JP2016081596A - Inspection method of electrolyte membrane for fuel battery - Google Patents

Inspection method of electrolyte membrane for fuel battery Download PDF

Info

Publication number
JP2016081596A
JP2016081596A JP2014208845A JP2014208845A JP2016081596A JP 2016081596 A JP2016081596 A JP 2016081596A JP 2014208845 A JP2014208845 A JP 2014208845A JP 2014208845 A JP2014208845 A JP 2014208845A JP 2016081596 A JP2016081596 A JP 2016081596A
Authority
JP
Japan
Prior art keywords
voltage
electrolyte membrane
value
withstand voltage
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014208845A
Other languages
Japanese (ja)
Other versions
JP6215808B2 (en
Inventor
暢 小田
Nobu Oda
暢 小田
英章 太田
Hideaki Ota
英章 太田
克彦 木下
Katsuhiko Kinoshita
克彦 木下
孝行 野澤
Takayuki Nozawa
孝行 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Toyota Motor Corp
Original Assignee
Sintokogio Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Toyota Motor Corp filed Critical Sintokogio Ltd
Priority to JP2014208845A priority Critical patent/JP6215808B2/en
Publication of JP2016081596A publication Critical patent/JP2016081596A/en
Application granted granted Critical
Publication of JP6215808B2 publication Critical patent/JP6215808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method of an electrolyte membrane for a fuel battery that can determine defect or non-defect for an electrolyte membrane which is not detected as a defect in breakdown voltage inspection, and prevent effluence of defectives.SOLUTION: An inspection method of an electrolyte membrane for a fuel battery comprises: a step of applying a voltage to a membrane electrode assembly MEA until the voltage reaches a first voltage value, and determining success in breakdown voltage inspection when current flowing in the membrane electrode assembly is not more than a first predetermined value; a step of keeping an accepted product to a fixed voltage lower than the first voltage value for a predetermined time; and a step of measuring a leak current value of an electrolyte membrane 42 contained in the membrane electrode assembly MEA and determining defect when the leak current value exceeds a second predetermined value. For the predetermined time, the fixed voltage is kept so that the amount of heat occurring due to application of the fixed voltage is less than the amount of heat of dissolution of the electrolyte membrane 42.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池用電解質膜の検査方法に関する。   The present invention relates to a method for inspecting an electrolyte membrane for a fuel cell.

燃料電池、例えば、固体高分子型燃料電池は、電解質膜を一対の電極(アノードおよびカソード)で挟んで作製した膜電極接合体(以下「MEA(Membrane Electrode Assembly)」とも呼ぶ)にそれぞれ反応ガス(燃料ガスおよび酸化ガス)を供給して電気化学反応を引き起こすことにより、物質の持つ化学エネルギーを直接電気エネルギーに変換する。   A fuel cell, for example, a polymer electrolyte fuel cell, has a reaction gas in a membrane electrode assembly (hereinafter also referred to as “MEA (Membrane Electrode Assembly)”) formed by sandwiching an electrolyte membrane between a pair of electrodes (anode and cathode). By supplying (fuel gas and oxidizing gas) and causing an electrochemical reaction, the chemical energy of the substance is directly converted into electrical energy.

MEAは、プロトン伝導性向上のため、薄膜化等の検討がなされている。それに伴い、MEAのガス拡散電極との界面への異物混入のキズ等で、MEAに求められるガス・電子の遮蔽機能が低下したMEAの発生確率が上がることが懸念されている。それらは燃料電池の性能を低下させるものであり、電気リークおよびガスリーク(以下、「リーク」とも呼ぶ)に対するMEAの検査により判定できる。従来、MEAに直流電圧を印加し、MEAから検出される定常電流値から、MEAに生じたリークを検査する方法が知られている(例えば、特許文献1参照)。   In order to improve proton conductivity, MEA has been studied to make it thinner. Along with this, there is a concern that the probability of MEA generation with a reduced gas / electron shielding function required for the MEA may increase due to scratches caused by contamination of foreign matter at the interface of the MEA with the gas diffusion electrode. They reduce the performance of the fuel cell and can be determined by inspection of the MEA for electric leaks and gas leaks (hereinafter also referred to as “leaks”). Conventionally, a method is known in which a DC voltage is applied to an MEA and a leak generated in the MEA is inspected from a steady current value detected from the MEA (see, for example, Patent Document 1).

下記特許文献1に記載された検査方法にあっては、電解質膜に混入した異物により電解質膜を貫通するほどの損傷があればリークとして検出することができるが、異物が電解質膜を貫通せずに例えば電解質膜に損傷(ダメージ)を与えただけ(残存膜厚が減少した電解質膜)では、リークとして検出することができず、不良品が流出してしまうおそれがある。   In the inspection method described in Patent Document 1 below, if there is damage that penetrates the electrolyte membrane due to foreign matter mixed in the electrolyte membrane, it can be detected as a leak, but the foreign matter does not penetrate the electrolyte membrane. For example, if the electrolyte membrane is only damaged (damage) (an electrolyte membrane with a reduced remaining film thickness), it cannot be detected as a leak, and a defective product may flow out.

特開2013−054925号公報JP 2013-054925 A

このような残存膜厚が減少した電解質膜の検出が困難である問題の解決を意図して、残存膜厚が減少した電解質膜を耐電圧により検査する方法(以下、「耐電圧検査」)も考えられる。この耐電圧検査方法は、電解質膜に電圧を掃引し、電解質膜が絶縁破壊した後に一時的に流れる電流を検知することで残存膜厚が減少した電解質膜を検出する方法である。   In order to solve the problem that it is difficult to detect such an electrolyte membrane with a reduced remaining film thickness, a method for inspecting an electrolyte membrane with a reduced remaining film thickness with a withstand voltage (hereinafter referred to as “withstand voltage test”) is also available. Conceivable. This withstand voltage test method is a method of detecting an electrolyte membrane whose remaining film thickness has decreased by sweeping a voltage across the electrolyte membrane and detecting a current that temporarily flows after the electrolyte membrane has broken down.

しかしながら、耐電圧により検査する方法では、電解質膜が絶縁破壊してから電流が立ち上がるまでに時間差(タイムラグ)が生じるため、耐電圧の試験終了電圧(上限電圧)直前で電解質膜が絶縁破壊した場合、絶縁破壊した時に流れる電流を検知できずに不良品が流出されてしまうおそれがあった。電解質膜が絶縁破壊してから電流が立ち上がるまでの時間差を考慮して、絶縁破壊時の電流を検知できるまで試験終了電圧で一定時間保持することも考えられるが、試験終了電圧で一定時間保持すると発生したジュール熱により電解質膜が溶解してしまうため、一定時間保持して検出する方法を採ることができなかった。このように耐電圧検査においても不良と検出されずに不良品が流出する場合があり、残存膜厚が減少した電解質膜を検出することに関して改善すべき課題は依然として残っていた。   However, in the method of inspecting with the withstand voltage, a time difference (time lag) occurs between the time when the electrolyte membrane breaks down and the current rises. Therefore, when the electrolyte membrane breaks down just before the withstand voltage test end voltage (upper limit voltage) The current that flows when the dielectric breakdown occurs cannot be detected, and there is a risk that a defective product will flow out. Considering the time difference from when the electrolyte membrane breaks down until the current rises, it can be held for a certain time at the test end voltage until the current at the time of breakdown can be detected. Since the electrolyte membrane was dissolved by the generated Joule heat, it was not possible to take a method of holding and detecting for a certain period of time. Thus, in the withstand voltage test, a defective product may flow out without being detected as defective, and there still remains a problem to be improved with respect to detecting an electrolyte membrane having a reduced remaining film thickness.

本発明はこのような課題に鑑みてなされたものであり、その目的は、耐電圧検査において不良と検出されない電解質膜について不良か否か判定をすることができ、不良品の流出を防止することが可能な燃料電池用電解質膜の検査方法を提供することにある。   The present invention has been made in view of such problems, and its purpose is to determine whether an electrolyte membrane that is not detected as defective in a withstand voltage test is defective or not, and to prevent outflow of defective products. An object of the present invention is to provide a method for inspecting an electrolyte membrane for a fuel cell.

上記課題を解決するために本発明に係る燃料電池用電解質膜の検査方法は、燃料電池用電解質膜の検査方法であって、膜電極接合体に第1の電圧値まで電圧を印加し、前記膜電極接合体に流れる電流が第1の所定値以下であった場合に耐電圧検査の合格と判定する工程と、前記耐電圧検査において合格と判定された合格品に対し、前記第1の電圧値よりも低い定電圧で所定時間保持する工程と、前記膜電極接合体に含まれる電解質膜のリーク電流値を測定し、前記リーク電流値が前記第1の所定値より低い第2の所定値を超えた際に不良と判定する工程と、を備え、前記所定時間では、前記定電圧の印加により発生する熱量が前記電解質膜の溶解熱量未満となるよう前記定電圧を保持することを特徴とする。   In order to solve the above problems, an inspection method for an electrolyte membrane for a fuel cell according to the present invention is an inspection method for an electrolyte membrane for a fuel cell, wherein a voltage is applied to a membrane electrode assembly up to a first voltage value, When the current flowing through the membrane electrode assembly is less than or equal to the first predetermined value, the step of determining that the withstand voltage test is acceptable, and the acceptable product determined to be acceptable in the withstand voltage inspection, the first voltage A step of holding for a predetermined time at a constant voltage lower than the value, a leakage current value of the electrolyte membrane included in the membrane electrode assembly is measured, and a second predetermined value in which the leakage current value is lower than the first predetermined value A step of determining a failure when exceeding the constant voltage, and maintaining the constant voltage so that the amount of heat generated by the application of the constant voltage is less than the amount of heat of dissolution of the electrolyte membrane in the predetermined time. To do.

本発明に係る燃料電池用電解質膜の検査方法では、まず、耐電圧検査により膜電極接合体に流れる電流が第1の所定値以下であった場合に耐電圧検査の合格と判定する。そして、耐電圧検査の合格と判定された合格品に対し第1の電圧値よりも低い定電圧で所定時間保持し、電解質膜からリークするリーク電流値が第1の所定値より低い第2の所定値を超えた際に不良と判定する。これにより、耐電圧検査により不良と検出されない合格品(例えば耐電圧試験の試験終了電圧で破壊した電解質膜)の場合であっても、不良か否か判定することができ、不良品の流出を防止することができる。また、電解質膜の溶解熱量未満となるように定電圧を所定時間保持するので、電解質膜が溶解してしまうことを抑えることができる。更に、耐電圧検査における第1の所定値より低い第2の所定値を電流閾値として不良か否かの判定を行うため、耐電圧検査で検出されない程度の小さな破壊が生じた電解質膜も検出することができる。なお、第1の電圧値では、電解質膜の膜厚が薄くなっている電解質膜の絶縁破壊が起こりうる電圧(製品として出荷可能となる耐電圧値)であることが好ましい。   In the method for inspecting a fuel cell electrolyte membrane according to the present invention, first, when the current flowing through the membrane electrode assembly is not more than a first predetermined value by the withstand voltage test, it is determined that the withstand voltage test has passed. Then, for a passed product determined to pass the withstand voltage test, a second voltage is maintained at a constant voltage lower than the first voltage value for a predetermined time, and a leakage current value leaking from the electrolyte membrane is lower than the first predetermined value. When it exceeds a predetermined value, it is determined to be defective. As a result, even in the case of an acceptable product that is not detected as defective by the withstand voltage test (for example, an electrolyte membrane broken at the end voltage of the withstand voltage test), it can be determined whether or not it is defective. Can be prevented. In addition, since the constant voltage is maintained for a predetermined time so as to be less than the amount of heat of dissolution of the electrolyte membrane, it is possible to prevent the electrolyte membrane from being dissolved. Furthermore, in order to determine whether or not the current threshold value is a second predetermined value lower than the first predetermined value in the withstand voltage test, it also detects an electrolyte membrane having a small breakdown that is not detected in the withstand voltage test. be able to. Note that the first voltage value is preferably a voltage (withstand voltage value that can be shipped as a product) that can cause dielectric breakdown of the electrolyte membrane in which the thickness of the electrolyte membrane is thin.

本発明によれば、耐電圧検査において不良と検出されない電解質膜について不良か否か判定することができ、不良品の流出を防止することが可能な燃料電池用電解質膜の検査方法を提供することができる。   According to the present invention, there is provided a method for inspecting an electrolyte membrane for a fuel cell that can determine whether or not an electrolyte membrane that is not detected as defective in a withstand voltage test is defective, and can prevent outflow of defective products. Can do.

本発明の実施形態における燃料電池用電解質膜の検査方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the test | inspection method of the electrolyte membrane for fuel cells in embodiment of this invention. 耐電圧検査装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a withstand voltage test | inspection apparatus. 耐電圧検査における膜電極接合体に流れる電流値を説明するためのグラフである。It is a graph for demonstrating the electric current value which flows into the membrane electrode assembly in a withstand voltage test | inspection. 耐電圧検査における電解質膜の溶解有無について説明するための図である。It is a figure for demonstrating the presence or absence of melt | dissolution of the electrolyte membrane in a withstand voltage test | inspection. 比較例における検査方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the test | inspection method in a comparative example.

以下添付図面を参照しながら本発明の実施形態について説明する。本発明は以下の好ましい実施形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施形態以外の他の実施形態を利用することができる。従って、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The present invention is illustrated by the following preferred embodiments, but can be modified in many ways without departing from the scope of the present invention, and other embodiments other than this embodiment can be utilized. . Accordingly, all modifications within the scope of the present invention are included in the claims.

図1を参照しながら本発明の実施形態としての燃料電池用電解質膜の検査方法について説明する。図1は、燃料電池用電解質膜の検査方法の流れを示すフローチャートである。   A method for inspecting an electrolyte membrane for a fuel cell as an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing a flow of an inspection method for an electrolyte membrane for a fuel cell.

図1に示すように、燃料電池用電解質膜の検査方法では、「耐電圧検査」(ステップS100)と、「判定のための定電圧測定」(ステップS110)との工程とを備える。同図から明らかなように、「判定のための定電圧測定」は、「耐電圧検査」において合格(OK)と判定された燃料電池用電解質膜に対して行われるものである。   As shown in FIG. 1, the fuel cell electrolyte membrane inspection method includes the steps of “withstand voltage inspection” (step S100) and “constant voltage measurement for determination” (step S110). As is clear from the figure, the “constant voltage measurement for determination” is performed on the electrolyte membrane for a fuel cell that is determined to be acceptable (OK) in the “withstand voltage test”.

以下では、まず、「耐電圧検査」(ステップS100)に用いられる耐電圧検査装置10の構成について説明し、続いて、耐電圧検査の方法について説明した後、「判定のための定電圧測定」(ステップS110)について説明していく。   In the following, first, the configuration of the withstand voltage inspection apparatus 10 used for the “withstand voltage inspection” (step S100) will be described, followed by the description of the withstand voltage inspection method, and then “constant voltage measurement for determination”. (Step S110) will be described.

(耐電圧検査装置)
まず、ステップS100における耐電圧検査を行う際に用いられる耐電圧検査装置10の構成について説明する。図2は、耐電圧検査装置10の構成を示す模式図である。
(Withstand voltage inspection device)
First, the configuration of the withstand voltage inspection apparatus 10 used when performing the withstand voltage inspection in step S100 will be described. FIG. 2 is a schematic diagram showing the configuration of the withstand voltage inspection device 10.

図2に示す耐電圧検査装置10は、燃料電池に用いられる膜電極接合体MEAに所定の電圧領域で電圧を掃引しながら印加し、膜電極接合体MEAの耐電圧を検査する装置である。なお、膜電極接合体MEAは、当該膜電極接合体MEAを挟持する一対のセパレータ(図示せず)等を備える単セルの構成要素の一部である。燃料電池は、当該当該単セルが複数積層されてなる燃料電池スタック構造を有するものである。燃料電池としては、例えば、比較的小型で発電効率に優れる固体高分子型燃料電池が用いられる。   The withstand voltage test apparatus 10 shown in FIG. 2 is an apparatus that inspects the withstand voltage of the membrane electrode assembly MEA by applying a voltage to the membrane electrode assembly MEA used in the fuel cell while sweeping a voltage in a predetermined voltage region. The membrane electrode assembly MEA is a part of the constituent elements of a single cell including a pair of separators (not shown) that sandwich the membrane electrode assembly MEA. The fuel cell has a fuel cell stack structure in which a plurality of the single cells are stacked. As the fuel cell, for example, a polymer electrolyte fuel cell that is relatively small and excellent in power generation efficiency is used.

耐電圧検査装置10は、測定制御部20と、陽極23と、陰極24とを備える。陽極23と陰極24とは、測定制御部20と電気的に接続されている。測定制御部20は、陽極23と陰極24との間に電圧を印加し、電極間に流れた電流を測定する。測定制御部20は、予め設定した電圧領域において、電極間に印加する電圧を掃引することができる。また、測定制御部20は、電圧を掃引することによって膜電極接合体MEAに流れた電流を測定する。   The withstand voltage inspection device 10 includes a measurement control unit 20, an anode 23, and a cathode 24. The anode 23 and the cathode 24 are electrically connected to the measurement control unit 20. The measurement control unit 20 applies a voltage between the anode 23 and the cathode 24 and measures the current flowing between the electrodes. The measurement control unit 20 can sweep the voltage applied between the electrodes in a preset voltage region. Further, the measurement control unit 20 measures the current flowing through the membrane electrode assembly MEA by sweeping the voltage.

陽極23と陰極24との間には、耐電圧検査の検査対象である膜電極接合体MEAが設置されている。図示するように膜電極接合体MEAは、電解質膜42(燃料電池用電解質膜)を備える。電解質膜42の一方の面には、アノードとしての触媒電極43が形成されている。電解質膜42の他方の面には、カソードとしての触媒電極44が形成されている。触媒電極43および触媒電極44の外面には、各々、ガス拡散層45、ガス拡散層46が形成されている。   Between the anode 23 and the cathode 24, a membrane electrode assembly MEA, which is an inspection target of a withstand voltage inspection, is installed. As shown in the figure, the membrane electrode assembly MEA includes an electrolyte membrane 42 (an electrolyte membrane for fuel cells). A catalyst electrode 43 as an anode is formed on one surface of the electrolyte membrane 42. On the other surface of the electrolyte membrane 42, a catalyst electrode 44 as a cathode is formed. A gas diffusion layer 45 and a gas diffusion layer 46 are formed on the outer surfaces of the catalyst electrode 43 and the catalyst electrode 44, respectively.

電解質膜42は、固体高分子材料、例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。   The electrolyte membrane 42 is a proton conductive ion exchange membrane formed of a solid polymer material such as a fluorine resin, and exhibits good electrical conductivity in a wet state.

触媒電極43および触媒電極44は、電気化学反応を促進する触媒を含有する触媒インクを電解質膜42上に塗布し、所定時間乾燥させ触媒層として形成したものである。触媒インクとしては、例えば触媒担持カーボンとしての白金担持カーボンと、アイオノマーと、所定の溶媒とを混合したものを用いる。   The catalyst electrode 43 and the catalyst electrode 44 are formed as a catalyst layer by applying a catalyst ink containing a catalyst for promoting an electrochemical reaction on the electrolyte membrane 42 and drying it for a predetermined time. As the catalyst ink, for example, a mixture of platinum-supported carbon as a catalyst-supported carbon, an ionomer, and a predetermined solvent is used.

ガス拡散層45およびガス拡散層46は、ガス透過性および導電性を有する部材によって構成されている。ガス拡散層45,46を設けることによって、燃料電池として機能させた際に、触媒電極43,44に対するガス供給効率を向上させることができる。   The gas diffusion layer 45 and the gas diffusion layer 46 are configured by members having gas permeability and conductivity. Providing the gas diffusion layers 45 and 46 can improve the gas supply efficiency to the catalyst electrodes 43 and 44 when functioning as a fuel cell.

(耐電圧検査)
続いて、図2に示した耐電圧検査装置10を用いた「耐電圧検査」(ステップS100)について説明する。図3は、「耐電圧検査」において、膜電極接合体MEAに流れる電流値を示すグラフである。
(Withstand voltage inspection)
Next, “withstand voltage inspection” (step S100) using the withstand voltage inspection apparatus 10 shown in FIG. 2 will be described. FIG. 3 is a graph showing a current value flowing through the membrane electrode assembly MEA in the “withstand voltage test”.

図3に示すグラフF1は、膜電極接合体MEAに所定の電圧を印加した場合に、耐電圧検査装置10で測定された電流である。耐電圧検査では、膜電極接合体MEAに所定の電圧領域で電圧を掃引しながら印加し、膜電極接合体MEAに流れる電流値を計測する。本実施形態における耐電圧検査では、印加電圧0V〜試験終了電圧に亘って検査を行っている。同図から明らかなように、グラフF1で示される電流値は、印加電圧0V〜試験終了電圧に亘って電流閾値より小さいため、当該膜電極接合体MEAは耐電圧検査の合格と判定される。このように、膜電極接合体MEAに試験終了電圧(第1の電圧値)まで電圧を印加し、膜電極接合体MEAに流れる電流が電流閾値(第1の所定値)以下であった場合に耐電圧検査の合格と判定される。なお、耐電圧検査における試験終了電圧(第1の電圧値)としては例えば3.3V、電流閾値(第1の所定値)としては例えば350Aに設定されるが、この値に限定されず様々な値が選択され得る。   A graph F1 shown in FIG. 3 is a current measured by the withstand voltage test apparatus 10 when a predetermined voltage is applied to the membrane electrode assembly MEA. In the withstand voltage inspection, a voltage is applied to the membrane electrode assembly MEA while sweeping a voltage in a predetermined voltage region, and a current value flowing through the membrane electrode assembly MEA is measured. In the withstand voltage test in the present embodiment, the test is performed over an applied voltage of 0 V to a test end voltage. As is clear from the figure, since the current value shown in the graph F1 is smaller than the current threshold from the applied voltage 0 V to the test end voltage, the membrane electrode assembly MEA is determined to pass the withstand voltage test. Thus, when a voltage is applied to the membrane electrode assembly MEA up to the test end voltage (first voltage value) and the current flowing through the membrane electrode assembly MEA is equal to or less than the current threshold value (first predetermined value). It is determined that the withstand voltage test has passed. The test end voltage (first voltage value) in the withstand voltage test is set to 3.3 V, for example, and the current threshold value (first predetermined value) is set to 350 A, for example. A value can be selected.

以上のように、「耐電圧検査」(ステップS100)では、膜電極接合体に所定の電圧領域で電圧を印加し、膜電極接合体に流れる電流値を計測して不良品の判定を行う。不良品の判定としては、膜電極接合体に流れる電流値が第1の所定値以上であれば不良品(NG)と判定し、第1の所定値以下であれば合格品(OK)と判定する。   As described above, in the “withstand voltage test” (step S100), a voltage is applied to the membrane electrode assembly in a predetermined voltage region, and the value of the current flowing through the membrane electrode assembly is measured to determine a defective product. The defective product is determined to be defective (NG) if the value of the current flowing through the membrane electrode assembly is equal to or greater than the first predetermined value, and is determined to be acceptable (OK) if it is equal to or smaller than the first predetermined value. To do.

ところで、耐電圧検査で合格品(OK)と判定された膜電極接合体MEAであっても、不良品が含まれていることがある。なぜなら、試験終了電圧(第1の電圧値)直前で絶縁破壊した膜電極接合体MEAでは、電流閾値(第1の所定値)を超える前に耐電圧検査が終了するので、不良品(NG)と判定されないためである。言い換えれば、電解質膜42(図2参照)が絶縁破壊してから電流が立ち上がるまでタイムラグあるため、電解質膜42が試験終了電圧(第1の電圧値)で絶縁破壊した場合、絶縁破壊時に流れる電流閾値(第1の所定値)以上の電流を検知できずに不良品を流出してしまうおそれがある。   By the way, even if it is a membrane electrode assembly MEA determined to be an acceptable product (OK) by the withstand voltage test, a defective product may be included. This is because the withstand voltage test is completed before the current threshold value (first predetermined value) is exceeded in the membrane electrode assembly MEA that has undergone dielectric breakdown immediately before the test end voltage (first voltage value). It is because it is not determined. In other words, since there is a time lag from when the electrolyte membrane 42 (see FIG. 2) breaks down until the current rises, if the electrolyte membrane 42 breaks down at the test end voltage (first voltage value), the current that flows during the breakdown There is a possibility that defective products may flow out without detecting a current equal to or greater than a threshold value (first predetermined value).

このようなタイムラグを考慮して、絶縁破壊時に流れる電流を検知できるまで試験終了電圧(第1の電圧値)で電圧を保持することが考えられる。しかしながら、絶縁破壊時に流れる電流を検知できるまで試験終了電圧(第1の電圧値)で電圧保持すると、発生したジュール熱により電解質膜42が溶解してしまうということが判明した。   Considering such a time lag, it is conceivable to hold the voltage at the test end voltage (first voltage value) until the current flowing at the time of dielectric breakdown can be detected. However, it has been found that when the voltage is held at the test end voltage (first voltage value) until the current flowing at the time of dielectric breakdown can be detected, the electrolyte membrane 42 is dissolved by the generated Joule heat.

そこで本実施形態では、電解質膜42を溶解させずに、耐電圧検査によって合格品(OK)と判定された中に含まれる不良品(NG)を判定するために、電解質膜42の溶解熱量未満で不良か否かの判定を行うこととしている。以下では、図4を参照しながら、電解質膜42の溶解熱量と耐電圧検査の試験時間等との関係について説明する。   Therefore, in the present embodiment, in order to determine a defective product (NG) included in a product that has been determined to be a pass product (OK) by a withstand voltage test without dissolving the electrolyte membrane 42, the amount of heat of dissolution of the electrolyte membrane 42 is less. Whether or not it is defective is determined. Hereinafter, the relationship between the amount of heat of dissolution of the electrolyte membrane 42 and the test time of the withstand voltage test will be described with reference to FIG.

図4は、電解質膜42の溶解熱量について検証した結果を説明するための図である。より詳細には、図4(A)は、耐電圧検査における各試験P1、P2、P3、P4、P5、P6それぞれで実験したときの、試験時間(秒)と電圧(V)との関係を表すグラフである。図4(B)は、耐電圧検査の各試験P1、P2、P3、P4、P5、P6において、試験時間(秒)と、電流量(C)と、発熱量(kJ)と、電解質膜42の溶解有無(膜溶解有無)との関係を表す表である。   FIG. 4 is a diagram for explaining the result of verification of the amount of heat of dissolution of the electrolyte membrane 42. More specifically, FIG. 4A shows the relationship between the test time (seconds) and the voltage (V) when the tests were conducted in each of the tests P1, P2, P3, P4, P5, and P6 in the withstand voltage test. It is a graph to represent. FIG. 4B shows the test time (seconds), current amount (C), calorific value (kJ), and electrolyte membrane 42 in each test P1, P2, P3, P4, P5, and P6 of the withstand voltage test. It is a table | surface showing the relationship with the presence or absence of melt | dissolution (film presence or absence).

図4(A)及び図4(B)に示すように、耐電圧検査における試験時間が所定時間以上であると、言い換えれば、所定の電流量によって発生する熱量が電解質膜42の溶解熱量以上であると、電解質膜42が溶解してしまうことが検証された(図4(B)の試験P1、P2)。   As shown in FIG. 4A and FIG. 4B, the test time in the withstand voltage test is not less than a predetermined time, in other words, the amount of heat generated by the predetermined amount of current is not less than the amount of heat of dissolution of the electrolyte membrane 42. If so, it was verified that the electrolyte membrane 42 was dissolved (tests P1 and P2 in FIG. 4B).

一方、耐電圧検査における試験時間が所定時間未満であると、言い換えれば、所定の電流量によって発生する熱量が電解質膜42の溶解熱量未満であると、電解質膜42が溶解しないことが検証された(図4(B)の試験P3、P4、P5、P6)。例えば図4(A)及び図4(B)に示す試験P4では、印加電圧0V〜2Vの電圧領域において1秒間、印加電圧2V〜3Vの電圧領域において1.9秒間、印加電圧3V〜3.3Vの電圧領域において0.1秒間行っているが、電解質膜42の溶解が発生しないことが検証された。   On the other hand, it was verified that the test time in the withstand voltage test is less than the predetermined time, in other words, that the amount of heat generated by the predetermined amount of current is less than the amount of heat of dissolution of the electrolyte membrane 42, the electrolyte membrane 42 does not melt. (Tests P3, P4, P5, and P6 in FIG. 4B). For example, in the test P4 shown in FIG. 4A and FIG. 4B, the applied voltage 3V to 3.V is 1 second in the voltage region of the applied voltage 0V to 2V, 1.9 seconds in the voltage region of the applied voltage 2V to 3V. Although it was performed for 0.1 second in a voltage region of 3 V, it was verified that dissolution of the electrolyte membrane 42 did not occur.

(判定のための定電圧測定)
続いて、「判定のための定電圧測定」(図1のステップS110)について説明する。図4に示した電解質膜42の溶解熱量を考慮して、「耐電圧検査」で合格と判定された合格品に対し、「判定のための定電圧測定」を行う。つまり、「判定のための定電圧測定」では、所定の電流量によって発生する熱量(定電圧の印加により発生する熱量)が電解質膜42の溶解熱量未満の範囲内で、耐電圧検査後の合格品に対し不良か否かの判定を行う。
(Constant voltage measurement for judgment)
Next, “constant voltage measurement for determination” (step S110 in FIG. 1) will be described. In consideration of the amount of heat of dissolution of the electrolyte membrane 42 shown in FIG. 4, “constant voltage measurement for determination” is performed on the acceptable product determined to be acceptable in the “voltage resistance test”. In other words, in “constant voltage measurement for determination”, the amount of heat generated by a predetermined amount of current (the amount of heat generated by applying a constant voltage) is within the range of less than the amount of heat of dissolution of the electrolyte membrane 42 and passed after the withstand voltage test Judge whether the product is defective or not.

具体的には、「判定のための定電圧測定」として、耐電圧検査における試験終了電圧より低い定電圧(例えば1.4V以上)を電解質膜42に印加して所定時間(例えば0.3秒間)保持し、当該所定時間内で電解質膜42からリークするリーク電流値が第2の所定値を超えた際に不良と判定する。リーク電流値が第2の所定値以下であれば合格品(OK)と判定して出荷し、リーク電流値が第2の所定値以上であれば不良品(NG)と判定する(図1のステップS110)。なお、第2の所定値としては、本実施形態では1Aと設定されるが、当該第2の所定値は上述した第1の所定値(例えば350A)よりも低い値であれば様々な値を設定することが可能である。   Specifically, as “constant voltage measurement for determination”, a constant voltage (eg, 1.4 V or more) lower than the test end voltage in the withstand voltage test is applied to the electrolyte membrane 42 for a predetermined time (eg, 0.3 seconds). And when the leakage current value leaking from the electrolyte membrane 42 within the predetermined time exceeds the second predetermined value, it is determined as defective. If the leakage current value is less than or equal to the second predetermined value, it is determined that the product is acceptable (OK) before shipment, and if the leakage current value is greater than or equal to the second predetermined value, the product is determined to be defective (NG) (see FIG. 1). Step S110). In this embodiment, the second predetermined value is set to 1A. However, the second predetermined value may be various values as long as it is lower than the first predetermined value (for example, 350A). It is possible to set.

上述した「判定のための定電圧測定」において、耐電圧検査において合格品と判定された膜電極接合体MEA(耐電圧OKワーク)に対して、1.4Vの電圧印加後のリーク電流を0.3秒間計測し、不良か否かの判定を行った。その結果、耐電圧検査後の合格品であっても(図1のステップS100(OK))、リーク電流値が1A以上流れている膜電極接合体MEAを検出することができ、不良か否かの判定が可能であることが検証された。   In the above-described “constant voltage measurement for determination”, the leakage current after applying a voltage of 1.4 V to the membrane electrode assembly MEA (withstand voltage OK work) determined to be a pass product in the withstand voltage test is 0. .Measured for 3 seconds to determine whether or not it was defective. As a result, the membrane electrode assembly MEA having a leakage current value of 1 A or more can be detected even if it is a pass product after the withstand voltage test (step S100 (OK) in FIG. 1). It was verified that the determination of

以上のように、本実施形態では、耐電圧検査後の合格品に対して「判定のための定電圧測定」(図1のステップS110)を行う。「判定のための定電圧測定」では、耐電圧検査における試験終了電圧(第1の電圧値)よりも低い定電圧で所定時間保持して電解質膜42のリーク電流値を測定し、リーク電流値が第2の所定値を超えた際に不良と判定するものである。当該リーク電流値が第2の所定値以上の場合には不良品(NG)と判定し、リーク電流値が第2の所定値以下の場合には合格品(OK)と判定して出荷する。定電圧を保持する所定時間では、所定の電流量(定電圧の印加)により発生する熱量が電解質膜の溶解熱量未満となるよう定電圧を印加する。   As described above, in the present embodiment, “constant voltage measurement for determination” (step S110 in FIG. 1) is performed on an acceptable product after a withstand voltage test. In “constant voltage measurement for determination”, the leakage current value of the electrolyte membrane 42 is measured by holding for a predetermined time at a constant voltage lower than the test end voltage (first voltage value) in the withstand voltage test. Is determined to be defective when the value exceeds the second predetermined value. When the leak current value is equal to or greater than the second predetermined value, it is determined as a defective product (NG), and when the leak current value is equal to or less than the second predetermined value, the product is determined as acceptable (OK). In the predetermined time for holding the constant voltage, the constant voltage is applied so that the amount of heat generated by the predetermined amount of current (application of the constant voltage) is less than the amount of heat of dissolution of the electrolyte membrane.

このように耐電圧検査後に「判定のための定電圧測定」を行うことで、耐電圧検査において試験終了電圧の直前又は耐電圧検査試験終了値(第1の電圧値)で絶縁破壊した電解質膜42を確実に検出することができる。その結果、耐電圧検査において不良と検出されないものであっても不良の判定ができるので、市場に不良品が流出することを防止することができる。また、「判定のための定電圧測定」では、耐電圧検査における電流閾値(例えば350A)よりも低い第2の閾値(例えば1A)を基準として不良品か否かを判定するものであるため、耐電圧検査において検出されない程度の小さな破壊をした電解質膜も検出することができる。   In this way, by performing “constant voltage measurement for determination” after the withstand voltage test, the electrolyte membrane that has undergone dielectric breakdown immediately before the test end voltage or at the end value of the withstand voltage test (first voltage value) in the withstand voltage test. 42 can be reliably detected. As a result, since it is possible to determine a defect even if it is not detected as a defect in the withstand voltage test, it is possible to prevent a defective product from flowing into the market. In addition, in the “constant voltage measurement for determination”, it is determined whether or not a defective product is based on a second threshold value (for example, 1 A) lower than a current threshold value (for example, 350 A) in the withstand voltage test. It is also possible to detect an electrolyte membrane having a small breakdown that is not detected in the withstand voltage test.

ところで、耐電圧検査後の合格品に対し「判定のための定電圧測定」を行う代わりに、精密電流検査測定を行うことも考えられる(図5参照)。この精密電流検査測定とは、膜電極接合体MEAに直流電圧を印加し、膜電極接合体MEAから検出される定常電流値から、膜電極接合体MEAに生じたリークを検査する方法である。しかし、耐電圧検査後においては、膜電極接合体MEAに電荷が蓄積されているため、このような精密電流検査測定によって測定される定常電流値に基づいて不良か否かの判定を行うことができない。耐電圧検査後において膜電極接合体MEAに蓄積された電荷を放電してから定常電流値を測定するということも考えられるが、電荷を放電するにも数分要するため、検査時間が長くなり、タクト内で作業ができなくなってしまう。   By the way, instead of performing “constant voltage measurement for determination” with respect to an acceptable product after withstand voltage inspection, it is also conceivable to perform precise current inspection measurement (see FIG. 5). This precise current inspection measurement is a method in which a direct current voltage is applied to the membrane electrode assembly MEA and a leak generated in the membrane electrode assembly MEA is inspected from a steady current value detected from the membrane electrode assembly MEA. However, after the withstand voltage test, since charges are accumulated in the membrane electrode assembly MEA, it is possible to determine whether or not it is defective based on the steady current value measured by such a precise current test measurement. Can not. Although it is conceivable to measure the steady current value after discharging the charge accumulated in the membrane electrode assembly MEA after the withstand voltage test, it takes several minutes to discharge the charge, so the inspection time becomes longer, It becomes impossible to work in the tact.

以上のように、比較例として図5に示した耐電圧検査後に精密電流検査測定を行う方法では、耐電圧検査後の合格品に対する不良検出とタクト内での検査との両立が困難である。   As described above, in the method of performing the precision current inspection measurement after the withstand voltage inspection shown in FIG. 5 as a comparative example, it is difficult to achieve both the defect detection for the acceptable product after the withstand voltage inspection and the inspection within the tact.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件などは、例示したものに限定されるわけではなく適宜変更することができる。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. The elements included in each of the specific examples described above and their arrangement, materials, conditions, and the like are not limited to those illustrated, but can be changed as appropriate.

10:耐電圧検査装置
42:電解質膜
43、44:触媒電極
45、46:ガス拡散層
S100:耐電圧検査
S110:判定のための定電圧測定
MEA:膜電極接合体
10: Withstand voltage test device 42: Electrolyte membrane 43, 44: Catalyst electrode 45, 46: Gas diffusion layer S100: Withstand voltage test S110: Constant voltage measurement for determination MEA: Membrane electrode assembly

Claims (1)

燃料電池用電解質膜の検査方法であって、
膜電極接合体に第1の電圧値まで電圧を印加し、前記膜電極接合体に流れる電流が第1の所定値以下であった場合に耐電圧検査の合格と判定する工程と、
前記耐電圧検査において合格と判定された合格品に対し、前記第1の電圧値よりも低い定電圧で所定時間保持する工程と、
前記膜電極接合体に含まれる電解質膜のリーク電流値を測定し、前記リーク電流値が前記第1の所定値より低い第2の所定値を超えた際に不良と判定する工程と、を備え、
前記所定時間では、前記定電圧の印加により発生する熱量が前記電解質膜の溶解熱量未満となるよう前記定電圧を保持することを特徴とする燃料電池用電解質膜の検査方法。
An inspection method for an electrolyte membrane for a fuel cell,
Applying a voltage to the membrane electrode assembly up to a first voltage value, and determining that the withstand voltage test has passed when the current flowing through the membrane electrode assembly is equal to or less than a first predetermined value;
A step of holding for a predetermined time at a constant voltage lower than the first voltage value for the acceptable product determined to be acceptable in the withstand voltage test,
Measuring a leakage current value of an electrolyte membrane included in the membrane electrode assembly, and determining a failure when the leakage current value exceeds a second predetermined value lower than the first predetermined value. ,
The method for inspecting an electrolyte membrane for a fuel cell, wherein the constant voltage is maintained so that the amount of heat generated by applying the constant voltage is less than the amount of heat of dissolution of the electrolyte membrane during the predetermined time.
JP2014208845A 2014-10-10 2014-10-10 Inspection method of electrolyte membrane for fuel cell Active JP6215808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208845A JP6215808B2 (en) 2014-10-10 2014-10-10 Inspection method of electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208845A JP6215808B2 (en) 2014-10-10 2014-10-10 Inspection method of electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2016081596A true JP2016081596A (en) 2016-05-16
JP6215808B2 JP6215808B2 (en) 2017-10-18

Family

ID=55958894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208845A Active JP6215808B2 (en) 2014-10-10 2014-10-10 Inspection method of electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP6215808B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207523A (en) * 2015-04-24 2016-12-08 トヨタ自動車株式会社 Inspection method for membrane electrode assembly, and inspection device
CN108279386A (en) * 2018-02-05 2018-07-13 惠州亿纬锂能股份有限公司 A kind of battery core screening technique
JP2019169372A (en) * 2018-03-23 2019-10-03 本田技研工業株式会社 Fuel cell current leak inspection method
US10534040B2 (en) 2017-04-06 2020-01-14 Toyota Jidosha Kabushiki Kaisha Inspection apparatus and inspection method for membrane electrode assembly
CN111103100A (en) * 2018-10-26 2020-05-05 中国科学院大连化学物理研究所 Fuel cell membrane electrode leak detection device and leak detection method
CN116660787A (en) * 2023-06-09 2023-08-29 上海韵量新能源科技有限公司 Proton exchange membrane detection method and device, electronic equipment and medium
CN116754630A (en) * 2023-08-17 2023-09-15 蓝固(常州)新能源有限公司 Detection device and method for electrolyte membrane for all-solid-state battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228601A (en) * 2004-02-13 2005-08-25 Aisin Seiki Co Ltd Solid polymer fuel cell
JP2006079913A (en) * 2004-09-09 2006-03-23 Matsushita Electric Ind Co Ltd Fuel cell
JP2006086130A (en) * 2002-03-26 2006-03-30 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell, its manufacturing method, and inspection method for it
JP2008300137A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Catalyst layer retaining diffusion layer for fuel cell, membrane electrode assembly for fuel cell, manufacturing method of catalyst layer retaining diffusion layer for fuel cell, and manufacturing method of membrane electrode assembly for fuel cell
JP2010198762A (en) * 2009-02-23 2010-09-09 Toyota Motor Corp Membrane-electrode assembly for fuel cell, and manufacturing method thereof
JP2011028965A (en) * 2009-07-24 2011-02-10 Toshiba Fuel Cell Power Systems Corp Method for inspecting fuel cell stack
JP2013054925A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Inspection method and inspection device of fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086130A (en) * 2002-03-26 2006-03-30 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell, its manufacturing method, and inspection method for it
JP2005228601A (en) * 2004-02-13 2005-08-25 Aisin Seiki Co Ltd Solid polymer fuel cell
JP2006079913A (en) * 2004-09-09 2006-03-23 Matsushita Electric Ind Co Ltd Fuel cell
JP2008300137A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Catalyst layer retaining diffusion layer for fuel cell, membrane electrode assembly for fuel cell, manufacturing method of catalyst layer retaining diffusion layer for fuel cell, and manufacturing method of membrane electrode assembly for fuel cell
JP2010198762A (en) * 2009-02-23 2010-09-09 Toyota Motor Corp Membrane-electrode assembly for fuel cell, and manufacturing method thereof
JP2011028965A (en) * 2009-07-24 2011-02-10 Toshiba Fuel Cell Power Systems Corp Method for inspecting fuel cell stack
JP2013054925A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Inspection method and inspection device of fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207523A (en) * 2015-04-24 2016-12-08 トヨタ自動車株式会社 Inspection method for membrane electrode assembly, and inspection device
US10534040B2 (en) 2017-04-06 2020-01-14 Toyota Jidosha Kabushiki Kaisha Inspection apparatus and inspection method for membrane electrode assembly
CN108279386A (en) * 2018-02-05 2018-07-13 惠州亿纬锂能股份有限公司 A kind of battery core screening technique
JP2019169372A (en) * 2018-03-23 2019-10-03 本田技研工業株式会社 Fuel cell current leak inspection method
JP6990610B2 (en) 2018-03-23 2022-02-03 本田技研工業株式会社 Fuel cell current leak inspection method
CN111103100A (en) * 2018-10-26 2020-05-05 中国科学院大连化学物理研究所 Fuel cell membrane electrode leak detection device and leak detection method
CN116660787A (en) * 2023-06-09 2023-08-29 上海韵量新能源科技有限公司 Proton exchange membrane detection method and device, electronic equipment and medium
CN116754630A (en) * 2023-08-17 2023-09-15 蓝固(常州)新能源有限公司 Detection device and method for electrolyte membrane for all-solid-state battery
CN116754630B (en) * 2023-08-17 2023-11-10 蓝固(常州)新能源有限公司 Detection device and method for electrolyte membrane for all-solid-state battery

Also Published As

Publication number Publication date
JP6215808B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6215808B2 (en) Inspection method of electrolyte membrane for fuel cell
US10534040B2 (en) Inspection apparatus and inspection method for membrane electrode assembly
US20140239962A1 (en) Fuel cell inspection method and inspection device
De Moor et al. In situ quantification of electronic short circuits in PEM fuel cell stacks
US10971744B2 (en) Method for inspecting current leak of fuel cell
JP6079745B2 (en) Inspection method and manufacturing method of fuel cell
JP6445540B2 (en) Health monitoring of electrochemical cell stack
US20050237067A1 (en) Arrangement and method for detection and localization of short circuits in membrane electrode arrangements
KR20160072047A (en) Inspection method of fuel cell
JP2016001195A (en) Method and system for inspection
JP6154424B2 (en) Method and apparatus for inspecting membrane electrode assembly
JP2005524951A (en) PEM fuel cell gas leak detection method
JP6166955B2 (en) Fuel cell output inspection method
KR101113642B1 (en) Device and method for inspecting defective MEA of fuel cell
JP2020113371A (en) Inspection method for fuel battery
CN105510387A (en) Inspection device
JP2020077481A (en) Inspection method of membrane electrode assembly for fuel cell
Hinaje et al. Impact of defective single cell on the operation of polymer electrolyte membrane fuel cell stack
JP2013218859A (en) Fuel cell membrane electrode assembly inspection method and inspection device and membrane electrode assembly inspected by this inspection method
JP6173047B2 (en) Fuel cell output inspection method
JP2018125185A (en) Method for inspecting membrane electrode assembly
JP2021150046A (en) Water detection device and water detection method
Pettinger Production test procedures
JP2005310509A (en) Polyelectrolyte fuel cell and testing method thereof
JP2005322534A (en) Test method of polyelectrolyte type fuel cell, and polyelectrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170921

R151 Written notification of patent or utility model registration

Ref document number: 6215808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250