JP2016081800A - Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery - Google Patents

Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery Download PDF

Info

Publication number
JP2016081800A
JP2016081800A JP2014213525A JP2014213525A JP2016081800A JP 2016081800 A JP2016081800 A JP 2016081800A JP 2014213525 A JP2014213525 A JP 2014213525A JP 2014213525 A JP2014213525 A JP 2014213525A JP 2016081800 A JP2016081800 A JP 2016081800A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014213525A
Other languages
Japanese (ja)
Inventor
弘朗 在間
Hiroaki Arima
弘朗 在間
健次 橋本
Kenji Hashimoto
健次 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2014213525A priority Critical patent/JP2016081800A/en
Publication of JP2016081800A publication Critical patent/JP2016081800A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a ternary positive electrode active material for a nonaqueous secondary battery, which is improved in low-temperature characteristic; a method for manufacturing such a ternary positive electrode active material; and a nonaqueous secondary battery improved in low-temperature characteristic.SOLUTION: A positive electrode active material for a nonaqueous secondary battery according to the present invention comprises: particles of a complex oxide expressed by the general formula, LiNiCoMnO(a+b+c=1, 0<a<1, 0<b<1 and 0<c<1), of which the average particle diameter is less than 150 nm, and the crystallite size is 25-100% of the average particle diameter.SELECTED DRAWING: Figure 1

Description

本発明は、非水系二次電池用正極活性物質及びその製造方法ならびに二次電池であり、より詳しくは、低温特性の向上した非水系二次電池用正極活物質及びその製造方法に関するものである。   The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a manufacturing method thereof, and a secondary battery, and more particularly to a positive electrode active material for a non-aqueous secondary battery with improved low-temperature characteristics and a manufacturing method thereof. .

従来、非水系二次電池用正極活物質として主にLiCoOが用いられている。しかし、LiCoOを正極活物質として用いた非水系二次電池は、充電状態における電池内での熱的安定性に問題があり、放電容量も小さいので、LiCoO、LiNiO及びLiMnOをそれぞれ3つの成分とする三元系状態図上に示される固溶体Li[Co1−2xNiMn]O(0<x≦1/2)が2001年に考案された(以降、3元系正極活物質とする)。このような固溶体の一例としてLiCo1/3Ni1/3Mn1/3が知られており、これを正極活物質として用いた非水系二次電池は、放電容量や熱的安定性がLiCoOよりも優れる。 Conventionally, LiCoO 2 has been mainly used as a positive electrode active material for non-aqueous secondary batteries. However, the non-aqueous secondary battery using LiCoO 2 as the positive electrode active material has a problem in the thermal stability in the battery in a charged state, and the discharge capacity is small. Therefore, LiCoO 2 , LiNiO 2 and LiMnO 2 are respectively used. A solid solution Li [Co 1-2x Ni x Mn x ] O 2 (0 <x ≦ 1/2) shown on the ternary phase diagram as three components was devised in 2001 (hereinafter referred to as ternary system). A positive electrode active material). LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is known as an example of such a solid solution, and a non-aqueous secondary battery using this as a positive electrode active material has a discharge capacity and thermal stability. It is superior to LiCoO 2 .

近年、非水系二次電池用正極活物質にはより高放電容量化と低温特性の向上が求められるようになり、前者の対策の一つとして活物質の粒子サイズを小さくする、すなわち表面積を増大させ、リチウムイオンの固体内拡散距離を短くすることが検討されている(特許文献1、非特許文献1)。後者については、例えば、V系正極活性物質に関してマイクロファイバー構造を直径70nmのナノファイバー構造化すると低温特性が向上することが報告されている(非特許文献2)。 In recent years, positive electrode active materials for non-aqueous secondary batteries have been required to have higher discharge capacity and improved low-temperature characteristics. As one of the former measures, the particle size of the active material is reduced, that is, the surface area is increased. To reduce the diffusion distance of lithium ions in the solid (Patent Document 1, Non-Patent Document 1). Regarding the latter, for example, it has been reported that the low-temperature characteristics are improved when the microfiber structure is made into a nanofiber structure having a diameter of 70 nm with respect to the V 2 O 5 positive electrode active material (Non-patent Document 2).

3元系正極活物質においても、ナノ粒子化すると高放電容量と低温特性が向上する可能性がある。これまでに、放電容量の向上した100〜300nmの3元系正極活物質が合成されている(非特許文献3)。さらに、1次粒子サイズがより小さい40〜50nmの3元系正極活物質が合成されているが、この正極活物質では粒子の融着が大きくて独立したナノ粒子といえるものではなかった(非特許文献4)。このように、より小さい、例えば平均粒子径50nmというような独立ナノ粒子はいまだ合成されていない。また、低温特性の改善については、これまでにまったく報告されていない。   Even in the case of a ternary positive electrode active material, there is a possibility that high discharge capacity and low-temperature characteristics may be improved by forming nanoparticles. So far, a ternary positive electrode active material of 100 to 300 nm with improved discharge capacity has been synthesized (Non-patent Document 3). Furthermore, although a ternary positive electrode active material having a smaller primary particle size of 40 to 50 nm has been synthesized, the positive electrode active material has a large particle fusion and cannot be said to be an independent nanoparticle (non-native). Patent Document 4). In this way, smaller independent nanoparticles having an average particle diameter of, for example, 50 nm have not been synthesized yet. In addition, no improvement of the low temperature characteristics has been reported so far.

特開2013−4401号公報JP 2013-4401 A

Advanced Functional Materials,16(2006)1904−1912Advanced Functional Materials, 16 (2006) 1904-1912 Advanced Materials, 17125−128(2005)Advanced Materials, 17125-128 (2005) Electrochimica Acta,49(2004)557−563Electrochimica Acta, 49 (2004) 557-563 Journal of The Electrochemical Society,156(2009)A192−A198Journal of The Electrochemical Society, 156 (2009) A192-A198

本発明は前記課題を解決するためになされたものであり、その目的とするところは、低温特性の改善された非水系二次電池用3元系正極活物質を提供することにある。また、低温特性の改善された非水系二次電池用3元系正極活物質の製造方法および低温特性の改善された非水系二次電池を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a ternary positive electrode active material for a non-aqueous secondary battery with improved low-temperature characteristics. Another object of the present invention is to provide a method for producing a ternary positive electrode active material for non-aqueous secondary batteries with improved low-temperature characteristics and a non-aqueous secondary battery with improved low-temperature characteristics.

本発明者等が鋭意検討した結果、一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる3元系正極活物質ナノ粒子の結晶子サイズ/平均粒子径の比が特定の範囲にある場合、これを用いた非水系二次電池の低温特性が改善されることを見出し、本発明を完成させた。 As a result of intensive studies by the present inventors, a ternary positive electrode represented by the general formula LiNi a Co b Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1) The inventors have found that when the ratio of the crystallite size / average particle diameter of the active material nanoparticles is in a specific range, the low temperature characteristics of a non-aqueous secondary battery using the same are improved, and the present invention has been completed.

すなわち本発明の非水系二次電池用正極活物質は、一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる複合酸化物粒子からなる非水系二次電池用正極活物質であって、平均粒子径が150nm未満で、かつ結晶子サイズが平均粒子径の25〜100%である。 That is, the positive electrode active material for a non-aqueous secondary battery of the present invention is represented by the general formula LiNi a Co b Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1). A positive electrode active material for a non-aqueous secondary battery comprising composite oxide particles having an average particle diameter of less than 150 nm and a crystallite size of 25 to 100% of the average particle diameter.

好ましい実施態様においては、前記一般式LiNiCoMnにおいてa+b+c=1、0.2<a<0.7、0.1<b<0.4、0.1<c<0.4である。 In a preferred embodiment, in the general formula LiNi a Co b Mn c O 2 , a + b + c = 1, 0.2 <a <0.7, 0.1 <b <0.4, 0.1 <c <0. 4.

本発明の非水系二次電池用正極活物質の製造方法は、一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる複合酸化物粒子からなる非水系二次電池用正極活物質の製造方法であって、高分子化合物の溶液にLi化合物、Ni化合物、Co化合物およびMn化合物を溶解させて均一混合液を得る工程、均一混合液から溶媒を除去して固体を得る工程、固体を各金属化合物の分解温度以上かつ高分子化合物の分解温度以下で加熱して微粒子を生成する工程、400℃以上で加熱して高分子化合物を除去して非水系二次電池用正極活物質を生成する工程、からなる。 The method for producing a positive electrode active material for a non-aqueous secondary battery according to the present invention has a general formula LiNi a Co b Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1). A method for producing a positive electrode active material for a non-aqueous secondary battery comprising composite oxide particles represented by the formula: wherein a Li compound, a Ni compound, a Co compound and a Mn compound are dissolved in a polymer compound solution to form a uniform mixed solution A step of obtaining a solid by removing the solvent from the uniform mixed solution, a step of heating the solid at a temperature higher than the decomposition temperature of each metal compound and lower than the decomposition temperature of the polymer compound, and heating at a temperature of 400 ° C. And removing the polymer compound to produce a positive electrode active material for a non-aqueous secondary battery.

本発明の非水系二次電池は、前記非水系二次電池用正極活物質を用いる。   The non-aqueous secondary battery of the present invention uses the positive electrode active material for non-aqueous secondary batteries.

本発明によれば、低温特性の改善された非水系二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous secondary battery with improved low-temperature characteristics.

実施例の非水系二次電池用正極活物質を用いた評価セルの初期充放電特性・容量推移を示す図である。It is a figure which shows the initial stage charge / discharge characteristic and capacity transition of the evaluation cell using the positive electrode active material for non-aqueous secondary batteries of an Example. 比較例の非水系二次電池用正極活物質を用いた評価セルの初期充放電特性・容量推移を示す図である。It is a figure which shows the initial stage charge / discharge characteristic and capacity transition of the evaluation cell using the positive electrode active material for non-aqueous secondary batteries of a comparative example.

実施例の非水系二次電池用正極活物質を用いた評価セルの室温における放電レート特性を示す図である。It is a figure which shows the discharge rate characteristic in the room temperature of the evaluation cell using the positive electrode active material for non-aqueous secondary batteries of an Example. 実施例の非水系二次電池用正極活物質を用いた評価セルの0℃における放電レート特性を示す図である。It is a figure which shows the discharge rate characteristic in 0 degreeC of the evaluation cell using the positive electrode active material for non-aqueous secondary batteries of an Example. 比較例の非水系二次電池用正極活物質を用いた評価セルの室温における放電レート特性を示す図である。It is a figure which shows the discharge rate characteristic in the room temperature of the evaluation cell using the positive electrode active material for non-aqueous secondary batteries of a comparative example. 比較例の非水系二次電池用正極活物質を用いた評価セルの0℃における放電レート特性を示す図である。It is a figure which shows the discharge rate characteristic in 0 degreeC of the evaluation cell using the positive electrode active material for non-aqueous secondary batteries of a comparative example.

以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。   Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.

本発明の非水系二次電池用正極活物質は、一般式LiNiCoMnで表わされる3元系複合酸化物粒子である。各金属元素の組成は、a+b+c=1の条件下、0<a<1、0<b<1、0<c<1、好ましくは、0.1<a<0.8、0.1<b<0.5、0.1<c<0.5、より好ましくは、0.2<a<0.7、0.1<b<0.4、0.1<c<0.4である。このような複合酸化物として、例えばLiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3などを挙げることができる。中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3は、熱安定性の点で好ましい。 The positive electrode active material for a non-aqueous secondary battery of the present invention is a ternary composite oxide particle represented by a general formula LiNi a Co b Mn c O 2 . The composition of each metal element is 0 <a <1, 0 <b <1, 0 <c <1, preferably 0.1 <a <0.8, 0.1 <b under the condition of a + b + c = 1. <0.5, 0.1 <c <0.5, more preferably 0.2 <a <0.7, 0.1 <b <0.4, 0.1 <c <0.4 . Examples of such complex oxides include LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2 and the like can be mentioned. Among these, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in terms of thermal stability.

前記3元系複合酸化物粒子は、単結晶または多結晶であり、球状、多面体、楕円体状および立方体状のいずれかの形態を有する。複数の粒子断面の最大幅の平均値から得られる平均粒子径は、150nm以下、好ましくは10〜100nm、より好ましくは20〜80nmである。なお、平均粒子径の変動係数(=100×標準偏差/平均値)は、70%以下、より好ましくは10〜60%である。70%より大きくなると粒子サイズのばらつきが大きくなって、正極活物質としての性能が低下する。平均粒子径は、走査型または透過型電子顕微鏡写真の画像解析などで算出することができる。なお、本明細書において、粒子径の定義は、独立して存在している粒子を対象とする。よって、微粒子が部分的に融着して大きな粒子を形成している場合は、大きな粒子の最大幅を粒子径とする。   The ternary composite oxide particles are single crystal or polycrystal and have any of spherical, polyhedral, ellipsoidal, and cubic shapes. The average particle diameter obtained from the average value of the maximum widths of a plurality of particle cross sections is 150 nm or less, preferably 10 to 100 nm, more preferably 20 to 80 nm. The variation coefficient of the average particle diameter (= 100 × standard deviation / average value) is 70% or less, more preferably 10 to 60%. If it exceeds 70%, the variation in the particle size increases, and the performance as the positive electrode active material decreases. The average particle diameter can be calculated by image analysis of a scanning or transmission electron micrograph. In addition, in this specification, the definition of a particle diameter makes object the particle | grains which exist independently. Therefore, when the fine particles are partially fused to form large particles, the maximum width of the large particles is taken as the particle diameter.

前記3元系複合酸化物粒子の結晶子サイズは、平均粒子径の25〜100%、好ましくは30〜100%、より好ましくは35〜100%である。25%より小さいと結晶界面が多くなるためLiイオンの移動が遅くなり、低温特性が低下しやすい。結晶子サイズは、X線回折からシェラーの式を用いて算出することができる。なお、本明細書では、結晶子サイズとして(003)面と(104)面の平均値を採用する。   The crystallite size of the ternary composite oxide particles is 25 to 100%, preferably 30 to 100%, more preferably 35 to 100% of the average particle diameter. If it is less than 25%, the number of crystal interfaces increases, so the movement of Li ions slows down, and the low-temperature characteristics tend to deteriorate. The crystallite size can be calculated from the X-ray diffraction using Scherrer's equation. In this specification, an average value of the (003) plane and the (104) plane is adopted as the crystallite size.

前記3元系複合酸化物粒子は必要に応じてドープ成分Dを含むことができ、この場合、一般式LiNiCoMn((Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも1つでありa+b+c+d=1、0<a<1、0<b<1、0<c<1、0≦d≦0.1)で表すことができる。 The ternary composite oxide particles may include a doping component D as necessary. In this case, the general formula LiNi a Co b Mn c D d O 2 ((D is Al, Mg, Ti, Sn, At least one selected from Zn, W, Zr, Mo, Fe and Na, a + b + c + d = 1, 0 <a <1, 0 <b <1, 0 <c <1, 0 ≦ d ≦ 0.1) Can be represented.

このような3元系複合酸化物粒子の作製としては、高温反応条件下において粒子成長の原因となる金属元素の物質移動を抑制可能な方法であれば、特に限定されない。そのような方法として、例えば、原料となる金属化合物と高分子化合物を均一に混合した後、高分子化合物の溶融温度または分解温度未満の温度で金属化合物を分解させる方法を挙げることができる。   The production of such ternary composite oxide particles is not particularly limited as long as it is a method capable of suppressing mass transfer of a metal element that causes particle growth under high-temperature reaction conditions. An example of such a method is a method in which a metal compound as a raw material and a polymer compound are uniformly mixed, and then the metal compound is decomposed at a temperature lower than the melting temperature or decomposition temperature of the polymer compound.

3元系複合酸化物粒子の作製方法の一例として、高分子化合物を用いる方法を説明する。高分子化合物としては、金属化合物が可溶な溶媒に溶け、かつ炭化しにくい高分子化合物が好ましく、例えば、金属化合物が水溶性であればポリビニルアルコール、水溶性セルロース誘導体、水溶性ポリペプチド、水溶性多糖類、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸共重合体などの水溶性の重合性不飽和化合物の単独または共重合体などを挙げることができる。非水溶性であれば、熱分解によって炭化しにくい高分子化合物、例えばポリメタアクリレート、ポリオキシメチレン、エチルセルロースなどを用いることができる。   As an example of a method for producing ternary composite oxide particles, a method using a polymer compound will be described. The polymer compound is preferably a polymer compound that is soluble in a solvent in which the metal compound is soluble and is not easily carbonized. For example, if the metal compound is water-soluble, polyvinyl alcohol, a water-soluble cellulose derivative, a water-soluble polypeptide, And water-soluble polymerizable unsaturated compounds such as water-soluble polysaccharides, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid copolymers, or copolymers thereof. If it is water-insoluble, a polymer compound that is difficult to be carbonized by thermal decomposition, such as polymethacrylate, polyoxymethylene, ethyl cellulose, or the like can be used.

金属化合物としては、高分子化合物の溶融温度または分解温度未満の温度で分解するものであれば特に限定されないが、例えば、金属硝酸塩、金属酢酸塩を挙げることができる。特に金属硝酸塩は比較的低温で分解しやすいため好ましい。なお、本明細書中の金属化合物は、前記一般式に含まれる金属の化合物に限定される。   The metal compound is not particularly limited as long as it decomposes at a temperature lower than the melting temperature or decomposition temperature of the polymer compound, and examples thereof include metal nitrates and metal acetates. In particular, metal nitrate is preferable because it is easily decomposed at a relatively low temperature. In addition, the metal compound in this specification is limited to the metal compound contained in the said general formula.

高分子化合物中の金属化合物の濃度は生成粒子の粒子径に影響する。濃度が高ければ生成粒子が近接しやすくなるため、粒子の成長が起こって粒子径が増大しやすい。適切な濃度としては、高分子化合物1gあたり0.0004〜0.02モル(3元系複合酸化物換算)、好ましくは0.0006〜0.0016モル、より好ましくは0.0008〜0.012モルである。高分子化合物1gあたり0.02モルより多いと生成粒子の粒子径が大きくなりやすい。   The concentration of the metal compound in the polymer compound affects the particle size of the generated particles. When the concentration is high, the generated particles are likely to be close to each other, so that particle growth occurs and the particle diameter is likely to increase. As an appropriate concentration, 0.0004 to 0.02 mol (in terms of ternary complex oxide), preferably 0.0006 to 0.0016 mol, and more preferably 0.0008 to 0.012 per 1 g of the polymer compound. Is a mole. When the amount is more than 0.02 mol per 1 g of the polymer compound, the particle diameter of the generated particles tends to increase.

金属化合物の高分子化合物への均一混合は、両者を可溶な溶媒に両者を溶解させ攪拌機などで混合することで実施できる。溶媒としては、金属化合物と高分子化合物の両者を溶解し、かつ金属化合物の分解温度より低い温度で除去可能な液体であれば特に限定されないが、例えば、水、メタノール、エタノールなどの低級アルコール、アセトンなどのケトン類、酢酸エチルなどのエステル類、テトラヒドロフラン、塩化メチレンなどを挙げることができる。次いで、得られた混合溶液から溶媒を加熱または減圧下で除去して金属化合物が均一に混合した高分子化合物の固体を得、これを大気下、または必要に応じて不活性雰囲気下で熱処理することにより3元系複合酸化物粒子を作製することができる。   Uniform mixing of the metal compound with the polymer compound can be carried out by dissolving both in a soluble solvent and mixing with a stirrer or the like. The solvent is not particularly limited as long as it is a liquid that dissolves both the metal compound and the polymer compound and can be removed at a temperature lower than the decomposition temperature of the metal compound. For example, water, lower alcohols such as methanol and ethanol, Mention may be made of ketones such as acetone, esters such as ethyl acetate, tetrahydrofuran and methylene chloride. Next, the solvent is removed from the obtained mixed solution under heating or reduced pressure to obtain a polymer compound solid in which the metal compound is uniformly mixed, and this is heat-treated in the air or, if necessary, in an inert atmosphere. Thus, ternary composite oxide particles can be produced.

溶媒除去に熱を使用する場合、温度としては金属化合物が分解しない温度、例えば100℃以下が好ましい。加熱時間は、金属化合物と高分子化合物の溶液から溶媒が除去されて固体化するまでであり、特に限定されない。   When heat is used for solvent removal, the temperature is preferably a temperature at which the metal compound does not decompose, for example, 100 ° C. or less. The heating time is not particularly limited until the solvent is removed from the solution of the metal compound and the polymer compound to solidify.

金属化合物が均一に混合した高分子化合物固体の熱処理は、金属化合物の分解が高分子化合物の分解温度以下で起こる場合、金属化合物の分解温度以上かつ高分子化合物の分解温度以下の温度域で一定時間熱処理した後、焼成温度まで上昇させて熱処理することが好ましい。金属化合物の分解温度以上かつ高分子化合物の分解温度以下の温度域で一定時間熱処理することにより、3元系複合酸化物粒子の元になる微粒子が生成し、焼成時にはこれを中心にして3元系複合酸化物粒子形成が起こるため、粒度分布が広くならず、かつ粒子径の小さな粒子が得られやすい。金属化合物の分解温度以上かつ高分子化合物の分解温度以下の温度域は、金属化合物と高分子化合物の種類によって異なるため特に限定されないが、例えば、130〜360℃、好ましくは150〜320℃、より好ましくは170〜280℃である。360℃以上では多くの高分子化合物が分解するか炭化し始める。この温度域で熱処理する時間としては、5分〜4時間、好ましくは10分〜3時間、より好ましくは15分〜2時間である。4時間より長く熱処理すると焼成後の粒子径が大きくなりやすい。焼成温度としては、400〜1000℃、好ましくは500〜950℃、より好ましくは、550〜900℃である。400℃より低いと高分子化合物が残存しやすい。1000℃より高いと粒子径が大きくなりやすい。焼成温度までの昇温速度は特に限定されないが、1℃/分より小さい速度の場合、粒子径が大きくなる傾向があるので好ましくない。   Heat treatment of a polymer compound solid in which a metal compound is uniformly mixed is constant in a temperature range above the decomposition temperature of the metal compound and below the decomposition temperature of the polymer compound when the decomposition of the metal compound occurs below the decomposition temperature of the polymer compound. After the heat treatment for a time, it is preferable that the heat treatment is performed by raising the temperature to the firing temperature. By performing heat treatment for a certain period of time in a temperature range higher than the decomposition temperature of the metal compound and lower than the decomposition temperature of the polymer compound, fine particles that are the basis of the ternary composite oxide particles are generated, and this is the ternary centered on this. Since the formation of system complex oxide particles occurs, the particle size distribution is not wide and particles having a small particle size are easily obtained. The temperature range above the decomposition temperature of the metal compound and below the decomposition temperature of the polymer compound is not particularly limited because it varies depending on the type of the metal compound and the polymer compound, but is, for example, 130 to 360 ° C, preferably 150 to 320 ° C. Preferably it is 170-280 degreeC. Above 360 ° C., many polymer compounds start to decompose or carbonize. The time for heat treatment in this temperature range is 5 minutes to 4 hours, preferably 10 minutes to 3 hours, and more preferably 15 minutes to 2 hours. When the heat treatment is performed for longer than 4 hours, the particle size after firing tends to increase. As a calcination temperature, it is 400-1000 degreeC, Preferably it is 500-950 degreeC, More preferably, it is 550-900 degreeC. When the temperature is lower than 400 ° C., the polymer compound tends to remain. If it is higher than 1000 ° C., the particle size tends to be large. The rate of temperature increase up to the firing temperature is not particularly limited, but a rate lower than 1 ° C./min is not preferable because the particle diameter tends to increase.

なお、金属化合物の分解が高分子化合物の分解温度以下で起こらない場合は、焼成温度まで迅速に上昇させて熱処理することが好ましい。こうすることで、粒度分布は広くなるが粒子径の小さな粒子が得られやすい。焼成温度までの昇温速度は特に限定されないが、1℃/分より小さい速度の場合、粒子径が大きくなる傾向があるので好ましくない。   In addition, when decomposition | disassembly of a metal compound does not occur below the decomposition temperature of a high molecular compound, it is preferable to heat up by raising rapidly to a calcination temperature. By doing so, the particle size distribution is widened, but particles having a small particle diameter are easily obtained. The rate of temperature increase up to the firing temperature is not particularly limited, but a rate lower than 1 ° C./min is not preferable because the particle diameter tends to increase.

本発明の非水系二次電池用正極活物質は、少なくとも、正極、負極、及び、リチウム塩を含有する非水系電解質から成るリチウム系二次電池の正極活物質として用いることが可能である。   The positive electrode active material for a non-aqueous secondary battery according to the present invention can be used as a positive electrode active material for a lithium secondary battery comprising at least a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium salt.

本発明に用いる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上するため好ましい。リチウムドープ及び脱ドープ可能な材料としては、公知のリチウム系二次電池用負極材料として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素系酸化物などの金属酸化物、ケイ素、錫系合金などが挙げられる。   The negative electrode active material used in the present invention is not particularly limited as long as it is a lithium-based negative electrode material, and a lithium-doped and dedopeable material improves safety and reliability such as cycle life. preferable. Examples of materials that can be lithium-doped and dedope include graphite-based materials, carbon-based materials, tin oxide-based, silicon-based oxides and the like, which are used as known negative electrode materials for lithium secondary batteries, silicon And tin-based alloys.

本発明の正極活物質及び負極活物質を電極に成形する方法は、所望の非水系二次電池の特性などに応じて公知の手法から適宜選択することができる。例えば、正極活物質(又は負極活物質)とバインダー、必要に応じてN−メチル−2−ピロリドン(NMP)などの溶媒とを混合し、スラリーを得た後、これを集電体に塗布し、乾燥後、圧縮して成形される塗布法や、活物質、ポリ四フッ化エチレンの混合物を混練し、圧延ロールを用いてシート化するシート法などが挙げられる。   The method for forming the positive electrode active material and the negative electrode active material of the present invention into an electrode can be appropriately selected from known methods according to the desired characteristics of the nonaqueous secondary battery. For example, a positive electrode active material (or negative electrode active material), a binder, and optionally a solvent such as N-methyl-2-pyrrolidone (NMP) are mixed to obtain a slurry, which is then applied to a current collector. Examples thereof include a coating method in which the mixture is dried and then compressed and a sheet method in which a mixture of an active material and polytetrafluoroethylene is kneaded and formed into a sheet using a rolling roll.

本発明の非水系二次電池に用いる正極及び負極を成形する場合、必要に応じ、導電材、バインダーを用いる。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素系ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量はバインダーの種類、目的とする電極強度を勘案し、適宜決定することができる。   When forming the positive electrode and the negative electrode used in the non-aqueous secondary battery of the present invention, a conductive material and a binder are used as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine rubber, SBR, acrylic resin, polyolefins such as polyethylene and polypropylene, and the like. The The amount of the binder can be appropriately determined in consideration of the type of binder and the intended electrode strength.

また、導電材の種類は、特に限定されるものではないが、カーボンブラック、アセチレンブラック、気相成長炭素繊維などが例示される。導電材量は、電極において、充分な電子伝導性を確保できれば、特に限定されるものではない。
正極、負極を集電体上に形成する場合、集電体の材質は材質の耐電圧性を考慮した上で選択することができ、銅箔、ステンレス鋼箔、チタン箔、アルミニウム箔などが例示される。
The type of the conductive material is not particularly limited, and examples thereof include carbon black, acetylene black, and vapor grown carbon fiber. The amount of the conductive material is not particularly limited as long as sufficient electronic conductivity can be secured in the electrode.
When the positive electrode and the negative electrode are formed on the current collector, the material of the current collector can be selected in consideration of the voltage resistance of the material, such as copper foil, stainless steel foil, titanium foil, and aluminum foil. Is done.

上記セルにおいて、正極、負極の間に絶縁、電解液保持の目的でセパレータが配置される場合、このセパレータは、特に限定されるものではなく、ポリエチレン微多孔膜、ポリプロピレン微多孔膜、あるいはポリエチレンとポリプロピレンの積層膜、セルロース抄紙、ガラス繊維、アラミド繊維、ポリアクリルニトリル繊維などからなる織布、あるいは不織布などがあり、その目的と状況に応じ、適宜決定することが可能である。   In the above cell, when a separator is disposed between the positive electrode and the negative electrode for the purpose of insulation and electrolyte solution retention, the separator is not particularly limited, and is a polyethylene microporous film, a polypropylene microporous film, or polyethylene. There are polypropylene laminated film, cellulose paper, woven fabric or nonwoven fabric made of glass fiber, aramid fiber, polyacrylonitrile fiber, etc., which can be appropriately determined according to the purpose and situation.

本発明の非水系二次電池は、例えば、電解質として非水系電解液、ゲル電解質、固体電解質を用いることができる。非水系電解液としては、リチウム塩を含む非水系電解液を用いることが可能であり、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF、LiBF、LiClOなどのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種又は2種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。 In the non-aqueous secondary battery of the present invention, for example, a non-aqueous electrolyte solution, a gel electrolyte, or a solid electrolyte can be used as an electrolyte. As the non-aqueous electrolyte, a non-aqueous electrolyte containing a lithium salt can be used, and is appropriately determined according to the use conditions such as the type of the positive electrode material, the properties of the negative electrode material, and the charging voltage. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less.

本発明の非水系二次電池は、上記で説明した一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる複合酸化物粒子からなる非水系二次電池用正極活物質であって、平均粒子径が150nm未満で、かつ結晶子サイズが平均粒子径の25〜100%である非水系二次電池用正極活物質を用いた正極、負極、セパレータ、電解質などを電池容器内に収容した構成となる。 The non-aqueous secondary battery of the present invention is represented by the general formula LiNi a Co b Mn c O 2 described above (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1). A positive electrode active material for a non-aqueous secondary battery comprising a composite oxide particle, wherein the average particle size is less than 150 nm and the crystallite size is 25 to 100% of the average particle size. A positive electrode, a negative electrode, a separator, an electrolyte and the like using a substance are housed in a battery container.

本発明の非水系二次電池の形状は、特に限定されるものではなく、コイン型、円筒型、角型、フィルム型など、その目的に応じ、適宜決定することが可能である。   The shape of the non-aqueous secondary battery of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin type, a cylindrical type, a square type, and a film type.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例には限定されない   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

[3元系複合酸化物粒子の合成]
(実施例)
Mn(NO・6HO 6.76g(分解温度129℃)、 Co(NO・6HO 6.96g(分解温度100−105℃)、Ni(NO・6HO 6.96g(分解温度137℃)およびLi(CHCOO)・2HO 7.28gを5%ポリビニルアルコール水溶液400mlに溶解させた。これをセラミック容器に入れて100℃で2時間乾燥させてワインレッドの透明な固体を得た。これを、200℃で2時間加熱すると黄土色の不透明固体となった。この固体を透過型電子顕微鏡で観察すると数nm〜数十nm程度の粒子状の構造が観察された。次いで、黄土色固体を乳鉢ですり潰してセラミック容器に入れ、大気中、電気炉で800℃、4時間に熱処理した。
生成物の元素分析および透過型電子顕微鏡観察から、生成物がLiNi0.31Co0.33Mn0.36の組成を持ち、平均粒子径62nm(変動係数52%)の複合酸化物ナノ粒子であることを確認した。さらにX線回折測定より、3元系複合酸化物の回折パターンを示し、結晶子サイズは31nm(平均粒子径の50%)であることがわかった。
[Synthesis of ternary complex oxide particles]
(Example)
Mn (NO 3 ) 2 .6H 2 O 6.76 g (decomposition temperature 129 ° C.), Co (NO 3 ) 2 .6H 2 O 6.96 g (decomposition temperature 100-105 ° C.), Ni (NO 3 ) 2 · 6H 6.96 g of 2 O (decomposition temperature: 137 ° C.) and 7.28 g of Li (CH 3 COO) .2H 2 O were dissolved in 400 ml of 5% aqueous polyvinyl alcohol solution. This was put in a ceramic container and dried at 100 ° C. for 2 hours to obtain a wine red transparent solid. When this was heated at 200 ° C. for 2 hours, it became an ocher opaque solid. When this solid was observed with a transmission electron microscope, a particulate structure of about several nm to several tens of nm was observed. Next, the ocherous solid was ground with a mortar and placed in a ceramic container, and heat-treated at 800 ° C. for 4 hours in an electric furnace in the atmosphere.
From the elemental analysis and transmission electron microscope observation of the product, the product has a composition of LiNi 0.31 Co 0.33 Mn 0.36 O 2 and a composite oxide nanoparticle having an average particle diameter of 62 nm (variation coefficient 52%). Confirmed to be particles. Further, X-ray diffraction measurement showed a diffraction pattern of the ternary composite oxide, and it was found that the crystallite size was 31 nm (50% of the average particle diameter).

(比較例)
Mn(NO・6HO 6.76g、 Co(NO・6HO 6.96g、Ni(NO・6HO 6.96gおよびLi(CHCOO)・2HO 7.28gを蒸留水50mlに溶解させた後、セラミック容器に入れて120℃で2時間加熱して水を除いた後、200℃で1時間熱処理した。次いで、生成した褐色液体をセラミック容器に入れ、大気中、電気炉で800℃、5時間に熱処理した。
生成物の走査型電子顕微鏡観察から、生成物が数百nm〜5μm程度の分布を持つ不定形粒子であることが分かった。X線回折測定より、生成物は3元系複合酸化物の回折パターンを示し、結晶子サイズは103nmであった。
(Comparative example)
Mn (NO 3 ) 2 · 6H 2 O 6.76 g, Co (NO 3 ) 2 · 6H 2 O 6.96 g, Ni (NO 3 ) 2 · 6H 2 O 6.96 g and Li (CH 3 COO) · 2H After dissolving 7.28 g of 2 O in 50 ml of distilled water, it was placed in a ceramic container, heated at 120 ° C. for 2 hours to remove water, and then heat-treated at 200 ° C. for 1 hour. Next, the produced brown liquid was put in a ceramic container and heat-treated in an electric furnace at 800 ° C. for 5 hours in the atmosphere.
Scanning electron microscope observation of the product revealed that the product was an amorphous particle having a distribution of about several hundred nm to 5 μm. From the X-ray diffraction measurement, the product showed a diffraction pattern of the ternary composite oxide, and the crystallite size was 103 nm.

[二次電池用正極活物質の電気化学的評価]
二次電池用正極活物質として上記実施例の3元系複合酸化物粒子、比較例として市販の3元系複合酸化物を用いて以下の手順で評価セルを作製し、初期充放電特性及び高い電流密度条件での放電特性を評価した。なお、今回比較例として用いた市販の3元系複合酸化物は、平均粒子径5μmであった。
[Electrochemical evaluation of positive electrode active materials for secondary batteries]
An evaluation cell was prepared by the following procedure using the ternary composite oxide particles of the above example as a positive electrode active material for a secondary battery and a commercially available ternary composite oxide as a comparative example. The discharge characteristics under current density conditions were evaluated. The commercially available ternary composite oxide used as a comparative example this time had an average particle size of 5 μm.

導電材にアセチレンブラック、バインダーにポリテトラフルオロエチレン(PTFE)を使用し、活物質:45重量部、導電材:40重量部、バインダー:15重量部で混合して電極シートを作製した。20×14mmサイズの電極シートを導電性ペーストを用いて20μmのAl箔に接着し、170℃、10時間真空乾燥して電池特性評価用の正極電極とした。作製した電極物性を表1に示す。 Using acetylene black as the conductive material and polytetrafluoroethylene (PTFE) as the binder, an active material: 45 parts by weight, a conductive material: 40 parts by weight, and a binder: 15 parts by weight were mixed to prepare an electrode sheet. A 20 × 14 mm size electrode sheet was adhered to a 20 μm Al foil using a conductive paste and vacuum dried at 170 ° C. for 10 hours to obtain a positive electrode for battery characteristics evaluation. The physical properties of the prepared electrodes are shown in Table 1.

Figure 2016081800
Figure 2016081800

上記作製電極を正極とし、負極には厚さ200μmの金属リチウム箔、電解液には、1mol/lLiPF6、エチレンカーボネートとエチルメチルカーボネート(体積比30:70)、セパレータにはポリエチレン製微孔膜(厚さ25μm)とを重ね合わせたものを用いて評価セルを作製した。   The prepared electrode is a positive electrode, the negative electrode is a metal lithium foil having a thickness of 200 μm, the electrolyte is 1 mol / l LiPF6, ethylene carbonate and ethyl methyl carbonate (volume ratio 30:70), and the separator is a polyethylene microporous membrane ( An evaluation cell was fabricated using a superposed layer having a thickness of 25 μm.

評価セルの評価において、初期充放電特性・25℃レート特性・0℃レート特性は、以下に記載する方法で行った。   In the evaluation of the evaluation cell, initial charge / discharge characteristics, 25 ° C. rate characteristics, and 0 ° C. rate characteristics were performed by the methods described below.

[初期充放電特性]
25℃環境下で、充電電流0.2CA(30mA/g)、充電電圧4.30Vの定電流定電圧充電を行い、電流値がC/20に達したら充電を終了した。充電終了後、放電電流0.2CA(30mA/g)、終止電圧3.0Vの条件で放電を行なった。
上記充放電を5回繰り返し、初期充放電特性を評価した。
[室温(25℃)におけるレート特性]
上記セルを用いて、SOC100%、25℃環境下における高い電流密度での放電特性を確認した。充電は、25℃環境下、充電電流0.2CA(30mA/g)、充電電圧4.30Vの定電流定電圧充電を行い、電流値がC/20に達したら充電を終了する条件で充電を行い、放電については、0.2CA(30mA/g)、0.5CA(70mA/g)、1CA(150mA/g)、2CA(300mA/g)の電流密度、終止電圧3.0Vの条件で放電を行なった。
[0℃におけるレート特性]
上記セルを用いて、SOC100%、0℃環境下における高い電流密度での放電特性を確認した。充電は、25℃環境下、充電電流0.2CA(30mA/g)、充電電圧4.30Vの定電流定電圧充電を行い、電流値がC/20に達したら充電を終了する条件で充電を行い、放電については、0℃環境下、0.2CA(30mA/g)、0.5CA(70mA/g)、1CA(150mA/g)、2CA(300mA/g)の電流密度、終止電圧3.0Vの条件で放電を行なった。
[Initial charge / discharge characteristics]
Under a 25 ° C. environment, a constant current / constant voltage charge with a charge current of 0.2 CA (30 mA / g) and a charge voltage of 4.30 V was performed, and the charge was terminated when the current value reached C / 20. After the completion of charging, discharging was performed under the conditions of a discharge current of 0.2 CA (30 mA / g) and a final voltage of 3.0 V.
The above charge / discharge was repeated 5 times to evaluate initial charge / discharge characteristics.
[Rate characteristics at room temperature (25 ° C)]
Using the above cell, the discharge characteristics at a high current density in a 100% SOC, 25 ° C. environment were confirmed. Charging is performed under the condition that the charging is performed at a constant current and constant voltage with a charging current of 0.2 CA (30 mA / g) and a charging voltage of 4.30 V in a 25 ° C. environment and the charging is terminated when the current value reaches C / 20. The discharge was performed under the conditions of 0.2 CA (30 mA / g), 0.5 CA (70 mA / g), 1 CA (150 mA / g), 2 CA (300 mA / g) current density, and a final voltage of 3.0 V. Was done.
[Rate characteristics at 0 ° C]
Using the above cell, the discharge characteristics at a high current density in a 100% SOC, 0 ° C. environment were confirmed. Charging is performed under the condition that the charging is performed at a constant current and constant voltage with a charging current of 0.2 CA (30 mA / g) and a charging voltage of 4.30 V in a 25 ° C. environment and the charging is terminated when the current value reaches C / 20. For discharge and discharge, in a 0 ° C. environment, a current density of 0.2 CA (30 mA / g), 0.5 CA (70 mA / g), 1 CA (150 mA / g), 2 CA (300 mA / g), final voltage 3. Discharge was performed under the condition of 0V.

実施例の正極活物質を用いた評価セルの初期充放電特性・容量推移を図1に示す。
市販の正極活物質を用いた評価セルの初期充放電特性・容量推移を図2に示す。
FIG. 1 shows initial charge / discharge characteristics and capacity transition of an evaluation cell using the positive electrode active material of the example.
FIG. 2 shows initial charge / discharge characteristics / capacity transition of an evaluation cell using a commercially available positive electrode active material.

実施例の正極活物質を用いた評価セルの室温における放電レート特性を図3に示す。
実施例の正極活物質を用いた評価セルの0℃における放電レート特性を図4に示す。
市販の正極活物質を用いた評価セルの室温における放電レート特性を図5に示す。
市販の正極活物質を用いた評価セルの0℃における放電レート特性を図6に示す。
FIG. 3 shows the discharge rate characteristics at room temperature of an evaluation cell using the positive electrode active material of the example.
FIG. 4 shows the discharge rate characteristics at 0 ° C. of the evaluation cell using the positive electrode active material of the example.
FIG. 5 shows the discharge rate characteristics at room temperature of an evaluation cell using a commercially available positive electrode active material.
FIG. 6 shows the discharge rate characteristics at 0 ° C. of an evaluation cell using a commercially available positive electrode active material.

評価セルの初期充放電特性・容量推移を見ると、実施例の正極活物質を用いた評価セルは、市販の正極活物質を用いた評価セルと比べて初期充放電容量の低下が少ないという特性がみられた。   Looking at the initial charge / discharge characteristics and capacity transition of the evaluation cell, the evaluation cell using the positive electrode active material of the example has a characteristic that the decrease in the initial charge / discharge capacity is small compared to the evaluation cell using the commercially available positive electrode active material. Was seen.

実施例の正極活物質を用いた評価セルの室温と0℃における放電レート特性をみると、放電レート0.2Cの場合の放電容量は、0℃では室温の90.5%に低下した。放電レートが大きくなった場合の放電容量の推移を放電レート0.2Cを基準としてみると(容量維持率)、電流密度の最も大きい放電レート2C時では、室温では91.6%を維持していたのに対し、0℃では81.4%に低下した。   When the discharge rate characteristics at room temperature and 0 ° C. of the evaluation cell using the positive electrode active material of the example were examined, the discharge capacity at a discharge rate of 0.2 C was reduced to 90.5% of the room temperature at 0 ° C. Looking at the change in discharge capacity when the discharge rate increases with the discharge rate of 0.2 C as a reference (capacity maintenance rate), 91.6% is maintained at room temperature at the discharge rate of 2 C where the current density is the highest. On the other hand, it decreased to 81.4% at 0 ° C.

同様に市販の正極活物質を用いた評価セルの室温と0℃における放電レート特性をみると、放電容量は、0℃では室温の81.9%に低下した。電流密度の最も大きい放電レート2C時の容量維持率は、室温では81.7%を維持していたのに対し、0℃では74.3%に低下した。   Similarly, looking at the discharge rate characteristics at room temperature and 0 ° C. of an evaluation cell using a commercially available positive electrode active material, the discharge capacity decreased to 81.9% of the room temperature at 0 ° C. The capacity retention rate at the discharge rate of 2C with the highest current density was maintained at 81.7% at room temperature, but decreased to 74.3% at 0 ° C.

市販の正極活物質を用いた評価セルは、実施例の正極活物質を用いた評価セルよりも電流密度に対する放電容量の減少が大きいために容量維持率が低い結果となっているが、例えば電流密度の最も大きい放電レート2Cでの室温時に対する0℃時の容量維持率の比をみると、市販正極活物質を用いた評価セルでは0.909、実施例の正極活物質を用いた評価セルでは0.889とほぼ同じである。つまり、室温から0℃への温度変化に対する容量維持率の変化は、両者で差がないと考えられる。以上より、実施例の正極活物質を用いた評価セルの特長は、0℃における放電容量の減少が少ないことであるといえる。この結果は、実施例の正極活物質は従来の正極活物質よりも低温特性が改善されていることを示唆している。   The evaluation cell using a commercially available positive electrode active material has a lower capacity retention rate due to a larger decrease in discharge capacity with respect to current density than the evaluation cell using the positive electrode active material of the example. Looking at the ratio of the capacity retention rate at 0 ° C. to the room temperature at the discharge rate 2C having the highest density, the evaluation cell using the commercial positive electrode active material was 0.909, and the evaluation cell using the positive electrode active material of the example Is almost the same as 0.889. That is, it is considered that there is no difference between the two in terms of the change in the capacity retention ratio with respect to the temperature change from room temperature to 0 ° C. From the above, it can be said that the feature of the evaluation cell using the positive electrode active material of the example is that the decrease in discharge capacity at 0 ° C. is small. This result suggests that the positive electrode active material of the example has improved low-temperature characteristics as compared with the conventional positive electrode active material.

一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる複合酸化物粒子からなる非水系二次電池用正極活物質であって、平均粒子径が150nm未満で、かつ結晶子サイズが平均粒子径の25〜100%である非水系二次電池用正極活物質を用いることにより、低温特性の向上した携帯機器や電気自動車向けの非水系二次電池を得ることが可能となる。

Cathode active for non-aqueous secondary battery comprising composite oxide particles represented by the general formula LiNi a Co b Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1) By using a positive electrode active material for a non-aqueous secondary battery that is a substance and has an average particle size of less than 150 nm and a crystallite size of 25 to 100% of the average particle size, A non-aqueous secondary battery for electric vehicles can be obtained.

Claims (4)

一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる複合酸化物粒子からなる非水系二次電池用正極活物質であって、平均粒子径が150nm未満で、かつ結晶子サイズが平均粒子径の25〜100%である非水系二次電池用正極活物質。 Cathode active for non-aqueous secondary battery comprising composite oxide particles represented by the general formula LiNi a Co b Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1) A positive electrode active material for a non-aqueous secondary battery, which is a substance and has an average particle diameter of less than 150 nm and a crystallite size of 25 to 100% of the average particle diameter. 前記一般式LiNiCoMnにおいてa+b+c=1、0.2<a<0.7、0.1<b<0.4、0.1<c<0.4である、請求項1に記載の非水系二次電池用正極活物質。 In the general formula LiNi a Co b Mn c O 2 , a + b + c = 1, 0.2 <a <0.7, 0.1 <b <0.4, 0.1 <c <0.4. The positive electrode active material for nonaqueous secondary batteries according to 1. 一般式LiNiCoMn(a+b+c=1、0<a<1、0<b<1、0<c<1)で表わされる複合酸化物粒子からなる非水系二次電池用正極活物質の製造方法であって、高分子化合物の溶液にLi化合物、Ni化合物、Co化合物およびMn化合物を溶解させて均一混合液を得る工程、均一混合液から溶媒を除去して固体を得る工程、固体を各金属化合物の分解温度以上かつ高分子化合物の分解温度以下で加熱して微粒子を生成する工程、400℃以上で加熱して高分子化合物を除去して非水系二次電池用正極活物質を生成する工程、からなる非水系二次電池用正極活物質の製造方法。 Cathode active for non-aqueous secondary battery comprising composite oxide particles represented by the general formula LiNi a Co b Mn c O 2 (a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1) A method for producing a substance, a step of dissolving a Li compound, a Ni compound, a Co compound and a Mn compound in a polymer compound solution to obtain a uniform mixed solution, a step of removing a solvent from the uniform mixed solution to obtain a solid, A step of heating the solid above the decomposition temperature of each metal compound and below the decomposition temperature of the polymer compound to produce fine particles, heating at 400 ° C. or more to remove the polymer compound, and positive electrode active material for non-aqueous secondary battery The manufacturing method of the positive electrode active material for non-aqueous secondary batteries consisting of the process of producing | generating. 請求項1または2に記載の非水系二次電池用正極活物質を用いる非水系二次電池。 A non-aqueous secondary battery using the positive electrode active material for a non-aqueous secondary battery according to claim 1.
JP2014213525A 2014-10-20 2014-10-20 Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery Pending JP2016081800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213525A JP2016081800A (en) 2014-10-20 2014-10-20 Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213525A JP2016081800A (en) 2014-10-20 2014-10-20 Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery

Publications (1)

Publication Number Publication Date
JP2016081800A true JP2016081800A (en) 2016-05-16

Family

ID=55958889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213525A Pending JP2016081800A (en) 2014-10-20 2014-10-20 Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery

Country Status (1)

Country Link
JP (1) JP2016081800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978751A (en) * 2017-11-30 2018-05-01 宁波容百锂电材料有限公司 A kind of high electrochemical activity tertiary cathode material and preparation method thereof
CN114792785A (en) * 2021-01-25 2022-07-26 泰星能源解决方案有限公司 Non-aqueous electrolyte secondary battery
KR20230034151A (en) 2021-09-02 2023-03-09 도요타 지도샤(주) Method for producing cathode active material, cathode active material, and lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978751A (en) * 2017-11-30 2018-05-01 宁波容百锂电材料有限公司 A kind of high electrochemical activity tertiary cathode material and preparation method thereof
CN107978751B (en) * 2017-11-30 2020-07-03 宁波容百新能源科技股份有限公司 Ternary positive electrode material with high electrochemical activity and preparation method thereof
CN114792785A (en) * 2021-01-25 2022-07-26 泰星能源解决方案有限公司 Non-aqueous electrolyte secondary battery
CN114792785B (en) * 2021-01-25 2024-02-23 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
KR20230034151A (en) 2021-09-02 2023-03-09 도요타 지도샤(주) Method for producing cathode active material, cathode active material, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR101494715B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
KR101718059B1 (en) Composite, manufacturing method the composite, negative electrode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
JP5132360B2 (en) Method for producing lithium cobalt composite oxide for positive electrode active material of lithium ion secondary battery
JP5811269B2 (en) Non-aqueous electrolyte secondary battery
JP2009206100A (en) Cathode active material and cathode and lithium battery using this
TW201417380A (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP2010534915A (en) Porous network electrode for non-aqueous electrolyte secondary battery
KR20160043979A (en) Improved lithium metal oxide rich cathode materials and method to make them
JP7262998B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material
JP2013091581A (en) Lithium composite oxide, manufacturing method for the same, and lithium ion secondary battery
JP6612611B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6176510B2 (en) Silicon material and negative electrode of secondary battery
JPWO2015064478A1 (en) Method for producing lithium-containing composite oxide, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2013087040A (en) Lithium compound oxide and production method of the same, and lithium ion secondary battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP6022326B2 (en) Lithium composite oxide and method for producing the same, and positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode
KR20140052756A (en) Anode active material, method of preparing the same, anode including the anode active material, and lithium secondary battery including the anode
JP6139573B2 (en) Method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery including the same
JP2016081800A (en) Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery
JP6186568B2 (en) One-dimensional nanostructure for electrochemical device electrode material, manufacturing method by electrospinning method
KR20160144831A (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
JP5988095B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery