temperature toughness of high-strength thick plates has not been achieved. Also, with respect to the method of using induction electromagnetic stirring and the method of adding an equiaxed crystallization accelerator, sufficient fine equiaxed crystals are not stably obtained until the material of the high-strength steel can be improved, For example, it is difficult to sufficiently equiaxially crystallize columnar crystals in the slab surface layer portion for molten steel having a C content of 0.1% or less in which equiaxed crystals are not easily formed.

本発明は、このような現状を鑑み、高強度鋼用鋳片において中心近傍の粗い粒状晶とそれを取り囲む粗い柱状晶を、共に微細な等軸晶にできる連続鋳造方法、およびそれを用いて鋳造した微細な凝固組織を有する高強度鋼用連続鋳造鋳片の提供を課題としている。   In view of such a current situation, the present invention provides a continuous casting method capable of forming both coarse granular crystals near the center and coarse columnar crystals surrounding them in a high-strength steel slab into fine equiaxed crystals, and using the same. It is an object to provide a continuous cast slab for high-strength steel having a fine solidified structure cast.

このような状況に鑑み、中心近傍の粗い粒状晶とそれを取り囲む粗い柱状晶を、共に微細な等軸晶にできる連続鋳造方法およびそれを用いて鋳造した微細な凝固組織を有する連続鋳造鋳片を提供するために、凝固組織微細化元素の解明、少量添加で効果を発揮する添加方法や添加場所に関して鋭意研究を重ね、得られた知見を連続鋳造工程の中で最適に組み合わせてプロセス設計することで本発明の完成に至った。   In view of such a situation, a continuous casting method in which a coarse granular crystal in the vicinity of the center and a coarse columnar crystal surrounding the same are formed into a fine equiaxed crystal, and a continuous cast slab having a fine solidified structure cast using the same. In order to provide a solid-state structure, we will elucidate the elements that refine the solidified structure, conduct intensive research on the addition method and location where the effect can be achieved with a small amount of addition, and design the process by combining the obtained knowledge optimally in the continuous casting process. This led to the completion of the present invention.

その要旨は以下の通りである。すなわち、
(1)鋳型内メニスカス〜鋳型下10mの間に誘導電磁攪拌装置を有する連続鋳造装置を用いて、C:0.03〜0.20質量%、Si:0.08〜1.5質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.002質量%以上、N:0.0005〜0.01質量%、Nb:0.2質量%以下、V:0.2質量%以下、Mo:0.5質量%以下、酸可溶Al:0.03質量%以下、酸可溶Ti:0.1質量%未満、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計:0.0003〜0.02質量%を含有し、残部がFeおよび不可避的不純物からなる溶鋼を鋳型内に注入し、該鋳型内溶鋼にBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加せしめ、該誘導電磁攪拌装置により水平面内で溶鋼を旋回させながら鋳造することを特徴とする連続鋳造方法。
(2)BiおよびSnの内から1種以上を含有する金属ワイヤーを鋳型内溶鋼中に連続的に供給することを特徴とする上記(1)記載の連続鋳造方法。
(3)BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼表面上に供給することを特徴とする上記(1)記載の連続鋳造方法。
(4)誘導電磁攪拌による溶鋼の旋回流速を25〜105cm/sとすることを特徴とする上記(1)〜(3)のいずれか1項記載の連続鋳造方法。
(5)上記(4)記載の連続鋳造方法により鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下にしたことを特徴とする連続鋳造鋳片。
The summary is as follows. That is,
(1) Using a continuous casting apparatus having an induction electromagnetic stirring device between the meniscus in the mold and 10 m under the mold, C: 0.03 to 0.20 mass%, Si: 0.08 to 1.5 mass%, Mn: 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.002 mass% or more, N: 0.0005 to 0.01 mass%, Nb: 0.2 mass% or less V: 0.2% by mass or less, Mo: 0.5% by mass or less, acid-soluble Al: 0.03% by mass or less, acid-soluble Ti: less than 0.1% by mass, Ce, La, Nd or Pr Among them, a molten steel containing at least one kind: 0.0003 to 0.02% by mass, the balance being Fe and inevitable impurities is injected into the mold, and the molten steel in the mold contains Bi and Sn. 1 or more of the above are added so that the total amount becomes 0.0005 to 0.01% by mass, Continuous casting wherein the casting while swirling the molten steel in a horizontal plane by the device.
(2) The continuous casting method as described in (1) above, wherein a metal wire containing one or more of Bi and Sn is continuously supplied into the molten steel in the mold.
(3) The continuous casting method according to (1), wherein a mold flux containing one or more of Bi and Sn is supplied onto the molten steel surface in the mold.
(4) The continuous casting method according to any one of (1) to (3) above, wherein the swirling flow velocity of the molten steel by induction electromagnetic stirring is 25 to 105 cm / s.
(5) Continuous casting characterized in that the average equiaxed crystal grain size is 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside by the continuous casting method described in (4) above. Slab.

本発明によると、鋳片表層部と鋳片内部の凝固組織を、共に微細に等軸晶化した連続鋳造鋳片を製造することができるため、高強度薄鋼板では成形加工性に、高強度厚板では低温靱性に優れた材料を製造することが可能となる。   According to the present invention, it is possible to produce a continuous cast slab in which both the surface layer portion of the slab and the solidified structure inside the slab are finely equiaxed, so that the high strength thin steel sheet has high formability and high strength. With thick plates, it is possible to produce materials with excellent low-temperature toughness.

Ceを0.004質量%含有させた溶鋼の連続鋳造実験における鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌流速の影響を示す図である。It is a figure which shows the influence of the electromagnetic stirring flow rate on the average equiaxed crystal grain diameter of the inside of a slab and the slab surface layer part in the continuous casting experiment of the molten steel containing 0.004 mass% of Ce. Ceを0.004質量%含有した溶鋼に鋳型内でBiを0.003質量%添加して連続鋳造した鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌流速の影響を示す図である。The effect of electromagnetic stirring flow rate on the average equiaxed grain size in the cast slab and the surface layer of the slab continuously cast by adding 0.003% by mass of Bi to molten steel containing 0.004% by mass of Ce. FIG.

凝固組織の形態は、凝固時の固液界面の温度勾配と凝固速度により決定され、温度勾配が小さい程、凝固速度が大きい程、等軸晶が形成され易くなる。しかし、実際の連続鋳造では鋳片表層から比較的内部まで柱状晶が成長しており、このような凝固組織形態を等軸晶主体に変える程の冷却条件の変更は難しい。そのような条件下で、凝固組織を微細等軸晶化するためには、等軸晶生成の核生成サイトを溶鋼中に分散させ、核生成頻度を上げることで微細等軸晶の形成を促進すること、界面活性効果の高い金属元素を用いて固液界面エネルギーを低下させ柱状晶自体を微細等軸晶化させる2つの方法が考えられる。本発明は、これら2つの凝固組織制御の原理を効果的に複合させ、鋳片全面に渡って凝固組織微細化効果を最大限に引き出すための制御手段を明らかにすると共に、その制御手段を連続鋳造工程の中で最適に組み合わせてプロセス設計することにより完成させたものである。本発明の基本思想は、[1]等軸晶の核生成サイトとして有効に作用する酸化物・酸硫化物を溶鋼中に微細分散させ、これに電磁攪拌を加え溶鋼の過熱度を奪うことにより鋳片内部を安定的に微細等軸晶化させると共に、[2]鋳片表層部に固液界面エネルギーを低下させる金属元素を優先的に添加して、鋳型側から鋳片内部に向かって成長する柱状晶の微細化を図り、その上で電磁攪拌の旋回流でこの微細・脆弱な柱状晶を分断することにより鋳片表層部にも微細な等軸晶を生成させることにある。その結果として、鋳片全面に渡って微細な等軸晶組織を得ることが可能となる。   The form of the solidified structure is determined by the temperature gradient and solidification rate at the solid-liquid interface at the time of solidification. The smaller the temperature gradient and the greater the solidification rate, the easier the formation of equiaxed crystals. However, in actual continuous casting, columnar crystals grow from the slab surface layer to the inside relatively, and it is difficult to change the cooling conditions to such an extent that the solidification structure is changed to be equiaxed crystals. Under such conditions, in order to make the solidification structure fine equiaxed, the formation of fine equiaxed crystals is promoted by dispersing the nucleation sites of equiaxed crystals in the molten steel and increasing the frequency of nucleation. In addition, two methods of reducing the solid-liquid interface energy and making the columnar crystal itself into a fine equiaxed crystal using a metal element having a high surface active effect are conceivable. The present invention clarifies a control means for effectively combining these two solidification structure control principles and maximizes the effect of refining the solidification structure over the entire surface of the slab. It was completed by optimally combining the process design in the casting process. The basic idea of the present invention is that [1] oxides and oxysulfides that effectively act as nucleation sites for equiaxed crystals are finely dispersed in molten steel, and this is electromagnetically stirred to deprive the superheated degree of molten steel. While making the inside of the slab stably fine equiaxed, [2] A metal element that lowers the solid-liquid interface energy is preferentially added to the surface of the slab and grows from the mold side toward the inside of the slab. The purpose of this is to make the columnar crystals finer, and then to divide the fine and fragile columnar crystals with a swirl flow of electromagnetic stirring to produce fine equiaxed crystals on the surface of the slab. As a result, a fine equiaxed crystal structure can be obtained over the entire surface of the slab.

上記基本思想を実現するための具体的方法と条件について、以下に述べる。まず、[1]の等軸晶の核生成サイトとなる酸化物・酸硫化物の条件であるが、Ti脱酸溶鋼にはチタニア系介在物が、Al脱酸溶鋼にはアルミナ系介在物が多数存在するが、これらの介在物は極めて凝集・合体し易く粗大な酸化物となるため、等軸晶生成の核として有効に作用しない。これに対し、本発明者らは、溶鋼中にTiやAlよりも強脱酸元素であるCe、La、NdもしくはPrの内、少なくとも1種以上を添加し、チタニア系介在物およびアルミナ系介在物をCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、或いはPr酸硫化物に改質することにより、比較的微細な酸化物・酸硫化物を溶鋼中に均一に分散できること、これら酸化物・酸硫化物が微細な等軸晶生成の核になり易いことを見いだした。これは、チタニアやアルミナと比較して、Ce酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、或いはPr酸硫化物が溶鋼と濡れ易いためだと考えられる。ここで、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計添加量は0.0003〜0.02質量%に規定した。これは、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計添加量が0.0003%未満では等軸晶核生成サイトの量が少なくなることにより、反対に0.02質量%を超えると生成酸化物または酸硫化物が粗大化し易くなることにより、何れも鋳片内の凝固組織を微細な等軸晶にする効果が失われるためである。   Specific methods and conditions for realizing the basic idea will be described below. First, the conditions for oxides and oxysulfides that serve as nucleation sites for equiaxed crystals in [1] are as follows. Ti deoxidized molten steel contains titania inclusions, and Al deoxidized molten steel contains alumina inclusions. Although there are many, these inclusions are very easy to agglomerate and coalesce and become coarse oxides, so they do not act effectively as nuclei for forming equiaxed crystals. On the other hand, the present inventors added at least one or more of Ce, La, Nd or Pr, which are deoxidizing elements stronger than Ti and Al, to the molten steel, and include titania inclusions and alumina inclusions. By modifying the material to Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, or Pr oxysulfide, relatively fine oxidation The present inventors have found that oxides and oxysulfides can be uniformly dispersed in molten steel, and that these oxides and oxysulfides are likely to become nuclei for the formation of fine equiaxed crystals. Compared with titania and alumina, Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, or Pr oxysulfide are molten steel. It is thought that it is because it gets wet easily. Here, the total addition amount of at least one of Ce, La, Nd, or Pr was regulated to 0.0003 to 0.02 mass%. This is because, if the total addition amount of at least one of Ce, La, Nd, or Pr is less than 0.0003%, the amount of equiaxed nucleation sites is reduced, and on the contrary, 0.02% by mass. This is because if it exceeds, the resulting oxide or oxysulfide is likely to be coarsened, so that the effect of making the solidified structure in the slab a fine equiaxed crystal is lost.

本発明では、溶鋼中の溶存(酸可溶)Al濃度は0.03質量%以下であり、これを超える酸可溶Al濃度ではアルミナ系介在物を完全にCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、或いはPr酸硫化物に改質できず、アルミナとの複合介在物となり凝集・合体が進行すると共に、等軸晶の核生成サイトとしての能力を失う。Ce酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、或いはPr酸硫化物の凝集・合体を抑制し、等軸晶の核生成能を維持するためには酸可溶Al濃度は低い方が良く、下限値は0質量%を含む。また、酸可溶Al濃度とは、酸に溶解したAl量を測定したもので、溶存Alは酸に溶解し、アルミナは酸に溶解しないことを利用した分析方法である。ここで、酸とは、例えば塩酸1、硝酸1、水2の割合で混合した混酸である。   In the present invention, the dissolved (acid-soluble) Al concentration in the molten steel is 0.03% by mass or less, and when the acid-soluble Al concentration exceeds this, alumina inclusions are completely removed from the Ce oxide, La oxide, Nd. It cannot be modified to oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, or Pr oxysulfide, and becomes a composite inclusion with alumina, agglomeration and coalescence progress, and is equiaxed Loss the ability as a crystal nucleation site. Suppresses agglomeration and coalescence of Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, or Pr oxysulfide, and nucleates equiaxed crystals In order to maintain performance, the acid-soluble Al concentration should be low, and the lower limit includes 0% by mass. The acid-soluble Al concentration is an analytical method that measures the amount of Al dissolved in an acid, and utilizes that dissolved Al dissolves in an acid and alumina does not dissolve in an acid. Here, the acid is a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1, and water 2, for example.

また、酸可溶Ti濃度も高くなり過ぎると、その酸化物が凝集合体して粗大になり易いこと、鋼中のNと結びついて粗大なTiNの介在物を生成し易いことから、酸可溶Ti濃度は0.1質量%未満とし、下限値は0質量%を含む。酸可溶Ti濃度は、酸可溶Al濃度と同様、酸に溶解したTi量を測定したもので、溶存Ti濃度に一致する。   Also, if the acid-soluble Ti concentration becomes too high, the oxide tends to agglomerate and become coarse, and it is easy to produce coarse TiN inclusions by combining with N in the steel. The Ti concentration is less than 0.1% by mass, and the lower limit includes 0% by mass. The acid-soluble Ti concentration is obtained by measuring the amount of Ti dissolved in the acid, similarly to the acid-soluble Al concentration, and matches the dissolved Ti concentration.

次に、[1]の電磁攪拌の条件に関して述べる。一般に、電磁攪拌では、凝固界面の溶鋼に旋回流を付与するため、この旋回流が柱状デンドライトを分断し、等軸晶化を促進すると考えられている。しかし、本発明者等の知見では、従来から言われている鋳片表層部の凝固界面における柱状晶分断の効果は弱く、むしろ電磁攪拌により凝固シェルと溶鋼間の熱伝達が促進され、鋳片内部の溶鋼過熱度を低下させる効果が高いことを見いだした。本発明の等軸晶の核生成促進では、この電磁攪拌の溶鋼過熱度を低下させる効果を活用し、電磁攪拌により微細な酸化物・酸硫化物を起点に生成した等軸晶核の再溶解を防止している。しかしながら、電磁攪拌による溶鋼過熱度の低減効果を高めていくためには、旋回流速を速くする必要があり、その場合微細な酸化物・酸硫化物が凝集・合体により粗大化し、等軸晶の核として有効に機能しなくなる。そこで、C:0.08質量%、Si:0.5質量%、Mn:1.0質量%、P:0.02質量%、S:0.003質量%、N:0.003質量%、酸可溶Al:0.025質量%、酸可溶Ti:0.04質量%、Ce:0.004質量%の溶鋼の連続鋳造実験を実施し、鋳片内部と鋳片表層部の等軸晶粒径におよぼす電磁攪拌の旋回流速の影響を調査した。なお、分岐状柱状晶(分断されていない)、分断された柱状晶、分断された分岐状柱状晶についても、その粒径を同時に評価できるように、等軸晶粒径は2(a・b)0.5と定義した(aは結晶粒の長径、bは結晶粒の短径で
ある。分断されていない分岐状柱状晶についてはひとつの枝をひとつの結晶粒とした。)。鋳片内部の平均等軸晶粒径は、鋳片1/4厚から内部における横断面の等軸晶粒径の平均値、鋳片表層部の平均等軸晶粒径は、表層から鋳片1/4厚における横断面の等軸晶粒径の平均値である。鋳片内部と鋳片表層部における平均等軸晶粒径におよぼす電磁攪拌流速の影響を図1に示す。図1から分かるように、鋳片内部の平均等軸晶粒径は溶鋼の旋回流速が25cm/s以上で3mm以下に、30cm/s以上で2mm程度まで小さくなるが、100cm/sを超えると反対に平均等軸晶粒径は大きくなり始め、105cm/s超では3mmを超えて粗大化する。この原因は、電磁攪拌の旋回流速が25cm/s以上、より明確には30cm/s以上になると鋳片内部で微細酸化物を起点に生成した等軸晶核の再溶解が抑制されるのに対し、旋回流速が100cm/sを超えると鋳片内部でCe酸化物やCe酸硫化物でも、凝集・合体による粗大化が進行し、等軸晶の核として機能し難くなり、105cm/sを超えると等軸晶核として機能しなくなるためだと考えられる。なお、鋳片表層部については、殆どが鋳型側から鋳片内部に向かって一定方向に揃った比較的長い分岐状柱状晶が成長しており、分断されていない分岐状柱状晶、分断した分岐状柱状晶、柱状晶を含む平均等軸晶粒径は粗大であった。これは、電磁攪拌による鋳片表層部の凝固界面における柱状晶分断の効果が比較的弱いためである。したがって、鋳片内部の凝固組織を微細な等軸晶にするためには、電磁攪拌の旋回流速を30〜100cm/sに制御するのが望ましい。また、鋳型下10mよりも更に下方では、既に鋳片表層の凝固はほぼ完了しているため、誘導電磁攪拌は凝固の始まる鋳型内メニスカスの位置と鋳型下10mの位置との間に設置するのが効果的である。鋳型内あるいは鋳型直下に設置するのが更に望ましい。
Next, the conditions for electromagnetic stirring in [1] will be described. In general, in electromagnetic stirring, a swirl flow is imparted to the molten steel at the solidification interface, and this swirl flow is considered to break up columnar dendrites and promote equiaxed crystallization. However, according to the knowledge of the present inventors, the effect of columnar crystal fragmentation at the solidification interface of the slab surface layer portion that has been conventionally known is weak, rather, heat transfer between the solidified shell and the molten steel is promoted by electromagnetic stirring, and the slab It was found that the effect of lowering the internal superheated molten steel was high. In the promotion of nucleation of equiaxed crystals according to the present invention, the effect of reducing the superheated degree of molten steel by electromagnetic stirring is utilized, and remelting of equiaxed nuclei generated from the origin of fine oxides and oxysulfides by electromagnetic stirring. Is preventing. However, in order to increase the effect of reducing the degree of superheated molten steel by electromagnetic stirring, it is necessary to increase the swirl flow velocity. In that case, fine oxides and oxysulfides are coarsened by agglomeration and coalescence, resulting in equiaxed crystals. It will not function effectively as a nucleus. Therefore, C: 0.08% by mass, Si: 0.5% by mass, Mn: 1.0% by mass, P: 0.02% by mass, S: 0.003% by mass, N: 0.003% by mass, Conducted continuous casting experiment of molten steel of acid-soluble Al: 0.025 mass%, acid-soluble Ti: 0.04 mass%, Ce: 0.004 mass%, equiaxed inside of slab and slab surface layer The effect of swirling flow velocity of electromagnetic stirring on crystal grain size was investigated. It should be noted that the equiaxed crystal grain size is 2 (a · b) so that the grain size of the branched columnar crystals (not divided), the divided columnar crystals, and the divided branched columnar crystals can be evaluated simultaneously. ) Defined as 0.5 (a is the major axis of the crystal grains, b is the minor axis of the crystal grains. One branch is taken as one crystal grain for the unbranched branched columnar crystals). The average equiaxed grain size inside the slab is the average value of the equiaxed grain size of the cross section inside from the slab 1/4 thickness, and the average equiaxed grain size of the slab surface layer is from the surface layer to the slab It is the average value of equiaxed grain size of the transverse section at ¼ thickness. FIG. 1 shows the influence of the electromagnetic stirring flow rate on the average equiaxed grain size in the slab and in the slab surface layer. As can be seen from FIG. 1, the average equiaxed grain size inside the slab is as small as 3 mm or less when the swirling flow velocity of the molten steel is 25 cm / s or more, and to about 2 mm when it is 30 cm / s or more. On the other hand, the average equiaxed grain size starts to increase, and when it exceeds 105 cm / s, it becomes larger than 3 mm. This is because when the swirling flow velocity of electromagnetic stirring is 25 cm / s or more, more specifically 30 cm / s or more, the remelting of equiaxed nuclei generated from fine oxides inside the slab is suppressed. On the other hand, if the swirling flow rate exceeds 100 cm / s, even Ce oxide or Ce oxysulfide inside the slab will be coarsened by agglomeration and coalescence, making it difficult to function as an equiaxed crystal nucleus. It is thought that this is because if it exceeds, it will not function as an equiaxed crystal nucleus. In the slab surface layer portion, relatively long branched columnar crystals that are aligned in a certain direction from the mold side toward the inside of the slab are growing, and undivided branched columnar crystals, divided branches. The average equiaxed grain size including columnar crystals and columnar crystals was coarse. This is because the effect of columnar crystal division at the solidification interface of the slab surface layer by electromagnetic stirring is relatively weak. Therefore, in order to make the solidified structure inside the slab into a fine equiaxed crystal, it is desirable to control the swirl flow rate of electromagnetic stirring to 30 to 100 cm / s. Further, below 10 m below the mold, solidification of the slab surface has already been almost completed, and therefore induction electromagnetic stirring is installed between the position of the meniscus in the mold where solidification starts and the position of 10 m below the mold. Is effective. It is more desirable to install in the mold or directly under the mold.

次に、[2]固液界面エネルギーを低下させる金属元素の選定であるが、鋼板材質に悪影響を与えることなく少量添加で界面活性効果が得られる元素としてBiおよびSnが有望であることを、これら金属元素を添加した10kg溶鋼の凝固実験で柱状晶間隔を評価することにより見いだした。柱状晶微細化の効果は、これら金属元素の内から1種以上を合計で0.0005質量%以上添加すれば十分であるが、0.01質量%を超えて添加すると鋼板が脆化し圧延時に端部に耳割れが発生した。このため、溶鋼中にはBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加すればよい。さらに、BiおよびSnの添加場所は鋳片材質全体に悪影響を与え難く、なるべく鋳片表層部で柱状晶微細化の効果のみを最大限に享受できるように、鋳型内の溶鋼中に添加するのが望ましい。添加方法としては、BiおよびSnを含有する金属ワイヤーを直接鋳型内の溶鋼上部側に挿入するか、或いはBiおよびSnを含有するモールドフラックスを用いて供給することで、比較的鋳片表層部に効率的に添加できる。モールドフラックスを介して微細化元素を添加する方法としては、事前にBiやSnを混入させたモールドフラックスを使用する方法、添加直前にBiやSnをモールドフラックスに混入させながら鋳型内に供給する方法、鋳造中に一定の速度でBi粉やSn粉を湯面被覆しているモールドフラックス上に供給する方法、などが有効である。BiおよびSnの沸点は各々1560℃と2270℃であり、溶鋼の融点(純鉄1538℃)よりも高いため添加時に爆発的なガス化は生じない。さらに、BiとSnの密度は各々9.8g/cm3と7.3g/cm3であり、溶鋼の密度7.0g/cm3よりも重いことから、ワイヤーやパウダーから溶鋼表面
に添加しても直ちに浮上してしまうことはなく、溶鋼中に比較的容易に添加できる。添加したBi、Snの含有量については、スラブ又は圧延鋼板から採取した試料の分析によって評価することができる。
Next, [2] selection of a metal element that lowers the solid-liquid interfacial energy, Bi and Sn are promising as elements that can obtain a surface active effect by adding a small amount without adversely affecting the steel plate material. It was found by evaluating the columnar crystal interval in a solidification experiment of 10 kg molten steel to which these metal elements were added. As for the effect of refining columnar crystals, it is sufficient to add one or more of these metal elements in a total amount of 0.0005% by mass or more, but if added in excess of 0.01% by mass, the steel sheet becomes brittle and during rolling. Ear cracks occurred at the edges. For this reason, what is necessary is just to add 1 or more types from Bi and Sn to molten steel so that it may become 0.0005-0.01 mass% in total. In addition, Bi and Sn are added to the molten steel in the mold so that the entire cast slab material is hardly adversely affected and only the effect of refining columnar crystals can be enjoyed to the maximum extent possible. Is desirable. As an addition method, a metal wire containing Bi and Sn is directly inserted into the molten steel upper side in the mold, or a mold flux containing Bi and Sn is used to supply relatively to the surface of the slab. Can be added efficiently. As a method of adding a fine element through a mold flux, a method of using a mold flux mixed with Bi or Sn in advance, or a method of supplying Bi or Sn into a mold while mixing Bi or Sn into the mold flux immediately before the addition. For example, a method of supplying Bi powder or Sn powder onto the mold flux covering the molten metal surface at a constant speed during casting is effective. The boiling points of Bi and Sn are 1560 ° C. and 2270 ° C., respectively, which are higher than the melting point of molten steel (pure iron 1538 ° C.), so no explosive gasification occurs during addition. Further, the density of Bi and Sn is 9.8 g / cm 3 and 7.3 g / cm 3 , respectively, which is heavier than the density of molten steel 7.0 g / cm 3. However, it does not float immediately and can be added to molten steel relatively easily. The contents of added Bi and Sn can be evaluated by analyzing samples collected from slabs or rolled steel sheets.

さらに、[2]の電磁攪拌の条件について述べる。ここでは、先に述べたように凝固界面における電磁攪拌の柱状晶分断効果が弱いことから、鋳型内にBiおよびSnを添加して、鋳型側から成長する柱状晶を微細・脆弱化させ、この柱状晶を電磁攪拌の弱い剪断力により効果的に分断し、鋳片表層部に微細な等軸晶を造り込むことが重要となる。そこで、C:0.08質量%、Si:0.5質量%、Mn:1.0質量%、P:0.02質量%、S:0.003質量%、N:0.003質量%、酸可溶Al:0.025質量%、酸可溶Ti:0.04質量%、Ce:0.004質量%の溶鋼を鋳型内に注入し、鋳型内で連鋳パウダーを通してBiを0.003質量%添加しながら連続鋳造する実験を実施し、鋳片内部と鋳片表層部の平均等軸晶粒径におよぼす電磁攪拌の旋回流速の影響を調査し、図2に示す。鋳片表層部の平均等軸晶粒径は、電磁攪拌による旋回流速が25cm/s以上になると3mm以下まで、旋回流速が30cm/s以上になると2mm程度まで小さくなり、さらに旋回流速が100cm/s超でもその効果は維持されている。これは、電磁攪拌の旋回流速が25cm/s以上になると、鋳型内でのBi添加により微細・脆弱化された柱状晶が電磁攪拌流により分断されはじめ、さらに30cm/s以上になるとより効果的に柱状晶の分断効果が得られ、鋳片表層部に微細等軸晶を生成できることを示す結果である。一方、図2から分かるように、溶鋼の旋回流速が30cm/s以上になると鋳片内部の平均等軸晶粒径は2mm程度まで小さくなるが、100cm/sを超えると反対に平均等軸晶粒径は大きくなり始める。この原因は、先の実験でも述べたように、電磁攪拌の旋回流速が30cm/s以上になると鋳片内部で微細なCe酸化物やCe酸硫化物を起点に生成した等軸晶核の再溶解が効果的に抑制されるのに対し、旋回流速が100cm/sを超えると鋳片内部でCe酸化物やCe酸硫化物でも、凝集・合体による粗大化が始まり、等軸晶の核として機能し難くなるためだと考えられる。したがって、鋳片全体を微細等軸晶化するには、電磁攪拌流速を30〜100cm/sとすることが効果的である。   Furthermore, the electromagnetic stirring conditions of [2] will be described. Here, as described above, since the columnar crystal fragmentation effect of electromagnetic stirring at the solidification interface is weak, Bi and Sn are added into the mold to make the columnar crystal growing from the mold side fine and brittle. It is important to effectively divide the columnar crystals by the shearing force with weak electromagnetic stirring and to build fine equiaxed crystals in the slab surface layer. Therefore, C: 0.08% by mass, Si: 0.5% by mass, Mn: 1.0% by mass, P: 0.02% by mass, S: 0.003% by mass, N: 0.003% by mass, Molten steel of acid-soluble Al: 0.025 mass%, acid-soluble Ti: 0.04 mass%, Ce: 0.004 mass% is injected into the mold, and Bi is 0.003 through the continuous casting powder in the mold. An experiment of continuous casting while carrying out mass% addition was carried out, and the influence of the swirling flow velocity of electromagnetic stirring on the average equiaxed crystal grain size inside the slab and on the surface layer of the slab was investigated and is shown in FIG. The average equiaxed grain size of the slab surface layer portion is reduced to 3 mm or less when the swirling flow rate by electromagnetic stirring is 25 cm / s or more, and is decreased to about 2 mm when the swirling flow rate is 30 cm / s or more. The effect is maintained even if it exceeds s. This is more effective when the swirling flow velocity of electromagnetic stirring is 25 cm / s or more, and columnar crystals refined and weakened by addition of Bi in the mold begin to be divided by the electromagnetic stirring flow, and further 30 cm / s or more. It is a result which shows that the parting effect of a columnar crystal is obtained, and that a fine equiaxed crystal can be generated in the slab surface layer portion. On the other hand, as can be seen from FIG. 2, the average equiaxed crystal grain size inside the slab decreases to about 2 mm when the swirling flow velocity of the molten steel is 30 cm / s or more. The particle size begins to increase. As described in the previous experiment, the cause of this is that the recrystallization of equiaxed nuclei generated from fine Ce oxides and Ce oxysulfides in the slab when the swirling flow velocity of electromagnetic stirring is 30 cm / s or more. While dissolution is effectively suppressed, when the swirling flow velocity exceeds 100 cm / s, coarsening due to agglomeration and coalescence begins even in the case of Ce oxide or Ce oxysulfide inside the slab. It is thought that it becomes difficult to function. Therefore, in order to make the entire slab fine equiaxed, it is effective to set the magnetic stirring flow rate to 30 to 100 cm / s.

電磁攪拌流速については、柱状晶や分岐状柱状晶組織が発達する通常の連続鋳造条件において、鋳造した鋳片の幅方向中央部の凝固組織をピクリン酸エッチングで現出し、柱状晶や分岐状柱状晶の傾きから流速を評価することができる。この方法によって予め電磁攪拌推力と電磁攪拌流速の関係を求めておき、本発明方法においても、目標とする電磁攪拌流速を得るための電磁攪拌推力を選択して電磁攪拌を実施すればよい。   With regard to the magnetic stirring speed, the solidified structure at the center in the width direction of the cast slab is revealed by picric acid etching under normal continuous casting conditions in which columnar crystals and branched columnar crystal structures develop. The flow rate can be evaluated from the inclination of the crystal. In this method, the relationship between the electromagnetic stirring thrust and the electromagnetic stirring flow rate is obtained in advance, and in the method of the present invention, the electromagnetic stirring may be performed by selecting the electromagnetic stirring thrust for obtaining the target electromagnetic stirring flow rate.

上記[1]と[2]の組み合わせによって、鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下(電磁攪拌流速25〜105cm/s)、望ましくは2mm以下(電磁攪拌流速30〜100cm/s)の凝固組織を得ることができる。電磁撹拌流速は、更に望ましくは、70〜100cm/sである。   By combining the above [1] and [2], the average equiaxed grain size is 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside (electromagnetic stirring flow rate 25 to 105 cm / s). Desirably, a solidified structure having a thickness of 2 mm or less (electromagnetic stirring flow rate of 30 to 100 cm / s) can be obtained. The electromagnetic stirring flow rate is more preferably 70 to 100 cm / s.

本発明は、上記説明からも分かるように、スラブへの適用に限られたものではなく、ブルームやビレットに適用しても、十分な凝固組織の微細化効果が得られる。   As can be seen from the above description, the present invention is not limited to application to slabs, and even when applied to bloom or billet, a sufficient solidification structure refinement effect can be obtained.

最後に、本発明の化学成分の限定理由について記載する。   Finally, the reasons for limiting the chemical components of the present invention will be described.

Cは鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには少なくとも0.03質量%が必要である。しかし、過剰に含まれると、Ti等の添加元素によりCを固定したり、冷却条件を駆使しても、伸びフランジ特性に好ましくないセメンタイト相の生成が避けられないので0.20質量%以下とする。   C is an essential element for securing the strength of the steel sheet, and at least 0.03 mass% is necessary to obtain a high-strength steel sheet. However, if excessively contained, even if C is fixed by an additive element such as Ti or the cooling conditions are fully utilized, the formation of a cementite phase that is not preferable for stretch flange characteristics is unavoidable. To do.

Siは曲げ性の劣化を比較的抑えて、強度向上に寄与する元素であり、その効果を発揮するためには0.08質量%以上の添加が必要である。過剰に添加すると溶接性や延性に悪影響を及ぼすので1.5質量%を上限とする。   Si is an element that contributes to strength improvement by relatively suppressing the deterioration of bendability, and 0.08% by mass or more is necessary to exert its effect. If added excessively, the weldability and ductility are adversely affected, so 1.5 mass% is made the upper limit.

MnはC、Siとともに鋼板の高強度化に有効な元素であり、0.5質量%以上は含有させる必要があるが、3.0質量%を超えて含有させると延性が劣化するため上限を3.0質量%とする。   Mn is an element effective for increasing the strength of steel sheets together with C and Si, and it is necessary to contain 0.5% by mass or more, but if it exceeds 3.0% by mass, the ductility deteriorates, so the upper limit is set The content is 3.0% by mass.

Pは固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので0.05質量%以下にする必要がある。固溶強化の必要がなければPを添加する必要はなく、Pの下限値は0質量%を含む。   P is effective as a solid solution strengthening element, but since there is a concern about deterioration of workability due to segregation, it is necessary to make it 0.05% by mass or less. If solid solution strengthening is not necessary, it is not necessary to add P, and the lower limit value of P includes 0% by mass.

Sは、MnSの粗大な延伸介在物を形成して加工性を劣化させるため、従来はS濃度0.002質量%の極低硫化が加工性確保に必須であったが、本発明では微細で硬質なCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、或いはPr酸硫化物上にMnSを析出させ、圧延時にも変形が起こりにくく、介在物の延伸を防止しているため、S濃度の上限値は特に規定しない。しかしあまりS濃度が高過ぎると、MnSの変形を抑制するCe酸化物、La酸化物、Nd酸化物、Pr酸化物、Ce酸硫化物、La酸硫化物、Nd酸硫化物、或いはPr酸硫化物が多量に必要となり、それに伴いCe、La、NdもしくはPrの内、少なくとも1種以上の合計添加量が0.02質量%を超えるため、生成酸化物または酸硫化物が粗大化し易くなる不都合があり、0.02質量%以下が望ましい。また、S濃度は従来並の0.002質量%未満に低減するためには、二次精錬で脱硫処理を相当強化する必要があり、脱硫処理コストが高くなりすぎること、すなわち、本発明の副次的なMnSの形態制御の効果を享受する意義が少なくなるためS濃度の下限値は0.002質量%とする。   Since S forms coarsely stretched inclusions of MnS and degrades workability, conventionally, ultra-low sulfidation with an S concentration of 0.002% by mass has been essential for securing workability. Precipitates MnS on hard Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, or Pr oxysulfide and deforms during rolling. The upper limit of the S concentration is not particularly defined because it hardly occurs and prevents the inclusions from being stretched. However, if the S concentration is too high, Ce oxide, La oxide, Nd oxide, Pr oxide, Ce oxysulfide, La oxysulfide, Nd oxysulfide, or Pr oxysulfide that suppresses deformation of MnS A large amount of the product is required, and accordingly, the total added amount of at least one of Ce, La, Nd or Pr exceeds 0.02% by mass, so that the generated oxide or oxysulfide is easily coarsened. 0.02% by mass or less is desirable. In addition, in order to reduce the S concentration to less than 0.002% by mass, the desulfurization treatment must be considerably strengthened by secondary refining, and the desulfurization treatment cost becomes too high. Since the significance of enjoying the effect of controlling the form of the next MnS is reduced, the lower limit value of the S concentration is set to 0.002% by mass.

Nは添加し過ぎると、微量なAlであっても粗大な析出物を生成し、加工性を劣化させるので、0.01質量%を上限とする。一方、0.0005質量%未満とするにはコストがかかるので、0.0005質量%を下限とする。   If N is added too much, even if it is a trace amount of Al, coarse precipitates are generated and the workability is deteriorated, so 0.01 mass% is made the upper limit. On the other hand, since it costs to make it less than 0.0005 mass%, 0.0005 mass% is made the lower limit.

Nb、Vはより高い強度を得るために添加する元素であり、これら元素と結合して形成される炭窒化物による析出強化を利用するものである。析出強化は、これら元素の単独、或いは複合添加で得られるが、過度の添加は加工性を劣化させるため、これら元素の1種または2種でそれぞれ0.2質量%を上限とする。強度向上効果を得るためには、それぞれ0.005質量%以上添加することが好ましい。   Nb and V are elements added to obtain higher strength, and utilize precipitation strengthening by carbonitride formed by combining with these elements. Precipitation strengthening can be obtained by adding these elements alone or in combination. However, excessive addition deteriorates workability, so the upper limit is 0.2% by mass for one or two of these elements. In order to obtain the strength improvement effect, 0.005% by mass or more is preferably added.

Moも強度を向上させるために用いられる元素であるが、主に焼き入れ性を高めるために添加される。過度に添加すると、延性の劣化を招くことから0.5質量%を上限とする。焼き入れ性を確保する場合には、0.05質量%以上添加することが好ましい。Nb、V、Moは含有しなくても良い。   Mo is also an element used to improve the strength, but is added mainly to improve the hardenability. If added excessively, ductility is deteriorated, so the upper limit is made 0.5 mass%. When ensuring hardenability, it is preferable to add 0.05 mass% or more. Nb, V, and Mo may not be contained.

材質確保の観点から主要な添加元素は以上であるが、スクラップの利用による微量のCu、NiおよびCr等の不可避的不純物としての混入は、本発明を損なうものではない。   From the viewpoint of securing the material, the main additive elements are as described above. However, the incorporation of trace amounts of Cu, Ni, Cr, etc. as unavoidable impurities by using scrap does not impair the present invention.

以下に、実施例及び比較例を挙げて、本発明について説明する。   Hereinafter, the present invention will be described with reference to examples and comparative examples.

表1のBiとSnを除く化学成分の溶鋼を溶製し、タンディッシュ内に注入した。表1のBiとSnの成分値に応じて、鋳型内の溶鋼中にBiとSnをワイヤー添加しながら鋳造した。鋳片サイズは厚み250mm×幅1500mmで、鋳造速度は1.3m/minである。誘導電磁攪拌は鋳型内メニスカスに設置されており、鋳造中はこの電磁攪拌装置に500A、周波数2Hzの電流を流して溶鋼を40cm/sで攪拌した。一部の実験(実施例18、19、20)では、電磁攪拌装置の電流を変化させ、溶鋼を90cm/s、25cm/sおよび105cm/sで攪拌した。本実験で得られた鋳片の凝固組織を調査した結果を表1に示す。本発明の実施例である試験番号1、5、9〜14、18〜21では、溶鋼中にCe、La、NdもしくはPrの内、少なくとも1種以上を含有させることにより、等軸晶の核生成サイトとして有効なCe、La、Nd、Pr酸化物・酸硫化物を溶鋼中に微細分散させ、これに電磁攪拌を加え溶鋼の過熱度を奪うことにより鋳片内部を安定的に粒径3mm以下に微細等軸晶化させると共に、鋳型内で固液界面エネルギーを低下させるBiおよびSnを優先的に添加して、鋳型側から鋳片内部に向かって成長する柱状晶の微細・脆弱化を図り、その上で電磁攪拌の旋回流でこの微細・脆弱な柱状晶を分断することにより、鋳片表層部にも粒径3mm以下の微細な等軸晶を生成させることに成功した。一方、比較例である試験番号2、6、15では鋳型内でのBiおよびSn添加を実施しなかったため鋳片表層部の分岐状柱状晶が粗大化し、比較例である試験番号3、7、16では等軸晶の核生成サイトとして有効なCe、La、Nd、およびPrを溶鋼中に含有させなかったため鋳片内部の等軸晶が粗大化し、さらに比較例である試験番号4、8、17ではCe、La、NdおよびPrの含有もなく、鋳型内でのBiおよびSn添加もなかったため、鋳片内部と表層部の何れにおいても等軸晶は粗大化した。   Molten steels having chemical components other than Bi and Sn in Table 1 were melted and injected into the tundish. According to the component values of Bi and Sn in Table 1, casting was performed while adding wires of Bi and Sn into the molten steel in the mold. The slab size is 250 mm thick × 1500 mm wide, and the casting speed is 1.3 m / min. Induction electromagnetic stirring was installed at the meniscus in the mold. During casting, the molten steel was stirred at 40 cm / s by flowing a current of 500 A and a frequency of 2 Hz through the electromagnetic stirring device. In some experiments (Examples 18, 19, and 20), the current of the electromagnetic stirrer was changed and the molten steel was stirred at 90 cm / s, 25 cm / s, and 105 cm / s. Table 1 shows the results of investigating the solidification structure of the slab obtained in this experiment. In test numbers 1, 5, 9-14, and 18-21, which are examples of the present invention, by containing at least one of Ce, La, Nd, and Pr in the molten steel, equiaxed nuclei Ce, La, Nd, Pr oxides and oxysulfides effective as production sites are finely dispersed in the molten steel, and electromagnetic stirring is added to this to take away the degree of superheat of the molten steel. In the following, fine equiaxed crystallization and Bi and Sn that preferentially reduce the solid-liquid interface energy in the mold are added preferentially, so that the columnar crystals that grow from the mold side toward the inside of the slab are refined and weakened. Then, by dividing the fine and fragile columnar crystals with a swirl flow of electromagnetic stirring, the inventors succeeded in generating fine equiaxed crystals with a particle size of 3 mm or less in the slab surface layer. On the other hand, in the test numbers 2, 6 and 15 which are comparative examples, Bi and Sn addition in the mold was not performed, so that the branched columnar crystals in the slab surface layer portion were coarsened, and test numbers 3 and 7 which were comparative examples. In No. 16, Ce, La, Nd, and Pr that are effective as nucleation sites for equiaxed crystals were not contained in the molten steel, so the equiaxed crystals inside the slab became coarse, and test numbers 4, 8, which are comparative examples. In No. 17, Ce, La, Nd, and Pr were not contained, and Bi and Sn were not added in the mold, so that the equiaxed crystal was coarsened both in the slab and in the surface layer portion.

Figure 2016083703
Figure 2016083703

Claims (5)

鋳型内メニスカス〜鋳型下10mの間に誘導電磁攪拌装置を有する連続鋳造装置を用いて、C:0.03〜0.20質量%、Si:0.08〜1.5質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.002質量%以上、N:0.0005〜0.01質量%、Nb:0.2質量%以下、V:0.2質量%以下、Mo:0.5質量%以下、酸可溶Al:0.03質量%以下、酸可溶Ti:0.1質量%未満、Ce、La、NdもしくはPrの内、少なくとも1種以上の合計:0.0003〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる溶鋼を鋳型内に注入し、該鋳型内溶鋼にBiおよびSnの内から1種以上を合計で0.0005〜0.01質量%になるように添加せしめ、該誘導電磁攪拌装置により水平面内で溶鋼を旋回させながら鋳造することを特徴とする連続鋳造方法。   Using a continuous casting apparatus having an induction electromagnetic stirring device between the meniscus in the mold and 10 m below the mold, C: 0.03 to 0.20 mass%, Si: 0.08 to 1.5 mass%, Mn: 0 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.002 mass% or more, N: 0.0005 to 0.01 mass%, Nb: 0.2 mass% or less, V: 0.2% by mass or less, Mo: 0.5% by mass or less, acid-soluble Al: 0.03% by mass or less, acid-soluble Ti: less than 0.1% by mass, among Ce, La, Nd or Pr, Total of at least one or more types: 0.0003 to 0.02% by mass, molten steel consisting of iron and unavoidable impurities is poured into the mold, and one kind of Bi and Sn is injected into the molten steel in the mold. The above was added to a total of 0.0005 to 0.01% by mass, and the induction electromagnetic stirring device Continuous casting wherein the casting while swirling the molten steel in Ri horizontal plane. BiおよびSnの内から1種以上を含有する金属ワイヤーを鋳型内溶鋼中に連続的に供給することを特徴とする請求項1記載の連続鋳造方法。   The continuous casting method according to claim 1, wherein a metal wire containing one or more of Bi and Sn is continuously fed into the molten steel in the mold. BiおよびSnの内から1種以上を含有するモールドフラックスを鋳型内溶鋼表面上に供給することを特徴とする請求項1記載の連続鋳造方法。   2. The continuous casting method according to claim 1, wherein a mold flux containing at least one of Bi and Sn is supplied onto the molten steel surface in the mold. 誘導電磁攪拌による溶鋼の旋回流速を25〜105cm/sとすることを特徴とする請求項1〜3のいずれか1項記載の連続鋳造方法。   The continuous casting method according to any one of claims 1 to 3, wherein a swirling flow velocity of the molten steel by induction electromagnetic stirring is set to 25 to 105 cm / s. 請求項4記載の連続鋳造方法により鋳片の表層から1/4厚、1/4厚から内部のそれぞれについて平均等軸晶粒径を3mm以下にしたことを特徴とする連続鋳造鋳片。   5. A continuous cast slab characterized in that the average equiaxed crystal grain size is 3 mm or less for each of the ¼ thickness from the surface layer of the slab and the ¼ thickness to the inside by the continuous casting method according to claim 4.
JP2015123751A 2014-10-27 2015-06-19 Continuous casting method for molten steel and continuous cast slab Active JP6500630B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014218297 2014-10-27
JP2014218297 2014-10-27

Publications (2)

Publication Number Publication Date
JP2016083703A true JP2016083703A (en) 2016-05-19
JP6500630B2 JP6500630B2 (en) 2019-04-17

Family

ID=55972017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123751A Active JP6500630B2 (en) 2014-10-27 2015-06-19 Continuous casting method for molten steel and continuous cast slab

Country Status (1)

Country Link
JP (1) JP6500630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210544A (en) * 2018-05-31 2019-12-12 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061598A (en) * 1998-08-21 2000-02-29 Nippon Steel Corp Method for continuously casting molten steel
JP2001269754A (en) * 2000-03-28 2001-10-02 Nippon Steel Corp Powder for continuous casting
JP2005177848A (en) * 2003-12-22 2005-07-07 Nippon Steel Corp Center defect reducing method of continuously cast steel slab
JP2011167698A (en) * 2010-02-16 2011-09-01 Sumitomo Metal Ind Ltd Continuously cast slab for high strength steel sheet, continuous casting method therefor, and steel sheet obtained from the cast slab

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061598A (en) * 1998-08-21 2000-02-29 Nippon Steel Corp Method for continuously casting molten steel
JP2001269754A (en) * 2000-03-28 2001-10-02 Nippon Steel Corp Powder for continuous casting
JP2005177848A (en) * 2003-12-22 2005-07-07 Nippon Steel Corp Center defect reducing method of continuously cast steel slab
JP2011167698A (en) * 2010-02-16 2011-09-01 Sumitomo Metal Ind Ltd Continuously cast slab for high strength steel sheet, continuous casting method therefor, and steel sheet obtained from the cast slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210544A (en) * 2018-05-31 2019-12-12 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP6500630B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
US7226493B2 (en) Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy
CN110184548B (en) Method for refining solidification structure of high manganese steel continuous casting billet
JP5589516B2 (en) Steel for thick plate
JP6455289B2 (en) Continuous casting method for molten steel
JP4561575B2 (en) Continuous casting method of low alloy steel and steel slab with suppressed austenite grain growth during reheating
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP6728934B2 (en) Continuous casting method for molten steel
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP2008280566A (en) High-strength steel material having precipitates finely dispersed therein, and method for continuously casting slab of high-strength steel material
JP4569458B2 (en) Continuous casting method of steel material with finely dispersed precipitates and slab for steel material
JP6500630B2 (en) Continuous casting method for molten steel and continuous cast slab
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP6728933B2 (en) Continuous casting method for molten steel
JP6488931B2 (en) Continuous casting method for molten steel
JPH01228643A (en) Method for uniformly and finely dispersing-precipitating mns in steel
US10465258B2 (en) Grain refinement in iron-based materials
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP2018193595A (en) Carbon steel cast slab and manufacturing method of carbon steel cast slab
Van der Eijk et al. Development of Grain Refiner Alloys for Steels
RU2535428C1 (en) Out-of-furnace steel treatment with calcium method
CN116673453A (en) Method for controlling nonmetallic inclusion liquid separation in continuous casting process
JP2005213583A (en) Steel having superior performance at welded joint, and manufacturing method therefor
JPH0367467B2 (en)
JPH0250164B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6500630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350