JP2016081681A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2016081681A
JP2016081681A JP2014211013A JP2014211013A JP2016081681A JP 2016081681 A JP2016081681 A JP 2016081681A JP 2014211013 A JP2014211013 A JP 2014211013A JP 2014211013 A JP2014211013 A JP 2014211013A JP 2016081681 A JP2016081681 A JP 2016081681A
Authority
JP
Japan
Prior art keywords
positive electrode
voltage
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014211013A
Other languages
Japanese (ja)
Inventor
伊藤 則之
Noriyuki Ito
則之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014211013A priority Critical patent/JP2016081681A/en
Publication of JP2016081681A publication Critical patent/JP2016081681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a highly safe lithium ion secondary battery capable of suppressing generation of thermal runaway by limiting an electric current under an overcharge state.SOLUTION: The lithium ion secondary battery, having a positive electrode collector, a positive electrode mixture layer provided on the positive electrode collector and containing at least a positive electrode active material and a positive electrode lead tab serving as an energization path to the outside, includes a voltage resolution adhesive layer mainly comprised of a material resolved at a predetermined voltage, provided between the positive electrode collector and the positive electrode lead tab.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

ノート型コンピュータ、携帯電話、デジタルカメラ等の電子機器の普及に伴い、これら電子機器を駆動するための二次電池の需要が拡大している。近年、これらの電子機器は高機能化の進展に伴い消費電力が増大していることや、小型化が期待されていることから、二次電池に対しては高エネルギー密度化・高出力密度化が求められている。高エネルギー密度・高出力密度を達成できる二次電池としては、リチウムイオン二次電池等の非水電解液二次電池が有力視されている。   With the widespread use of electronic devices such as notebook computers, mobile phones, and digital cameras, the demand for secondary batteries for driving these electronic devices is increasing. In recent years, these electronic devices have increased power consumption with the progress of higher functionality, and are expected to be smaller. Therefore, higher energy density and higher output density are required for secondary batteries. Is required. As secondary batteries that can achieve high energy density and high output density, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are considered promising.

しかし、リチウムイオン二次電池は、化学的活性の高いリチウム、可燃性の高い電解液、過充電状態での安定性が低いリチウム遷移金属複合酸化物を電池材料として用いていることから、過充電状態において更に充電を継続すると、電池材料間の化学反応が急激に進行し、電池の発熱、熱暴走、発火などを引き起こすという安全上の問題があることが知られている。このため、過充電状態に至る前に速やかに充電を停止する必要があり、電圧の監視、充電の停止などを外部回路にて行う機構が採用されている。このように、安全に対して様々な対策が施されているにも関わらず、車載電池や航空機搭載電池の発火が後を絶たない。このため、電池外部だけでなく、電池内部における安全機構の確立、導入が求められている。   However, since lithium ion secondary batteries use lithium with high chemical activity, highly flammable electrolytes, and lithium transition metal composite oxides with low overcharge stability as battery materials, It is known that if the charging is further continued in the state, the chemical reaction between the battery materials proceeds rapidly, and there is a safety problem that causes heat generation, thermal runaway, ignition, etc. of the battery. For this reason, it is necessary to quickly stop charging before reaching an overcharged state, and a mechanism is employed in which an external circuit performs voltage monitoring, charging stop, and the like. As described above, although various measures are taken for safety, ignition of the on-board battery and the on-board battery continues. For this reason, establishment and introduction of a safety mechanism not only outside the battery but also inside the battery are required.

特許文献1〜4には、リチウムイオン二次電池の過充電を抑止するための手法が開示されている。   Patent Documents 1 to 4 disclose methods for suppressing overcharge of lithium ion secondary batteries.

特許文献1には、非水電解液に、シクロヘキシルベンゼン及びtert−アルキルベンゼン誘導体の混合物を含有させることにより、過充電防止効果を向上させることが開示されている。   Patent Document 1 discloses that the overcharge prevention effect is improved by containing a mixture of cyclohexylbenzene and a tert-alkylbenzene derivative in a nonaqueous electrolytic solution.

特許文献2には、電極合剤層中又は電極合剤層と集電体との界面に沿って熱膨張性マイクロカプセルを含有させることにより、熱暴走による事故発生を防止することが開示されている。   Patent Document 2 discloses that an accident caused by thermal runaway is prevented by including thermally expandable microcapsules in the electrode mixture layer or along the interface between the electrode mixture layer and the current collector. Yes.

特許文献3には、正極を構成する正極活物質と炭酸リチウムとを均一に混合することにより、過充電時の安全性を高めることが開示されている。   Patent Document 3 discloses that the safety during overcharge is improved by uniformly mixing the positive electrode active material constituting the positive electrode and lithium carbonate.

特許文献4には、正極を、正極集電体上に形成された導電層となる第1層と、活物質層となる第2層とからなる二層構造とし、第1層に、過充電状態での高電位で分解する物質を含有させることにより、過充電により高電位となった場合に充電電流を遮断することが開示されている。   In Patent Document 4, the positive electrode has a two-layer structure including a first layer that is a conductive layer formed on a positive electrode current collector and a second layer that is an active material layer, and the first layer is overcharged. It is disclosed that by containing a substance that decomposes at a high potential in a state, the charging current is interrupted when the potential becomes high due to overcharging.

特開2006−120650号公報JP 2006-120650 A 特開2001−332245号公報JP 2001-332245 A 特開2008−181830号公報JP 2008-181830 A 特開2000−077061号公報JP 2000-077061 A

しかしながら、特許文献1に記載の添加剤を電解液に混合した場合、電解液中の電解質イオン伝導度が低下するという課題がある。また、高温保管時にも添加剤の反応が生じて、電池サイクル寿命、高温保存特性が低下するという課題がある。   However, when the additive described in Patent Document 1 is mixed with the electrolytic solution, there is a problem that the electrolyte ion conductivity in the electrolytic solution is lowered. Further, there is a problem that the reaction of the additive occurs during high-temperature storage, and the battery cycle life and high-temperature storage characteristics deteriorate.

また、特許文献2に記載の熱膨張性マイクロカプセルを正極内に導入した場合は、高温保管時にマイクロカプセルが徐々に膨張して正極抵抗を上昇させるため、電池サイクル寿命、高温保存特性が低下するという課題がある。   In addition, when the thermally expandable microcapsules described in Patent Document 2 are introduced into the positive electrode, the microcapsules gradually expand during high-temperature storage and increase the positive electrode resistance, so that the battery cycle life and high-temperature storage characteristics are degraded. There is a problem.

また、特許文献3に示すように過充電に伴いガスを発生する化合物を正極合剤中に導入した場合、正極合剤中の活物質量が低下するため、正極容量が低下するという課題がある。   In addition, as shown in Patent Document 3, when a compound that generates a gas due to overcharging is introduced into the positive electrode mixture, the amount of the active material in the positive electrode mixture is reduced, so that the positive electrode capacity is reduced. .

また、特許文献4に示すように過充電に伴いガスを発生する化合物を集電体上の正極第1層内に導入した場合、電圧上昇に伴うガス発生で正極第1層の破壊が進行する際に、正極の第1層の破壊による電流遮断が不十分である場合、過熱して熱暴走に至るという課題がある。   In addition, as shown in Patent Document 4, when a compound that generates a gas due to overcharge is introduced into the first positive electrode layer on the current collector, destruction of the first positive electrode layer proceeds due to gas generation accompanying a voltage increase. At this time, when current interruption due to destruction of the first layer of the positive electrode is insufficient, there is a problem of overheating and thermal runaway.

本発明は、過充電状態において電流を制限し、熱暴走を抑制することが可能な安全性の高いリチウムイオン二次電池を提供することを目的とする。   An object of the present invention is to provide a highly safe lithium ion secondary battery that can limit current in an overcharged state and suppress thermal runaway.

本発明は、正極集電体と、正極集電体上に設けられ、少なくとも正極活物質を含む正極合剤層と、外部への通電経路となる正極リードタブとを有するリチウムイオン二次電池において、正極集電体と正極リードタブとの間に、所定の電圧で分解する材料を主体として構成された電圧分解接着層を設けた。   The present invention is a lithium ion secondary battery comprising a positive electrode current collector, a positive electrode mixture layer provided on the positive electrode current collector and containing at least a positive electrode active material, and a positive electrode lead tab serving as a current path to the outside. Between the positive electrode current collector and the positive electrode lead tab, a voltage resolving adhesive layer composed mainly of a material that decomposes at a predetermined voltage was provided.

本発明によれば、過充電状態において電流を制限し、熱暴走を抑制することが可能な安全性の高いリチウムイオン二次電池を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, a highly safe lithium ion secondary battery which can restrict | limit an electric current in an overcharge state and can suppress thermal runaway is realizable.

本発明の実施形態に係るリチウムイオン二次電池の一例を示す概略図Schematic which shows an example of the lithium ion secondary battery which concerns on embodiment of this invention.

以下、本発明の実施形態に係るリチウムイオン二次電池用電極及びリチウムイオン二次電池について説明する。   Hereinafter, the electrode for lithium ion secondary batteries and the lithium ion secondary battery which concern on embodiment of this invention are demonstrated.

図1は本発明の実施形態に係るリチウムイオン二次電池の一例を示す図である。電池1は、正極集電体2、正極合剤層3、負極集電体4、負極合剤層5、セパレータ6、正極リードタブ7、負極リードタブ8、電圧分解接着層9、タブシーラント10、及び外装材11とから構成される。なお、図1には示さないが、電池1内部は電解液で満たされている。   FIG. 1 is a diagram showing an example of a lithium ion secondary battery according to an embodiment of the present invention. The battery 1 includes a positive electrode current collector 2, a positive electrode mixture layer 3, a negative electrode current collector 4, a negative electrode mixture layer 5, a separator 6, a positive electrode lead tab 7, a negative electrode lead tab 8, a voltage decomposition adhesive layer 9, a tab sealant 10, and The exterior material 11 is comprised. Although not shown in FIG. 1, the inside of the battery 1 is filled with an electrolytic solution.

正極集電体2は、特に限定されるものではなく、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等の材質からなる従来公知の集電体を使用することができる。   The positive electrode current collector 2 is not particularly limited, and a conventionally known current collector made of a material such as aluminum, stainless steel, or nickel plated steel can be used.

正極合剤層3は、正極活物質と、導電助剤と、結着剤とを、N−メチルピロリドン、メチルエチルケトン、トルエン等の単独溶媒もしくは混合溶媒中で混合した後、混合液を正極集電体2上に塗布し、乾燥させることで形成することができる。また、正極合剤層3に含まれる正極活物質は、特に限定されるものではなく、従来公知の活物質を使用することができる。正極活物質は、例えばリチウムイオンを放出するリチウム遷移金属複合酸化物を挙げることができ、その一例として、LiNiO、LiMn、LiCoO、LiFePO等を挙げることができる。また、正極活物質として、上記リチウム遷移金属酸化物を複数混合して使用することもできる。結着剤は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等の化学的、物理的に安定な材料が好ましい。また、導電助剤の例としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等を挙げることができる。 The positive electrode mixture layer 3 is formed by mixing a positive electrode active material, a conductive additive, and a binder in a single solvent or a mixed solvent such as N-methylpyrrolidone, methyl ethyl ketone, and toluene, and then mixing the mixed solution with the positive electrode current collector. It can be formed by applying on the body 2 and drying. Moreover, the positive electrode active material contained in the positive mix layer 3 is not specifically limited, A conventionally well-known active material can be used. Examples of the positive electrode active material include lithium transition metal composite oxides that release lithium ions, and examples thereof include LiNiO 2 , LiMn 2 O 4 , LiCoO 2 , and LiFePO 4 . In addition, a plurality of lithium transition metal oxides can be mixed and used as the positive electrode active material. The binder is preferably a chemically and physically stable material such as polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, or fluororubber. Examples of the conductive aid include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

負極集電体4は、特に限定されるものではなく、銅箔などからなる集電体を使用することができる。   The negative electrode current collector 4 is not particularly limited, and a current collector made of copper foil or the like can be used.

負極合剤層5は、負極活物質と結着剤とからなる。また、必要に応じて、導電助剤を添加してもかまわない。負極活物質は、特に限定されるものではなく、リチウム等の金属材料、ケイ素、スズ等を含有する合金系材料、グラファイト、コークス等の炭素材料のような、リチウムイオンを吸蔵・放出できる化合物を単独で乃至は組み合わせて用いることができる。また、負極活物質としてリチウム金属箔を用いる場合、銅等の金属集電体上にリチウム箔を圧着して形成することができる。また負極活物質として合金材料、炭素材料を用いる場合は、負極活物質と結着剤、導電助剤等を水、NMP等の溶媒中で混合した後、銅等の金属集電体上に塗布、乾燥することで形成することができる。   The negative electrode mixture layer 5 includes a negative electrode active material and a binder. Moreover, you may add a conductive support agent as needed. The negative electrode active material is not particularly limited, and a compound capable of occluding and releasing lithium ions, such as a metal material such as lithium, an alloy material containing silicon, tin or the like, or a carbon material such as graphite or coke is used. They can be used alone or in combination. When a lithium metal foil is used as the negative electrode active material, the lithium foil can be formed by pressure bonding on a metal current collector such as copper. Also, when using an alloy material or carbon material as the negative electrode active material, the negative electrode active material, a binder, a conductive aid, etc. are mixed in a solvent such as water or NMP, and then applied onto a metal current collector such as copper. It can be formed by drying.

負極合剤層5中の結着剤は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等の化学的、物理的に安定な材料が好ましい。また、導電助剤の例としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等を挙げることができる。   The binder in the negative electrode mixture layer 5 is preferably a chemically and physically stable material such as polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, or fluororubber. Examples of the conductive aid include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon.

セパレータ6は正極合剤層3及び負極合剤層5の短絡を防止するために用いられる。使用する電解液に対する耐性を有する材質で構成され、リチウムイオンを透過させるための微細孔を有する。材質としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン製や芳香族ポリアミド樹脂製の微孔膜または不織布、無機セラミック粉末を含む多孔質の樹脂コート等を挙げることができる。また、温度が上昇することで微細孔が閉じる、いわゆるシャットダウン機能を有しているものがさらに好ましいが、これに限るものではない。   The separator 6 is used to prevent a short circuit between the positive electrode mixture layer 3 and the negative electrode mixture layer 5. It is made of a material having resistance to the electrolytic solution to be used, and has micropores for allowing lithium ions to pass therethrough. Examples of the material include a microporous membrane or nonwoven fabric made of polyolefin such as polyethylene or polypropylene, or an aromatic polyamide resin, a porous resin coat containing inorganic ceramic powder, and the like. Moreover, although what has what is called a shutdown function that a micropore closes by temperature rise is more preferable, it does not restrict to this.

正極リードタブ7及び負極リードタブ8は導電体である金属である。外装材11の密封性を向上させるため、正極リードタブ7及び負極リードタブ8にタブシーラント10を付加して、ヒートシール後に電解液が漏れないようにする構成が一般的である。正極リードタブ7及び負極リードタブ8を正極集電体2及び負極集電体4にそれぞれ付加し、電池1内部から電流を取り出す。   The positive electrode lead tab 7 and the negative electrode lead tab 8 are metals that are conductors. In order to improve the sealing performance of the outer packaging material 11, a configuration is generally adopted in which a tab sealant 10 is added to the positive electrode lead tab 7 and the negative electrode lead tab 8 so that the electrolyte does not leak after heat sealing. The positive electrode lead tab 7 and the negative electrode lead tab 8 are added to the positive electrode current collector 2 and the negative electrode current collector 4, respectively, and current is taken out from the inside of the battery 1.

電圧分解接着層9は、リチウムイオン二次電池が過充電状態となった場合の高電圧で変質あるいは分解する樹脂と導電材とから構成される。樹脂の例としては、ポリアクリル樹脂、ポリメタクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。これらの樹脂は、4.5V前後の電圧域で酸化分解電流を生じることが、発明者らのサイクリックボルタンメトリーにより示された。したがって、これらの樹脂は4.5V以上の電圧で酸化分解され、樹脂の強度が著しく低下する。これらの樹脂に、例えばアセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、カーボンナノチューブ等の公知の材料を導電材として添加したものを、正極集電体2と正極リードタブ7との間に接着剤(電圧分解接着層)として設ければ、この部分が高電圧で分解されて強度が低下するため、両者間の電気抵抗が増加して電流を抑制することが可能となる。   The voltage resolving adhesive layer 9 is composed of a resin and a conductive material that are altered or decomposed at a high voltage when the lithium ion secondary battery is overcharged. Examples of the resin include polyacrylic resin, polymethacrylic resin, polyester resin, polyurethane resin and the like. It has been shown by the inventors' cyclic voltammetry that these resins generate an oxidative decomposition current in the voltage range around 4.5V. Therefore, these resins are oxidatively decomposed at a voltage of 4.5 V or more, and the strength of the resin is significantly reduced. A material obtained by adding a known material such as acetylene black, ketjen black, carbon black, graphite, or carbon nanotube to these resins as a conductive material is bonded between the positive electrode current collector 2 and the positive electrode lead tab 7 ( If it is provided as a voltage-resolving adhesive layer), this portion is decomposed at a high voltage and the strength is lowered, so that the electrical resistance between the two increases and the current can be suppressed.

また、上記の電圧分解接着層内に、高電圧で分解する電圧発泡剤を添加することも可能である。この場合、電圧分解接着層を構成する樹脂は、必ずしも高電圧で分解される必要はなく、高電圧で分解されるもの及び高電圧で分解されないもののいずれも使用できる。電圧発泡剤としては、リチウム、亜鉛、鉛等の炭酸塩やアゾ化合物、ニトロソ化合物、ヒドラジン誘導体、重炭酸塩等の高電圧で分解する物質が使用可能である。例えば、ヒドラジン誘導体である4,4’−オキシビス(ベンゼンスルホニルヒドラジド)は、4.4〜4.8Vで分解されることが確認された。現在のリチウムイオン二次電池の正極電位は4.2V前後であるから、過充電状態の電圧範囲で4,4’−オキシビス(ベンゼンスルホニルヒドラジド)は分解され、ガスを発生する。この結果、電圧分解接着層9は破壊され、接着層としての強度が低下して、電圧分解性樹脂を使用した場合と同様に電気抵抗が増加する。   Moreover, it is also possible to add a voltage foaming agent that decomposes at a high voltage into the above-mentioned voltage resolving adhesive layer. In this case, the resin constituting the voltage decomposing adhesive layer does not necessarily need to be decomposed at a high voltage, and any of those that are decomposed at a high voltage and those that are not decomposed at a high voltage can be used. As the voltage foaming agent, a substance capable of decomposing at a high voltage such as carbonates such as lithium, zinc and lead, azo compounds, nitroso compounds, hydrazine derivatives and bicarbonates can be used. For example, it was confirmed that 4,4'-oxybis (benzenesulfonylhydrazide), which is a hydrazine derivative, is decomposed at 4.4 to 4.8V. Since the current positive electrode potential of the lithium ion secondary battery is around 4.2 V, 4,4′-oxybis (benzenesulfonylhydrazide) is decomposed and generates gas in the overcharged voltage range. As a result, the voltage decomposing adhesive layer 9 is broken, the strength as the adhesive layer is lowered, and the electric resistance is increased as in the case of using the voltage decomposable resin.

電解液(図示せず)としては、非水電解液が用いられる。非水電解液の種類は特に限定されるものではなく、有機溶媒などの溶媒に支持塩を溶解させたもの、電解質兼溶媒であるイオン液体、そのイオン液体に更に支持塩を溶解させたもの等を挙げることができる。   A non-aqueous electrolyte is used as the electrolyte (not shown). The type of the non-aqueous electrolyte is not particularly limited, such as a solution in which a supporting salt is dissolved in a solvent such as an organic solvent, an ionic liquid that is an electrolyte and solvent, a solution in which a supporting salt is further dissolved in the ionic liquid, etc. Can be mentioned.

有機溶媒としては、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。また、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の混合溶媒を用いることもできる。   As the organic solvent, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. A mixed solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate can also be used.

非水電解液に用いられる支持塩は、特に限定されるものではなく、例えばLiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiN(FSO、LiN(CFSO)(CSO)、LiN(CFSO等を挙げることができる。 The supporting salt used for the non-aqueous electrolyte is not particularly limited. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2) 3, LiN (FSO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), mention may be made of LiN (CF 3 SO 2) 2 and the like.

非水電解液に用いられるイオン液体は、常温で液体である塩であれば特に限定されるものではなく、例えばアルキルアンモニウム塩、ピロリジニウム塩、ピラゾリウム塩、ピペリジニウム塩、イミダゾリウム塩、ピリジニウム塩、スルホニウム塩、ホスホニウム塩等を挙げることができる。また、広い電位領域において電気化学的に安定であると更に好ましい。   The ionic liquid used for the non-aqueous electrolyte is not particularly limited as long as it is a salt that is liquid at room temperature. For example, alkyl ammonium salt, pyrrolidinium salt, pyrazolium salt, piperidinium salt, imidazolium salt, pyridinium salt, sulfonium Examples thereof include salts and phosphonium salts. Further, it is more preferable that it is electrochemically stable in a wide potential region.

以上説明したように、本発明に係るリチウムイオン二次電池によれば、リチウムイオン二次電池が過充電状態となり電圧が上昇した場合に、所定の電圧で正極集電体2と正極リードタブ7との間に設けられた電圧分解接着層9が分解及び/または変質し、電圧分解接着層9の強度が低下して正極集電体2と正極リードタブ7との間の抵抗上昇を引き起こす。この結果、電流を制限するとともに電池内部の電圧上昇と温度上昇を抑制しながら電池外部電圧を上昇させるため、早期にシステムの停止電圧まで上昇させることができ、過充電状態から生じる熱暴走を抑制することが可能となる。   As described above, according to the lithium ion secondary battery of the present invention, when the lithium ion secondary battery is overcharged and the voltage rises, the positive electrode current collector 2 and the positive electrode lead tab 7 are set at a predetermined voltage. The voltage-resolving adhesive layer 9 provided between the electrodes is decomposed and / or deteriorated, and the strength of the voltage-resolving adhesive layer 9 is reduced to increase the resistance between the positive electrode current collector 2 and the positive electrode lead tab 7. As a result, it limits the current and increases the battery external voltage while suppressing the voltage rise and temperature rise inside the battery, so it can be raised to the stop voltage of the system at an early stage, suppressing thermal runaway caused by overcharged state It becomes possible to do.

また、本発明に係るリチウムイオン二次電池は、非水電解液に添加剤を混合するものでないため、非水電解液中の電解質イオン伝導度が低下することはなく、また、過充電状態ではない状態において、電池サイクル寿命、高温保存特性が低下することはない。   In addition, since the lithium ion secondary battery according to the present invention does not mix an additive with the non-aqueous electrolyte, the electrolyte ion conductivity in the non-aqueous electrolyte does not decrease, and in the overcharged state In the absence, the battery cycle life and the high temperature storage characteristics are not deteriorated.

また、本発明に係るリチウムイオン二次電池は、正極内に熱膨張性マイクロカプセルを導入するものでないため、過充電状態ではない状態において、電池サイクル寿命、高温保存特性が低下することはない。   In addition, since the lithium ion secondary battery according to the present invention does not introduce thermally expandable microcapsules into the positive electrode, the battery cycle life and the high-temperature storage characteristics are not deteriorated in a state that is not an overcharged state.

また、本発明に係るリチウムイオン二次電池は、正極合剤中にガスを発生する化合物を導入するのではなく、正極集電体2と正極リードタブ7との間に電圧分解接着層9を設けるため、正極合剤中の活物質量が低下することにより、正極容量が低下することはない。   Further, in the lithium ion secondary battery according to the present invention, a voltage decomposition adhesive layer 9 is provided between the positive electrode current collector 2 and the positive electrode lead tab 7 instead of introducing a compound that generates gas into the positive electrode mixture. Therefore, the positive electrode capacity does not decrease due to a decrease in the amount of the active material in the positive electrode mixture.

また、本発明に係るリチウムイオン二次電池は、過充電状態で発生したガスにより正極集電体上の導電層を構造破壊するのではなく、過充電状態において電圧分解接着層9が分解及び/または変質し、電圧分解接着層9の強度を低下させるため、正極合剤層3に対して過充電抑制のための何らかの構造を設ける必要はなく、かつ、電流制限及び熱暴走抑制の確実性が高い。   Further, the lithium ion secondary battery according to the present invention does not structurally destroy the conductive layer on the positive electrode current collector by the gas generated in the overcharged state, but the voltage decomposing adhesive layer 9 is decomposed and / or decomposed in the overcharged state. Or in order to change and reduce the strength of the voltage resolving adhesive layer 9, it is not necessary to provide any structure for suppressing overcharge to the positive electrode mixture layer 3, and the reliability of current limitation and thermal runaway suppression is ensured. high.

以下、本発明の具体的な実施例を説明する。   Hereinafter, specific examples of the present invention will be described.

(実施例1)
まず、正極合剤層3として、LiMn(日本化学産業製)92質量部、アセチレンブラック(HS−100,電気化学工業製)5質量部、ポリフッ化ビニリデン(♯7200,クレハ・バッテリー・マテリアルズ・ジャパン製)3質量部をN−メチルピロリドン(NMP)に添加し、分散処理を行い、均質なペーストを調製した。このペーストを正極集電体2である20μm厚のアルミ箔上に塗布し、乾燥処理を行うことで、正極合剤層3を得た。乾燥処理後の正極合剤層3の膜厚は、約100μmであった。
Example 1
First, as the positive electrode mixture layer 3, 92 parts by mass of LiMn 2 O 4 (manufactured by Nippon Chemical Industry), 5 parts by mass of acetylene black (HS-100, manufactured by Denki Kagaku Kogyo), polyvinylidene fluoride (# 7200, Kureha Battery) 3 parts by mass (made by Materials Japan) was added to N-methylpyrrolidone (NMP) and subjected to a dispersion treatment to prepare a homogeneous paste. This paste was applied onto a 20 μm-thick aluminum foil as the positive electrode current collector 2 and subjected to a drying treatment, whereby a positive electrode mixture layer 3 was obtained. The film thickness of the positive electrode mixture layer 3 after the drying treatment was about 100 μm.

プレス機を用いて正極合剤層3の密度が2.8g/cmとなるように正極合剤層3を圧縮した後、正極合剤層3が3cm×3cm、及び正極集電体2が2cm×3cmの大きさで含まれるように切り出し、正極板とした。 After compressing the positive electrode mixture layer 3 using a press so that the density of the positive electrode mixture layer 3 is 2.8 g / cm 3 , the positive electrode mixture layer 3 is 3 cm × 3 cm, and the positive electrode current collector 2 is A positive electrode plate was cut out so as to be included in a size of 2 cm × 3 cm.

次に、アセチレンブラック(HS−100,電気化学工業製)30質量部、ポリエステルA(分子量:22,000,Tg:72℃)70質量部を、シクロヘキサノン及びイソホロンの混合溶媒に添加し、分散処理を行い、均質なペーストを調製した。これにヘキサメチレンジイソシアネート系硬化剤をポリエステルAのOH基に対して当量加えて、先に切り出した正極の正極集電体2上の正極リードタブ7を接合する部分にスクリーン印刷法にて印刷し、乾燥処理を行って電圧分解接着層9を設けた。乾燥後の電圧分解接着層9の厚みは10μmであった。この上に正極リードタブ7を仮止めした後、80℃にて5日間のエージングを行って、電圧分解接着層9の熱硬化と同時に正極集電体2と正極リードタブ7を接着した。   Next, 30 parts by mass of acetylene black (HS-100, manufactured by Denki Kagaku Kogyo) and 70 parts by mass of polyester A (molecular weight: 22,000, Tg: 72 ° C.) are added to a mixed solvent of cyclohexanone and isophorone, followed by dispersion treatment. To prepare a homogeneous paste. Hexamethylene diisocyanate-based curing agent is added in an equivalent amount to the OH group of polyester A, and printed on the portion where the positive electrode lead tab 7 on the positive electrode current collector 2 of the positive electrode cut out previously is bonded by screen printing, A voltage decomposition adhesive layer 9 was provided by performing a drying process. The thickness of the voltage-resolved adhesive layer 9 after drying was 10 μm. After the positive electrode lead tab 7 was temporarily fixed thereon, aging was performed at 80 ° C. for 5 days, and the positive electrode current collector 2 and the positive electrode lead tab 7 were bonded simultaneously with the thermosetting of the voltage resolving adhesive layer 9.

次に、負極合剤層5として、ハイレートSMG(日立化成工業製)92質量部、グラファイト(SFG6、TIMCAL製)5質量部、ポリフッ化ビニリデン(♯7200,クレハ・バッテリー・マテリアルズ・ジャパン製)3質量部をN−メチルピロリドン(NMP)に添加し、分散処理を行い、均質なペーストを調製した。このペーストを負極集電体4である12μm厚の銅箔上に塗布し、乾燥処理を行うことで、負極合剤層5を得た。乾燥処理後の負極合剤層5の膜厚は、約70μmであった。   Next, 92 parts by mass of high-rate SMG (manufactured by Hitachi Chemical Co., Ltd.), 5 parts by mass of graphite (SFG6, manufactured by TIMCAL), and polyvinylidene fluoride (# 7200, manufactured by Kureha Battery Materials Japan) are used as the negative electrode mixture layer 5. 3 parts by mass was added to N-methylpyrrolidone (NMP) and dispersed to prepare a homogeneous paste. This paste was applied onto a 12 μm-thick copper foil as the negative electrode current collector 4 and subjected to a drying treatment, whereby a negative electrode mixture layer 5 was obtained. The film thickness of the negative electrode mixture layer 5 after the drying treatment was about 70 μm.

プレス機を用いて負極合剤層5の密度が1.8g/cmとなるように負極合剤層5を圧縮した後、負極合剤層5が3.2cm×3.2cm、及び負極集電体2が2cm×3.2cmの大きさで含まれるように切り出し、負極板とした。 After the negative electrode mixture layer 5 is compressed using a press so that the density of the negative electrode mixture layer 5 is 1.8 g / cm 3 , the negative electrode mixture layer 5 is 3.2 cm × 3.2 cm, and the negative electrode collector It cut out so that the electric body 2 might be contained by the magnitude | size of 2 cm x 3.2 cm, and was set as the negative electrode plate.

負極板の負極集電体の部分に、負極リードタブ8を超音波溶接機にて接着した。   The negative electrode lead tab 8 was bonded to the negative electrode current collector portion of the negative electrode plate with an ultrasonic welding machine.

セパレータ6としてポリプロピレン製セパレータ(ハイポア,旭化成イーマテリアルズ製)を4cm×8cmの大きさで切り出し、セパレータ面に正極合剤層3及び負極合剤層5の各面が対向するように正極板及び負極板を積層した。   A separator made of polypropylene (Hypore, manufactured by Asahi Kasei E-Materials) as a separator 6 is cut out in a size of 4 cm × 8 cm, and the positive electrode plate and the positive electrode mixture layer 3 and the negative electrode mixture layer 5 face each other on the separator surface. A negative electrode plate was laminated.

電池1の外装材11として、アルミパウチシートを切り出し、積層した電極板及びセパレータの上下に配置した。次に、電極板正極リードタブ7及び負極リードタブ8のシーラント10を含む2辺と他の1辺を約2mmのシール幅でヒートシールした。   As the exterior material 11 of the battery 1, aluminum pouch sheets were cut out and arranged above and below the laminated electrode plates and separators. Next, two sides including the sealant 10 of the electrode plate positive electrode lead tab 7 and the negative electrode lead tab 8 and the other side were heat sealed with a seal width of about 2 mm.

全体を真空乾燥した後に、ヒートシールしていない残りの1辺から電解液を注入した。脱気後に残りの1辺をヒートシールした。初期充電として、0.1Cにて4.25Vまで定電流充電を行った後、発生したガスを抜くため、最後にシールした1辺を開封し、改めて脱気後にヒートシールし、実施例1に係る電池とした。   After the whole was vacuum-dried, an electrolyte solution was injected from the remaining one side that was not heat-sealed. The remaining one side was heat-sealed after deaeration. As an initial charge, after performing constant current charge at 0.1 C to 4.25 V, in order to remove the generated gas, one side that was sealed last was opened, and after deaeration, heat sealing was performed again. Such a battery was obtained.

(実施例2)
電圧分解接着層9の樹脂として、アクリルポリオール樹脂A(分子量:10,000,Tg:88℃)とし、電圧分解発泡剤として炭酸リチウムをアクリルポリオール樹脂A100質量部に対して10質量部添加し、イソシアネート硬化剤を当量添加した以外は実施例1と同様の材料及び方法により、実施例2に係る電池を作製した。
(Example 2)
As resin of the voltage decomposition adhesive layer 9, acrylic polyol resin A (molecular weight: 10,000, Tg: 88 ° C.), lithium carbonate as a voltage decomposition foaming agent is added in an amount of 10 parts by mass with respect to 100 parts by mass of the acrylic polyol resin A, A battery according to Example 2 was produced by the same material and method as in Example 1 except that an equivalent amount of an isocyanate curing agent was added.

(比較例)
電圧分解接着層9を用いず、正極リードタブ7を正極集電体2に直接超音波溶着した以外は実施例1と同様の材料及び方法により、比較例に係る電池を作製した。
(Comparative example)
A battery according to a comparative example was produced by the same material and method as in Example 1 except that the positive electrode lead tab 7 was directly ultrasonically welded to the positive electrode current collector 2 without using the voltage resolving adhesive layer 9.

(電圧分解評価)
実施例1及び2に使用した電圧分解接着剤を20μm厚のアルミ箔に塗布して乾燥させたものを13.5mmの円形に打ち抜き、対極をリチウム箔としてコインセルを作製してサイクリックボルタンメトリーにより電圧分解挙動を測定した。その結果、いずれも4.5〜4.7V付近で酸化分解電流が観測され始めた。したがって、この電圧域で電圧分解接着層9が分解されることを確認した。
(Voltage decomposition evaluation)
The voltage-resolved adhesive used in Examples 1 and 2 was applied to a 20 μm-thick aluminum foil and dried, and punched into a 13.5 mm circle. A coin cell was prepared using a counter electrode as a lithium foil, and voltage was measured by cyclic voltammetry. The degradation behavior was measured. As a result, an oxidative decomposition current started to be observed in the vicinity of 4.5 to 4.7 V in all cases. Therefore, it was confirmed that the voltage decomposing adhesive layer 9 was decomposed in this voltage range.

(電池評価)
実施例1及び2、比較例で得られた電池を、4.3Vまで定電流、定電圧で充電した後、3.0Vまで定電流放電させた。より詳細には、0.1Cでのならし充放電を2回行った後、0.2Cでの充放電を1度実施した。その後、0.2Cで装置の電源電圧の15Vまで定電流、定電圧充電を行い、電池の電圧が15Vまで達するのに要する時間と最終到達温度を測定した。温度は電池の外装材11に熱電対を貼付して測定した。表1に、実施例1及び2、比較例で得られた電池における、15V到達までの経過時間及び15V到達時の電池温度の結果を示す。
(Battery evaluation)
The batteries obtained in Examples 1 and 2 and the comparative example were charged with a constant current and a constant voltage up to 4.3 V, and then discharged with a constant current up to 3.0 V. More specifically, after performing charge / discharge at 0.1 C twice, charge / discharge at 0.2 C was performed once. Thereafter, constant current and constant voltage charging was performed at 0.2 C up to the power supply voltage of the apparatus of 15 V, and the time required for the battery voltage to reach 15 V and the final temperature reached were measured. The temperature was measured by attaching a thermocouple to the battery case 11. Table 1 shows the results of the elapsed time until reaching 15V and the battery temperature when reaching 15V in the batteries obtained in Examples 1 and 2 and the comparative example.

Figure 2016081681
Figure 2016081681

[試験結果]
表1に示す電池の過充電特性から、電圧分解接着層9を用いた実施例1及び2の電池では、電圧が15Vまで上昇するのに要する時間が短いので、電圧の上昇速度が速いといえる。これは、電圧分解接着層9の分解により、この接着部分の抵抗が増加したためと考えられる。一方、比較例の電池は、電圧分解接着層9を備えていないため、正極集電体2と正極リードタブ7との間で抵抗上昇が生じず、電圧の上昇速度が非常に遅くなっている。
[Test results]
From the overcharge characteristics of the batteries shown in Table 1, in the batteries of Examples 1 and 2 using the voltage resolving adhesive layer 9, the time required for the voltage to rise to 15 V is short, so it can be said that the voltage rise rate is fast. . This is presumably because the resistance of the bonded portion increased due to the decomposition of the voltage-resolved adhesive layer 9. On the other hand, since the battery of the comparative example does not include the voltage resolving adhesive layer 9, no resistance increase occurs between the positive electrode current collector 2 and the positive electrode lead tab 7, and the voltage increase rate is very slow.

また、15V到達時の温度は、実施例1及び2では85〜90℃と低く、実際の電極部分の電圧が高まらず、発熱は小さいことを示している。この温度であれば熱暴走が開始する温度といわれている130℃付近まで余裕があり、熱暴走の危険性は低いものと考えられる。一方、比較例では電極部分の電圧が高いため、電池の温度はセパレータ6の融点付近である120℃まで上昇していた。電源電圧が高い装置で測定すれば、さらに電池の温度が上昇するのは明らかで、セパレータ6の溶融による短絡や電解液の分解等の発熱反応から熱暴走を開始する温度まで到達する危険性が高いものと考えられる。   Further, the temperature when reaching 15 V is as low as 85 to 90 ° C. in Examples 1 and 2, indicating that the actual voltage of the electrode portion does not increase and heat generation is small. At this temperature, there is a margin up to around 130 ° C., which is said to be the temperature at which thermal runaway starts, and it is considered that the risk of thermal runaway is low. On the other hand, in the comparative example, since the voltage of the electrode portion was high, the battery temperature rose to 120 ° C., which is near the melting point of the separator 6. It is clear that the temperature of the battery further rises when measured with a device with a high power supply voltage, and there is a risk of reaching a temperature at which thermal runaway starts from an exothermic reaction such as a short circuit due to melting of the separator 6 or decomposition of the electrolyte. It is considered expensive.

本発明は、安全性の高いリチウムイオン二次電池に利用できる。   The present invention can be used for a lithium ion secondary battery with high safety.

1:電池
2:正極集電体
3:正極合剤層
4:負極集電体
5:負極合剤層
6:セパレータ
7:正極リードタブ
8:負極リードタブ
9:電圧分解接着層
10:タブシーラント
11:外装材
1: Battery 2: Positive electrode current collector 3: Positive electrode mixture layer 4: Negative electrode current collector 5: Negative electrode mixture layer 6: Separator 7: Positive electrode lead tab 8: Negative electrode lead tab 9: Voltage decomposition adhesive layer 10: Tab sealant 11: Exterior material

Claims (4)

正極集電体と、前記正極集電体上に設けられ、少なくとも正極活物質を含む正極合剤層と、外部への通電経路となる正極リードタブとを有するリチウムイオン二次電池において、前記正極集電体と前記正極リードタブとの間に、所定の電圧で分解する材料を主体として構成された電圧分解接着層を設けたことを特徴とする、リチウムイオン二次電池。   In the lithium ion secondary battery, comprising: a positive electrode current collector; a positive electrode mixture layer provided on the positive electrode current collector and including at least a positive electrode active material; and a positive electrode lead tab serving as an energization path to the outside. A lithium ion secondary battery comprising a voltage resolving adhesive layer mainly composed of a material that decomposes at a predetermined voltage between an electric body and the positive electrode lead tab. 前記電圧分解接着層を構成する材料が、前記所定の電圧で酸化分解される樹脂材料を含むことを特徴とする、請求項1に記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the material constituting the voltage decomposing adhesive layer includes a resin material that is oxidatively decomposed at the predetermined voltage. 3. 前記電圧分解接着層を構成する材料が、前記所定の電圧で酸化分解される電圧分解添加物材料を含むことを特徴とする、請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the material constituting the voltage decomposing adhesive layer includes a voltage decomposing additive material that is oxidatively decomposed at the predetermined voltage. 前記電圧分解接着層を構成する材料が、前記所定の電圧で酸化分解される樹脂材料と電圧分解添加物材料との両方を含むことを特徴とする、請求項1に記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the material constituting the voltage decomposing adhesive layer includes both a resin material that is oxidatively decomposed at the predetermined voltage and a voltage decomposing additive material. 3. .
JP2014211013A 2014-10-15 2014-10-15 Lithium ion secondary battery Pending JP2016081681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211013A JP2016081681A (en) 2014-10-15 2014-10-15 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211013A JP2016081681A (en) 2014-10-15 2014-10-15 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2016081681A true JP2016081681A (en) 2016-05-16

Family

ID=55958846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211013A Pending JP2016081681A (en) 2014-10-15 2014-10-15 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016081681A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065972A1 (en) * 2017-09-29 2019-04-04 株式会社Gsユアサ Electrode and power storage element
KR20190050719A (en) 2017-11-03 2019-05-13 주식회사 엘지화학 Current collector with improved safety and Lithium secondary battery including the same
KR20190060244A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Secondary battery
KR20190138071A (en) * 2018-06-04 2019-12-12 주식회사 엘지화학 Cylindrical Secondary Battery Having Adhesive Part comprising Gas Generation Material
WO2020067511A1 (en) * 2018-09-28 2020-04-02 積水化学工業株式会社 Layered battery and method for manufacturing layered battery
CN111344881A (en) * 2018-06-20 2020-06-26 株式会社Lg化学 Electrode assembly having improved connection structure between electrode tabs
CN111684623A (en) * 2018-06-20 2020-09-18 株式会社Lg化学 Electrode assembly having improved connection structure between electrode tab and current collector and method of manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065972A1 (en) * 2017-09-29 2019-04-04 株式会社Gsユアサ Electrode and power storage element
KR20190050719A (en) 2017-11-03 2019-05-13 주식회사 엘지화학 Current collector with improved safety and Lithium secondary battery including the same
US11404755B2 (en) * 2017-11-24 2022-08-02 Lg Energy Solution, Ltd. Secondary battery
KR20190060244A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Secondary battery
KR102270866B1 (en) * 2017-11-24 2021-07-01 주식회사 엘지에너지솔루션 Secondary battery
CN110870101A (en) * 2017-11-24 2020-03-06 株式会社Lg化学 Secondary battery
EP3627591B1 (en) * 2017-11-24 2024-01-03 LG Energy Solution, Ltd. Secondary battery
JP2020522101A (en) * 2017-11-24 2020-07-27 エルジー・ケム・リミテッド Secondary battery
JP7045579B2 (en) 2017-11-24 2022-04-01 エルジー エナジー ソリューション リミテッド Secondary battery
CN111615766A (en) * 2018-06-04 2020-09-01 株式会社Lg化学 Cylindrical secondary battery including bonding part containing gas generating material
JP2021502666A (en) * 2018-06-04 2021-01-28 エルジー・ケム・リミテッド Cylindrical rechargeable battery with adhesive containing gas generating material
US11581616B2 (en) 2018-06-04 2023-02-14 Lg Energy Solution, Ltd. Cylindrical secondary battery having adhesion unit including gas-generating matertial
JP7110536B2 (en) 2018-06-04 2022-08-02 エルジー エナジー ソリューション リミテッド Cylindrical secondary battery with adhesive part containing gas generating substance
KR102565019B1 (en) * 2018-06-04 2023-08-08 주식회사 엘지에너지솔루션 Cylindrical Secondary Battery Having Adhesive Part comprising Gas Generation Material
EP3706204A4 (en) * 2018-06-04 2021-04-07 Lg Chem, Ltd. Cylindrical secondary battery including adhesive portion including gas generating material
KR20190138071A (en) * 2018-06-04 2019-12-12 주식회사 엘지화학 Cylindrical Secondary Battery Having Adhesive Part comprising Gas Generation Material
CN111344881A (en) * 2018-06-20 2020-06-26 株式会社Lg化学 Electrode assembly having improved connection structure between electrode tabs
EP3739671A4 (en) * 2018-06-20 2021-08-25 Lg Chem, Ltd. Electrode assembly having improved connection structure between electrode tap and current collector, and manufacturing method therefor
EP3699981A4 (en) * 2018-06-20 2021-03-24 Lg Chem, Ltd. Electrode assembly with improved connection between electrode tabs
US20210036297A1 (en) * 2018-06-20 2021-02-04 Lg Chem, Ltd. Electrode assembly with improved connection between current collector and electrode tab, and method of manufacturing the same
US11721839B2 (en) 2018-06-20 2023-08-08 Lg Energy Solution, Ltd. Electrode assembly with improved connection between electrode tabs
CN111684623A (en) * 2018-06-20 2020-09-18 株式会社Lg化学 Electrode assembly having improved connection structure between electrode tab and current collector and method of manufacturing the same
JPWO2020067511A1 (en) * 2018-09-28 2021-02-15 積水化学工業株式会社 Laminated battery and manufacturing method of laminated battery
WO2020067511A1 (en) * 2018-09-28 2020-04-02 積水化学工業株式会社 Layered battery and method for manufacturing layered battery

Similar Documents

Publication Publication Date Title
US5716421A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
JP2016081681A (en) Lithium ion secondary battery
JP2008226807A (en) Non-aqueous electrolyte secondary battery
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
US20160211523A1 (en) Electrode for lithium ion secondary cells, and lithium ion secondary cell
JP2014127242A (en) Lithium secondary battery
JP2007103356A (en) Non-aqueous secondary battery
KR20130126365A (en) Manufacturing method of lithium secondary battery
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2008010530A1 (en) Lithium rechargeable battery
KR101871231B1 (en) Lithium ion secondary battery
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
JP6664148B2 (en) Lithium ion secondary battery
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2015069898A (en) Electrode and lithium ion secondary battery using the same
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2017054739A (en) Secondary battery
JP5699890B2 (en) Non-aqueous electrolyte secondary battery
JP2006261059A (en) Non-aqueous electrolyte secondary battery
JP2009076249A (en) Power storage device
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
JP6083289B2 (en) Lithium ion secondary battery
JP2008305771A (en) Nonaqueous solution battery
JP2013191345A (en) Lithium secondary battery and manufacturing method thereof
JP2008305770A (en) Nonaqueous solution battery