JP2016081867A - Structure for explosion-proof valve for container - Google Patents

Structure for explosion-proof valve for container Download PDF

Info

Publication number
JP2016081867A
JP2016081867A JP2014215335A JP2014215335A JP2016081867A JP 2016081867 A JP2016081867 A JP 2016081867A JP 2014215335 A JP2014215335 A JP 2014215335A JP 2014215335 A JP2014215335 A JP 2014215335A JP 2016081867 A JP2016081867 A JP 2016081867A
Authority
JP
Japan
Prior art keywords
container
explosion
proof valve
breaking groove
inclined side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014215335A
Other languages
Japanese (ja)
Other versions
JP6275621B2 (en
Inventor
小西 晴之
Haruyuki Konishi
晴之 小西
寛子 落合
Hiroko Ochiai
寛子 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014215335A priority Critical patent/JP6275621B2/en
Priority to CN201510594347.8A priority patent/CN105546173B/en
Priority to KR1020150146493A priority patent/KR101805264B1/en
Publication of JP2016081867A publication Critical patent/JP2016081867A/en
Application granted granted Critical
Publication of JP6275621B2 publication Critical patent/JP6275621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/40Safety valves; Equalising valves, e.g. pressure relief valves with a fracturing member, e.g. fracturing diaphragm, glass, fusible joint
    • F16K17/403Safety valves; Equalising valves, e.g. pressure relief valves with a fracturing member, e.g. fracturing diaphragm, glass, fusible joint with a fracturing valve member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/22Safety features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a structure for an explosion-proof valve for a container in which a flat bottom of a groove for rupture is prevented from being bottle-necked and thickness of the flat bottom is also stabilized even in the case where the groove for rupture is formed by plasticity processing.SOLUTION: The structure for the explosion-proof valve for the container has a V-shaped cross section formed from a flat bottom 4a that specifies the thickness of a groove 4 for rupture and both inclined sidewalls 4c and 4d rising from the bottom 4a to a thin flat part 3. An inclination angle θof one inclined sidewall 4c between both the inclined sidewalls 4c and 4d is larger relatively to an inclination angle θof the other inclined sidewall 4d.SELECTED DRAWING: Figure 3

Description

本発明は、飲料容器、電解コンデンサ容器や電池容器等の密封構造をなす容器の防爆弁の構造に関するものである。   The present invention relates to a structure of an explosion-proof valve for a container having a sealing structure such as a beverage container, an electrolytic capacitor container, and a battery container.

従来の密封構造をなす容器、例えば、リチウムイオン二次電池の容器においては、電池の充放電や使用環境下の温度上昇によって内部圧力が上昇することがあり、この内部圧力で電池容器が変形したり、さらには破裂する危険性を抱えている。このような電池容器の破裂を防ぐため、破裂しない程度の内部圧力で電池容器の一部が開裂して内部圧力を開放するような防爆弁が設けられている(特許文献1参照)。この防爆弁を低コストに製作するためには、防爆弁を電池容器の蓋と一体に成形することが望ましい(特許文献2参照)。   In a container having a conventional sealed structure, for example, a container of a lithium ion secondary battery, the internal pressure may increase due to charging / discharging of the battery or a temperature increase in the usage environment, and the battery container is deformed by this internal pressure. Or even have the risk of bursting. In order to prevent such rupture of the battery container, an explosion-proof valve is provided in which a part of the battery container is ruptured to release the internal pressure with an internal pressure that does not rupture (see Patent Document 1). In order to manufacture the explosion-proof valve at a low cost, it is desirable to form the explosion-proof valve integrally with the lid of the battery container (see Patent Document 2).

上記特許文献2に記載された防爆弁20として、塑性加工の一種であるコイニング加工により、図7に示すような電池容器の蓋10(厚さt(後記図8参照))に蓋10の周辺部より薄肉に形成された薄肉平坦部30(厚さt(後記図9参照))と、薄肉平坦部30に線状に(陸上競技のトラックのように)形成された破断用溝部40と、を備えた構造のものが知られている。 As the explosion-proof valve 20 described in the above-mentioned Patent Document 2, the lid 10 of the battery container (thickness t 1 (see FIG. 8 described later)) as shown in FIG. A thin flat portion 30 (thickness t 2 (see FIG. 9 described later)) formed thinner than the peripheral portion, and a breaking groove portion 40 formed linearly on the thin flat portion 30 (like a track in an athletics). And a structure having the above-mentioned structure is known.

図8は、図7に示す蓋10に設けられた防爆弁20の構造を詳細に示すためのCC断面図である。また、図9は、図8に示す防爆弁20の構造をより詳細に示すため、曲線オで囲まれた部分を拡大した拡大断面図である。   FIG. 8 is a CC cross-sectional view for showing in detail the structure of the explosion-proof valve 20 provided in the lid 10 shown in FIG. 9 is an enlarged cross-sectional view in which a portion surrounded by a curve O is enlarged in order to show the structure of the explosion-proof valve 20 shown in FIG. 8 in more detail.

図8および図9において、破断用溝部40は、破断用溝部40の肉厚を規定している幅Wの平坦状底部40aと、この底部40aから薄肉平坦部30まで立ち上がる対向した傾斜両側壁40c、40dと、により形成された略V字形の断面形状(開口部の幅はW)をなしている。そして、傾斜側壁40cの傾斜角度θと傾斜側壁40dの傾斜角度θはともに、これまでから知られている同じ60度である。 8 and 9, the breaking groove 40 has a flat bottom portion 40a of the width W 3 that defines the thickness of the break groove 40, the inclined side walls opposed rises from the bottom portion 40a to the thin flat portion 30 40c, 40d, and a substantially V-shaped cross-sectional shape (the width of the opening is W 4 ). The inclination angle θ of the inclined side wall 40c and the inclination angle θ of the inclined side wall 40d are both the same 60 degrees that has been known so far.

特開2009−4271号公報JP 2009-4271 A 特開2013−243075号公報JP2013-243075A

しかし、上記特許文献2に記載された破断用溝部40が形成された場合、図8に示す破断用溝部40の平坦状底部40aの下方(符号クの部分)にくびれが生じてしまうという問題点があった。   However, when the breaking groove 40 described in Patent Document 2 is formed, there is a problem that a constriction occurs below the flat bottom portion 40a of the breaking groove 40 shown in FIG. was there.

発明の目的は、破断用溝部が塑性加工により形成された場合にも、破断用溝部の平坦状底部におけるくびれの発生が防止され、かつ、前記平坦状底部の厚さも安定した容器の防爆弁の構造を提供することにある。   The object of the invention is to prevent the occurrence of constriction in the flat bottom portion of the breaking groove portion even when the breaking groove portion is formed by plastic working, and the explosion-proof valve of the container in which the thickness of the flat bottom portion is stable. To provide a structure.

この目的を達成するために、第1発明に係る容器の防爆弁の構造は、
密封構造をなす容器の防爆弁の構造であって、
前記防爆弁は、
前記容器を構成する表面に、この表面の周辺部より薄肉に形成された薄肉平坦部と、塑性加工により前記薄肉平坦部に線状に形成された破断用溝部と、を備え、
この線状に形成された破断用溝部は、
前記破断用溝部の肉厚を規定している平坦状底部と、この底部から前記薄肉平坦部まで立ち上がる対向した傾斜両側壁と、により形成されたV字形の断面形状をなし、
前記傾斜両側壁の一方の傾斜側壁の傾斜角度θが他方の傾斜側壁の傾斜角度θに比べて大きくなるような構成を有したことを特徴とする容器の防爆弁の構造である。
In order to achieve this object, the structure of the explosion-proof valve of the container according to the first invention is:
An explosion-proof valve structure for a container having a sealed structure,
The explosion-proof valve is
On the surface constituting the container, a thin flat portion formed thinner than the peripheral portion of the surface, and a breaking groove formed linearly in the thin flat portion by plastic processing,
The breaking groove formed in this linear shape is
A V-shaped cross-sectional shape formed by a flat bottom portion defining the thickness of the breaking groove portion and opposing inclined side walls rising from the bottom portion to the thin flat portion,
The inclination angle theta 1 of one inclined side wall of the inclined side walls has a structure of explosion-proof valve of the container, characterized in that it has a larger configuration than the inclination angle theta 2 of the other inclined side wall.

また、第2発明に係る容器の防爆弁の構造は、第1発明に係る容器の防爆弁の構造において、前記線状に形成された破断用溝部は、曲線からなるまたは一部に曲線を含む閉曲線、あるいは、前記閉曲線の一部が不連続となる不連続閉曲線、あるいは、複数の直線が組み合わされたように形成された破断用溝部であることを特徴とする。   Further, the structure of the explosion-proof valve for the container according to the second invention is the structure of the explosion-proof valve for the container according to the first invention, wherein the breaking groove formed in the linear shape is formed of a curve or partially includes a curve. It is a closed curve, a discontinuous closed curve in which a part of the closed curve is discontinuous, or a breaking groove formed as a combination of a plurality of straight lines.

また、第3発明に係る容器の防爆弁の構造は、第1または第2発明に係る容器の防爆弁の構造において、
前記一方の傾斜側壁の傾斜角度θが45〜80度であり、前記他方の傾斜側壁の傾斜角度θが35〜70度であることを特徴とする。
Further, the structure of the explosion-proof valve of the container according to the third invention is the structure of the explosion-proof valve of the container according to the first or second invention,
The inclination angle theta 1 of one inclined side wall is 45 to 80 degrees, the inclination angle theta 2 of the other inclined side walls is characterized in that 35 to 70 degrees.

また、第4発明に係る容器の防爆弁の構造は、第1〜第3発明のいずれか1つの発明に係る容器の防爆弁の構造において、
前記容器は、リチウムイオン電池用容器であることを特徴とする。
Moreover, the structure of the explosion-proof valve of the container according to the fourth invention is the structure of the explosion-proof valve of the container according to any one of the first to third inventions,
The container is a container for a lithium ion battery.

以上のように、本発明に係る容器の防爆弁の構造は、
密封構造をなす容器の防爆弁の構造であって、
前記防爆弁は、
前記容器を構成する表面に、この表面の周辺部より薄肉に形成された薄肉平坦部と、塑性加工により前記薄肉平坦部に線状に形成された破断用溝部と、を備え、
この線状に形成された破断用溝部は、
前記破断用溝部の肉厚を規定している平坦状底部と、この底部から前記薄肉平坦部まで立ち上がる対向した傾斜両側壁と、により形成されたV字形の断面形状をなし、
前記傾斜両側壁の一方の傾斜側壁の傾斜角度θが他方の傾斜側壁の傾斜角度θに比べて大きくなるような構成を有しているため、
破断用溝部が塑性加工により形成された場合にも、破断用溝部の平坦状底部におけるくびれの発生が防止され、かつ、前記平坦状底部の厚さも安定した容器の防爆弁の構造を提供することができる。
As described above, the structure of the explosion-proof valve of the container according to the present invention is as follows.
An explosion-proof valve structure for a container having a sealed structure,
The explosion-proof valve is
On the surface constituting the container, a thin flat portion formed thinner than the peripheral portion of the surface, and a breaking groove formed linearly in the thin flat portion by plastic processing,
The breaking groove formed in this linear shape is
A V-shaped cross-sectional shape formed by a flat bottom portion defining the thickness of the breaking groove portion and opposing inclined side walls rising from the bottom portion to the thin flat portion,
Since the inclination angle theta 1 of one inclined side wall of the inclined side walls has a larger configuration than the inclination angle theta 2 of the other inclined side wall,
To provide a structure of an explosion-proof valve for a container in which the occurrence of constriction in the flat bottom portion of the breaking groove portion is prevented and the thickness of the flat bottom portion is stable even when the breaking groove portion is formed by plastic working. Can do.

本発明の実施形態のリチウムイオン電池用容器の防爆弁の構造を示す斜視図である。It is a perspective view which shows the structure of the explosion-proof valve of the container for lithium ion batteries of embodiment of this invention. 図1のAA断面図である。It is AA sectional drawing of FIG. 図2のア部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a part in FIG. 2. 塑性加工により破断用溝部を形成する場合の破断用溝部周辺箇所(符号イ、ウ)に発生する変形状態および応力状態を模式的に説明する模式説明図である。FIG. 5 is a schematic explanatory view for schematically explaining a deformation state and a stress state generated at locations around the fracture groove portion (symbols a and c) when the fracture groove portion is formed by plastic working. 本発明の別の実施形態の線状に形成された破断用溝部であり、(a)は両端の曲線を直線で結びつけたような構成の場合の平面図、(b)は4本の直線が組み合わされたような構成の場合の平面図である。It is the groove part for fracture | rupture formed in the linear form of another embodiment of this invention, (a) is a top view in the case of the structure which connected the curve of both ends with the straight line, (b) is four straight lines. It is a top view in the case of the structure which was combined. 本発明のさらに別の実施形態のリチウムイオン電池用容器の防爆弁の構造を示す斜視図である。It is a perspective view which shows the structure of the explosion-proof valve of the container for lithium ion batteries of another embodiment of this invention. 従来のリチウムイオン電池用容器の防爆弁の構造を示す斜視図である。It is a perspective view which shows the structure of the explosion-proof valve of the conventional container for lithium ion batteries. 図7のCC断面図である。It is CC sectional drawing of FIG. 図8のオ部拡大断面図である。FIG. 9 is an enlarged cross-sectional view of a portion O in FIG. 8. 塑性加工により破断用溝部を形成する場合の破断用溝周辺箇所(符号カ、キ)に発生する変形状態および応力状態を模式的に説明する模式説明図である。FIG. 5 is a schematic explanatory diagram schematically illustrating a deformation state and a stress state generated in a portion around a breaking groove (reference numeral K) when a breaking groove is formed by plastic working.

本発明者らは、如何にすれば、密封構造をなす容器(例えば、リチウムイオン電池用容器)を構成する表面としての蓋の一部(略中央)に、周辺部より薄肉に形成された薄肉平坦部を設けるとともに、その薄肉平坦部にV字形の断面形状をなした破断用溝部を塑性加工(例えば、コイニング加工)により線状に形成した場合にも、前記破断用溝部の平坦状底部におけるくびれの発生が防止され、かつ、前記平坦状底部の厚さも安定した容器の防爆弁の構造を提供することができるのか鋭意検討した。   The present inventors, in any way, have a thin wall formed thinner than a peripheral part in a part (substantially center) of a lid as a surface constituting a container (for example, a container for a lithium ion battery) having a sealed structure. Even when a flat groove is provided and a breaking groove having a V-shaped cross-sectional shape is formed linearly by plastic working (for example, coining) in the thin flat portion, the flat bottom of the breaking groove is also formed. It has been intensively investigated whether it is possible to provide a structure of an explosion-proof valve for a container in which the occurrence of constriction is prevented and the thickness of the flat bottom is stable.

その結果、前記平坦状底部から前記薄肉平坦部まで立ち上がる対向した傾斜両側壁と、により形成されるV字形の断面形状をなした破断用溝部において、前記傾斜両側壁の一方の傾斜側壁の傾斜角度θが他方の傾斜側壁の傾斜角度θに比べて大きくなるような構成を有したことで、破断用溝部を塑性加工(コイニング加工)により線状に形成した場合にも、前記破断用溝部の平坦状底部におけるくびれの発生が防止され、かつ、前記平坦状底部の厚さも安定した容器の防爆弁の構造を提供することが可能であることを初めて見出した。 As a result, in the breaking groove having a V-shaped cross-section formed by the opposing inclined side walls rising from the flat bottom portion to the thin flat portion, the inclination angle of one inclined side wall of the inclined side walls Even when the breaking groove is linearly formed by plastic working (coining), the breaking groove has the structure in which θ 1 is larger than the inclination angle θ 2 of the other inclined side wall. It has been found for the first time that it is possible to provide an explosion-proof valve structure for a container in which the occurrence of constriction at the flat bottom of the container is prevented and the thickness of the flat bottom is stable.

なお、この見出された結果は、リチウムイオン電池用容器の防爆弁の構造にのみ限定されるものではなく、飲料容器や電解コンデンサ容器等の密封構造をなす容器の防爆弁の構造にも広く適用可能である。以下、本発明について、リチウムイオン電池用容器の防爆弁の構造の場合を例示しつつ、実施形態を詳細に説明する。   The found results are not limited only to the structure of the explosion-proof valve of the container for lithium ion batteries, but are also widely applied to the structure of the explosion-proof valve of a container having a sealed structure such as a beverage container or an electrolytic capacitor container. Applicable. Hereinafter, embodiments of the present invention will be described in detail while illustrating the case of the structure of an explosion-proof valve for a lithium ion battery container.

(実施形態)
図1は本発明の実施形態のリチウムイオン電池用容器の防爆弁の構造を示す斜視図、図2は図1のAA断面図、図3は図2のア部拡大断面図である。
(Embodiment)
1 is a perspective view showing the structure of an explosion-proof valve of a container for a lithium ion battery according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG.

図1〜図3において、1はリチウムイオン電池用容器の蓋、1a、1b、1c、1dは蓋1の側壁、2は蓋1の略中央に設けられた防爆弁、3は防爆弁2を構成する要素であり、蓋1の周辺部より薄肉に形成された薄肉平坦部、3aは蓋1の表面に向けて外方に広がる傾斜壁、4は防爆弁2を構成する要素であり、薄肉平坦部3に塑性加工の一種であるコイニング加工により線状に形成した破断用溝部である。   1 to 3, 1 is a lid of a lithium ion battery container, 1 a, 1 b, 1 c, and 1 d are side walls of the lid 1, 2 is an explosion-proof valve provided substantially at the center of the lid 1, and 3 is an explosion-proof valve 2. A thin flat portion formed thinner than the peripheral portion of the lid 1, 3a is an inclined wall extending outward toward the surface of the lid 1, 4 is an element constituting the explosion-proof valve 2, and is thin It is a breaking groove formed in a linear shape on the flat portion 3 by coining which is a kind of plastic working.

携帯電話やノート型パーソナルコンピュータあるいは自動車用等の電源として用いられるリチウムイオン電池用容器の蓋1としては、アルミニウム合金薄板を成形素材として、その厚さtが0.5〜2mmの範囲であるのが好ましい。蓋1の厚さtが0.5mm未満では、リチウムイオン電池蓋用の素材として広く使われる1000系あるいは3000系のアルミニウム合金薄板を蓋1の素材として用いたとしても、蓋1として要求される剛性や強度が不足する。一方、蓋1の厚さtが2mmを超えると、電池容器本体をアルミニウム合金薄板としても、重量が重くなるとともに、厚さが厚くなって、上記薄肉平坦部3や破断用溝部4から構成される防爆弁2の精度の良い加工が難しくなる。さらに、破断用溝部4をコイニング加工により形成する際の、蓋1のたわみの不均一性の発生や破断用溝部4の平坦状底部4aにおけるくびれの発生が防止され、かつ、前記平坦状底部4aの厚さを安定させる等の加工性や耐食性等を総合に考慮すると、蓋1は耐力が30〜130MPaの1000系あるいは3000系のアルミニウム合金で、その厚さtは、0.6〜1.6mmの範囲がより好ましい。 The lid 1 of the container for a lithium ion battery used as a power source for a mobile phone, a notebook personal computer, an automobile, etc., is made of an aluminum alloy thin plate and has a thickness t 1 in the range of 0.5 to 2 mm. Is preferred. The thickness t 1 is less than 0.5mm of the lid 1, also widely 1000 system or 3000 series aluminum alloy sheet of used as a material for a lithium-ion battery cover as was used as the material lid 1, is required as a lid 1 Lack of rigidity and strength. On the other hand, if the thickness t 1 of the lid 1 is more than 2 mm, even a battery container body as an aluminum alloy sheet, together with the weight becomes heavier, thicker thickness, composed of the thin flat portion 3 or breakage groove 4 It becomes difficult to process the explosion-proof valve 2 with high accuracy. Further, when the breaking groove 4 is formed by coining, the occurrence of non-uniformity of the deflection of the lid 1 and the occurrence of constriction in the flat bottom 4a of the breaking groove 4 are prevented, and the flat bottom 4a In consideration of workability such as stabilizing the thickness of the steel, corrosion resistance, and the like, the lid 1 is a 1000-series or 3000-series aluminum alloy having a yield strength of 30 to 130 MPa, and its thickness t 1 is 0.6 to 1 A range of .6 mm is more preferable.

図1に示す線状に形成した破断用溝部4は、図7に示す従来技術の場合と同様に、陸上競技のトラックのような閉曲線(曲線と直線を繋ぎ合わせた閉曲線)に形成されている。しかし、コイニング加工により薄肉平坦部3に形成される線状の破断用溝部4も上記陸上競技のトラックのような閉曲線(曲線と直線を繋ぎ合わせた閉曲線;すなわち、一部に曲線を含む閉曲線の一種)に限定されるものではなく、曲線からなるまたは一部に曲線を含む閉曲線(図5(a)参照)、あるいは、前記閉曲線の一部が不連続となる不連続閉曲線、あるいは、複数の直線が組み合わされた(図5(b)参照)ように形成された破断用溝部とすることも可能である。   As in the case of the prior art shown in FIG. 7, the breaking groove 4 formed in the linear shape shown in FIG. 1 is formed in a closed curve (closed curve obtained by connecting the curve and the straight line) like a track for track and field. . However, the linear breaking groove 4 formed in the thin flat portion 3 by coining is also a closed curve like the track of the above-mentioned track and field (a closed curve obtained by connecting the curve and the straight line; Is not limited to one type), but is a closed curve consisting of a curve or including a curve in part (see FIG. 5A), a discontinuous closed curve in which a part of the closed curve is discontinuous, or a plurality of closed curves It is also possible to use a breaking groove formed as a combination of straight lines (see FIG. 5B).

また、図6は本発明のさらに別の実施形態のリチウムイオン電池用容器の防爆弁の構造を示す斜視図である。図6は、図1に示す構成を基本とするものであるため、その差異についてのみ説明する。すなわち、図6においては、図1に示す陸上競技のトラックのような閉曲線(曲線と直線を繋ぎ合わせた閉曲線)に形成された破断用溝部4の内、直線状の破断用溝部4の一部に破断用溝部4が存在しない不連続部5が設けられていることが図1との特徴的な差異である。   FIG. 6 is a perspective view showing the structure of an explosion-proof valve of a lithium ion battery container according to still another embodiment of the present invention. Since FIG. 6 is based on the configuration shown in FIG. 1, only the difference will be described. That is, in FIG. 6, a part of the linear breaking groove 4 out of the breaking grooves 4 formed in a closed curve (closed curve obtained by connecting a straight line and a straight line) like the track of the track and field shown in FIG. 1 is characteristically different from FIG. 1 in that a discontinuous portion 5 in which the breaking groove portion 4 does not exist is provided.

なお、薄肉平坦部3の厚さt(図3参照)は、70〜200μmである。薄肉平坦部3の厚さtが70μm未満では、前記1000系あるいは3000系のアルミニウム合金薄板を蓋1の素材として用いたとしても、蓋1として要求される剛性や強度が不足する。一方、薄肉平坦部3の厚さが200μmを超えると、後に加工される破断用溝部4の厚さを十分薄くする加工(コイニング加工)が困難となり、電池容器の内部圧力上昇に対して、電池容器の破裂を防ぐため、破裂しない程度の内部圧力で開裂せず、防爆弁の起点となれない。 Incidentally, (see FIG. 3) the thickness t 2 of the thin flat portion 3 is 70~200Myuemu. When the thickness t 2 of the thin flat portion 3 is less than 70 μm, even if the 1000 series or 3000 series aluminum alloy thin plate is used as the material of the lid 1, the rigidity and strength required for the lid 1 are insufficient. On the other hand, if the thickness of the thin flat portion 3 exceeds 200 μm, it becomes difficult to sufficiently thin the thickness of the fracture groove 4 to be processed later (coining processing), and the battery can be protected against an increase in the internal pressure of the battery container. In order to prevent the container from rupturing, it does not rupture at an internal pressure that does not rupture.

次に、図2、図3を用いて、コイニング加工により薄肉平坦部3に形成される線状の破断用溝部4の断面形状について詳述する。   Next, the cross-sectional shape of the linear breaking groove portion 4 formed in the thin flat portion 3 by coining will be described in detail with reference to FIGS.

図2は、図1に示すAA断面であり、上記陸上競技のトラックのような閉曲線の内の曲線箇所を切断した断面である。図2において、破断用溝部4は、破断用溝部4の肉厚を規定している平坦状底部4aと、この底部4aから薄肉平坦部3まで立ち上がる対向した傾斜両側壁4c、4dと、により形成されたV字形の断面形状をなしている。   FIG. 2 is a cross section taken along the line AA shown in FIG. 1, and is a cross section obtained by cutting a curved portion of a closed curve like the track of the track and field. In FIG. 2, the breaking groove 4 is formed by a flat bottom 4 a that defines the thickness of the breaking groove 4, and opposed inclined side walls 4 c and 4 d that rise from the bottom 4 a to the thin flat portion 3. V-shaped cross-sectional shape.

図3は、破断用溝部4のV字形の断面形状(図2に示す曲線アで囲まれた断面形状)を拡大し、さらに詳細に説明するための拡大断面図である。図3において、破断用溝部4の厚さ(破断用溝部4の肉厚を規定している平坦状底部4aの残存厚さt)は、10〜70μmの範囲とする。破断用溝部4の厚さが10μm未満では、前記1000系あるいは3000系のアルミニウム合金薄板を蓋1の素材として用いたとしても、蓋1として要求される剛性や強度が不足する。一方、破断用溝部4の厚さが70μmを超えると、電池容器の内部圧力上昇に対して、電池容器の破裂を防ぐため、破裂しない程度の内部圧力で開裂せず、防爆弁の起点となれない。また、平坦状底部4aの幅Wは、特に限定されないが、加工性および強度の点で好ましくは5〜30μmである。また、傾斜両側壁4c、4dの一方の傾斜側壁4cの傾斜角度θが他方の傾斜側壁4dの傾斜角度θに比べて大きくなるような構成を有している。例えば、θ=60度、θ=45度である。したがって、破断用溝部4の薄肉平坦部3の表面に開口している幅Wは、上記平坦状底部4aの幅Wとも整合するように、
=W+(t−t)×(cotanθ1+cotanθ2
である。本実施形態においては、θ=60度、θ=45度である場合について説明したが、必ずしもこれにのみ限定されるものではなく、容器としての要求仕様、加工性や耐食性等を総合的に考慮した場合、θは45〜80度の範囲、θは35〜70度の範囲で、かつθ>θの条件を満足していればよい。
FIG. 3 is an enlarged cross-sectional view for enlarging the V-shaped cross-sectional shape (the cross-sectional shape surrounded by the curve A shown in FIG. 2) of the breaking groove portion 4 for further detailed explanation. In FIG. 3, the thickness of the breaking groove 4 (the remaining thickness t 3 of the flat bottom 4a that defines the thickness of the breaking groove 4) is in the range of 10 to 70 μm. When the thickness of the breaking groove 4 is less than 10 μm, even if the 1000 series or 3000 series aluminum alloy thin plate is used as the material of the lid 1, the rigidity and strength required for the lid 1 are insufficient. On the other hand, if the thickness of the breaking groove 4 exceeds 70 μm, the battery container will not be ruptured against an increase in the internal pressure of the battery container. Absent. Further, the width W 1 of the flat bottom portion 4a is not particularly limited, but is preferably 5 to 30 μm in terms of workability and strength. The inclination side walls 4c, the inclination angle theta 1 of one inclined side wall 4c of 4d has a larger configuration than the inclination angle theta 2 of the other inclined side wall 4d. For example, θ 1 = 60 degrees and θ 2 = 45 degrees. Therefore, the width W 2 which is open to the surface of the thin flat portion 3 of the break groove 4, so that the width W 1 both alignment of the flat bottom portion 4a,
W 2 = W 1 + (t 2 −t 3 ) × (cotan θ 1 + cotan θ 2 )
It is. In the present embodiment, the case of θ 1 = 60 degrees and θ 2 = 45 degrees has been described. However, the present invention is not necessarily limited to this, and the required specifications as a container, workability, corrosion resistance, and the like are comprehensive. In this case, it is sufficient that θ 1 is in the range of 45 to 80 degrees, θ 2 is in the range of 35 to 70 degrees, and the condition of θ 1 > θ 2 is satisfied.

ここで傾斜角度θや傾斜角度θは、立ち上がりから薄肉平坦部3までを均一な角度とせずとも、途中で角度が段階的に変わったり、途中に水平な部分や段差を部分的に設けても良い。その場合の傾斜角度θの目安は、これらの違う角度を平均した平均角度とする。 Here, the inclination angle θ 1 and the inclination angle θ 2 are not uniform from the rising edge to the thin flat portion 3, and the angle changes stepwise in the middle, or a horizontal portion or a step is partially provided in the middle. May be. In this case, the standard of the inclination angle θ is an average angle obtained by averaging these different angles.

何故、本発明のような構成を採用すると、破断用溝部4が塑性加工により形成された場合にも、破断用溝部4の平坦状底部4aにおけるくびれの発生が防止され、かつ、平坦状底部4aの厚さも安定した容器の防爆弁の構造を提供することが可能になったのかについて、解析シミュレーションにより考察を試みた。   This is why, when the configuration as in the present invention is adopted, even when the breaking groove 4 is formed by plastic working, the occurrence of constriction in the flat bottom 4a of the breaking groove 4 is prevented, and the flat bottom 4a. We tried to investigate whether it was possible to provide the structure of the explosion-proof valve of the container with stable thickness.

その結果、塑性加工(コイニング加工)により薄肉平坦部3に線状の破断用溝部4を形成する際に、防爆弁2を構成する破断用溝部4の周辺箇所(後記図4に示す符号イ、ウ)内の内部応力に特徴的な現象が現れることが判明した。なお、図4は、塑性加工(コイニング加工)により破断用溝部4を形成する場合の破断用溝部4の周辺箇所(符号イ、ウ)に発生する変形状態および応力状態を図2に示す矢印Bの方向から観察した(上面視)結果を模式的に説明する模式説明図である。   As a result, when the linear breaking groove 4 is formed in the thin flat portion 3 by plastic working (coining), the peripheral portion of the breaking groove 4 constituting the explosion-proof valve 2 (the reference symbol a, It was found that a characteristic phenomenon appears in the internal stress in c). FIG. 4 shows an arrow B shown in FIG. 2 showing the deformation state and the stress state occurring in the peripheral portion (symbols a and c) of the breaking groove portion 4 when the breaking groove portion 4 is formed by plastic working (coining processing). It is a schematic explanatory drawing which illustrates typically the result observed from the direction (top view).

破断用溝部4付近の材料には紙面垂直方向から圧縮応力が加わるため、材料内は高い圧縮応力が作用し、圧力が高くなる。しかしながら、破断用溝部4の外側の位置ウでは、周方向に広がるような引張変形が加わるため、上記圧縮応力が緩和され、圧力は他の部位より低くなる。その一方で、仮に図3に示すようなθ>θの条件を満足させずに、従来のようにθ=θに設定すると、破断用溝部4の内側の位置イでは、周方向に縮むような圧縮変形が加わるので、圧縮応力がより高くなり、圧力はより高くなる。したがって、これらのイ、ウ間の圧力差により、破断用溝部4を通じての材料の移動を引き起こしてしまい、平坦状底部4aの厚さの安定性に悪影響する(より詳細は、後記参照)。しかしながら、本発明では、図4からも明らかなように、前記した図2および図3の通り、傾斜両側壁4c、4dの、一方の傾斜側壁4cの傾斜角度θを、他方の傾斜側壁4dの傾斜角度θに比べて大きくしており、蓋1の内側の位置イ(傾斜側壁4c側)での周方向圧縮変形が緩和されるため、蓋1の外側の位置ウ(傾斜側壁4d側)との圧力差が減少し、平坦状底部4aの厚さの安定性も改善される。 Since compressive stress is applied to the material in the vicinity of the fracture groove 4 from the direction perpendicular to the paper surface, high compressive stress acts on the material, and the pressure increases. However, since the tensile deformation that spreads in the circumferential direction is applied to the position c outside the breaking groove 4, the compressive stress is relieved and the pressure becomes lower than that of other parts. On the other hand, if the condition of θ 1 > θ 2 as shown in FIG. 3 is not satisfied and θ 1 = θ 2 is set as in the prior art, at the position a inside the fracture groove 4, the circumferential direction Compressive deformation that shrinks to a higher pressure is applied, so that the compressive stress becomes higher and the pressure becomes higher. Therefore, the difference in pressure between these a and c causes the movement of the material through the breaking groove 4 and adversely affects the stability of the thickness of the flat bottom portion 4a (see below for details). However, in the present invention, as is apparent from FIG. 4, as shown in FIGS. 2 and 3, the inclined angle θ1 of one inclined side wall 4c of the inclined side walls 4c, 4d is set to the other inclined side wall 4d. the inclination angle θ is made larger than the 2, because the circumferential compressive deformation at the location of the inside of the lid 1 b (inclined side wall 4c side) is reduced, the position c (inclined side wall 4d side of the outer cover 1 ) And the stability of the thickness of the flat bottom portion 4a is improved.

より具体的に、上面視円弧状に設けられた破断用溝部4のV字形の断面形状における中央に近い、内側の箇所(符号イの箇所)の材料、すなわち傾斜側壁4c側の材料に作用する圧力(圧縮応力)と、破断用溝部4のV字形の断面形状における中央から遠い、外側の箇所(符号ウの箇所)の材料、すなわち傾斜側壁4d側の材料に作用する圧力(圧縮応力)が略同じ位になり、圧力差が減少している。   More specifically, it acts on the material of the inner portion (the portion of symbol A) near the center of the V-shaped cross-sectional shape of the fracture groove 4 provided in an arc shape when viewed from above, that is, the material on the inclined side wall 4c side. The pressure (compressive stress) and the pressure (compressive stress) acting on the material on the outer side (the part of the symbol C) far from the center in the V-shaped cross-sectional shape of the breaking groove 4, that is, on the inclined side wall 4 d side It is almost the same, and the pressure difference is decreasing.

これによって、符号イの側から符号ウの側に材料が流れ出すような変形が阻止されたものと考えられる。これが、破断用溝部4の平坦状底部4aにおけるくびれの発生が防止され、かつ、平坦状底部4aの厚さも安定した容器の防爆弁2の構造を提供することが可能になった原因と推察している。   As a result, it is considered that the deformation in which the material flows out from the side of the symbol A to the side of the symbol C is prevented. This is presumed to be the reason why it is possible to provide the structure of the explosion-proof valve 2 of the container in which the occurrence of constriction in the flat bottom 4a of the breaking groove 4 is prevented and the thickness of the flat bottom 4a is stable. ing.

比較のために解析シミュレーションした結果、塑性加工(コイニング加工)により薄肉平坦部30に線状の破断用溝部40を形成する際に、防爆弁20を構成する破断用溝部40の周辺箇所(後記図10に示す符号カ、キ)内の内部応力にも特徴的な現象が現れていることが判明した。なお、図10は、塑性加工(コイニング加工)により破断用溝部40を形成する場合の破断用溝部40の周辺箇所(符号カ、キ)に発生する変形状態および応力状態を図8に示す矢印Dの方向から観察した(上面視)結果を模式的に説明する模式説明図である。   As a result of analysis simulation for comparison, when forming the linear breaking groove 40 in the thin flat portion 30 by plastic working (coining), the peripheral portion of the breaking groove 40 constituting the explosion-proof valve 20 (described later) It was found that a characteristic phenomenon also appears in the internal stress in the reference numeral 10). FIG. 10 shows an arrow D shown in FIG. 8 indicating the deformation state and the stress state occurring in the peripheral portion (symbol K) of the fracture groove 40 when the fracture groove 40 is formed by plastic working (coining). It is a schematic explanatory drawing which illustrates typically the result observed from the direction (top view).

この図10からも明らかなように、上面視円弧状に設けられた破断用溝部40のV字形の断面形状における中央に近い、内側の箇所(符号カの箇所)の材料、すなわち傾斜側壁40c側の材料に作用する圧力(圧縮応力)は大きく、破断用溝部40のV字形の断面形状における中央から遠い、外側の箇所(符号キの箇所)の材料、すなわち傾斜側壁40d側の材料に作用する圧力(圧縮応力)は符号カの箇所の圧力(圧縮応力)に比べて小さく、むしろ材料を周方向に広げる引張圧力が働いていることが分かる。   As is clear from FIG. 10, the material of the inner part (reference numeral part) near the center of the V-shaped cross-sectional shape of the breaking groove 40 provided in an arc shape when viewed from above, that is, the inclined side wall 40c side. The pressure (compressive stress) acting on the material is large and acts on the material in the outer portion (sign key location) far from the center in the V-shaped cross-sectional shape of the breaking groove 40, that is, on the material on the inclined side wall 40d side. It can be seen that the pressure (compressive stress) is smaller than the pressure (compressive stress) at the point of reference sign, and rather, the tensile pressure that spreads the material in the circumferential direction is acting.

これが、傾斜側壁40cの傾斜角度θと傾斜側壁40dの傾斜角度θとを等しくした破断用溝部40を塑性加工(コイニング加工)により形成した場合、図8に示す破断用溝部40の平坦状底部40aの下方(符号クの部分)にくびれが生じてしまう原因と推察している。   In the case where the breaking groove 40 having the equal inclination angle θ of the inclined side wall 40c and the inclination angle θ of the inclined side wall 40d is formed by plastic working (coining), the flat bottom 40a of the breaking groove 40 shown in FIG. This is presumed to be the cause of the constriction below (the portion marked with the symbol).

したがって、図2のように、材料に作用する圧力(圧縮応力)が大きい側の、蓋1の内側に位置する傾斜側壁4cの傾斜角度θを、材料に作用する圧力(圧縮応力)が小さく、材料に引張圧力が働いている側の、蓋1の外側に位置する傾斜側壁4dの傾斜角度θよりも大きくすれば、蓋1の内外(破断用溝部4の内外両側)に位置する両側の材料に作用する圧力(圧縮応力)差を減少させることができる。そして、これによって、コイニング加工の際の破断用溝部4の平坦状底部4aの下方に生じるくびれを抑制することができる。 Therefore, as shown in FIG. 2, the inclination angle θ 1 of the inclined side wall 4c located on the inner side of the lid 1 on the side where the pressure (compressive stress) acting on the material is large is reduced, and the pressure (compressive stress) acting on the material is small. , the side working pressure tensile material, be set larger than the inclination angle theta 2 of the inclined side wall 4d located outwardly of the lid 1, both sides located inside and outside of the lid 1 (inner and outer sides of the break groove 4) The difference in pressure (compressive stress) acting on the material can be reduced. And thereby, the constriction which arises under the flat bottom part 4a of the groove part 4 for a fracture | rupture in the case of coining process can be suppressed.

このため、これら傾斜側壁4cの傾斜角度θと傾斜側壁4dの傾斜角度θの互いの角度差は、破断用溝部4の内側と外側での圧縮応力の差、圧縮応力と引張応力との差の程度によって、前記した角度範囲から選択すれば良い。 Therefore, the angular difference of the mutual inclination angle theta 2 of the inclination angle theta 1 and inclined side wall 4d of the inclined side walls 4c, the difference in compressive stress in the inner and outer break groove 4, the compressive stress and tensile stress The angle range may be selected according to the degree of difference.

また、これら傾斜側壁4cの傾斜角度θと傾斜側壁4dの傾斜角度θの互いの角度差を設ける位置も、破断用溝部4の全長あるいは全てでなくとも、これらの圧力差が大きくなる、破断用溝部4が平面視で円弧状となる部分など、選択的あるいは部分的に選択できる。 Also, position where the mutual angle difference of the inclination angle theta 2 of the inclination angle theta 1 and inclined side wall 4d of the inclined side walls 4c, not be the full length or all of the break groove 4, these pressure difference increases, The breaking groove 4 can be selected selectively or partially such as a portion having an arc shape in plan view.

本実施形態においては、上述したような上面視円弧状に設けられた破断用溝部4のV字形の断面形状についての内部応力状態について説明したが、必ずしも円弧状に設けられた破断用溝部4に関してのみに言えることではなく、平坦状底部4aと底部4aから薄肉平坦部3まで立ち上がる対向した傾斜両側壁と、により形成されたV字形の断面形状をなし、それぞれの側に圧力(圧縮応力)状態の差が生じやすい箇所には、本発明が様々な変形態様として採用可能であると推察する。例えば、図5(a)に示される曲線からなるまたは一部に曲線を含む閉曲線の場合は、閉曲線状の破断用溝部4eの内側の傾斜側壁の傾斜角度を、外側の傾斜側壁の傾斜角度よりも大きくすることが効果的である。また、図5(b)の場合においては、薄肉平坦部3における破断用溝部4の位置を勘案し、上述のまたは図4で示した圧力バランスの考えに基づいて個々の直線状の破断用溝部4f、4gの傾斜側壁の傾斜角度を決めることができる。   In this embodiment, although the internal stress state about the V-shaped cross-sectional shape of the breaking groove portion 4 provided in the arc shape as viewed from above has been described, the breaking groove portion 4 provided in the arc shape is not necessarily described. It can be said not only, but it has a V-shaped cross-section formed by the flat bottom 4a and opposite inclined side walls rising from the bottom 4a to the thin flat portion 3, and a pressure (compressive stress) state on each side. It is presumed that the present invention can be adopted as various modifications in places where the difference is likely to occur. For example, in the case of a closed curve composed of the curve shown in FIG. 5 (a) or including a curve in part, the inclination angle of the inner inclined side wall of the closed groove-like breaking groove 4e is set to be larger than the inclination angle of the outer inclined side wall. Is also effective. In the case of FIG. 5 (b), the position of the breaking groove 4 in the thin flat portion 3 is taken into consideration, and the individual straight breaking grooves are formed based on the idea of the pressure balance described above or shown in FIG. The inclination angles of the 4f and 4g inclined side walls can be determined.

なお、本実施形態においては、容器の蓋に防爆弁を設ける例について説明したが、必ずしもこれに限定されるものではなく、容器を構成するいずれかの表面に防爆弁が設けられていればよい。   In this embodiment, the example in which the explosion-proof valve is provided on the lid of the container has been described. However, the present invention is not necessarily limited to this, and it is only necessary that the explosion-proof valve is provided on any surface constituting the container. .

1 リチウムイオン電池用容器の蓋
1a、1b、1c、1d 蓋1の側壁
2 防爆弁
3 薄肉平坦部
3a 傾斜壁
4、4e、4f、4g 破断用溝部
4a 平坦状底部
4c、4d 傾斜側壁
5 破断用溝部4の不連続部
DESCRIPTION OF SYMBOLS 1 Lid battery container lid 1a, 1b, 1c, 1d Lid side wall 2 Explosion-proof valve 3 Thin flat portion 3a Inclined wall 4, 4e, 4f, 4g Breaking groove 4a Flat bottom portion 4c, 4d Inclined side wall 5 Break Discontinuous part of groove part 4

Claims (4)

密封構造をなす容器の防爆弁の構造であって、
前記防爆弁は、
前記容器を構成する表面に、この表面の周辺部より薄肉に形成された薄肉平坦部と、塑性加工により前記薄肉平坦部に線状に形成された破断用溝部と、を備え、
この線状に形成された破断用溝部は、
前記破断用溝部の肉厚を規定している平坦状底部と、この底部から前記薄肉平坦部まで立ち上がる対向した傾斜両側壁と、により形成されたV字形の断面形状をなし、
前記傾斜両側壁の一方の傾斜側壁の傾斜角度θが他方の傾斜側壁の傾斜角度θに比べて大きくなるような構成を有したことを特徴とする容器の防爆弁の構造。
An explosion-proof valve structure for a container having a sealed structure,
The explosion-proof valve is
On the surface constituting the container, a thin flat portion formed thinner than the peripheral portion of the surface, and a breaking groove formed linearly in the thin flat portion by plastic processing,
The breaking groove formed in this linear shape is
A V-shaped cross-sectional shape formed by a flat bottom portion defining the thickness of the breaking groove portion and opposing inclined side walls rising from the bottom portion to the thin flat portion,
Structure of explosion-proof valve of the container, characterized in that the inclination angle theta 1 of one inclined side wall of the inclined side walls had a larger configuration than the inclination angle theta 2 of the other inclined side wall.
前記線状に形成された破断用溝部は、曲線からなるまたは一部に曲線を含む閉曲線、あるいは、前記閉曲線の一部が不連続となる不連続閉曲線、あるいは、複数の直線が組み合わされたように形成された破断用溝部であることを特徴とする請求項1に記載の容器の防爆弁の構造。   The breaking groove portion formed in the linear shape is a closed curve including a curve or partially including a curve, a discontinuous closed curve in which a part of the closed curve is discontinuous, or a combination of a plurality of straight lines. 2. The explosion-proof valve structure for a container according to claim 1, wherein the structure is a breaking groove formed in the container. 前記一方の傾斜側壁の傾斜角度θが45〜80度であり、前記他方の傾斜側壁の傾斜角度θが35〜70度であることを特徴とする請求項1または2に記載の容器の防爆弁の構造。 3. The container according to claim 1, wherein an inclination angle θ 1 of the one inclined side wall is 45 to 80 degrees, and an inclination angle θ 2 of the other inclined side wall is 35 to 70 degrees. Explosion-proof valve structure. 前記容器は、リチウムイオン電池用容器であることを特徴とする請求項1〜3のいずれか一項に記載の容器の防爆弁の構造。




The said container is a container for lithium ion batteries, The structure of the explosion-proof valve of the container as described in any one of Claims 1-3 characterized by the above-mentioned.




JP2014215335A 2014-10-22 2014-10-22 Construction of container explosion-proof valve Expired - Fee Related JP6275621B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014215335A JP6275621B2 (en) 2014-10-22 2014-10-22 Construction of container explosion-proof valve
CN201510594347.8A CN105546173B (en) 2014-10-22 2015-09-17 The structure of the explosion-proof valve of container
KR1020150146493A KR101805264B1 (en) 2014-10-22 2015-10-21 Structure of a blast valve for a container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215335A JP6275621B2 (en) 2014-10-22 2014-10-22 Construction of container explosion-proof valve

Publications (2)

Publication Number Publication Date
JP2016081867A true JP2016081867A (en) 2016-05-16
JP6275621B2 JP6275621B2 (en) 2018-02-07

Family

ID=55825586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215335A Expired - Fee Related JP6275621B2 (en) 2014-10-22 2014-10-22 Construction of container explosion-proof valve

Country Status (3)

Country Link
JP (1) JP6275621B2 (en)
KR (1) KR101805264B1 (en)
CN (1) CN105546173B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113312A (en) * 2021-01-25 2022-08-04 プライムプラネットエナジー&ソリューションズ株式会社 Sealing plate with gas exhaust valve and secondary battery using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025861B2 (en) * 2017-08-22 2022-02-25 大和製罐株式会社 Seal plate
CN111121578A (en) * 2019-12-12 2020-05-08 梁荣 Horizontal explosion-proof tank door body and horizontal explosion-proof tank of high security

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394555A (en) * 1986-08-01 1988-04-25 モ−リ エネルギ− リミテツド Relief pressure apparatus for electrochemical battery and electrochemical battery
JP2013243075A (en) * 2012-05-22 2013-12-05 Kobe Steel Ltd Battery case lid and method for forming explosion-proof valve of battery case lid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943063B2 (en) * 2003-08-26 2007-07-11 東芝照明プレシジョン株式会社 Sealing plate and sealed battery
JP5380781B2 (en) * 2007-03-22 2014-01-08 トヨタ自動車株式会社 Open valve, lid, container, and container
JP5623089B2 (en) 2010-01-28 2014-11-12 冨士発條株式会社 Battery sealing plate, method for manufacturing the sealing plate, and manufacturing mold
EP2985811B1 (en) * 2010-10-13 2017-03-08 Soode Nagano Co., Ltd. Battery case lid and manufacturing method for battery case lid
JP5250138B2 (en) * 2011-08-09 2013-07-31 日新製鋼株式会社 Battery case lid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394555A (en) * 1986-08-01 1988-04-25 モ−リ エネルギ− リミテツド Relief pressure apparatus for electrochemical battery and electrochemical battery
JP2013243075A (en) * 2012-05-22 2013-12-05 Kobe Steel Ltd Battery case lid and method for forming explosion-proof valve of battery case lid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113312A (en) * 2021-01-25 2022-08-04 プライムプラネットエナジー&ソリューションズ株式会社 Sealing plate with gas exhaust valve and secondary battery using the same

Also Published As

Publication number Publication date
JP6275621B2 (en) 2018-02-07
KR101805264B1 (en) 2017-12-05
CN105546173A (en) 2016-05-04
CN105546173B (en) 2018-08-03
KR20160047407A (en) 2016-05-02

Similar Documents

Publication Publication Date Title
KR101881627B1 (en) Cover body for battery case
US9716260B2 (en) Battery case
KR101490592B1 (en) Battery case cover and method for forming an explosion-proof valve of a battery case cover
JP4953225B2 (en) Sealed prismatic battery
JP6493548B2 (en) Battery pack pressure release mechanism
JP5379958B2 (en) battery
JP6275621B2 (en) Construction of container explosion-proof valve
JP4247831B2 (en) Sealed prismatic battery
KR20170117748A (en) Secondary battery
KR101861907B1 (en) Battery case lid
JP5151715B2 (en) Fuel cell
KR101688580B1 (en) Battery Cell with Curved Surface
JP2014049398A (en) Case for secondary battery and secondary battery
JP5592291B2 (en) Sealed battery and safety valve
JP2005235531A (en) Sealed battery
JP2008123726A (en) Safety valve of sealed battery
JP2014234857A (en) Safety valve for sealed container
JP2018125278A (en) Rupture valve and energy storage element
JP2015069715A (en) Safety valve of sealed battery
EP2887419B1 (en) Lead-acid battery
JP6244152B2 (en) Sealed battery safety valve
KR102320114B1 (en) Current interrupt structure applied to the pouch type secondary battery
JP2018067481A (en) Battery pack
JP2014005081A (en) Opening valve, lid body, vessel body, and vessel

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

R150 Certificate of patent or registration of utility model

Ref document number: 6275621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees