JP2016081690A - Resin frame-attached electrolyte membrane-electrode structure for fuel cell - Google Patents

Resin frame-attached electrolyte membrane-electrode structure for fuel cell Download PDF

Info

Publication number
JP2016081690A
JP2016081690A JP2014211303A JP2014211303A JP2016081690A JP 2016081690 A JP2016081690 A JP 2016081690A JP 2014211303 A JP2014211303 A JP 2014211303A JP 2014211303 A JP2014211303 A JP 2014211303A JP 2016081690 A JP2016081690 A JP 2016081690A
Authority
JP
Japan
Prior art keywords
resin frame
electrolyte membrane
adhesive
electrode
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014211303A
Other languages
Japanese (ja)
Other versions
JP6145082B2 (en
Inventor
満田 直樹
Naoki Mitsuda
直樹 満田
信義 室本
Nobuyoshi Muromoto
信義 室本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014211303A priority Critical patent/JP6145082B2/en
Publication of JP2016081690A publication Critical patent/JP2016081690A/en
Application granted granted Critical
Publication of JP6145082B2 publication Critical patent/JP6145082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a resin frame-attached electrolyte membrane-electrode structure for a fuel cell, which makes possible to reliably remove gas from an adhesive layer even with a simple structure, and to make a high-quality firm bond between an electrolyte membrane-electrode structure and a resin frame member.SOLUTION: A resin frame-attached electrolyte membrane-electrode structure 10 comprises a stepped MEA 10a and a resin frame member 24 united into one; and an adhesive layer 28 provided between the stepped MEA 10a and the resin frame member 24, and arranged by filling an adhesive 28a. The adhesive layer 28 has a contact part 28e where an outer peripheral edge 18be of the stepped MEA 10a touches the resin frame member 24, and extends from the contact part inwardly in the stepped MEA 10a. The adhesive layer 28 is provided with an adhesive-locating part 28p for putting the adhesive 28a close to the contact part 28e.SELECTED DRAWING: Figure 3

Description

本発明は、固体高分子電解質膜を第1電極及び第2電極で挟んだ段差MEAと、前記段差MEAの外周を周回する樹脂枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体に関する。   The present invention relates to an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising: a step MEA having a solid polymer electrolyte membrane sandwiched between a first electrode and a second electrode; and a resin frame member that goes around the outer periphery of the step MEA. About.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の一方側にアノード電極が、前記固体高分子電解質膜の他方側にカソード電極が、それぞれ配設された電解質膜・電極構造体(MEA)を備えている。アノード電極及びカソード電極は、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とを有している。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. The fuel cell includes an electrolyte membrane / electrode structure (MEA) in which an anode electrode is disposed on one side of the solid polymer electrolyte membrane, and a cathode electrode is disposed on the other side of the solid polymer electrolyte membrane. The anode electrode and the cathode electrode each have a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon).

電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されることにより、燃料電池が構成されている。この燃料電池は、所定の数だけ積層することにより、例えば、車載用燃料電池スタックとして使用されている。   The electrolyte membrane / electrode structure is sandwiched between separators (bipolar plates) to constitute a fuel cell. This fuel cell is used as, for example, an in-vehicle fuel cell stack by stacking a predetermined number of fuel cells.

電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな平面寸法に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の平面寸法に設定される、所謂、段差MEAを構成する場合がある。その際、比較的高価な固体高分子電解質膜の使用量を削減させるとともに、薄膜状で強度が低い前記固体高分子電解質膜を保護するために、樹脂枠部材を組み込んだ樹脂枠付きMEAが採用されている。   In the electrolyte membrane / electrode structure, one gas diffusion layer is set to a plane size smaller than that of the solid polymer electrolyte membrane, and the other gas diffusion layer is set to the same plane size as the solid polymer electrolyte membrane. In other words, a so-called step MEA may be formed. At that time, in order to reduce the amount of the relatively expensive solid polymer electrolyte membrane used and to protect the solid polymer electrolyte membrane having a thin film shape and low strength, an MEA with a resin frame incorporating a resin frame member is adopted. Has been.

樹脂枠付きMEAでは、固体高分子電解質膜に亀裂やせん断が発生することを抑制するために、段差MEAと樹脂枠部材との接合強度を良好に維持する必要がある。例えば、特許文献1に開示されている燃料電池用樹脂枠付き電解質膜・電極構造体(樹脂枠付きMEA)が知られている。   In the MEA with a resin frame, it is necessary to maintain a good bonding strength between the step MEA and the resin frame member in order to prevent the solid polymer electrolyte membrane from being cracked or sheared. For example, an electrolyte membrane / electrode structure with a resin frame for a fuel cell (MEA with a resin frame) disclosed in Patent Document 1 is known.

この樹脂枠付きMEAでは、樹脂枠部材は、第1電極の外周側に突出して固体高分子電解質膜の外周縁部に当接する内周端部を有している。そして、内周端部は、固体高分子電解質膜と第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されている。従って、簡単な構成で、固体高分子電解質膜にせん断応力がかかることを確実に阻止し、前記固体高分子電解質膜の損傷を良好に抑制することが可能になる、としている。   In this MEA with a resin frame, the resin frame member has an inner peripheral end that protrudes toward the outer peripheral side of the first electrode and contacts the outer peripheral edge of the solid polymer electrolyte membrane. And the corner | angular part arrange | positioned in the inner peripheral edge part at the boundary part of a solid polymer electrolyte membrane and the outer peripheral part of a 1st electrode is comprised by the cross-sectional curved surface shape. Therefore, with a simple configuration, it is possible to reliably prevent the solid polymer electrolyte membrane from being subjected to shear stress, and to satisfactorily suppress damage to the solid polymer electrolyte membrane.

特開2013−98155号公報JP2013-98155A

ところで、段差MEAと樹脂枠部材とは、これらの間に形成された空間(接着剤層)に、例えば、ホットメルト接着剤の他、種々の液状の接着剤を充填することにより、接着されている。具体的には、接着剤は、接着剤層の一部分に配置され、段差MEA及び樹脂枠部材同士が加圧されることにより、前記接着剤が押し広げられて前記接着剤層全体に充填されている。   By the way, the step MEA and the resin frame member are bonded to each other by, for example, filling a space (adhesive layer) formed between them with various liquid adhesives in addition to the hot melt adhesive. Yes. Specifically, the adhesive is arranged in a part of the adhesive layer, and the step MEA and the resin frame member are pressed to spread the adhesive to fill the entire adhesive layer. Yes.

しかしながら、接着剤層は、密閉空間を形成する場合が多く、この接着剤層内を接着剤が広げられる際、空気が前記接着剤層から抜けないおそれがある。これにより、接着剤層内に残存する空気に起因して、接着剤を均一厚さに塗ることができず、ガス遮断性や接着耐久性等の品質に大きなばらつきが発生するという問題がある。   However, the adhesive layer often forms a sealed space, and when the adhesive is spread in the adhesive layer, air may not escape from the adhesive layer. As a result, due to the air remaining in the adhesive layer, the adhesive cannot be applied to a uniform thickness, and there is a problem that a large variation occurs in quality such as gas barrier properties and adhesion durability.

本発明は、この種の問題を解決するものであり、簡単な構成で、接着剤層からの空気抜きを確実に行うことができ、電解質膜・電極構造体と樹脂枠部材とを強固且つ高品質に接合することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体を提供することを目的とする。   The present invention solves this type of problem, and with a simple configuration, air can be reliably removed from the adhesive layer, and the electrolyte membrane / electrode structure and the resin frame member are strong and high quality. An object of the present invention is to provide an electrolyte membrane / electrode structure with a resin frame for a fuel cell that can be bonded to a fuel cell.

本発明に係る燃料電池用樹脂枠付き電解質膜・電極構造体は、段差MEAと樹脂枠部材とを備えている。段差MEAでは、固体高分子電解質膜の一方の面には、第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極が設けられている。第1電極の平面寸法は、第2電極の平面寸法よりも大きな寸法に設定されている。樹脂枠部材は、固体高分子電解質膜の外周を周回して設けられている。   An electrolyte membrane / electrode structure with a resin frame for a fuel cell according to the present invention includes a step MEA and a resin frame member. In the step MEA, a first electrode is provided on one surface of the solid polymer electrolyte membrane, and a second electrode is provided on the other surface of the solid polymer electrolyte membrane. The planar dimension of the first electrode is set to be larger than the planar dimension of the second electrode. The resin frame member is provided around the outer periphery of the solid polymer electrolyte membrane.

そして、樹脂枠部材と段差MEAの外周縁部との間には、他方の面側に接着剤が充填される接着剤層を設けている。接着剤層は、段差MEAの外周縁部と樹脂枠部材との接触部位である外周端部から前記段差MEAの内方に延在するとともに、前記接着剤層には、前記外周端部側に近接して液状の接着剤を塗布する際に配置させる接着剤配置部位が設けられている。   An adhesive layer filled with an adhesive is provided on the other surface side between the resin frame member and the outer peripheral edge of the step MEA. The adhesive layer extends inward of the stepped MEA from the outer peripheral end that is a contact portion between the outer peripheral edge of the stepped MEA and the resin frame member, and the adhesive layer has the outer peripheral end on the side of the outer peripheral end. Adhesive placement sites are provided that are placed when a liquid adhesive is applied in the vicinity.

また、樹脂枠部材は、段差MEAとの接触部位に、段差部位を介し薄肉状の内側膨出部を設けるとともに、前記外周端部、前記内側膨出部及び段差MEAの外周縁部により、接着剤層を構成する空間部を形成することが好ましい。   In addition, the resin frame member is provided with a thin-walled inner bulged portion at a contact portion with the stepped MEA via the stepped portion, and is bonded by the outer peripheral edge, the inner bulged portion, and the outer peripheral edge of the stepped MEA It is preferable to form a space part constituting the agent layer.

さらに、空間部は、外周端部と接着剤配置部位に塗布された液状の接着剤との間に隙間部を有することが好ましい。   Furthermore, it is preferable that a space part has a clearance gap between an outer peripheral edge part and the liquid adhesive apply | coated to the adhesive arrangement | positioning site | part.

本発明によれば、接着剤層は、段差MEAの外周縁部と樹脂枠部材との接触部位である外周端部から前記段差MEAの内方に延在している。外周端部に近接する接着剤配置部位に配置された接着剤は、樹脂枠部材と段差MEAとが密着される際に伸ばされて、前記接着剤層の内方に流動する。このため、接着剤層内の空気は、接着剤の流動に沿って内方に移動し、外周端部と内周端部との隙間から外部に排気される。   According to the present invention, the adhesive layer extends inward of the stepped MEA from the outer peripheral end that is the contact portion between the outer peripheral edge of the stepped MEA and the resin frame member. The adhesive disposed at the adhesive placement site close to the outer peripheral end is stretched when the resin frame member and the step MEA are brought into close contact with each other, and flows inward of the adhesive layer. For this reason, the air in the adhesive layer moves inward along the flow of the adhesive, and is exhausted to the outside through a gap between the outer peripheral end portion and the inner peripheral end portion.

従って、簡単な構成で、接着剤層からの空気抜きを確実に行うことができる。これにより、接着剤は、接着剤層内で均一厚さに塗ることが可能になり、ガス遮断性や接着耐久性等の品質にばらつきが発生することを抑制することができる。このため、段差MEAと樹脂枠部材とを強固且つ高品質に接合することが可能になる。   Therefore, air can be surely removed from the adhesive layer with a simple configuration. As a result, the adhesive can be applied in a uniform thickness within the adhesive layer, and variations in quality such as gas barrier properties and adhesion durability can be suppressed. For this reason, it becomes possible to join the step MEA and the resin frame member firmly and with high quality.

本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the polymer electrolyte fuel cell in which the resin membrane-attached electrolyte membrane / electrode structure according to the first embodiment of the present invention is incorporated. 前記燃料電池の、図1中、II−II線断面説明図である。FIG. 2 is a sectional view of the fuel cell taken along line II-II in FIG. 1. 前記樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the said electrolyte membrane and electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を構成する樹脂枠部材の斜視説明図である。It is a perspective explanatory view of the resin frame member which constitutes the resin membrane-attached electrolyte membrane electrode structure. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the electrolyte membrane and electrode structure with a resin frame which concerns on the 2nd Embodiment of this invention.

図1及び図2に示すように、本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10は、横長(又は縦長)の長方形状の固体高分子型燃料電池12に組み込まれる。複数の燃料電池12は、例えば、矢印A方向(水平方向)又は矢印C方向(重力方向)に積層されて燃料電池スタックが構成される。燃料電池スタックは、例えば、車載用燃料電池スタックとして燃料電池電気自動車(図示せず)に搭載される。   As shown in FIGS. 1 and 2, the electrolyte membrane / electrode structure 10 with a resin frame according to the first embodiment of the present invention is incorporated into a horizontally long (or vertically long) rectangular polymer electrolyte fuel cell 12. It is. The plurality of fuel cells 12 are stacked in, for example, an arrow A direction (horizontal direction) or an arrow C direction (gravity direction) to form a fuel cell stack. The fuel cell stack is mounted on, for example, a fuel cell electric vehicle (not shown) as an in-vehicle fuel cell stack.

燃料電池12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、横長(又は縦長)の長方形状を有する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。   In the fuel cell 12, the electrolyte membrane / electrode structure 10 with a resin frame is sandwiched between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 have a horizontally long (or vertically long) rectangular shape. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plating-treated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like.

長方形状の樹脂枠付き電解質膜・電極構造体10は、図1〜図3に示すように、段差MEA10aを備える。段差MEA10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜(陽イオン交換膜)18と、前記固体高分子電解質膜18を挟持するアノード電極(第1電極)20及びカソード電極(第2電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質を使用してもよい。   The electrolyte membrane / electrode structure 10 with a rectangular resin frame includes a step MEA 10a as shown in FIGS. The step MEA 10a includes, for example, a solid polymer electrolyte membrane (cation exchange membrane) 18 in which a perfluorosulfonic acid thin film is impregnated with water, and an anode electrode (first electrode) 20 sandwiching the solid polymer electrolyte membrane 18. And a cathode electrode (second electrode) 22. The solid polymer electrolyte membrane 18 may use an HC (hydrocarbon) based electrolyte in addition to the fluorine based electrolyte.

カソード電極22は、固体高分子電解質膜18及びアノード電極20よりも小さな平面寸法を有する。なお、上記の構成に代えて、アノード電極20は、固体高分子電解質膜18及びカソード電極22よりも小さな平面寸法を有するように構成してもよい。その際、アノード電極20は、第2電極となり、カソード電極22は、第1電極となる。   The cathode electrode 22 has a smaller planar dimension than the solid polymer electrolyte membrane 18 and the anode electrode 20. Instead of the above configuration, the anode electrode 20 may be configured to have a smaller planar dimension than the solid polymer electrolyte membrane 18 and the cathode electrode 22. At that time, the anode electrode 20 becomes the second electrode, and the cathode electrode 22 becomes the first electrode.

アノード電極20は、固体高分子電解質膜18の一方の面18aに接合される第1電極触媒層20aと、前記第1電極触媒層20aに積層される第1ガス拡散層20bとを設ける。第1電極触媒層20a及び第1ガス拡散層20bは、同一の外形寸法を有するとともに、固体高分子電解質膜18と同一(又は同一未満)の外形寸法に設定される。   The anode electrode 20 includes a first electrode catalyst layer 20a joined to one surface 18a of the solid polymer electrolyte membrane 18, and a first gas diffusion layer 20b laminated on the first electrode catalyst layer 20a. The first electrode catalyst layer 20a and the first gas diffusion layer 20b have the same external dimensions and are set to the same external dimensions as (or less than) the solid polymer electrolyte membrane 18.

カソード電極22は、固体高分子電解質膜18の面18bに接合される第2電極触媒層22aと、前記第2電極触媒層22aに積層される第2ガス拡散層22bとを設ける。第2電極触媒層22a及び第2ガス拡散層22bは、同一の外形寸法を有するとともに、固体高分子電解質膜18の外形寸法よりも小さな外形寸法に設定される。   The cathode electrode 22 includes a second electrode catalyst layer 22a bonded to the surface 18b of the solid polymer electrolyte membrane 18, and a second gas diffusion layer 22b stacked on the second electrode catalyst layer 22a. The second electrode catalyst layer 22 a and the second gas diffusion layer 22 b have the same outer dimensions and are set to be smaller than the outer dimensions of the solid polymer electrolyte membrane 18.

なお、第2電極触媒層22aの平面寸法は、第2ガス拡散層22bの平面寸法よりも大きな寸法(又は小さな寸法)を有してもよい。   The planar dimension of the second electrode catalyst layer 22a may have a dimension (or a smaller dimension) larger than the planar dimension of the second gas diffusion layer 22b.

第1電極触媒層20aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が第1ガス拡散層20bの表面に一様に塗布されて形成される。第2電極触媒層22aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が第2ガス拡散層22bの表面に一様に塗布されて形成される。第1ガス拡散層20b及び第2ガス拡散層22bは、カーボンペーパ、カーボンクロス等からなるとともに、前記第2ガス拡散層22bの平面寸法は、前記第1ガス拡散層20bの平面寸法よりも小さく設定される。第1電極触媒層20a及び第2電極触媒層22aは、例えば、固体高分子電解質膜18の両面に形成される。   The first electrode catalyst layer 20a is formed, for example, by uniformly applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the first gas diffusion layer 20b. The second electrode catalyst layer 22a is formed, for example, by uniformly applying porous carbon particles carrying a platinum alloy on the surface thereof to the surface of the second gas diffusion layer 22b. The first gas diffusion layer 20b and the second gas diffusion layer 22b are made of carbon paper, carbon cloth, or the like, and the planar dimension of the second gas diffusion layer 22b is smaller than the planar dimension of the first gas diffusion layer 20b. Is set. The first electrode catalyst layer 20a and the second electrode catalyst layer 22a are formed on both surfaces of the solid polymer electrolyte membrane 18, for example.

樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、アノード電極20及びカソード電極22に接合される樹脂枠部材24を備える。樹脂枠部材24は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーンゴム、フッ素ゴム、EPDM(エチレンプロピレンゴム)又はm−PPE(変性ポリフェニレンエーテル樹脂)等で構成される。樹脂枠部材24は、さらにPET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等で構成される。   The resin membrane-attached electrolyte membrane / electrode structure 10 includes a resin frame member 24 that circulates around the outer periphery of the solid polymer electrolyte membrane 18 and is joined to the anode electrode 20 and the cathode electrode 22. The resin frame member 24 includes, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), It is composed of silicone rubber, fluorine rubber, EPDM (ethylene propylene rubber), m-PPE (modified polyphenylene ether resin), or the like. The resin frame member 24 is further made of PET (polyethylene terephthalate), PBT (polybutylene terephthalate), modified polyolefin, or the like.

図1及び図4に示すように、樹脂枠部材24は、枠形状を有する。樹脂枠部材24は、図2及び図3に示すように、内周基端部24sからカソード電極22側に膨出する薄肉状に形成された内側膨出部24aを有する。内側膨出部24aは、内周基端部24sから内方(矢印C方向)に所定の長さを有して延在し、固体高分子電解質膜18の外周縁部18beから第2電極触媒層22a及び第2ガス拡散層22bの外周端部22ae、22be近傍に配置される。固体高分子電解質膜18の外周縁部18beは、カソード電極22の先端部から面方向外方に露出する。   As shown in FIGS. 1 and 4, the resin frame member 24 has a frame shape. As shown in FIGS. 2 and 3, the resin frame member 24 has an inner bulging portion 24 a formed in a thin shape that bulges from the inner peripheral base end portion 24 s to the cathode electrode 22 side. The inner bulging portion 24a extends from the inner peripheral base end portion 24s inward (in the direction of arrow C) with a predetermined length, and extends from the outer peripheral edge portion 18be of the solid polymer electrolyte membrane 18 to the second electrode catalyst layer 22a. The second gas diffusion layer 22b is disposed in the vicinity of the outer peripheral end portions 22ae and 22be. The outer peripheral edge 18be of the solid polymer electrolyte membrane 18 is exposed outwardly in the plane direction from the tip of the cathode electrode 22.

内側膨出部24aには、内周基端部24sに連続して、固体高分子電解質膜18の外周縁部18beの先端側に当接する凸状部26aが設けられる。凸状部26aの内方端部には、接触部位28eを介して前記凸状部26aより薄肉状に形成される平坦面部26bが設けられ、前記平坦面部26bは、該凸状部26aから内側膨出部24aの内周端部24aeまで延在する。   The inner bulging portion 24a is provided with a convex portion 26a that is continuous with the inner peripheral base end portion 24s and contacts the distal end side of the outer peripheral edge portion 18be of the solid polymer electrolyte membrane 18. A flat surface portion 26b formed thinner than the convex portion 26a is provided at the inner end portion of the convex portion 26a via a contact portion 28e, and the flat surface portion 26b is formed on the inner side from the convex portion 26a. It extends to the inner peripheral end 24ae of the bulging portion 24a.

図4に示すように、凸状部26aは、樹脂枠部材24の全周に亘って一定の幅寸法aを有するとともに、平坦面部26bは、前記樹脂枠部材24の全周に亘って一定の幅寸法bを有する。   As shown in FIG. 4, the convex portion 26 a has a constant width dimension a over the entire circumference of the resin frame member 24, and the flat surface portion 26 b is constant over the entire circumference of the resin frame member 24. It has a width dimension b.

図2に示すように、樹脂枠部材24と段差MEA10aの外周縁部との間には、面18b側に接着剤28aが充填される接着剤層28が設けられる。具体的には、図3に示すように、接着剤層28は、段差MEA10a(固体高分子電解質膜18)の外周縁部18beと樹脂枠部材24の凸状部26aとの接触部位28eを外周端部として前記段差MEA10aの内方に延在する。   As shown in FIG. 2, an adhesive layer 28 filled with an adhesive 28a is provided on the surface 18b side between the resin frame member 24 and the outer peripheral edge of the step MEA 10a. Specifically, as shown in FIG. 3, the adhesive layer 28 has an outer periphery around a contact portion 28 e between the outer peripheral edge portion 18 be of the step MEA 10 a (solid polymer electrolyte membrane 18) and the convex portion 26 a of the resin frame member 24. As an end, it extends inward of the step MEA 10a.

段差部26e、平坦面部26b(内側膨出部24a)の一部及び固体高分子電解質膜18の外周縁部18be(段差MEA10a)により、接着剤層28を構成する空間部29が形成される。接着剤層28(空間部29)には、接触部位28e側に近接して液状の接着剤28aを塗布する接着剤配置部位28pが設けられる。空間部29は、接触部位28eと接着剤配置部位28pに設けられた接着剤28aとの間に隙間部29sを有する。隙間部29sは、所定の間隔S1を有する。内周端部24aeと接着剤28aとの間隔S2は、間隔S1<間隔S2の関係を有することにより、接着剤配置部位28pは、接触部位28e側に近接して設けられることになる。   The step portion 26e, a part of the flat surface portion 26b (inner bulging portion 24a) and the outer peripheral edge portion 18be (step MEA 10a) of the solid polymer electrolyte membrane 18 form a space portion 29 constituting the adhesive layer 28. The adhesive layer 28 (space portion 29) is provided with an adhesive arrangement site 28p for applying the liquid adhesive 28a in the vicinity of the contact site 28e side. The space 29 has a gap 29s between the contact part 28e and the adhesive 28a provided in the adhesive placement part 28p. The gap portion 29s has a predetermined interval S1. The distance S2 between the inner peripheral edge 24ae and the adhesive 28a has a relationship of distance S1 <interval S2, so that the adhesive placement portion 28p is provided close to the contact portion 28e side.

接着剤層28には、接着剤28aとして、例えば、高分子やフッ素系エラストマーが設けられる。なお、接着剤としては、液体であればよく、熱可塑性や熱硬化性等に制限されない。   For example, a polymer or a fluorine-based elastomer is provided on the adhesive layer 28 as the adhesive 28a. The adhesive may be liquid and is not limited to thermoplasticity or thermosetting.

図2に示すように、樹脂枠部材24とアノード電極20の第1ガス拡散層20bとは、接着用樹脂を用いた樹脂含浸部31により一体化される。樹脂含浸部31は、例えば、樹脂枠部材24に一体成形される樹脂突起部31tを加熱変形させて構成することができる。なお、樹脂含浸部31は、接着剤層28と同様に、接着剤28aを使用してもよい。   As shown in FIG. 2, the resin frame member 24 and the first gas diffusion layer 20b of the anode electrode 20 are integrated by a resin impregnated portion 31 using an adhesive resin. The resin impregnated portion 31 can be configured, for example, by thermally deforming a resin protrusion 31t that is integrally formed with the resin frame member 24. The resin impregnated portion 31 may use an adhesive 28 a in the same manner as the adhesive layer 28.

図1に示すように、燃料電池12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bが設けられる。酸化剤ガス入口連通孔30aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔32aは、冷却媒体を供給する。燃料ガス出口連通孔34bは、燃料ガス、例えば、水素含有ガスを排出する。酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bは、矢印C方向(鉛直方向)に配列して設けられる。   As shown in FIG. 1, one end edge of the fuel cell 12 in the direction of arrow B (horizontal direction in FIG. 1) communicates with each other in the direction of arrow A, which is the stacking direction. A cooling medium inlet communication hole 32a and a fuel gas outlet communication hole 34b are provided. The oxidant gas inlet communication hole 30a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 32a supplies a cooling medium. The fuel gas outlet communication hole 34b discharges fuel gas, for example, hydrogen-containing gas. The oxidant gas inlet communication hole 30a, the cooling medium inlet communication hole 32a, and the fuel gas outlet communication hole 34b are arranged in the direction of arrow C (vertical direction).

燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔34a、冷却媒体を排出する冷却媒体出口連通孔32b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔30bが設けられる。燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bは、矢印C方向に配列して設けられる。   The other end edge of the fuel cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, the fuel gas inlet communication hole 34a for supplying fuel gas, the cooling medium outlet communication hole 32b for discharging the cooling medium, and the oxidation An oxidant gas outlet communication hole 30b for discharging the oxidant gas is provided. The fuel gas inlet communication hole 34a, the cooling medium outlet communication hole 32b, and the oxidant gas outlet communication hole 30b are arranged in the direction of arrow C.

第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。   An oxidant gas flow path 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the electrolyte membrane / electrode structure 10 with a resin frame. .

第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が形成される。互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が形成される。   A fuel gas flow path 38 communicating with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b is formed on the surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 10 with a resin frame. A cooling medium flow path 40 communicating with the cooling medium inlet communication hole 32a and the cooling medium outlet communication hole 32b is formed between the surface 14b of the first separator 14 and the surface 16b of the second separator 16 adjacent to each other. .

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。   As shown in FIGS. 1 and 2, the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 44 is integrated with the surfaces 16 a and 16 b of the second separator 16 around the outer peripheral end portion of the second separator 16.

図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂枠部材24に当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、第2凸状シール42bに当接する面がセパレータ面に沿って平面状に延在する平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。   As shown in FIG. 2, the first seal member 42 includes a first convex seal 42 a that contacts the resin frame member 24 constituting the electrolyte membrane / electrode structure 10 with a resin frame, and a second seal of the second separator 16. And a second convex seal 42b in contact with the member 44. The second seal member 44 constitutes a flat seal in which the surface that contacts the second convex seal 42b extends in a flat shape along the separator surface. Instead of the second convex seal 42b, the second seal member 44 may be provided with a convex seal (not shown).

第1シール部材42及び第2シール部材44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。   For the first seal member 42 and the second seal member 44, for example, EPDM, NBR, fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber or the like, cushion material Alternatively, an elastic seal member such as a packing material is used.

次いで、樹脂枠付き電解質膜・電極構造体10を製造する方法について、以下に説明する。   Next, a method for producing the resin frame-attached electrolyte membrane / electrode structure 10 will be described below.

先ず、段差MEA10aが作製される一方、樹脂枠部材24は、金型(図示せず)を用いて射出成形される。段差MEA10aでは、カーボンペーパの平坦面に、カーボンブラックとPTFE粒子との混合物からなるスラリーを塗布し、乾燥させて下地層を形成することにより、第1ガス拡散層20b及び第2ガス拡散層22bが形成される。   First, the step MEA 10a is manufactured, while the resin frame member 24 is injection-molded using a mold (not shown). In the step MEA 10a, a first gas diffusion layer 20b and a second gas diffusion layer 22b are formed by applying a slurry made of a mixture of carbon black and PTFE particles on a flat surface of carbon paper and drying to form a base layer. Is formed.

一方、電極触媒に溶媒を加えた後、バインダー溶液を投入してカソード電極インク及びアノード電極インクが作成される。カソード電極インクは、PETフィルムにスクリーン印刷により塗工され、カソード電極シートが形成される。同様に、アノード電極インクは、PETフィルムにスクリーン印刷により塗工され、アノード電極シートが形成される。   On the other hand, after adding a solvent to the electrode catalyst, a binder solution is added to prepare a cathode electrode ink and an anode electrode ink. Cathode electrode ink is applied to a PET film by screen printing to form a cathode electrode sheet. Similarly, the anode electrode ink is applied to a PET film by screen printing to form an anode electrode sheet.

次いで、固体高分子電解質膜18が、カソード電極シート及びアノード電極シートに挟持された状態で、ホットプレスを行った後、PETフィルムを剥離することにより接合体(CCM)が形成される。さらに、CCMは、第1ガス拡散層20bと第2ガス拡散層22bとに挟持され、ホットプレスにより一体化されて段差MEA10aが作製される。   Next, hot pressing is performed in a state where the solid polymer electrolyte membrane 18 is sandwiched between the cathode electrode sheet and the anode electrode sheet, and then the PET film is peeled to form a joined body (CCM). Further, the CCM is sandwiched between the first gas diffusion layer 20b and the second gas diffusion layer 22b and integrated by hot pressing to form the step MEA 10a.

また、図4に示すように、樹脂枠部材24は、肉薄形状の内側膨出部24aを有する。内側膨出部24aには、内周基端部24sに連続して凸状部26aが設けられるとともに、前記凸状部26aの内方端部には、前記凸状部26aより薄肉状に形成される平坦面部26bが設けられている。なお、樹脂枠部材24には、必要に応じて、図2に示すように、樹脂突起部31tが一体成形される。   Moreover, as shown in FIG. 4, the resin frame member 24 has a thin inner bulging portion 24a. The inner bulging portion 24a is provided with a convex portion 26a continuous to the inner peripheral base end portion 24s, and is formed thinner at the inner end portion of the convex portion 26a than the convex portion 26a. A flat surface portion 26b is provided. As shown in FIG. 2, a resin protrusion 31t is integrally formed on the resin frame member 24 as necessary.

次に、図5に示すように、樹脂枠部材24には、内側膨出部24aの平坦面部26bに、接着剤層28(空間部29)の接着剤配置部位28pに位置して接着剤28aが、例えば、図示しないディスペンサーを介して樹脂枠部材24を周回して塗布される。さらに、樹脂枠部材24の内周基端部24sと段差MEA10aを構成する第1ガス拡散層20bの外周端部20beとが位置合わせされる。   Next, as shown in FIG. 5, the resin frame member 24 has an adhesive 28 a located on the flat surface portion 26 b of the inner bulging portion 24 a and positioned at the adhesive placement portion 28 p of the adhesive layer 28 (space portion 29). However, for example, the resin frame member 24 is applied around a dispenser (not shown). Further, the inner peripheral base end 24s of the resin frame member 24 and the outer peripheral end 20be of the first gas diffusion layer 20b constituting the step MEA 10a are aligned.

図6に示すように、接着剤28aが加熱されるとともに、厚さ方向に荷重(プレス等)が付与される。このため、接着剤28aが加圧及び溶融され、空間部29内を接着剤配置部位28pから矢印に示すように、内方に向かって伸ばされる。従って、樹脂枠部材24の内側膨出部24aと固体高分子電解質膜18の外周縁部18beとは、接着剤層28を介して接着される。接着剤28aは、接触部位28eまで伸ばされる。   As shown in FIG. 6, the adhesive 28a is heated and a load (press or the like) is applied in the thickness direction. For this reason, the adhesive 28a is pressurized and melted, and is extended inward in the space 29 from the adhesive placement site 28p as indicated by an arrow. Therefore, the inner bulging portion 24 a of the resin frame member 24 and the outer peripheral edge portion 18 be of the solid polymer electrolyte membrane 18 are bonded via the adhesive layer 28. The adhesive 28a is extended to the contact part 28e.

さらに、樹脂枠部材24の内周端部24aeの内周面と第2ガス拡散層22bの外周端部22beの先端面とは、接着剤層28を介して接着される。一方、樹脂枠部材24とアノード電極20の第1ガス拡散層20bとは、樹脂含浸部31により一体化される。従って、樹脂枠付き電解質膜・電極構造体10が製造される。   Further, the inner peripheral surface of the inner peripheral end 24 ae of the resin frame member 24 and the front end surface of the outer peripheral end 22 be of the second gas diffusion layer 22 b are bonded via an adhesive layer 28. On the other hand, the resin frame member 24 and the first gas diffusion layer 20 b of the anode electrode 20 are integrated by the resin impregnated portion 31. Therefore, the electrolyte membrane / electrode structure 10 with a resin frame is manufactured.

この場合、第1の実施形態では、図2及び図3に示すように、接着剤層28は、段差MEA10aの外周縁部18beと樹脂枠部材24の凸状部26aとの接触部位28eを外周端部として前記段差MEA10aの内方に延在している。そして、接触部位28eに近接する接着剤配置部位28pに配置された接着剤28aは、樹脂枠部材24と段差MEA10aとが密着される際に伸ばされて、前記接着剤層28の内方に向かって流動している。接着剤層28は、固体高分子電解質膜18の露出面を覆っている。   In this case, in the first embodiment, as shown in FIGS. 2 and 3, the adhesive layer 28 has an outer periphery around the contact portion 28 e between the outer peripheral edge portion 18 be of the step MEA 10 a and the convex portion 26 a of the resin frame member 24. As an end, it extends inward of the step MEA 10a. Then, the adhesive 28a disposed in the adhesive placement portion 28p adjacent to the contact portion 28e is stretched when the resin frame member 24 and the step MEA 10a are brought into close contact with each other, and is directed inward of the adhesive layer 28. Is flowing. The adhesive layer 28 covers the exposed surface of the solid polymer electrolyte membrane 18.

このため、接着剤層28内の空気は、接着剤28aの流動に沿って内方に移動し、第2ガス拡散層22bの外周端部22beと樹脂枠部材24の内周端部24aeとの間隙を通って外部に排気されている。従って、簡単な構成で、接着剤層28からの空気抜きを確実に行うことができる。   For this reason, the air in the adhesive layer 28 moves inward along the flow of the adhesive 28 a, and the outer peripheral end 22 be of the second gas diffusion layer 22 b and the inner peripheral end 24 ae of the resin frame member 24. It is exhausted to the outside through the gap. Therefore, air can be surely removed from the adhesive layer 28 with a simple configuration.

これにより、第1の実施形態では、接着剤28aは、接着剤層28内で均一厚さに塗ることが可能になり、ガス遮断性や接着耐久性等の品質にばらつきが発生することを抑制することができる。このため、段差MEA10aと樹脂枠部材24とを強固且つ高品質に接合することが可能になるという効果が得られる。   As a result, in the first embodiment, the adhesive 28a can be applied with a uniform thickness in the adhesive layer 28, and variations in quality such as gas barrier properties and adhesion durability are suppressed. can do. For this reason, the effect that it becomes possible to join the level | step difference MEA10a and the resin frame member 24 firmly and with high quality is acquired.

また、樹脂枠付き電解質膜・電極構造体10は、図2に示すように、第1セパレータ14及び第2セパレータ16により挟持される。第2セパレータ16は、樹脂枠部材24の内側膨出部24aに当接し、第1セパレータ14と共に樹脂枠付き電解質膜・電極構造体10に荷重を付与する。さらに、燃料電池12は、所定数だけ積層されて燃料電池スタックが構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。   Moreover, the electrolyte membrane / electrode structure 10 with a resin frame is sandwiched between the first separator 14 and the second separator 16 as shown in FIG. The second separator 16 contacts the inner bulging portion 24 a of the resin frame member 24 and applies a load to the electrolyte membrane / electrode structure 10 with a resin frame together with the first separator 14. Furthermore, a predetermined number of fuel cells 12 are stacked to form a fuel cell stack, and a clamping load is applied between end plates (not shown).

このように構成される燃料電池12の動作について、以下に説明する。   The operation of the fuel cell 12 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔30aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Supplied. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して段差MEA10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、段差MEA10aのアノード電極20に供給される。   Therefore, the oxidant gas is introduced from the oxidant gas inlet communication hole 30a into the oxidant gas flow path 36 of the second separator 16, moves in the direction of arrow B, and is supplied to the cathode electrode 22 of the step MEA 10a. On the other hand, the fuel gas is introduced into the fuel gas flow path 38 of the first separator 14 from the fuel gas inlet communication hole 34a. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 20 of the step MEA 10a.

従って、各段差MEA10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、第2電極触媒層22a及び第1電極触媒層20a内で電気化学反応により消費されて、発電が行われる。   Therefore, in each step MEA 10a, the oxidant gas supplied to the cathode electrode 22 and the fuel gas supplied to the anode electrode 20 are electrochemically reacted in the second electrode catalyst layer 22a and the first electrode catalyst layer 20a. It is consumed and power is generated.

次いで、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、燃料ガス出口連通孔34bに沿って矢印A方向に排出される。   Next, the oxidant gas consumed by being supplied to the cathode electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas consumed by being supplied to the anode electrode 20 is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、段差MEA10aを冷却した後、冷却媒体出口連通孔32bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B. The cooling medium is discharged from the cooling medium outlet communication hole 32b after cooling the step MEA 10a.

図7は、本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体50の要部断面説明図である。なお、第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。   FIG. 7 is a cross-sectional explanatory view of a main part of an electrolyte membrane / electrode structure 50 with a resin frame according to the second embodiment of the present invention. In addition, the same referential mark is attached | subjected to the component same as the electrolyte membrane and electrode structure 10 with a resin frame which concerns on 1st Embodiment, and the detailed description is abbreviate | omitted.

樹脂枠付き電解質膜・電極構造体50は、段差MEA10aと樹脂枠部材52とを備える。樹脂枠部材52は、フィルム状に構成され、最大厚さは、凸状部26aの厚さに設定される。   The electrolyte membrane / electrode structure 50 with a resin frame includes a step MEA 10 a and a resin frame member 52. The resin frame member 52 is formed in a film shape, and the maximum thickness is set to the thickness of the convex portion 26a.

このように構成される第2の実施形態では、上記の第1の実施形態と同様の効果が得られるとともに、樹脂枠部材52の薄肉化が容易に図られるという利点がある。   The second embodiment configured as described above has advantages that the same effects as those of the first embodiment can be obtained, and that the resin frame member 52 can be easily reduced in thickness.

10、50…樹脂枠付き電解質膜・電極構造体
10a…段差MEA 12…燃料電池
14、16…セパレータ 18…固体高分子電解質膜
18be…外周縁部 20…アノード電極
20a、22a…電極触媒層 20b、22b…ガス拡散層
20be、22ae、22be…外周端部
22…カソード電極 24、52…樹脂枠部材
24a…内側膨出部 24s…内周基端部
26a…凸状部 26b…平坦面部
28…接着剤層 28a…接着剤
28e…接触部位 28p…接着剤配置部位
29…空間部 30a…酸化剤ガス入口連通孔
30b…酸化剤ガス出口連通孔 32a…冷却媒体入口連通孔
32b…冷却媒体出口連通孔 34a…燃料ガス入口連通孔
34b…燃料ガス出口連通孔 36…酸化剤ガス流路
38…燃料ガス流路 40…冷却媒体流路
42、44…シール部材
DESCRIPTION OF SYMBOLS 10, 50 ... Electrolyte membrane / electrode structure 10a with resin frame ... Step MEA 12 ... Fuel cell 14, 16 ... Separator 18 ... Solid polymer electrolyte membrane 18be ... Outer peripheral edge 20 ... Anode electrode 20a, 22a ... Electrode catalyst layer 20b , 22b ... gas diffusion layers 20be, 22ae, 22be ... outer peripheral end 22 ... cathode electrode 24, 52 ... resin frame member 24a ... inner bulging portion 24s ... inner peripheral base end portion 26a ... convex portion 26b ... flat surface portion 28 ... adhesive Layer 28a ... Adhesive 28e ... Contact part 28p ... Adhesive placement part 29 ... Space 30a ... Oxidant gas inlet communication hole 30b ... Oxidant gas outlet communication hole 32a ... Cooling medium inlet communication hole 32b ... Cooling medium outlet communication hole 34a ... fuel gas inlet communication hole 34b ... fuel gas outlet communication hole 36 ... oxidant gas flow path 38 ... fuel gas flow path 40 ... cooling medium flow paths 42, 44 Seal member

Claims (3)

固体高分子電解質膜の一方の面には、第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差MEAと、
前記固体高分子電解質膜の外周を周回して設けられる樹脂枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体であって、
前記樹脂枠部材と前記段差MEAの外周縁部との間には、前記他方の面側に接着剤が充填される接着剤層を設け、
前記接着剤層は、前記段差MEAの前記外周縁部と前記樹脂枠部材との接触部位である外周端部から該段差MEAの内方に延在するとともに、
前記接着剤層には、前記外周端部側に近接して液状の前記接着剤を塗布する際に配置させる接着剤配置部位が設けられることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
A first electrode is provided on one surface of the solid polymer electrolyte membrane, a second electrode is provided on the other surface of the solid polymer electrolyte membrane, and the planar dimensions of the first electrode are A step MEA set to a dimension larger than the planar dimension of the second electrode;
A resin frame member provided around the outer periphery of the solid polymer electrolyte membrane;
An electrolyte membrane / electrode structure with a resin frame for a fuel cell comprising:
Between the resin frame member and the outer peripheral edge of the step MEA, an adhesive layer filled with an adhesive is provided on the other surface side,
The adhesive layer extends inward of the step MEA from an outer peripheral end that is a contact portion between the outer peripheral edge of the step MEA and the resin frame member,
An electrolyte membrane / electrode with a resin frame for a fuel cell, characterized in that the adhesive layer is provided with an adhesive arrangement site that is arranged when applying the liquid adhesive in the vicinity of the outer peripheral end side. Structure.
請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、前記樹脂枠部材は、前記段差MEAとの前記接触部位に、段差部位を介し薄肉状の内側膨出部を設けるとともに、
前記外周端部、前記内側膨出部及び前記段差MEAの前記外周縁部により、前記接着剤層を構成する空間部を形成することを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
2. The electrolyte membrane / electrode structure with a resin frame for a fuel cell according to claim 1, wherein the resin frame member is provided with a thin-walled inner bulging portion at the contact portion with the stepped MEA via the stepped portion,
An electrolyte membrane / electrode structure with a resin frame for a fuel cell, wherein a space portion constituting the adhesive layer is formed by the outer peripheral end portion, the inner bulging portion and the outer peripheral edge portion of the step MEA. .
請求項2記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、前記空間部は、前記外周端部と前記接着剤配置部位に塗布された液状の前記接着剤との間に隙間部を有することを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。   The electrolyte membrane / electrode structure with a resin frame for a fuel cell according to claim 2, wherein the space portion has a gap portion between the outer peripheral end portion and the liquid adhesive applied to the adhesive placement site. An electrolyte membrane / electrode structure with a resin frame for a fuel cell.
JP2014211303A 2014-10-16 2014-10-16 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof Active JP6145082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211303A JP6145082B2 (en) 2014-10-16 2014-10-16 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211303A JP6145082B2 (en) 2014-10-16 2014-10-16 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof

Publications (2)

Publication Number Publication Date
JP2016081690A true JP2016081690A (en) 2016-05-16
JP6145082B2 JP6145082B2 (en) 2017-06-07

Family

ID=55958942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211303A Active JP6145082B2 (en) 2014-10-16 2014-10-16 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof

Country Status (1)

Country Link
JP (1) JP6145082B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003821A (en) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 Fuel cell and manufacturing method therefor
US11374240B2 (en) 2019-09-30 2022-06-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
US11437632B2 (en) 2019-09-30 2022-09-06 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115450B2 (en) 2019-09-30 2022-08-09 トヨタ自動車株式会社 Fuel cell unit cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131417A (en) * 2011-12-22 2013-07-04 Honda Motor Co Ltd Manufacturing method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2013168353A (en) * 2012-01-16 2013-08-29 Honda Motor Co Ltd Electrolyte membrane-electrode structure equipped with fuel cell resin frame
JP2014017150A (en) * 2012-07-10 2014-01-30 Honda Motor Co Ltd Resin-framed membrane electrode assembly and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131417A (en) * 2011-12-22 2013-07-04 Honda Motor Co Ltd Manufacturing method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2013168353A (en) * 2012-01-16 2013-08-29 Honda Motor Co Ltd Electrolyte membrane-electrode structure equipped with fuel cell resin frame
JP2014017150A (en) * 2012-07-10 2014-01-30 Honda Motor Co Ltd Resin-framed membrane electrode assembly and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003821A (en) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 Fuel cell and manufacturing method therefor
US11374240B2 (en) 2019-09-30 2022-06-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
US11437632B2 (en) 2019-09-30 2022-09-06 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell

Also Published As

Publication number Publication date
JP6145082B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6263214B2 (en) Step MEA with resin frame for fuel cells
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6104050B2 (en) Electrolyte membrane / electrode structure for fuel cells
JP5638508B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP5855540B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2014137936A (en) Electrolyte membrane with resin frame/electrode structure
JP6100225B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
US20150380746A1 (en) Fuel cell and method of producing the fuel cell
JP6145082B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP5912942B2 (en) Electrolyte membrane / electrode structure with resin frame and fuel cell
JP6090791B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017126457A (en) Method and device for manufacturing resin frame-attached stepped mea
JP2016058161A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6100230B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP6666664B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6144650B2 (en) Manufacturing method of fuel cell
JP2016076372A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2014026799A (en) Membrane electrode assembly for fuel cell
JP2013157093A (en) Fuel cell
JP6158758B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6126049B2 (en) Manufacturing method of fuel cell
JP6133255B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017004607A (en) Manufacturing method of electrolyte membrane electrode structure with resin frame for fuel battery
JP2016051518A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170512

R150 Certificate of patent or registration of utility model

Ref document number: 6145082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150