JP2016082934A - Expression promoters in pneumococci - Google Patents

Expression promoters in pneumococci Download PDF

Info

Publication number
JP2016082934A
JP2016082934A JP2014219149A JP2014219149A JP2016082934A JP 2016082934 A JP2016082934 A JP 2016082934A JP 2014219149 A JP2014219149 A JP 2014219149A JP 2014219149 A JP2014219149 A JP 2014219149A JP 2016082934 A JP2016082934 A JP 2016082934A
Authority
JP
Japan
Prior art keywords
pneumococci
mcherry
promoter
polynucleotide
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014219149A
Other languages
Japanese (ja)
Other versions
JP6399589B2 (en
Inventor
英賢 荻野
Hidetaka Ogino
英賢 荻野
明洋 長谷川
Akihiro Hasegawa
明洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2014219149A priority Critical patent/JP6399589B2/en
Publication of JP2016082934A publication Critical patent/JP2016082934A/en
Application granted granted Critical
Publication of JP6399589B2 publication Critical patent/JP6399589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide promoters for high level expression of a target gene in pneumococci on the background that although high level expression systems have been developed in common bacteria such as E. coli, such high level expression systems do not work in pneumococci having a basically different expression system.SOLUTION: A promoter comprises a polynucleotide (a) or (b), where (a) is a polynucleotide comprising a specified base sequence of 131 bp (SP); and (b) is a polynucleotide that hybridizes with the polynucleotide (a) under stringent conditions, which is capable of expressing a target gene linked to downstream in pneumococci.SELECTED DRAWING: Figure 4

Description

本発明は、肺炎球菌(Streptococcus pneumoniae)において下流に連結した目的遺伝子を発現しうるポリヌクレオチドからなるプロモーターに関する。   The present invention relates to a promoter comprising a polynucleotide capable of expressing a target gene linked downstream in Streptococcus pneumoniae.

肺炎は日本における死亡原因の9.9%を占め、がん、心疾患に次ぐ第3位の疾患である。そして、市中における肺炎原因菌としてもっとも頻度が高いのが肺炎球菌である。   Pneumonia accounts for 9.9% of causes of death in Japan and is the third largest disease after cancer and heart disease. And pneumococcus is the most frequent pneumonia causing bacteria in the city.

この肺炎球菌は通性嫌気性のグラム陽性双球菌である。肺炎球菌は様々な病原性因子(溶血毒、IgA分解酵素など)を持ち、特に莢膜による宿主免疫細胞(貪食細胞)からの回避及び補体が形成する膜侵襲複合体からの防御が、宿主定着(感染)に重要である。莢膜は単純構造のため抗原性が弱く濾胞B細胞によるT細胞依存性の抗体生産が行なわれず、親和性の高いIgG抗体産生B細胞が発現しない。代わりに、漿膜腔に局在するB1細胞や脾臓辺縁帯B細胞によるT細胞非依存性の抗体産生が行なわれ、親和性の低いIgM抗体による応急的な免疫防御機構を誘導する。IgM抗体が肺炎球菌莢膜に結合すると、補体系及び細胞性免疫を賦活化して肺炎球菌を駆除することができるが、本抗体産生機構においてはメモリーB細胞が作られないために長期の「免疫記憶」が起こらず、肺炎球菌による再感染の危険を常にはらんでいる。さらに、肺炎球菌の莢膜は判明しているだけでも90種類以上に及ぶため、一度肺炎球菌感染を起こしても、異なる血清型のものに感染する可能性がある。   This pneumococcus is a facultative anaerobic Gram-positive bacilli. Streptococcus pneumoniae has various virulence factors (hemolysin, IgA-degrading enzyme, etc.), and in particular, it is protected from the host immune cells (phagocytic cells) by the capsule and protected from the membrane attack complex formed by complement. Important for colonization (infection). Since the capsule has a simple structure, its antigenicity is weak and T cell-dependent antibody production by follicular B cells is not performed, and high affinity IgG antibody-producing B cells are not expressed. Instead, T1-independent antibody production is performed by B1 cells localized in the serosal cavity and splenic marginal zone B cells, and an immediate immune defense mechanism is induced by an IgM antibody having low affinity. When IgM antibody binds to the pneumococcal capsule, it can activate the complement system and cellular immunity to eliminate pneumococci. However, in this antibody production mechanism, since memory B cells are not produced, long-term "immunity" There is no “memory” and there is always a risk of reinfection with pneumococci. Furthermore, since the capsules of pneumococcus are known, there are over 90 types, so even if pneumoniae infection occurs once, there is a possibility of infection with different serotypes.

このように肺炎球菌は巧みな免疫回避機構により感染を成立させるため、免疫機能の衰えた高齢者や免疫機能が未発達な乳幼児においては特に危険な細菌である。さらに、近年、第一選択薬として用いられるβ−lactam系の抗生物質に耐性の肺炎球菌が報告されており、治療が難しくなってきている。現在、易感染者における効果的な感染予防のために、肺炎球菌の莢膜多糖を主成分とするワクチン及び莢膜多糖にアジュバントを付加したワクチンが開発されている。これらワクチンは海外での効果的な肺炎球菌感染予防実績を有し、我が国においても数年前に認可され、ワクチン接種が広まりつつある。   Thus, pneumococci establish infection by a skillful immune evasion mechanism, and are therefore particularly dangerous bacteria for elderly people with weakened immune functions and infants with undeveloped immune functions. Furthermore, in recent years, pneumococci resistant to β-lactam antibiotics used as first-line drugs have been reported, making it difficult to treat. Currently, vaccines based on capsular polysaccharides of pneumococcus and vaccines with adjuvants added to capsular polysaccharides have been developed for effective infection prevention in susceptible persons. These vaccines have a proven track record of effective prevention of pneumococcal infection overseas, and were approved in Japan several years ago, and vaccination is spreading.

肺炎球菌の病原性を理解するためには、肺炎球菌内で病原因子の遺伝子発現を調節し解析することが必要である。これまでに外来遺伝子を細胞内で発現させるためのプロモーターは、ヒトや大腸菌において、いくつか実用化されている。例えば、CMV−IEプロモーターは、ヒトに不顕性感染するサイトメガロウイルス由来のプロモーターであり、哺乳類細胞におけるタンパク質高発現のために使用される一般的なプロモーターである(非特許文献1参照)。細菌に関しては、多様な大腸菌株に対応可能なプロモーターとして、tacプロモーター(非特許文献2参照)が広く用いられている。tacプロモーターは、大腸菌由来のtrpプロモーターとlacプロモーターを組み合わせたプロモーターで、大腸菌に目的のタンパク質を発現させる際に有用である。しかし、肺炎球菌においては、CMV−IEプロモーターやtacプロモーターのような一般的な高発現プロモーターは実用化されていない。そのため、肺炎球菌の肺組織内での定着機構や宿主の免疫系を回避する機構の解析など、肺炎球菌の性状・機能解析がこれまで思うように進んでいないのが現状である。したがって、肺炎球菌内で標的分子を高発現できるような効率的な発現系の開発が求められていた。   In order to understand the pathogenicity of Streptococcus pneumoniae, it is necessary to regulate and analyze the gene expression of virulence factors in Streptococcus pneumoniae. So far, several promoters for expressing foreign genes in cells have been put into practical use in humans and E. coli. For example, the CMV-IE promoter is a promoter derived from cytomegalovirus that invisibly infects humans, and is a general promoter used for high protein expression in mammalian cells (see Non-Patent Document 1). Regarding bacteria, the tac promoter (see Non-Patent Document 2) is widely used as a promoter capable of dealing with various E. coli strains. The tac promoter is a promoter in which a trp promoter derived from E. coli and a lac promoter are combined, and is useful when a target protein is expressed in E. coli. However, in Streptococcus pneumoniae, general high expression promoters such as CMV-IE promoter and tac promoter have not been put into practical use. Therefore, the present situation is that progress has not been made in the analysis of the properties and functions of pneumococci such as the analysis of the mechanism of colonization of pneumococci in lung tissue and the mechanism of avoiding the host immune system. Therefore, there has been a demand for the development of an efficient expression system that can highly express the target molecule in pneumococci.

Schmidt EV, Christoph G, Zeller R, Leder P. Mol Cell Biol. (1990) 10(8): 4406-4411Schmidt EV, Christoph G, Zeller R, Leder P. Mol Cell Biol. (1990) 10 (8): 4406-4411 de Boer HA, Comstock LJ, Vasser M. Proc Natl Acad Sci U S A (1983) 80(1): 21-25de Boer HA, Comstock LJ, Vasser M. Proc Natl Acad Sci U S A (1983) 80 (1): 21-25

これまで大腸菌など一般的な細菌では高発現系の開発が進んでいるが、肺炎球菌は基本的な発現システムが異なるため、一般的な細菌の高発現系を肺炎球菌で利用しても、肺炎球菌で高発現させることができない。そこで、本発明の課題は、肺炎球菌内で目的遺伝子を高発現できるプロモーターを提供することにある。   Until now, the development of high expression systems for common bacteria such as Escherichia coli has progressed, but the basic expression system for pneumococci is different, so even if the high expression system for general bacteria is used with pneumococci, It cannot be highly expressed in cocci. Therefore, an object of the present invention is to provide a promoter capable of highly expressing a target gene in pneumococci.

発明者らは、肺炎球菌において活性の高いプロモーターを探索するなかで、肺炎球菌の病原性因子のひとつとして知られているPspAタンパク質のプロモーターを用いれば、肺炎球菌内で目的タンパク質を発現誘導できると考えた。このPspAタンパク質は肺炎球菌の病原性因子のひとつであり、細胞表面分子である。このPspAタンパク質を欠損させると感染宿主内で貪食されやすくなり病原性が低下することが知られており、肺炎球菌内での発現が確実なタンパク質である。   The inventors searched for a promoter highly active in Streptococcus pneumoniae. If the promoter of the PspA protein known as one of the virulence factors of Streptococcus pneumoniae is used, expression of the target protein can be induced in Streptococcus pneumoniae. Thought. This PspA protein is one of the virulence factors of pneumococci and is a cell surface molecule. It is known that when this PspA protein is deficient, it is easily phagocytosed in an infected host and its pathogenicity is reduced, and is a protein that is surely expressed in pneumococci.

そこで、肺炎球菌GTC261株のクロモソームをテンプレートとしてPspAタンパク質のプロモーター部位(配列番号1)をPCRで増幅し、さらに、pmCherryプラスミド(クロンテック社製)をテンプレートとしてmCherryをコードする遺伝子をPCRで増幅し、これらのPCR産物を利用して図1に示す組換え大腸菌・肺炎球菌シャトルベクターpLS5-HSG398-PpspA-mCherry(PpspA-mCherry)を作製した。さらに、かかる組換え大腸菌・肺炎球菌シャトルベクターを用いて大腸菌JM109株を形質転換した。その結果、赤色蛍光を発する複数の大腸菌JM109株が得られた。次に、肺炎球菌における赤色蛍光タンパク質mCherryの発現を確認するため、赤色蛍光を発した大腸菌JM109株から発現プラスミドを抽出して肺炎球菌を形質転換したが、図2に示すように、lacプロモーターの下流にmCherryを連結した発現プラスミド(lac_promoter-mCherry:作製方法は後述)を肺炎球菌に導入した場合と同様、赤色蛍光を強く発する肺炎球菌は得られなかった。この結果から、肺炎球菌で目的分子の発現誘導を試みる場合、理論的に可能であると考えられるプロモーターを用いても効率のよい発現を誘導することが難しいことが明らかとなった。そのため、肺炎球菌内で目的遺伝子を高発現させるためには、新規のプロモーターの発見が必要であると考え、肺炎球菌のクロモソームを制限酵素で部分切断してスクリーニングを行ったところ、得られた膨大な断片の中から肺炎球菌内で目的遺伝子を高発現させることが可能な配列を見いだし、本発明を完成した。   Therefore, the PspA protein promoter site (SEQ ID NO: 1) was amplified by PCR using the chromosome of Streptococcus pneumoniae GTC261 strain as a template, and the gene encoding mCherry was amplified by PCR using the pmCherry plasmid (Clontech) as a template. Using these PCR products, a recombinant E. coli / pneumococcal shuttle vector pLS5-HSG398-PpspA-mCherry (PpspA-mCherry) shown in FIG. 1 was prepared. Furthermore, Escherichia coli JM109 strain was transformed using the recombinant Escherichia coli / pneumococcal shuttle vector. As a result, a plurality of E. coli JM109 strains emitting red fluorescence were obtained. Next, in order to confirm the expression of red fluorescent protein mCherry in Streptococcus pneumoniae, an expression plasmid was extracted from Escherichia coli JM109 strain that emitted red fluorescence and transformed into Streptococcus pneumoniae. As shown in FIG. As in the case of introducing an expression plasmid (lac_promoter-mCherry: preparation method described later) ligated with mCherry downstream into pneumococci, pneumococci that strongly emit red fluorescence were not obtained. From this result, it was revealed that when trying to induce expression of a target molecule in Streptococcus pneumoniae, it is difficult to induce efficient expression even using a promoter that is considered to be theoretically possible. Therefore, in order to achieve high expression of the target gene in Streptococcus pneumoniae, we thought that it was necessary to discover a new promoter, and screened by partially cleaving the pneumococcal chromosome with restriction enzymes. From these fragments, a sequence capable of highly expressing a target gene in pneumococci was found, and the present invention was completed.

すなわち、本発明は、以下に示すとおりのものである。
(1)(a)配列番号2に示す塩基配列を含有するポリヌクレオチド;(b)配列番号2に示す塩基配列を含有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、肺炎球菌において下流に連結した目的遺伝子を発現しうるポリヌクレオチド;の(a)又は(b)に示すポリヌクレオチドからなるプロモーター。
(2)配列番号2に示す塩基配列を含有するポリヌクレオチドが、配列番号3に示す塩基配列を含有するポリヌクレオチドであることを特徴とする上記(1)記載のプロモーター。
(3)上記(1)又は(2)記載のプロモーターを含む組換えベクター。
(4)上記(3)記載の組換えベクターが導入された肺炎球菌の形質転換体。
That is, the present invention is as follows.
(1) (a) a polynucleotide containing the base sequence shown in SEQ ID NO: 2; (b) hybridizing under stringent conditions with a polynucleotide containing the base sequence shown in SEQ ID NO: 2 and downstream in pneumococci A promoter comprising the polynucleotide shown in (a) or (b) of a polynucleotide capable of expressing a linked target gene.
(2) The promoter according to (1) above, wherein the polynucleotide containing the base sequence shown in SEQ ID NO: 2 is a polynucleotide containing the base sequence shown in SEQ ID NO: 3.
(3) A recombinant vector comprising the promoter according to (1) or (2) above.
(4) A transformant of Streptococcus pneumoniae into which the recombinant vector according to (3) is introduced.

本発明のプロモーターは、肺炎球菌内で下流に連結した目的遺伝子を高発現できるという効果を奏する。かかるプロモーターを用いることで、目的遺伝子がコードするタンパク質の解析、肺炎球菌の肺組織内での定着機構や宿主の免疫系を回避する機構の解析など、肺炎球菌の性状・機能解析を行うことが可能となる。   The promoter of the present invention has an effect that the target gene linked downstream in pneumococci can be highly expressed. By using such a promoter, the properties and functions of pneumococci can be analyzed, such as analysis of the protein encoded by the target gene, analysis of the mechanism of pneumococcal colonization in the lung tissue and the mechanism to avoid the host immune system, etc. It becomes possible.

PspAタンパク質のプロモーター部位及び赤色蛍光タンパク質mCherryをコードする配列を含む大腸菌・肺炎球菌シャトルベクターpLS5-HSG398-PpspA-mCherry(PpspA-mCherry)のマップを示す。The map of the Escherichia coli pneumococcal shuttle vector pLS5-HSG398-PpspA-mCherry (PpspA-mCherry) containing the promoter region of the PspA protein and the sequence encoding the red fluorescent protein mCherry is shown. lacプロモーター又はPspAプロモーターの下流にmCherryを連結した発現プラスミドを肺炎球菌に導入して培養し、蛍光顕微鏡で観察した結果を示す図である。(a)がlac_promoter-mCherry、(b)がPpspA-mCherryを導入した場合であり、それぞれ左が微分干渉像、右が蛍光像である。It is a figure which shows the result of having introduce | transduced into pneumococcus and culture | cultivating the expression plasmid which connected mCherry downstream to the lac promoter or the PspA promoter, and observed with the fluorescence microscope. (A) is a case where lac_promoter-mCherry is introduced, and (b) is a case where PpspA-mCherry is introduced, the left is a differential interference image and the right is a fluorescence image. (a)pLS21、(b)pHSG398、及び(c)pLS5-HSG398 rev-mCherry revのマップを示す。The maps of (a) pLS21, (b) pHSG398, and (c) pLS5-HSG398 rev-mCherry rev are shown. 断片S-mCherryに挿入されたクロモソーム断片の配列を示す図である。It is a figure which shows the arrangement | sequence of the chromosome fragment inserted in fragment | piece S-mCherry. pLS5-HSG398 revのマップを示す。The map of pLS5-HSG398 rev is shown. ベクターpLS5-HSG398 revにlacプロモーター及びmCherry遺伝子を導入したpLS5-HSG398 rev-Plac-mCherry(lac_promoter-mCherry)のマップを示す。A map of pLS5-HSG398 rev-Plac-mCherry (lac_promoter-mCherry) in which the lac promoter and mCherry gene are introduced into the vector pLS5-HSG398 rev is shown. 実施例1で得られた断片S-mCherry、及びコントロールとしてlac_promoter-mCherryを肺炎球菌に導入し、LBG平板培地及びTSBY平板培地で培養して蛍光顕微鏡で観察した結果を示す図である。It is a figure which shows the result of having introduce | transduced the fragment | piece S-mCherry obtained in Example 1, and lac_promoter-mCherry as a control into a pneumococcus, culture | cultivating with a LBG flat plate culture medium and a TSBY flat plate culture medium, and observing with the fluorescence microscope. pLS5-HSG398-rev-Sp-mCherry(Sp-mCherry)のマップを示す。The map of pLS5-HSG398-rev-Sp-mCherry (Sp-mCherry) is shown. 断片Sのうち、図4に示すB領域の上流の非コード領域の配列(Sp)を含むプラスミド(Sp-mCherry)を肺炎球菌に導入し、TSBY平板培地で培養して蛍光顕微鏡で観察した結果を示す図である。Of the fragment S, a plasmid (Sp-mCherry) containing a non-coding region sequence (Sp) upstream of the B region shown in FIG. 4 was introduced into pneumococci, cultured in a TSBY plate medium, and observed with a fluorescence microscope. FIG.

本発明のプロモーターとしては、(a)配列番号2に示す塩基配列を含有するポリヌクレオチド;(b)配列番号2に示す塩基配列を含有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、肺炎球菌において下流に連結した目的遺伝子を発現しうるポリヌクレオチド;の(a)又は(b)に示すポリヌクレオチドからなるプロモーターであれば特に制限されず、かかる肺炎球菌は肺炎双球菌や肺炎レンサ球菌とも呼ばれ、肺炎の原因となるグラム陽性の双球菌である。   As the promoter of the present invention, (a) a polynucleotide containing the base sequence shown in SEQ ID NO: 2; (b) a polynucleotide containing the base sequence shown in SEQ ID NO: 2 is hybridized under stringent conditions, and pneumonia A polynucleotide that can express a target gene downstream linked to a cocci is not particularly limited as long as it is a promoter comprising the polynucleotide shown in (a) or (b), and such pneumococci are both pneumococcus and pneumococcus pneumoniae. It is called a Gram-positive bacilli that causes pneumonia.

本発明において、プロモーターとは、目的遺伝子配列の上流に配置され、RNAポリメラーゼが結合することにより、下流に配置された遺伝子の発現の制御に関わる領域の塩基配列を意味し、エンハンサー領域やリボソーム結合領域の塩基配列を含んでもよい。   In the present invention, a promoter means a base sequence of a region that is arranged upstream of a target gene sequence and is associated with the control of expression of a gene arranged downstream by binding of RNA polymerase, and is an enhancer region or ribosome binding. The base sequence of the region may be included.

本発明における配列番号2に示す塩基配列は肺炎球菌のクロモソームを制限酵素Sau3AIで処理して得られた断片に含まれていた配列であり、配列番号2に示す塩基配列を含有するポリヌクレオチドとしては、配列番号2に示す塩基配列を含有している限り特に制限されず、配列番号3に示す塩基配列を含有するポリヌクレオチドを挙げることができ、下流に連結した目的遺伝子を発現しうるかぎり、上流又は下流に構造遺伝子の全部又は一部や、マーカー遺伝子や、micro RNAなどの他の塩基配列を含んでいてもよく、また、配列番号2に示す塩基配列からなるポリヌクレオチドや、配列番号3に示す塩基配列からなるポリヌクレオチドでもよい。   The base sequence shown in SEQ ID NO: 2 in the present invention is a sequence contained in a fragment obtained by treating a pneumococcal chromosome with the restriction enzyme Sau3AI. As a polynucleotide containing the base sequence shown in SEQ ID NO: 2, As long as it contains the base sequence shown in SEQ ID NO: 2, it is not particularly limited, and examples thereof include a polynucleotide containing the base sequence shown in SEQ ID NO: 3, and as long as it can express the target gene linked downstream, Alternatively, it may contain all or part of the structural gene downstream, a marker gene, other base sequences such as microRNA, a polynucleotide consisting of the base sequence shown in SEQ ID NO: 2, It may be a polynucleotide having the base sequence shown.

本発明において、配列番号2に示す塩基配列を含有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、肺炎球菌において下流に連結した遺伝子を発現しうるポリヌクレオチドにおける「ストリンジェントな条件下」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、より具体的には、70%以上、より好ましくは85%以上、さらに好ましくは95%以上の相同性を有するポリヌクレオチド同士がハイブリダイズし、それより相同性が低いポリヌクレオチド同士がハイブリダイズしない条件であり、例として、通常のサザンハイブリダイゼーションの洗浄条件である65℃、1×SSC、0.1%SDS、又は0.1×SSC、0.1%SDSに相当する塩濃度でハイブリダイズする条件を挙げることができる。   In the present invention, “stringent conditions” in a polynucleotide that can hybridize with a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 2 under stringent conditions and express a gene linked downstream in pneumococci Means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. More specifically, a homology of 70% or more, more preferably 85% or more, and still more preferably 95% or more. This is a condition in which polynucleotides having the same hybridize and polynucleotides having lower homology do not hybridize to each other, for example, 65 ° C., 1 × SSC, 0.1%, which is a washing condition for normal Southern hybridization SDS, or 0.1 × SSC, high at a salt concentration equivalent to 0.1% SDS The conditions for bridging can be mentioned.

また、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドとは、DNA又はRNAなどの核酸をプローブとして使用し、コロニー・ハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法などを用いることにより得られるポリヌクレオチドを意味し、具体的には、コロニーあるいはプラーク由来のポリヌクレオチドの断片を固定化したフィルターを用いて、0.7〜1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1〜2倍程度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウム)を用い、65℃条件下でフィルターを洗浄することにより同定できるポリヌクレオチドを挙げることができる。ハイブリダイゼーションは、例えば、モレキュラー・クローニング、ア・ラボラトリーマニュアル(Molecular cloning, A laboratory manual)、第3版、第6章に記載の方法で行うことができる。   A polynucleotide that hybridizes under stringent conditions uses a nucleic acid such as DNA or RNA as a probe, and a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. This refers to the resulting polynucleotide. Specifically, hybridization is performed at 65 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which colony or plaque-derived polynucleotide fragments are immobilized. After that, using a 0.1 to 2-fold SSC solution (the composition of a 1-fold concentration SSC solution is 150 mM sodium chloride, 15 mM sodium citrate) and washing the filter under the condition of 65 ° C. List nucleotides Door can be. Hybridization can be performed, for example, by the method described in Molecular Cloning, A laboratory manual, 3rd edition, Chapter 6.

上記肺炎球菌において、下流に連結した目的遺伝子を発現しうるポリヌクレオチドとしては、肺炎球菌において下流に作動可能に連結した目的遺伝子を発現しうる限り特に制限されないが、たとえばlacプロモーターを用いた場合と比較して、目的遺伝子を2倍以上、好ましくは3倍以上、より好ましくは4倍以上、さらに好ましくは5倍以上発現させるポリヌクレオチドを挙げることができる。   In the above pneumococci, the polynucleotide capable of expressing the target gene linked downstream is not particularly limited as long as it can express the target gene operably linked downstream in pneumococci, but, for example, when using the lac promoter In comparison, a polynucleotide that expresses the target gene 2 times or more, preferably 3 times or more, more preferably 4 times or more, and further preferably 5 times or more can be mentioned.

目的遺伝子の発現は、たとえば、プロモーターの下流に、mCherry、GFPなどの蛍光遺伝子を作動可能に連結した組換えポリヌクレオチドを肺炎球菌に導入し、得られた形質転換体を、終濃度1.5%寒天末、5%脱繊維羊血液を加えたTSBY平板培地に塗布して37℃、5%CO2の環境で一晩培養したときの蛍光強度を測定・解析することによって求めることができる。また、蛍光強度の測定・解析は、画像統合ソフトNIS-elements(ニコン社製)などの市販のソフトを用いることによって行うことができる。 The expression of the target gene can be achieved, for example, by introducing a recombinant polynucleotide operably linked to a fluorescent gene such as mCherry or GFP downstream of the promoter into pneumococci, and transforming the resulting transformant to a final concentration of 1.5. It can be determined by measuring and analyzing the fluorescence intensity when applied to a TSBY plate medium supplemented with 5% agar powder and 5% defibrinated sheep blood and cultured overnight at 37 ° C. and 5% CO 2 . The fluorescence intensity can be measured and analyzed by using commercially available software such as image integration software NIS-elements (manufactured by Nikon).

上記目的遺伝子としては、用途に合わせて全長の遺伝子でも、その一部でもよい。また、その由来はいかなる生物から単離された遺伝子でも、遺伝子工学的に作製された人工的な遺伝子でもよい。   The target gene may be a full-length gene or a part thereof depending on the use. The origin may be a gene isolated from any organism or an artificial gene produced by genetic engineering.

本発明の組換えベクターに用いるベクターとしては、本発明のプロモーターを含み、該プロモーターの下流に作動可能に組み込んだ目的遺伝子を発現できるものであれば特に制限されず、直鎖状でも環状でもよく、自立複製可能であるものや、染色体中へ組込み可能であるものが好ましく、また、ターミネーターなどの制御配列や選択マーカーを含有しているものを用いてもよい。   The vector used for the recombinant vector of the present invention is not particularly limited as long as it contains the promoter of the present invention and can express the target gene operably incorporated downstream of the promoter, and may be linear or cyclic. Those that are capable of autonomous replication and those that can be integrated into a chromosome are preferred, and those that contain a regulatory sequence such as a terminator or a selection marker may be used.

本発明の組換えベクターが導入された肺炎球菌としては、本発明の組換えベクターが導入された肺炎球菌の形質転換体を意味する。本発明の組換えベクターの肺炎球菌への導入方法としては特に制限されず、酢酸リチウム法、リポフェクション法、リン酸カルシウム共沈殿法、リポソーム法、DEAEデキストラン法などの化学的方法;ウイルスベクターを利用する方法、細胞融合法などの生物学的方法;エレクトロポレーション法、マイクロインジェクション法、遺伝子銃法、超音波遺伝子導入法などの物理的方法;などの公知の方法を例示することができる。   The pneumococci introduced with the recombinant vector of the present invention means a transformant of pneumococci introduced with the recombinant vector of the present invention. The method for introducing the recombinant vector of the present invention into pneumococci is not particularly limited, and is a chemical method such as lithium acetate method, lipofection method, calcium phosphate coprecipitation method, liposome method, DEAE dextran method; And known methods such as biological methods such as cell fusion methods; physical methods such as electroporation methods, microinjection methods, gene gun methods, and ultrasonic gene transfer methods.

本発明の組換えベクターを含む肺炎球菌の形質転換体を培養することで、目的遺伝子がコードするタンパク質を効率よく生産することができる。培養方法としては肺炎球菌の培養に用いられる通常の方法に従って行うことができる。例えば、本発明の組換えベクターが導入された肺炎球菌を37℃前後、pH7前後、5%CO2の環境で培養することができる。目的遺伝子がコードするタンパク質は培養液又は破砕した肺炎球菌から回収することができ、かかる回収する方法としては、公知のタンパク質の回収方法、例えば、遠心分離、次いで、ゲルろ過、イオン交換、アフィニティなどのクロマトグラフィーにより回収する方法を挙げることができる。 By culturing a pneumococcal transformant containing the recombinant vector of the present invention, the protein encoded by the target gene can be efficiently produced. As a culture method, it can be carried out according to a usual method used for culture of pneumococci. For example, pneumococci introduced with the recombinant vector of the present invention can be cultured in an environment of around 37 ° C., pH around 7, and 5% CO 2 . The protein encoded by the gene of interest can be recovered from the culture solution or disrupted pneumococci. Examples of such recovery methods include known protein recovery methods such as centrifugation, then gel filtration, ion exchange, affinity, etc. The method of collect | recovering by chromatography of these can be mentioned.

[mCheryを発現しうる肺炎球菌の作製]
肺炎球菌において発現能力が高いプロモーターを探索するために、肺炎球菌のクロモソームを制限酵素で部分切断し、mCherryをコードする遺伝子を含む大腸菌・肺炎球菌シャトルベクターに挿入して発現プラスミドを作製し、かかる発現プラスミドを大腸菌及び肺炎球菌に導入してmCherryの発現を調べた。
[Production of Streptococcus pneumoniae capable of expressing mCherry]
In order to search for a promoter with high expression ability in pneumococci, the pneumococcal chromosome is partially cleaved with a restriction enzyme and inserted into an E. coli / pneumococcal shuttle vector containing a gene encoding mCherry to produce an expression plasmid. The expression plasmid was introduced into Escherichia coli and pneumococci to examine the expression of mCherry.

(大腸菌・肺炎球菌シャトルベクター)
大腸菌はJM109株を用い、肺炎球菌はGTC261株を用いた。大腸菌・肺炎球菌シャトルベクターはpLS5-HSG398 rev-mCherry revを用いた。上記シャトルベクターは、pLS21(ATCC67492)のEcoRI断片とpHSG398のEcoRI断片を結合し、HindIII切断部位にmCherry遺伝子(Z2522N:pmCherry由来、タカラバイオ社製)を挿入して作製した。かかるシャトルベクターは、大腸菌の複製開始点(origin of replication)、肺炎球菌の複製開始領域(repA/B/D)をもつ。さらに、クロラムフェニコール耐性遺伝子、テトラサイクリン耐性遺伝子、サンゴ由来の赤色蛍光タンパク質遺伝子mCherryを含んでいる。pLS21、pHSG398及びpLS5-HSG398 rev-mCherry revのマップを図3に示す。
(E. coli / pneumococcal shuttle vector)
E. coli strain JM109 was used, and S. pneumoniae strain GTC261 was used. PLS5-HSG398 rev-mCherry rev was used as the E. coli / pneumococcal shuttle vector. The shuttle vector was prepared by binding the EcoRI fragment of pLS21 (ATCC67492) and the EcoRI fragment of pHSG398 and inserting the mCherry gene (Z2522N: pmCherry origin, manufactured by Takara Bio Inc.) into the HindIII cleavage site. Such a shuttle vector has an origin of replication of E. coli and a replication start region of pneumococci (repA / B / D). Further, it contains a chloramphenicol resistance gene, a tetracycline resistance gene, and a coral-derived red fluorescent protein gene mCherry. A map of pLS21, pHSG398 and pLS5-HSG398 rev-mCherry rev is shown in FIG.

(発現プラスミドの作製)
上記シャトルベクターpLS5-HSG398 rev-mCherry rev 50ngに、制限酵素BamHI(15U/μl)0.5μlとCIP(10−30U/μl)0.125μlを加えて30℃で60分間反応させた(反応系50μl)。また、肺炎球菌GTC261株のクロモソーム500ngに制限酵素Sau3AI(10U/μl)を128倍に希釈したものを1μl加え、37℃で60分間反応させた(反応系50μl)。反応後に酵素の失活処理を行い、シャトルベクターの反応液と肺炎球菌クロモソームの反応液を混合してエタノール沈殿処理を行った。濃縮及び乾燥させた上記反応液混合物にT4 DNA Ligase(350U/μl)を1μl添加して16℃で一晩反応させて(反応系10μl)、発現プラスミド(肺炎球菌クロモソーム断片ライブラリー)を作製した。
(Preparation of expression plasmid)
Restriction enzyme BamHI (15 U / μl) 0.5 μl and CIP (10-30 U / μl) 0.125 μl were added to the shuttle vector pLS5-HSG398 rev-mCherry rev 50 ng and reacted at 30 ° C. for 60 minutes (reaction system). 50 μl). Further, 1 μl of a 128-fold diluted restriction enzyme Sau3AI (10 U / μl) was added to 500 ng of chromosome of Streptococcus pneumoniae GTC261 strain, and reacted at 37 ° C. for 60 minutes (reaction system 50 μl). After the reaction, the enzyme was inactivated, and the shuttle vector reaction solution and the pneumococcal chromosome reaction solution were mixed and subjected to ethanol precipitation. 1 μl of T4 DNA ligase (350 U / μl) was added to the concentrated and dried reaction mixture and reacted overnight at 16 ° C. (reaction system 10 μl) to prepare an expression plasmid (Pneumococcal chromosome fragment library). .

(大腸菌への発現プラスミドの導入)
井上・野島法(Inoue H, Nojima H, Okayama H. Gene(1990) 96(1):23-28)により作製した大腸菌JM109株コンピテントセル100μlを、上述で作製した、ライゲーション処理後の発現プラスミド溶液に加え、氷中に30分間静置した。その後、42℃の環境に45秒間静置した。5分間氷中に置いた後、LBG液体培地(終濃度2% LB培地、終濃度0.1% glucose)を1ml加えて37℃で1時間静置し、テトラサイクリン(終濃度20μg/ml)を含むLBG平板培地(LBG液体培地に終濃度1.5%寒天末を添加)に全量を塗布し、30℃で二晩培養した。
(Introduction of expression plasmid into E. coli)
Expression plasmid after ligation treatment of 100 μl of E. coli JM109 strain competent cell prepared by Inoue H, Nojima H, Okayama H. Gene (1990) 96 (1): 23-28) In addition to the solution, it was left in ice for 30 minutes. Then, it left still for 45 seconds in 42 degreeC environment. After placing on ice for 5 minutes, 1 ml of LBG liquid medium (final concentration 2% LB medium, final concentration 0.1% glucose) was added and allowed to stand at 37 ° C. for 1 hour, and tetracycline (final concentration 20 μg / ml) was added. The whole amount was applied to the containing LBG plate medium (final concentration of 1.5% agar powder was added to the LBG liquid medium) and cultured at 30 ° C. overnight.

(発現プラスミドの抽出)
適度な大きさになったコロニーを蛍光顕微鏡で観察し、赤色蛍光を発した40個のコロニーを、それぞれ各々テトラサイクリン(終濃度20μg/ml)を含むLBG液体培地5mlに植え継いで30℃で一晩培養した。吸光度計を用いて濁度が1を超えていることを確認した後、一晩培養液を遠心し集菌してから、QIAprep(登録商標) Spin Miniprep Kit(Qiagen社製)を用いて、mCherryを発現した大腸菌JM109由来の発現プラスミド(以下、「JM109由来mCherry発現プラスミド」ともいう)を抽出し、40種類の発現プラスミドを得た。
(Extraction of expression plasmid)
The colonies having an appropriate size were observed with a fluorescence microscope, and 40 colonies that emitted red fluorescence were each inoculated into 5 ml of LBG liquid medium containing tetracycline (final concentration 20 μg / ml). Cultured overnight. After confirming that the turbidity exceeds 1 using an absorptiometer, the culture broth was collected overnight by centrifugation and then collected using the QIAprep (registered trademark) Spin Miniprep Kit (manufactured by Qiagen). Escherichia coli JM109-derived expression plasmid (hereinafter also referred to as “JM109-derived mCherry expression plasmid”) was extracted to obtain 40 types of expression plasmids.

(肺炎球菌へのJM109由来mCherry発現プラスミドの導入)
肺炎球菌におけるmCherryの発現を確認するため、肺炎球菌へ40種類のJM109由来mCherry発現プラスミドをそれぞれ導入した。まず、対数増殖期にある肺炎球菌(GTC261株)1mlを、HCl(終濃度10mM)とグリシン(終濃度20mM)を加えたTSBY液体培地(終濃度3% Soybean−Casein Digest Broth、終濃度0.5% Yeast extract)100mlに移して37℃で3時間培養した。培養液は吸光度計を用いて濁度0.1程度まで肺炎球菌が増殖したことを確認した。培養液にNaOH(終濃度10mM)を加えて中和した後、4℃、7000rpm、5分間遠心した。菌体をTB(Transfer Buffer、終濃度4.88%glucose、終濃度10mM MgCl2、pH6.5)で3回洗い、TB800μlに懸濁した。このTB懸濁菌液200μlに上記抽出した40種類のJM109由来mCherry発現プラスミド75−225ngをそれぞれ添加したものをエレクトロポレーション用のキュベット(0.2cmギャップ)に注ぎ、MicroPulser(Bio-Rad社製)により2.9kVの電流を3.70〜3.90ms流した。次にキュベット内の菌液に1mlのTSBY液体培地を加えて37℃で1時間培養した。この培養液を250μl分取し、新しいTSBY液体培地750μlに加え、37℃で2時間培養した。その後、培養液を全量が各1mlとなるように1/10と1/1000濃度に希釈し、TSBY平板培地(TSBY培地に終濃度1.5%寒天末、5%脱繊維羊血液、終濃度0.5μg/mlテトラサイクリン添加)に全量塗布した。塗布した肺炎球菌は37℃、5%CO2の環境で一晩培養した。適度な大きさになったそれぞれのコロニーを蛍光顕微鏡で観察し、赤色蛍光を発しているコロニー、すなわち肺炎球菌でmCherryを強く発現している株(GTC261−S株)が得られた。なお、GTC261−S株に導入したJM109由来mCherry発現プラスミドを、以後「断片S-mCherry」ともいう。
(Introduction of JM109-derived mCherry expression plasmid into pneumococci)
In order to confirm the expression of mCherry in Streptococcus pneumoniae, 40 types of JM109-derived mCherry expression plasmids were each introduced into Streptococcus pneumoniae. First, TSBY liquid medium (final concentration 3% Soybean-Casein Digest Broth, final concentration 0. 1) added with HCl (final concentration 10 mM) and glycine (final concentration 20 mM) in 1 ml of pneumococci in the logarithmic growth phase (GTC261 strain). 5% Yeast extract) was transferred to 100 ml and cultured at 37 ° C. for 3 hours. The culture broth was confirmed to have grown pneumococci to a turbidity of about 0.1 using an absorptiometer. The culture solution was neutralized with NaOH (final concentration 10 mM), and then centrifuged at 4 ° C., 7000 rpm for 5 minutes. The cells were washed 3 times with TB (Transfer Buffer, final concentration 4.88% glucose, final concentration 10 mM MgCl 2 , pH 6.5) and suspended in 800 μl of TB. A mixture of 40 μl of the extracted JM109-derived mCherry expression plasmid 75-225 ng was added to 200 μl of this TB suspension bacterial solution, and poured into a cuvette for electroporation (0.2 cm gap). MicroPulser (manufactured by Bio-Rad) ), A current of 2.9 kV was passed for 3.70 to 3.90 ms. Next, 1 ml of TSBY liquid medium was added to the bacterial solution in the cuvette and cultured at 37 ° C. for 1 hour. 250 μl of this culture solution was collected, added to 750 μl of fresh TSBY liquid medium, and cultured at 37 ° C. for 2 hours. Thereafter, the culture solution is diluted to 1/10 and 1/1000 concentration so that the total volume is 1 ml each, and TSBY plate medium (final concentration 1.5% agar powder, 5% defibrinated sheep blood, final concentration in TSBY medium) The total amount was applied to 0.5 μg / ml tetracycline added). The applied pneumococci were cultured overnight in an environment of 37 ° C. and 5% CO 2 . Each colony having an appropriate size was observed with a fluorescence microscope, and a colony emitting red fluorescence, that is, a strain (GTC261-S strain) that strongly expressed mCherry in Streptococcus pneumoniae was obtained. The JM109-derived mCherry expression plasmid introduced into the GTC261-S strain is hereinafter also referred to as “fragment S-mCherry”.

[クロモソーム断片のシークエンス解析]
断片S-mCherryに挿入されたクロモソーム断片を含む領域をPCRで増幅し、シークエンス解析を行った。
[Sequence analysis of chromosome fragments]
A region containing the chromosomal fragment inserted into the fragment S-mCherry was amplified by PCR, and sequence analysis was performed.

(PCR法)
上記「発現プラスミドの抽出」で得た断片S-mCherry 200ngにつきPrimeSTAR HS DNA Polymerase(2.5U/μl)0.5μl、5×PrimeSTAR Buffer10μl、dNTP Mixture(2.5mM each)4μl、配列番号4に示すプライマーseq Fと配列番号5に示すプライマーseq R(10pmol/μl)各1μlを加えて、50μl系で反応を行った。アニーリング、伸長時の温度と反応時間は各々適切なものを選択した。PCR反応後のDNAは、精製、濃度測定を行い、シークエンス解析に使用した。
(PCR method)
For 200 ng of the fragment S-mCherry obtained in the above “extraction of expression plasmid”, PrimeSTAR HS DNA Polymerase (2.5 U / μl) 0.5 μl, 5 × PrimeSTAR Buffer 10 μl, dNTP Mixture (2.5 mMeach) 4 μl, SEQ ID NO: 4 The primer seq F shown and the primer seq R shown in SEQ ID NO: 5 (10 μmol / μl) were added in an amount of 1 μl, and the reaction was carried out in a 50 μl system. Appropriate annealing temperature and elongation temperature and reaction time were selected. The DNA after the PCR reaction was purified, measured for concentration, and used for sequence analysis.

(シークエンス解析)
上述で得られたPCR反応後のDNA、すなわち断片S-mCherryに挿入されたクロモソーム断片とmCherry遺伝子の一部を含む範囲の配列をシークエンス解析した。すでに塩基配列が解析されたゲノムから相同性の高い配列を探すため、解析で得られた配列を、BLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome)で相同性検索した。
(Sequence analysis)
Sequence analysis was performed on the DNA obtained after the PCR reaction, that is, the sequence in the range including the chromosomal fragment inserted into the fragment S-mCherry and a part of the mCherry gene. In order to search a highly homologous sequence from a genome whose base sequence has already been analyzed, the sequence obtained by the analysis is expressed by BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE= BlastSearch & LINK_LOC = blasthome).

(シークエンス解析結果)
シークエンス解析の結果、断片S-mCherryに挿入されたクロモソーム断片の配列は、配列番号3に示す塩基配列(図4)であることが明らかとなった。かかる結果より、配列番号3に示す塩基配列は肺炎球菌において目的遺伝子を発現しうるポリヌクレオチドであることが明らかとなった。なお、以下、配列番号3に示す塩基配列を、以後「断片S」ともいう。また、BLASTによる相同検索の結果、配列番号3に示す塩基配列のうち、1〜453番目の塩基配列のA領域はUvrABCシステムタンパク質A(UvrABC system protein A)、585〜818番目の塩基配列のB領域は推定トランスポーター(putative transporter)、958〜1530番目の塩基配列のC領域はCorA様Mg2+トランスポータータンパク質(CorA-like Mg2+ transporter protein)、1542〜1995番目の塩基のD領域は推定膜タンパク質(putative membrane protein:S protein)をコードしていることが明らかとなった。
(Sequence analysis result)
As a result of sequence analysis, it was revealed that the sequence of the chromosomal fragment inserted into the fragment S-mCherry is the base sequence shown in SEQ ID NO: 3 (FIG. 4). From these results, it was revealed that the base sequence shown in SEQ ID NO: 3 is a polynucleotide capable of expressing the target gene in pneumococci. Hereinafter, the base sequence shown in SEQ ID NO: 3 is also referred to as “fragment S” hereinafter. As a result of homologous search by BLAST, the A region of the 1st to 453rd base sequence in the base sequence shown in SEQ ID NO: 3 is UvrABC system protein A, and B of the 585th to 818th base sequence. The region is a putative transporter, the C region of the 958th to 1530th base sequences is a CorA-like Mg 2+ transporter protein, and the D region of the 1542th to 1995th bases is a putative membrane. It was revealed that it encodes a protein (putative membrane protein: S protein).

[断片Sを含むプラスミドで形質転換した肺炎球菌における蛍光強度の測定]
実施例1の結果より、断片S-mCherryに挿入されたクロモソーム断片は配列番号3に示す断片Sであることが明らかとなった。そこで、断片Sの肺炎球菌におけるプロモーター活性を調べるために、実施例1で得られた断片S-mCherryを実施例1と同様の方法で肺炎球菌に導入し、TSBY平板培地で培養して蛍光顕微鏡で観察した。コントロールとしてベクターpLS5-HSG398 revにlacプロモーター及びmCherry遺伝子を導入したプラスミド(lac_promoter-mCherry)を以下に示す方法で調製し、上記と同様に肺炎球菌に導入し、TSBY平板培地で培養して蛍光顕微鏡で観察した。なお、lac_promoter-mCherryを導入した肺炎球菌の培養においては、IPTG無しの群とIPTGを100μMとなるように加えた培地で培養した群の2群で行った。断片S-mCherryを導入した肺炎球菌の培養においては、IPTG無しである。
[Measurement of fluorescence intensity in Streptococcus pneumoniae transformed with a plasmid containing fragment S]
From the results of Example 1, it was revealed that the chromosomal fragment inserted into the fragment S-mCherry is the fragment S shown in SEQ ID NO: 3. Therefore, in order to examine the promoter activity of the fragment S in pneumococci, the fragment S-mCherry obtained in Example 1 was introduced into pneumococci by the same method as in Example 1, cultured in a TSBY plate medium, and fluorescent microscope Observed at. As a control, a plasmid (lac_promoter-mCherry) in which the lac promoter and mCherry gene were introduced into the vector pLS5-HSG398 rev was prepared by the following method, introduced into pneumococci in the same manner as above, cultured in a TSBY plate medium and fluorescent microscope Observed at. In addition, pneumococci introduced with lac_promoter-mCherry were cultured in two groups: a group without IPTG and a group cultured with a medium supplemented with IPTG to 100 μM. In the culture of pneumococci introduced with the fragment S-mCherry, there is no IPTG.

(lac_promoter-mCherryの作製)
pmCherryプラスミド(クロンテック社製)をテンプレートとし配列番号6に示すプライマーPlac-mCherry Fと配列番号7に示すプライマーPlac-mCherry Rを用いてPCRを行い、Plac-mCherry断片を得た。得られたPCR産物は制限酵素BglIIとSacIで切断した。また、pLS21プラスミド(ATCC 6749)とpHSG398プラスミド(クロンテック社製)に基づき作製したpLS5-HSG398 revを制限酵素BamHIとSacIで切断した。pLS5-HSG398 revのマップを図5に示す。
(Production of lac_promoter-mCherry)
PCR was performed using the pmCherry plasmid (manufactured by Clontech) as a template and the primer Plac-mCherry F shown in SEQ ID NO: 6 and the primer Plac-mCherry R shown in SEQ ID NO: 7 to obtain a Plac-mCherry fragment. The obtained PCR product was cleaved with restriction enzymes BglII and SacI. In addition, pLS5-HSG398 rev prepared based on pLS21 plasmid (ATCC 6749) and pHSG398 plasmid (Clontech) was cleaved with restriction enzymes BamHI and SacI. A map of pLS5-HSG398 rev is shown in FIG.

制限酵素処理済みのPlac-mCherry断片とベクターpLS5-HSG398 revを混合し、T4 DNA Ligase(350U/μl)を1μl添加して16℃で一晩反応させた(反応系10μl)。ライゲーション産物を上述の井上・野島法により作製した大腸菌JM109コンピテントセルに混合して大腸菌JM109へ遺伝子導入し、大腸菌JM109を形質転換した。得られたコロニーから上述のプラスミドの抽出と同様の方法でプラスミドを抽出し、pLS5-HSG398 rev-Plac-mCherry(lac_promoter-mCherry)プラスミド(図6)を得た。   The restriction enzyme-treated Plac-mCherry fragment and the vector pLS5-HSG398 rev were mixed, 1 μl of T4 DNA ligase (350 U / μl) was added, and the mixture was reacted at 16 ° C. overnight (reaction system 10 μl). The ligation product was mixed with the E. coli JM109 competent cell prepared by the above Inoue / Nojima method, and the gene was introduced into E. coli JM109 to transform E. coli JM109. A plasmid was extracted from the obtained colony in the same manner as the above-described extraction of the plasmid to obtain a pLS5-HSG398 rev-Plac-mCherry (lac_promoter-mCherry) plasmid (FIG. 6).

(蛍光観察)
培養した培地を蛍光顕微鏡で観察し、赤色蛍光がみられたコロニーを3つ選択し、プレパラートを作製した。蛍光顕微鏡でプレパラート上の菌の写真を露光時間2秒で複数視野撮影し、写真上の100個の菌について輝度を測定・解析した。100個の菌の輝度の平均値から背景部分の輝度を引いた値を、そのプラスミドを持った菌の蛍光強度とした。輝度の測定・解析には画像統合ソフトNIS-elements(ニコン社製)を使用した。
(Fluorescence observation)
The cultured medium was observed with a fluorescence microscope, and three colonies with red fluorescence were selected to prepare a preparation. Using a fluorescent microscope, photographs of the bacteria on the slide were taken with a plurality of fields of view at an exposure time of 2 seconds, and the luminance of 100 bacteria on the photograph was measured and analyzed. The value obtained by subtracting the luminance of the background portion from the average value of the luminance of 100 bacteria was defined as the fluorescence intensity of the bacteria having the plasmid. Image integration software NIS-elements (manufactured by Nikon) was used for luminance measurement and analysis.

(結果)
各プラスミドを導入した肺炎球菌における蛍光強度を表1に、蛍光顕微鏡写真を図7示す。図7において、(a)、(b)がlac_promoter-mCherryを導入した肺炎球菌、(c)が断片S-mCherryを導入した肺炎球菌である。また、蛍光強度の数値はNIS-elementsを用いて測定した際の実測値で、1pixelあたりの「輝度」を表す。
(result)
The fluorescence intensity in pneumococci introduced with each plasmid is shown in Table 1, and a fluorescence micrograph is shown in FIG. In FIG. 7, (a) and (b) are pneumococci introduced with lac_promoter-mCherry, and (c) are pneumococci introduced with the fragment S-mCherry. The numerical value of the fluorescence intensity is an actual measurement value measured using NIS-elements and represents “luminance” per pixel.

表1及び図7に示すように、断片S-mCherryを導入した肺炎球菌では、lac_promoter-mCherryで形質転換した肺炎球菌と比較して、IPTG無しに対して7倍以上、IPTG100μMに対して5倍以上も蛍光強度が高く、断片Sは肺炎球菌内でmCherry遺伝子を高発現させることが明らかとなった。   As shown in Table 1 and FIG. 7, in pneumococci introduced with the fragment S-mCherry, compared to pneumococci transformed with lac_promoter-mCherry, 7 times or more without IPTG and 5 times with IPTG 100 μM. As described above, the fluorescence intensity was high, and it was revealed that the fragment S highly expressed the mCherry gene in pneumococci.

[断片Sの一部を含むプラスミドで形質転換した肺炎球菌における蛍光強度の測定]
断片Sには、図4に示すようにタンパク質をコードするA〜D領域が含まれていることから、B領域の上流の非コード領域の配列(Sp:配列番号2)が肺炎球菌において下流に連結した目的遺伝子の発現に大きく関与していると考えられた。そこで、上記断片Sのうち、配列番号2に示されるSpを含むプラスミド(Sp-mCherry)を以下の方法で作製して肺炎球菌を形質転換し、蛍光強度を測定した。
[Measurement of fluorescence intensity in Streptococcus pneumoniae transformed with a plasmid containing a part of fragment S]
Since the fragment S contains the A to D regions encoding the protein as shown in FIG. 4, the sequence of the non-coding region upstream of the B region (Sp: SEQ ID NO: 2) is downstream in pneumococci. It was thought to be greatly involved in the expression of the linked target gene. Therefore, among the fragments S, a plasmid (Sp-mCherry) containing Sp shown in SEQ ID NO: 2 was prepared by the following method to transform pneumococci, and the fluorescence intensity was measured.

GTC261株のクロモソームをテンプレートとし配列番号8に示す プライマーSp Fと配列番号9に示すプライマーSp Rを用いてPCRを行い、Sp断片を得た。得られたPCR産物は制限酵素SphIとNdeIで切断した。また、pmCherryプラスミド(クロンテック社製)をテンプレートとし配列番号10に示すプライマーmCherry Fと配列番号11に示すプライマーmCherry Rを用いてPCRを行い、Sp断片の下流に挿入するmCherry断片を得た。得られたPCR産物は制限酵素NdeIとBamHIで切断した。さらに、ベクターpLS5-HSG398 revを制限酵素SphIとBamHIで切断した。   Using the chromosome of GTC261 strain as a template, PCR was performed using the primer Sp F shown in SEQ ID NO: 8 and the primer Sp R shown in SEQ ID NO: 9 to obtain an Sp fragment. The obtained PCR product was cleaved with restriction enzymes SphI and NdeI. Further, PCR was performed using the pmCherry plasmid (manufactured by Clontech) as a template and the primer mCherry F shown in SEQ ID NO: 10 and the primer mCherry R shown in SEQ ID NO: 11 to obtain an mCherry fragment to be inserted downstream of the Sp fragment. The obtained PCR product was cleaved with restriction enzymes NdeI and BamHI. Furthermore, the vector pLS5-HSG398 rev was cleaved with restriction enzymes SphI and BamHI.

得られた制限酵素処理済みのSp断片、mCherry断片及びベクターpLS5-HSG398 revを混合し、T4 DNA Ligase(350U/μl)を1μl添加して16℃で一晩反応させた(反応系10μl)。ライゲーション産物を上述の井上・野島法により作製した大腸菌JM109コンピテントセルに混合して大腸菌JM109へ遺伝子導入し、大腸菌JM109を形質転換した。得られたコロニーから上述のプラスミドの抽出と同様の方法でプラスミドを抽出し、pLS5-HSG398-rev-Sp-mCherry(Sp-mCherry)プラスミド(図8)を得た。   The obtained restriction enzyme-treated Sp fragment, mCherry fragment and vector pLS5-HSG398 rev were mixed, 1 μl of T4 DNA ligase (350 U / μl) was added, and the mixture was reacted at 16 ° C. overnight (10 μl of reaction system). The ligation product was mixed with the E. coli JM109 competent cell prepared by the above Inoue / Nojima method, and the gene was introduced into E. coli JM109 to transform E. coli JM109. A plasmid was extracted from the obtained colony by the same method as the above-described extraction of the plasmid to obtain a pLS5-HSG398-rev-Sp-mCherry (Sp-mCherry) plasmid (FIG. 8).

上述で作製したSp-mCherryを用いて実施例1と同様の方法で肺炎球菌GTC261株を形質転換し、実施例2と同様の方法で培養し、蛍光強度を測定した。結果を表2及び図9に示す。   The Sp-mCherry produced above was used to transform the Streptococcus pneumoniae GTC261 strain in the same manner as in Example 1, cultured in the same manner as in Example 2, and the fluorescence intensity was measured. The results are shown in Table 2 and FIG.

(結果)
表2及び図9に示すように、Sp-mCherryを導入した肺炎球菌においても強い蛍光強度が観察され、Spは肺炎球菌内でmCherry遺伝子を高発現させることが明らかとなった。
(result)
As shown in Table 2 and FIG. 9, strong fluorescence intensity was also observed in pneumococci introduced with Sp-mCherry, and it was revealed that Sp highly expressed the mCherry gene in pneumococci.

本発明のプロモーターは肺炎球菌内で目的遺伝子を高発現できることから、肺炎球菌の肺組織内での定着機構や宿主の免疫系を回避する機構の解析、又は肺炎球菌の病原因子を標的としたワクチン開発の分野において利用可能である。   Since the promoter of the present invention can highly express the target gene in Streptococcus pneumoniae, analysis of the mechanism of colonization of Streptococcus pneumoniae in the lung tissue and the mechanism that avoids the host immune system, or a vaccine targeting the pathogenic factor of Streptococcus pneumoniae It can be used in the field of development.

Claims (4)

以下の(a)又は(b)に示すポリヌクレオチドからなるプロモーター。
(a)配列番号2に示す塩基配列を含有するポリヌクレオチド;
(b)配列番号2に示す塩基配列を含有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、肺炎球菌において下流に連結した目的遺伝子を発現しうるポリヌクレオチド;
A promoter comprising the polynucleotide shown in the following (a) or (b).
(A) a polynucleotide comprising the base sequence represented by SEQ ID NO: 2;
(B) a polynucleotide that hybridizes with a polynucleotide containing the base sequence shown in SEQ ID NO: 2 under stringent conditions and can express a target gene linked downstream in pneumococci;
配列番号2に示す塩基配列を含有するポリヌクレオチドが、配列番号3に示す塩基配列を含有するポリヌクレオチドであることを特徴とする請求項1記載のプロモーター。 The promoter according to claim 1, wherein the polynucleotide containing the base sequence shown in SEQ ID NO: 2 is a polynucleotide containing the base sequence shown in SEQ ID NO: 3. 請求項1又は2記載のプロモーターを含む組換えベクター。 A recombinant vector comprising the promoter according to claim 1 or 2. 請求項3記載の組換えベクターが導入された肺炎球菌の形質転換体。 A transformant of Streptococcus pneumoniae into which the recombinant vector according to claim 3 has been introduced.
JP2014219149A 2014-10-28 2014-10-28 Expression promoter in Streptococcus pneumoniae Active JP6399589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014219149A JP6399589B2 (en) 2014-10-28 2014-10-28 Expression promoter in Streptococcus pneumoniae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014219149A JP6399589B2 (en) 2014-10-28 2014-10-28 Expression promoter in Streptococcus pneumoniae

Publications (2)

Publication Number Publication Date
JP2016082934A true JP2016082934A (en) 2016-05-19
JP6399589B2 JP6399589B2 (en) 2018-10-03

Family

ID=55971359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014219149A Active JP6399589B2 (en) 2014-10-28 2014-10-28 Expression promoter in Streptococcus pneumoniae

Country Status (1)

Country Link
JP (1) JP6399589B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503119A (en) * 2001-03-27 2005-02-03 カイロン ソチエタ ア レスポンサビリタ リミタータ STREPTOCOCCUSPNEUMONIAE protein and nucleic acid
WO2007106407A2 (en) * 2006-03-10 2007-09-20 Wyeth Microarray for monitoring gene expression in multiple strains of streptococcus pneumoniae
JP2008178407A (en) * 1996-10-31 2008-08-07 Human Genome Sciences Inc Polynucleotide of streptococcus pneumoniae and sequence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178407A (en) * 1996-10-31 2008-08-07 Human Genome Sciences Inc Polynucleotide of streptococcus pneumoniae and sequence
JP2005503119A (en) * 2001-03-27 2005-02-03 カイロン ソチエタ ア レスポンサビリタ リミタータ STREPTOCOCCUSPNEUMONIAE protein and nucleic acid
WO2007106407A2 (en) * 2006-03-10 2007-09-20 Wyeth Microarray for monitoring gene expression in multiple strains of streptococcus pneumoniae

Also Published As

Publication number Publication date
JP6399589B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
AU2016219667B2 (en) Antibacterial phage, phage peptides and methods of use thereof
KR101667837B1 (en) Compositions relating to a mutant clostridium difficile toxin and methods thereof
KR101420991B1 (en) Methods of developing terpene synthase variants
KR101751822B1 (en) Compositions and methods relating to a mutant clostridium difficile toxin
KR20220097391A (en) Development of a novel live attenuated African swine fever vaccine based on the deletion of gene I177L
WO1997037026A1 (en) Novel compounds
US20200109395A1 (en) Genetic systems that defend against foreign dna and uses thereof
JP2004507217A (en) Listeria monocytogenes genomes, polypeptides and uses thereof
KR20230111189A (en) Reprogrammable ISCB nuclease and uses thereof
Zhang et al. Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the majorpathogenicity island'of Salmonella typhi
KR102224897B1 (en) Novel Polypeptide and Antibiotics against Gram-Negative Bacteria Comprising the Polypeptide
Nácher-Vázquez et al. Dextransucrase expression is concomitant with that of replication and maintenance functions of the pMN1 plasmid in Lactobacillus sakei MN1
CN111107872A (en) Vaccinia virus mutants useful for cancer immunotherapy
CN108330142B (en) Mermaid photorhabditis hemolysin Hly with immune protection effectchProtein
KR20140002463A (en) Diffocins and methods of use thereof
KR20220024508A (en) Biologically Contained Bacteria and Their Uses
JP6399589B2 (en) Expression promoter in Streptococcus pneumoniae
JP6341541B2 (en) Expression promoter in Streptococcus pneumoniae
KR101859974B1 (en) Novel Aeromonas hydrophila bacteriophage Aer-HYP-2 and its use for preventing proliferation of Aeromonas hydrophila
KR20230136600A (en) Genomic deletion of African swine fever vaccine enables efficient growth in stable cell lines
CN105969711B (en) Recombinant attenuated bacillus anthracis and application thereof
CN112980757B (en) Streptococcus suis serotype 2 biofilm-related gene Nsub knockout mutant strain, construction method and application
KR20230173188A (en) Bacteriophage therapy for adherent-invasive E. coli
CN117177762A (en) Phage therapy against adhesion invasive E.coli
KR101612607B1 (en) Bacteriophage PA7 of Pseudomonas aeruginosa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180830

R150 Certificate of patent or registration of utility model

Ref document number: 6399589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250