JP2016080276A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2016080276A
JP2016080276A JP2014212934A JP2014212934A JP2016080276A JP 2016080276 A JP2016080276 A JP 2016080276A JP 2014212934 A JP2014212934 A JP 2014212934A JP 2014212934 A JP2014212934 A JP 2014212934A JP 2016080276 A JP2016080276 A JP 2016080276A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
air conditioning
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014212934A
Other languages
Japanese (ja)
Other versions
JP6448295B2 (en
Inventor
則通 村井
Norimichi Murai
則通 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014212934A priority Critical patent/JP6448295B2/en
Publication of JP2016080276A publication Critical patent/JP2016080276A/en
Application granted granted Critical
Publication of JP6448295B2 publication Critical patent/JP6448295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system in which a refrigerant flow channel is optimized.SOLUTION: Air for air conditioning, exchanging heat with a refrigerant passing through a condenser H2, is supplied to an air-conditioned space. One of refrigerant circulation states is a first heating circulation state in which the refrigerant is divided after passing through the condenser H2, one of the divided refrigerant returns to the condenser H2 after successively passing through a first expansion valve V1, a first evaporator H1 and a first compressor Cg, and the other divided refrigerant returns to the condenser H2 after successively passing through a second expansion valve V2, a second evaporator H1 and a second compressor Ce, and the other one refrigerant circulation state is a second heating circulation state in which the refrigerant is divided after passing through the condenser H2, one of the divided refrigerant returns to the condenser H2 after successively passing through the first expansion valve V1, the first evaporator H1 and the first compressor Cg, and the other divided refrigerant returns to the condenser H2 after successively passing through a third expansion valve V5, a third evaporator H3 and the second compressor Ce.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒と熱交換した空調用空気を空調対象空間へ供給する空調運転を行う空気調和システムに関する。   The present invention relates to an air conditioning system that performs an air conditioning operation in which air conditioning air that has exchanged heat with a refrigerant is supplied to an air conditioning target space.

冷媒と熱交換した空調用空気を空調対象空間へ供給する空調運転を行う空気調和システムとして、エンジンによって駆動されて冷媒を圧縮する第1圧縮機と電動モータによって駆動されて冷媒を圧縮する第2圧縮機とを併用するヒートポンプを利用するものがある。   As an air-conditioning system that performs air-conditioning operation for supplying air-conditioning air heat-exchanged with refrigerant to an air-conditioning target space, a first compressor that is driven by an engine and compresses the refrigerant and a second compressor that is driven by an electric motor and compresses the refrigerant Some use a heat pump in combination with a compressor.

特許文献1には、エンジンによって駆動されて冷媒を圧縮する第1圧縮機と電動モータによって駆動されて冷媒を圧縮する第2圧縮機とは、ヒートポンプにおける冷媒の循環経路において並列に設けられている。つまり、第1圧縮機から送出される冷媒及び第2圧縮機から送出される冷媒は、合流された上で、共通の凝縮器と膨張弁と蒸発器とを順に通流する。   In Patent Document 1, a first compressor that is driven by an engine and compresses refrigerant and a second compressor that is driven by an electric motor and compresses refrigerant are provided in parallel in the refrigerant circulation path in the heat pump. . That is, the refrigerant sent out from the first compressor and the refrigerant sent out from the second compressor are merged and then flow through the common condenser, the expansion valve, and the evaporator in order.

特開2013−250004号公報JP2013-250004A

従来の空気調和システムでは、エンジンによって駆動される第1圧縮機及び電動モータによって駆動される第2圧縮機のそれぞれに何か専用の役割がある訳ではなく、単に併用されているだけである。
つまり、エンジンによって駆動される第1圧縮機から送出される冷媒と電動モータによって駆動される第2圧縮機から送出される冷媒とを、状況に応じてどのような流路に流し、どのように使い分けるのが良いのかが考慮されていない。
In the conventional air conditioning system, each of the first compressor driven by the engine and the second compressor driven by the electric motor does not have any dedicated role, but is merely used together.
In other words, the refrigerant sent from the first compressor driven by the engine and the refrigerant sent from the second compressor driven by the electric motor are allowed to flow through what flow path and how. It is not considered whether to use properly.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、冷媒の流路が最適化された空気調和システムを提供する点にある。   The present invention has been made in view of the above problems, and an object thereof is to provide an air conditioning system in which the flow path of the refrigerant is optimized.

上記目的を達成するための本発明に係る空気調和システムの特徴構成は、エンジンと、前記エンジンによって駆動されて冷媒を圧縮する第1圧縮機と、前記エンジンによって駆動されて発電する発電機と、前記発電機から供給される電力及び電力系統から受電した電力の内の前記発電機から供給される電力を優先して消費して動作する電動モータと、前記電動モータによって駆動されて冷媒を圧縮する第2圧縮機と、冷媒から放熱させる凝縮器と、冷媒を膨張させる第1膨張弁と、冷媒を膨張させる第2膨張弁と、冷媒を膨張させる第3膨張弁と、冷媒に吸熱させる第1蒸発器と、冷媒に吸熱させる第2蒸発器と、前記エンジンから回収した排熱を冷媒に吸熱させる第3蒸発器と、前記エンジンの動作を制御するエンジン制御手段、及び、前記発電機の動作を制御する発電制御手段、及び、前記電動モータの動作を制御する電動モータ制御手段、及び、冷媒の循環経路を切り替える循環経路制御手段を有する制御装置とを備え、
前記制御装置は、前記エンジン制御手段と前記発電制御手段と前記電動モータ制御手段と前記循環経路制御手段とによる制御によって、冷媒の循環状態を切り替えながら前記凝縮器を通流する冷媒と熱交換した空調用空気を空調対象空間へ供給する空調運転を行うように構成され、
冷媒の循環状態の一つは、冷媒が前記凝縮器を通流した後で分流され、当該分流された冷媒の一方が前記第1膨張弁と前記第1蒸発器と前記第1圧縮機とを順に通流した後で前記凝縮器に帰還し、及び、前記分流された冷媒の他方が前記第2膨張弁と前記第2蒸発器と前記第2圧縮機とを順に通流した後で前記凝縮器に帰還する第1暖房循環状態であり、
冷媒の循環状態の別の一つは、冷媒が前記凝縮器を通流した後で分流され、当該分流された後の冷媒の一方が前記第1膨張弁と前記第1蒸発器と前記第1圧縮機とを順に通流した後で前記凝縮器に帰還し、及び、前記分流された後の冷媒の他方が前記第3膨張弁と前記第3蒸発器と前記第2圧縮機とを順に通流した後で前記凝縮器に帰還する第2暖房循環状態である点にある。
In order to achieve the above object, the air-conditioning system according to the present invention is characterized by an engine, a first compressor that is driven by the engine and compresses refrigerant, a generator that is driven by the engine and generates electric power, An electric motor that operates by preferentially consuming the power supplied from the generator and the power supplied from the generator among the power supplied from the generator and the power received from the power system, and compresses the refrigerant driven by the electric motor. A second compressor, a condenser that dissipates heat from the refrigerant, a first expansion valve that expands the refrigerant, a second expansion valve that expands the refrigerant, a third expansion valve that expands the refrigerant, and a first that causes the refrigerant to absorb heat. An evaporator, a second evaporator that absorbs heat into the refrigerant, a third evaporator that absorbs exhaust heat recovered from the engine into the refrigerant, engine control means for controlling the operation of the engine, and front Power generation control means for controlling the operation of the generator, and the electric motor control means for controlling the operation of the electric motor, and a control device having a circulation path control means for switching the circulation path of the refrigerant,
The control device exchanges heat with the refrigerant flowing through the condenser while switching the refrigerant circulation state under the control of the engine control means, the power generation control means, the electric motor control means, and the circulation path control means. It is configured to perform air conditioning operation to supply air conditioning air to the air conditioning target space,
One of the circulating states of the refrigerant is divided after the refrigerant flows through the condenser, and one of the divided refrigerant passes through the first expansion valve, the first evaporator, and the first compressor. The refrigerant is returned to the condenser after flowing in order, and the other of the divided refrigerant flows through the second expansion valve, the second evaporator, and the second compressor in order, and then the condensation is performed. The first heating circulation state returning to the oven,
Another one of the circulation states of the refrigerant is divided after the refrigerant flows through the condenser, and one of the divided refrigerant is the first expansion valve, the first evaporator, and the first. After passing through the compressor in order, the refrigerant is returned to the condenser, and the other of the divided refrigerant passes through the third expansion valve, the third evaporator, and the second compressor in order. It is in the point which is the 2nd heating circulation state which returns to the said condenser after flowing.

上記特徴構成によれば、冷媒が上記第1暖房循環状態で循環された状態で空調運転が行われた場合、第1圧縮機から送出する冷媒及び第2圧縮機から送出する冷媒が合流された上で凝縮器に供給され、その凝縮器を通流する冷媒と熱交換した空調用空気が空調対象空間へ供給される空調運転、即ち、暖房運転が行われる。
つまり、凝縮器に対して第1圧縮機及び第2圧縮機は並列に設けられるので、凝縮器で必要とされる冷媒量(即ち、空調負荷に必要な冷媒量)は第1圧縮機及び第2圧縮機で分担して送出すればよい。加えて、エンジンの出力は第1圧縮機及び発電機に供給され、発電機の発電電力は、第2圧縮機を駆動する電動モータで優先的に消費されているので、エンジンの出力が第1圧縮機及び第2圧縮機を駆動するために利用されていることになる。このような形態で第1圧縮機及び第2圧縮機を併用することで、例えば、エンジンの出力を全て第1圧縮機に供給して、凝縮器で必要とされる冷媒量の全てを第1圧縮機から供給する場合に比べて、エンジンの回転速度を低くして、大きいトルクが得られる状態でエンジンを動作させることができる。
According to the above characteristic configuration, when the air-conditioning operation is performed in a state where the refrigerant is circulated in the first heating circulation state, the refrigerant sent from the first compressor and the refrigerant sent from the second compressor are merged. An air conditioning operation, that is, a heating operation is performed in which air conditioning air that is supplied to the condenser and heat-exchanged with the refrigerant flowing through the condenser is supplied to the air conditioning target space.
That is, since the first compressor and the second compressor are provided in parallel to the condenser, the refrigerant amount required for the condenser (that is, the refrigerant amount necessary for the air conditioning load) is the first compressor and the second compressor. What is necessary is just to share with 2 compressors and to send. In addition, since the engine output is supplied to the first compressor and the generator, and the electric power generated by the generator is preferentially consumed by the electric motor that drives the second compressor, the engine output is the first output. It will be used to drive the compressor and the second compressor. By using the first compressor and the second compressor together in such a form, for example, all the output of the engine is supplied to the first compressor, and all of the refrigerant amount required in the condenser is the first. The engine can be operated in a state where a large torque can be obtained by lowering the rotational speed of the engine as compared with the case of supplying from the compressor.

加えて、冷媒が第2暖房循環状態で循環された状態で空調運転が行われた場合、凝縮器の下流側で分流された後の冷媒の一方は、第1膨張弁と第1蒸発器と第1圧縮機とを順に通流した後で凝縮器に帰還し、及び、凝縮器の下流側で分流された後の冷媒の他方は、第3膨張弁と第3蒸発器と第2圧縮機とを順に通流した後で凝縮器に帰還する。つまり、第3蒸発器では、冷媒に吸熱させるために、エンジンから回収した排熱を有効に活用することができる。特に、エンジンから回収した排熱は、大気等から回収できる熱よりも高温であるので、第3蒸発器での冷媒の蒸発温度を高くすることができ、第2圧縮機の動力を低減できる。
このように、第1圧縮機及び第2圧縮機を併用すると共に第3蒸発器による冷媒の吸熱によって空調能力を稼ぐことができるので、例えば第1圧縮機から送出される冷媒量を相対的に少なく(即ち、ガスエンジンの回転速度を相対的に遅く)して、大きいトルクが得られる状態でエンジンを動作させることができる。その結果、エンジンを効率的に運転させることができる。
In addition, when the air conditioning operation is performed in a state where the refrigerant is circulated in the second heating circulation state, one of the refrigerants after being divided on the downstream side of the condenser is the first expansion valve, the first evaporator, After passing through the first compressor in order, the refrigerant is returned to the condenser, and the other refrigerant after being divided on the downstream side of the condenser is the third expansion valve, the third evaporator, and the second compressor. And then return to the condenser. That is, in the third evaporator, the exhaust heat recovered from the engine can be effectively used in order to cause the refrigerant to absorb heat. In particular, since the exhaust heat recovered from the engine is higher than the heat recoverable from the atmosphere or the like, the evaporation temperature of the refrigerant in the third evaporator can be increased, and the power of the second compressor can be reduced.
As described above, since the first compressor and the second compressor can be used together and the air conditioning capacity can be gained by the heat absorption of the refrigerant by the third evaporator, for example, the refrigerant amount sent from the first compressor is relatively The engine can be operated in a state where a large torque can be obtained with a small amount (that is, a relatively low rotational speed of the gas engine). As a result, the engine can be operated efficiently.

本発明に係る空気調和システムの別の特徴構成は、前記制御装置は、前記空調運転を行っている間の所定のタイミングで冷媒を前記第2暖房循環状態で循環させながら冷媒の温度を検証する冷媒温度検証処理を行い、
前記冷媒温度検証処理において、前記第3蒸発器での冷媒の温度が前記第1蒸発器での冷媒の温度より高いと判定したとき、冷媒の循環状態を前記第2暖房循環状態にしてその後の前記空調運転を行わせ、
前記冷媒温度検証処理において、前記第3蒸発器での冷媒の温度が前記第1蒸発器での冷媒の温度以下であると判定したとき、冷媒の循環状態を前記第1暖房循環状態にしてその後の前記空調運転を行わせる点にある。
Another characteristic configuration of the air conditioning system according to the present invention is that the control device verifies the temperature of the refrigerant while circulating the refrigerant in the second heating circulation state at a predetermined timing during the air conditioning operation. Perform refrigerant temperature verification process,
In the refrigerant temperature verification process, when it is determined that the temperature of the refrigerant in the third evaporator is higher than the temperature of the refrigerant in the first evaporator, the refrigerant circulation state is changed to the second heating circulation state and thereafter Let the air conditioning operation
In the refrigerant temperature verification process, when it is determined that the refrigerant temperature in the third evaporator is equal to or lower than the refrigerant temperature in the first evaporator, the refrigerant circulation state is changed to the first heating circulation state and thereafter The air conditioning operation is performed.

冷媒が上記第2暖房循環状態で循環しているときに上記第3蒸発器での冷媒に対する加熱の効果の方が大きいときは、その第3蒸発器での冷媒の温度が、同じく冷媒に対する加熱が行われる上記第1蒸発器での冷媒の温度より高くなる。従って、冷媒温度検証処理において、第3蒸発器での冷媒の温度が第1蒸発器での冷媒の温度より高いと判定したとき、冷媒の循環状態を前記第2暖房循環状態にしてその後の空調運転を行わせることで、上記第3蒸発器による冷媒の加熱の効果を得ることができる。   When the refrigerant is circulated in the second heating circulation state and the heating effect on the refrigerant in the third evaporator is greater, the temperature of the refrigerant in the third evaporator is also equal to the heating of the refrigerant. The temperature of the refrigerant in the first evaporator is increased. Therefore, in the refrigerant temperature verification process, when it is determined that the refrigerant temperature in the third evaporator is higher than the refrigerant temperature in the first evaporator, the refrigerant circulation state is changed to the second heating circulation state and the subsequent air conditioning is performed. By performing the operation, an effect of heating the refrigerant by the third evaporator can be obtained.

これに対して、冷媒が上記第2暖房循環状態で循環しているときに上記第1蒸発器による冷媒に対する加熱の効果の方が大きいとき或いは両者による冷媒に対する加熱の効果が同等であるときは、第3蒸発器での冷媒の温度が、同じく冷媒に対する加熱が行われる上記第1蒸発器での冷媒の温度以下になる。従って、冷媒温度検証処理において、第3蒸発器での冷媒の温度が第1蒸発器での冷媒の温度以下であると判定したとき、冷媒の循環状態を第1暖房循環状態にしてその後の空調運転を行わせることで、上記第1蒸発器による冷媒の加熱の効果を得ることができる。   In contrast, when the refrigerant is circulating in the second heating circulation state, when the heating effect on the refrigerant by the first evaporator is greater, or when the heating effect on the refrigerant by both is equal The temperature of the refrigerant in the third evaporator is equal to or lower than the temperature of the refrigerant in the first evaporator where the refrigerant is also heated. Therefore, in the refrigerant temperature verification process, when it is determined that the refrigerant temperature in the third evaporator is equal to or lower than the refrigerant temperature in the first evaporator, the refrigerant circulation state is changed to the first heating circulation state and the subsequent air conditioning By performing the operation, the effect of heating the refrigerant by the first evaporator can be obtained.

本発明に係る空気調和システムの更に別の特徴構成は、冷媒を膨張させる第4膨張弁と、
前記エンジンから回収した排熱を冷媒に吸熱させる第4蒸発器とを備え、
前記制御装置が前記空調運転を行うときの冷媒の循環状態の更に別の一つは、冷媒が前記凝縮器を通流した後で分流され、当該分流された冷媒のうち、前記第1膨張弁と前記第1蒸発器とを順に通流した冷媒と、前記第4膨張弁と前記第4蒸発器とを順に通流した冷媒とが合流して更に前記第1圧縮機を通流した後で前記凝縮器に帰還し、及び、前記分流された冷媒のうち、前記第3膨張弁と前記第3蒸発器と前記第2圧縮機とを順に通流した冷媒が前記凝縮器に帰還する第3暖房循環状態である点にある。
Still another characteristic configuration of the air conditioning system according to the present invention is a fourth expansion valve for expanding the refrigerant,
A fourth evaporator that causes the refrigerant to absorb the exhaust heat recovered from the engine,
Another one of the circulation states of the refrigerant when the control device performs the air conditioning operation is that the refrigerant is diverted after flowing through the condenser, and the first expansion valve among the diverted refrigerant is used. And the refrigerant that has passed through the first evaporator and the refrigerant that has passed through the fourth expansion valve and the fourth evaporator have joined together and further passed through the first compressor. Returning to the condenser, and among the divided refrigerant, the refrigerant that has passed through the third expansion valve, the third evaporator, and the second compressor in turn returns to the condenser. It is in a heating circulation state.

上記特徴構成によれば、冷媒が第3暖房循環状態で循環された状態で空調運転が行われた場合、凝縮器の下流側で分流された後の冷媒の一方は、第1圧縮機を通流した後で凝縮器に帰還し、及び、凝縮器の下流側で分流された後の冷媒の他方は、第2圧縮機を通流した後で凝縮器に帰還する。
更に、第1圧縮機を通流する冷媒の一部は、エンジンから回収した排熱を用いて冷媒を加熱する第4蒸発器を順に通流した冷媒である。つまり、第4蒸発器では、冷媒に吸熱させるために、エンジンから回収した排熱を有効に活用することができる。特に、エンジンから回収した排熱は、大気等から回収できる熱よりも高温であるので、第4蒸発器での冷媒の蒸発温度を高くすることができ、第1圧縮機の動力を低減できる。
According to the above characteristic configuration, when the air conditioning operation is performed in a state where the refrigerant is circulated in the third heating circulation state, one of the refrigerants after being divided on the downstream side of the condenser passes through the first compressor. After flowing, the refrigerant returns to the condenser, and the other refrigerant after being divided on the downstream side of the condenser returns to the condenser after flowing through the second compressor.
Furthermore, a part of the refrigerant that flows through the first compressor is refrigerant that has passed through a fourth evaporator that heats the refrigerant by using exhaust heat recovered from the engine. That is, in the fourth evaporator, the exhaust heat recovered from the engine can be effectively utilized in order to cause the refrigerant to absorb heat. In particular, since the exhaust heat recovered from the engine is higher than the heat recoverable from the atmosphere or the like, the evaporation temperature of the refrigerant in the fourth evaporator can be increased, and the power of the first compressor can be reduced.

本発明に係る空気調和システムの更に別の特徴構成は、前記制御装置が前記空調運転を行うときの冷媒の循環状態の更に別の一つは、前記第2圧縮機から送出される冷媒が、前記凝縮器と前記第2膨張弁と前記第2蒸発器とを順に通流した後で前記第2圧縮機に帰還する第4暖房循環状態であり、
前記制御装置は、前記空調運転に要求されている要求負荷が基準負荷以上のとき、冷媒を前記第1暖房循環状態又は前記第2暖房循環状態で循環させながら前記空調運転を行い、及び、前記要求負荷が前記基準負荷未満のとき、前記エンジンを動作させず、冷媒を前記第4暖房循環状態で循環させながら前記空調運転を行う点にある。
Still another characteristic configuration of the air conditioning system according to the present invention is that another one of the circulation states of the refrigerant when the control device performs the air conditioning operation is that the refrigerant sent from the second compressor is: A fourth heating circulation state in which the condenser, the second expansion valve, and the second evaporator are sequentially passed and then returned to the second compressor;
The control device performs the air conditioning operation while circulating the refrigerant in the first heating circulation state or the second heating circulation state when a required load required for the air conditioning operation is a reference load or more, and When the required load is less than the reference load, the air conditioning operation is performed while circulating the refrigerant in the fourth heating circulation state without operating the engine.

上記特徴構成によれば、空調運転に要求されている要求負荷が基準負荷以上のとき、第1圧縮機及び第2圧縮機の両方を動作させて、冷媒を上記第1暖房循環状態又は上記第2暖房循環状態で循環させる。このように、空調運転に要求されている要求負荷が相対的に大きいとき、即ち、空調用空気と冷媒との熱交換を行う凝縮器に通流させる冷媒量が相対的に多く必要になるとき、駆動されるエンジンには相対的に大きな出力が要求される。つまり、効率が高くなる状態でエンジンを動作させながら空調運転を行うことができる。   According to the above characteristic configuration, when the required load required for the air-conditioning operation is equal to or higher than the reference load, both the first compressor and the second compressor are operated, so that the refrigerant is in the first heating circulation state or the first 2 Circulate in a heated circulation state. As described above, when the required load required for the air conditioning operation is relatively large, that is, when a relatively large amount of refrigerant is required to flow through the condenser that performs heat exchange between the air for air conditioning and the refrigerant. A relatively large output is required for the driven engine. That is, the air conditioning operation can be performed while operating the engine in a state where the efficiency is high.

これに対して、空調運転に要求されている要求負荷が相対的に小さいとき、エンジンを動作させたとしても、エンジンには相対的に小さな出力しか要求されないため、効率が低くなる状態でしかエンジンを動作させることができない。
そこで本特徴構成では、空調運転に要求されている要求負荷が基準負荷未満のとき、エンジンを動作させずに、第2圧縮機を電力系統から受電した電力で動作させて、冷媒を上記第4暖房循環状態で循環させる。このような運転を行うことで、エンジンの効率が低くなることを避けながら、空調運転に要求されている要求負荷を賄うことができる。
On the other hand, when the required load required for air-conditioning operation is relatively small, even if the engine is operated, the engine requires only a relatively small output, so the engine is only in a state where the efficiency is low. Can not work.
Therefore, in the present characteristic configuration, when the required load required for the air conditioning operation is less than the reference load, the second compressor is operated with the electric power received from the electric power system without operating the engine, and the refrigerant is the fourth. Circulate with heating circulation. By performing such an operation, the required load required for the air-conditioning operation can be covered while avoiding a decrease in engine efficiency.

本発明に係る空気調和システムの更に別の特徴構成は、前記凝縮器は、前記空調対象空間内に供給する前記空調用空気と熱交換する室内用熱交換器であり、
前記第1蒸発器及び前記第2蒸発器は、前記空調対象空間外に存在する外気と熱交換する室外用熱交換器である点にある。
Still another characteristic configuration of the air conditioning system according to the present invention is that the condenser is an indoor heat exchanger that exchanges heat with the air-conditioning air supplied into the air-conditioning target space,
The first evaporator and the second evaporator are outdoor heat exchangers that exchange heat with outside air existing outside the air-conditioning target space.

上記特徴構成によれば、室内用熱交換器で構成される上記凝縮器と、室外熱交換器で構成される上記第1蒸発器及び上記第2蒸発器とを用いて、空調対象空間の暖房運転を行うことができる。   According to the said characteristic structure, heating of the air-conditioning object space is carried out using the said condenser comprised with an indoor heat exchanger, and the said 1st evaporator and said 2nd evaporator comprised with an outdoor heat exchanger. You can drive.

空気調和システムの構成を示す図である。It is a figure which shows the structure of an air conditioning system. 空調負荷に対するエンジン及び電動モータの動作状態を説明する図である。It is a figure explaining the operation state of the engine and electric motor to air-conditioning load. 第1冷房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 1st cooling circulation state. 第2冷房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 2nd air conditioning circulation state. 第3冷房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 3rd air conditioning circulation state. 第1暖房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 1st heating circulation state. 第2暖房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 2nd heating circulation state. 第3暖房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 3rd heating circulation state. 第4暖房循環状態での冷媒の循環状態を説明する図である。It is a figure explaining the circulation state of the refrigerant | coolant in a 4th heating circulation state.

以下に図面を参照して本発明に係る空気調和システムの構成について説明する。
図1は、空気調和システムの構成を示す図である。図示するように、空気調和システムは、エンジンEと、第1圧縮機Cgと、発電機Gと、電動モータMと、第2圧縮機Ceと、室外用熱交換器H1と、室内用熱交換器H2とを有する。そして、空気調和システムは、エンジンEによって駆動される第1圧縮機Cgが冷媒を送出するエンジン駆動ヒートポンプと、電動モータMによって駆動される第2圧縮機Ceが冷媒を送出するモータ駆動ヒートポンプとを併用して空調運転を行うことになる。
A configuration of an air conditioning system according to the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of an air conditioning system. As illustrated, the air conditioning system includes an engine E, a first compressor Cg, a generator G, an electric motor M, a second compressor Ce, an outdoor heat exchanger H1, and indoor heat exchange. And a vessel H2. The air conditioning system includes an engine-driven heat pump in which the first compressor Cg driven by the engine E delivers the refrigerant, and a motor-driven heat pump in which the second compressor Ce driven by the electric motor M delivers the refrigerant. Air conditioning operation will be performed in combination.

エンジンEは、ガスや軽油などの燃料を消費して運転される。第1圧縮機Cgは、エンジンEによって駆動されて冷媒を圧縮して送出する。発電機GはエンジンEによって駆動されて発電する。図1には示していないが、エンジンEから第1圧縮機Cg及び発電機Gに伝達される駆動力を入切するクラッチやエンジンEの回転速度を変更した上で第1圧縮機Cg及び発電機Gに伝達する変速機構などを設けてもよい。エンジンEの動作(例えば回転速度など)は、制御装置10が有するエンジン制御手段11が制御する。   The engine E is operated by consuming fuel such as gas or light oil. The first compressor Cg is driven by the engine E to compress and send out the refrigerant. The generator G is driven by the engine E to generate power. Although not shown in FIG. 1, the first compressor Cg and power generation are performed after changing the clutch for turning on and off the driving force transmitted from the engine E to the first compressor Cg and the generator G and the rotational speed of the engine E. A transmission mechanism for transmitting to the machine G may be provided. The operation (for example, rotational speed) of the engine E is controlled by the engine control means 11 included in the control device 10.

発電機Gが発電した電力は電力線2に供給され、その電力線2に接続されている電動モータMで消費することができる。電力線2は電力系統1にも接続されており、電動モータMは、電力系統1から受電した電力を消費することもできる。発電機Gの動作(電動モータMへ供給する電力)は、制御装置10が有する発電制御手段12が制御する。つまり、発電制御手段12が、発電機Gから電力線2(電動モータM側)側へ供給する電力を制御することで、第1圧縮機Cgと第2圧縮機CeとへのエンジンEの出力の分配が行われる。   The electric power generated by the generator G is supplied to the power line 2 and can be consumed by the electric motor M connected to the power line 2. The power line 2 is also connected to the power system 1, and the electric motor M can consume the power received from the power system 1. The operation of the generator G (electric power supplied to the electric motor M) is controlled by the power generation control means 12 included in the control device 10. That is, the power generation control means 12 controls the power supplied from the generator G to the power line 2 (electric motor M side), so that the output of the engine E to the first compressor Cg and the second compressor Ce is controlled. Distribution is performed.

電動モータMは、発電機Gから供給される電力及び電力系統1から受電した電力の内の発電機Gから供給される電力を優先して消費して動作する。つまり、電力線2には、電動モータMの消費電力のうち、発電機Gの発電電力で不足する分の電力が電力系統1から供給される。第2圧縮機Ceは、電動モータMによって駆動されて冷媒を圧縮する。電動モータMの動作(例えば回転速度など)は、制御装置10が有する電動モータ制御手段13が制御する。   The electric motor M operates by preferentially consuming the power supplied from the generator G and the power supplied from the generator G out of the power received from the power system 1. That is, the power line 2 is supplied from the electric power system 1 with the amount of power consumed by the electric motor M that is insufficient for the power generated by the generator G. The second compressor Ce is driven by the electric motor M and compresses the refrigerant. The operation (for example, rotational speed) of the electric motor M is controlled by the electric motor control means 13 included in the control device 10.

第1圧縮機Cg及び第2圧縮機Ceから送出された冷媒は、冷媒流路L1を流れる。冷媒流路L1の途中には複数の弁が設けられており、それらの弁の開閉状態が切り替わることで、冷媒流路L1における冷媒の循環経路が切り替わる。この冷媒の循環経路の切り替え(即ち、上記弁の開閉状態の切り替え)は、制御装置10が有する循環経路制御手段14が制御する。   The refrigerant sent from the first compressor Cg and the second compressor Ce flows through the refrigerant flow path L1. A plurality of valves are provided in the middle of the refrigerant flow path L1, and the circulation path of the refrigerant in the refrigerant flow path L1 is switched by switching the open / close state of these valves. The switching of the refrigerant circulation path (that is, the switching of the valve open / close state) is controlled by the circulation path control means 14 of the control device 10.

冷媒流路L1の途中には、空調対象空間外に存在する外気と熱交換する室外用熱交換器H1と、空調対象空間内に供給する空調用空気と熱交換する室内用熱交換器H2とが設けられている。後述するように、冷媒の循環経路を変更することで、室外用熱交換器H1及び室内用熱交換器H2を、冷媒から放熱させる凝縮器又は冷媒に吸熱させる蒸発器として機能させる。その結果、空調対象空間の冷房運転又は暖房運転が行われる。
熱交換器H4は二つの冷媒同士を混合せずに熱交換する装置であり、例えば、室内用熱交換器H2に供給される冷媒の温度を更に低下させる過冷却器として機能させることもできる。
In the middle of the refrigerant flow path L1, an outdoor heat exchanger H1 that exchanges heat with the outside air existing outside the air conditioning target space, and an indoor heat exchanger H2 that exchanges heat with the air conditioning air supplied into the air conditioning target space, Is provided. As will be described later, by changing the circulation path of the refrigerant, the outdoor heat exchanger H1 and the indoor heat exchanger H2 are caused to function as a condenser that radiates heat from the refrigerant or an evaporator that absorbs heat from the refrigerant. As a result, cooling operation or heating operation of the air-conditioning target space is performed.
The heat exchanger H4 is a device that exchanges heat without mixing two refrigerants, and can function as, for example, a subcooler that further reduces the temperature of the refrigerant supplied to the indoor heat exchanger H2.

室内用熱交換器H2には、空調運転に関する使用者による指令を受け付ける操作スイッチSWが設けられている。例えば、操作スイッチSWは、冷房運転又は暖房運転といった運転種別や設定温度や風量などに関する指令を使用者から受け付け、その指令を制御装置10へ伝達する。加えて、制御装置10へは、温度センサT6で測定された、室内用熱交換器H2に吸い込まれる室内空気の温度も伝達される。そして、制御装置10は、室内機(室内用熱交換器H2)の運転容量、上記温度情報等から空調運転に要求されている要求負荷に関する情報を得る。この場合、制御装置10の機能の一部は、室内機(室内用熱交換器H2)が有する室内機マイコンや室外機(室外用熱交換器H1)が有する室外機マイコンなどの演算処理装置等の機能を用いて実現される。そして、制御装置10は、空調運転に要求されている要求負荷が基準負荷以上であるか、或いは、基準負荷未満であるかに応じて、エンジンE及び電動モータMの動作状態を切り替える。具体的には、制御装置10は、空調運転に要求されている要求負荷が基準負荷以上のとき、エンジンE及び電動モータMの両方(即ち、第1圧縮機Cg及び第2圧縮機Ceの両方)を動作させて冷媒を循環させる。このように、空調運転に要求されている要求負荷が相対的に大きいとき、即ち、冷媒量が相対的に多く必要になるとき、駆動されるエンジンEには相対的に大きな出力が要求される。つまり、効率が高くなる状態でエンジンEを動作させながら空調運転を行うことができる。   The indoor heat exchanger H2 is provided with an operation switch SW that receives an instruction from the user regarding the air conditioning operation. For example, the operation switch SW receives a command regarding the operation type such as the cooling operation or the heating operation, the set temperature, the air volume, and the like from the user, and transmits the command to the control device 10. In addition, the temperature of the indoor air sucked into the indoor heat exchanger H2 measured by the temperature sensor T6 is also transmitted to the control device 10. And the control apparatus 10 obtains the information regarding the request | requirement load currently requested | required by the air-conditioning driving | operation from the operating capacity of the indoor unit (indoor heat exchanger H2), the temperature information, and the like. In this case, some of the functions of the control device 10 are arithmetic processing units such as an indoor unit microcomputer included in the indoor unit (indoor heat exchanger H2) and an outdoor unit microcomputer included in the outdoor unit (outdoor heat exchanger H1). It is realized using the function. And the control apparatus 10 switches the operation state of the engine E and the electric motor M according to whether the request | requirement load currently requested | required of air-conditioning driving | operation is more than a reference load or less than a reference load. Specifically, when the required load required for the air conditioning operation is equal to or higher than the reference load, the control device 10 controls both the engine E and the electric motor M (that is, both the first compressor Cg and the second compressor Ce). ) To circulate the refrigerant. Thus, when the required load required for the air conditioning operation is relatively large, that is, when a relatively large amount of refrigerant is required, the driven engine E is required to have a relatively large output. . That is, the air conditioning operation can be performed while operating the engine E in a state where the efficiency is high.

図2は、空調負荷に対するエンジンE及び電動モータMの出力状態を説明する図である。図2に示すように、制御装置10は、空調運転に要求されている要求負荷が基準負荷未満のとき、エンジンEを動作させず(即ち、発電機Gを動作させず)、第2圧縮機Ceを電力系統1から受電した電力を用いて電動モータMで動作させて冷媒を循環させる。つまり、制御装置10は、空調運転に要求されている要求負荷が基準負荷未満のとき、エンジンEを動作させず、電動モータMの出力状態を変更しながら、第2圧縮機Ceから送出される冷媒量を調節する。これは、空調運転に要求されている要求負荷が相対的に小さいとき、エンジンEを動作させたとしても、エンジンEには相対的に小さな出力しか要求されないため、効率が低くなる状態でしかエンジンEを動作させることができないという問題に対する解決策である。つまり、制御装置10が図2に示したような運転を行うことで、エンジンEの効率が低くなることを避けながら、空調運転に要求されている要求負荷を賄うことができる。   FIG. 2 is a diagram for explaining output states of the engine E and the electric motor M with respect to the air conditioning load. As shown in FIG. 2, when the required load required for the air conditioning operation is less than the reference load, the control device 10 does not operate the engine E (that is, does not operate the generator G), and the second compressor Ce is operated by the electric motor M using the electric power received from the electric power system 1, and the refrigerant is circulated. That is, when the required load required for the air conditioning operation is less than the reference load, the control device 10 is sent from the second compressor Ce while changing the output state of the electric motor M without operating the engine E. Adjust the amount of refrigerant. This is because even when the required load required for the air-conditioning operation is relatively small, even if the engine E is operated, the engine E requires only a relatively small output, so the engine is only in a state where the efficiency is low. This is a solution to the problem that E cannot be operated. That is, when the control device 10 performs the operation as shown in FIG. 2, it is possible to cover the required load required for the air conditioning operation while avoiding a decrease in the efficiency of the engine E.

これに対して、制御装置10は、空調運転に要求されている要求負荷が基準負荷以上のとき、エンジンE及び電動モータMの両方を動作させて、エンジンEの出力状態及び電動モータMの出力状態を変更しながら、第1圧縮機Cg及び第2圧縮機Ceから送出される冷媒量を調節する。尚、エンジンE及び電動モータMの両方を動作させるとき、エンジンEの出力状態及び電動モータMの出力状態をどのような値に設定するのか(即ち、第1圧縮機Cgから送出される冷媒量及び第2圧縮機Ceから送出される冷媒量をどのような値に設定するのか)は適宜変更可能である。   On the other hand, the control device 10 operates both the engine E and the electric motor M when the required load required for the air conditioning operation is equal to or higher than the reference load, and outputs the output state of the engine E and the output of the electric motor M. While changing the state, the refrigerant amount sent from the first compressor Cg and the second compressor Ce is adjusted. Note that when both the engine E and the electric motor M are operated, what values are set for the output state of the engine E and the output state of the electric motor M (that is, the refrigerant amount delivered from the first compressor Cg) And what value the refrigerant amount sent from the second compressor Ce is set to can be changed as appropriate.

エンジンEを運転することで放出される熱は、冷却水流路L2を流れる冷却水によって回収される。冷却水流路L2は、エンジンEと排熱回収用熱交換器H3とを冷却水が順に通流するように配置されている。そして、排熱回収用熱交換器H3に冷媒が通流したとき、冷却水と冷媒との間での熱交換が行われることで、エンジンEから回収した排熱が冷媒に伝達されることになる。つまり、排熱回収用熱交換器H3は、後述するように、エンジンEから回収した排熱を冷媒に吸熱させる第4蒸発器として機能する。   The heat released by operating the engine E is recovered by the cooling water flowing through the cooling water flow path L2. The cooling water flow path L2 is arranged so that the cooling water flows through the engine E and the exhaust heat recovery heat exchanger H3 in order. When the refrigerant flows through the heat exchanger H3 for exhaust heat recovery, heat exchange between the cooling water and the refrigerant is performed, so that the exhaust heat recovered from the engine E is transmitted to the refrigerant. Become. That is, the heat exchanger H3 for exhaust heat recovery functions as a fourth evaporator that causes the refrigerant to absorb the exhaust heat recovered from the engine E, as will be described later.

〔冷房運転〕
次に、空気調和システムが冷房運転を行うときの動作について説明する。例えば、使用者が室内用熱交換器H2に設けられている操作スイッチSWを操作して空気調和システムが冷房運転することを指令したとき、その指令は制御装置10に伝達され、後述するような冷房運転が行われる。空気調和システムが冷房運転を行うとき、室外用熱交換器H1は凝縮器として機能し、室内用熱交換器H2は蒸発器として機能する。
つまり、冷房運転時の空気調和システムは、エンジンEと、第1圧縮機Cgと、発電機Gと、電動モータMと、第2圧縮機Ceと、冷媒から放熱させる第1凝縮器(室外用熱交換器H1)と、冷媒から放熱させる第2凝縮器(室外用熱交換器H1)と、冷媒を膨張させる第1膨張弁(弁V4)と、冷媒を膨張させる第2膨張弁(弁V3)と、冷媒に吸熱させる蒸発器(室内用熱交換器H2)と、二つの冷媒同士を混合せずに熱交換させる熱交換器H4と、制御装置10とを備える。
[Cooling operation]
Next, the operation when the air conditioning system performs the cooling operation will be described. For example, when the user operates the operation switch SW provided in the indoor heat exchanger H2 to command the air conditioning system to perform a cooling operation, the command is transmitted to the control device 10 and will be described later. Cooling operation is performed. When the air conditioning system performs cooling operation, the outdoor heat exchanger H1 functions as a condenser, and the indoor heat exchanger H2 functions as an evaporator.
That is, the air conditioning system during the cooling operation includes the engine E, the first compressor Cg, the generator G, the electric motor M, the second compressor Ce, and the first condenser that radiates heat from the refrigerant (for outdoor use). Heat exchanger H1), a second condenser that radiates heat from the refrigerant (outdoor heat exchanger H1), a first expansion valve (valve V4) that expands the refrigerant, and a second expansion valve (valve V3) that expands the refrigerant. ), An evaporator (indoor heat exchanger H2) for absorbing heat by the refrigerant, a heat exchanger H4 for exchanging heat without mixing the two refrigerants, and the control device 10.

そして、本実施形態において制御装置10は、エンジン制御手段11と発電制御手段12と電動モータ制御手段13と循環経路制御手段14とによる制御によって、冷媒の循環状態を切り替えながら室内用熱交換器(蒸発器)H2を通流する冷媒と熱交換した空調用空気を空調対象空間へ供給する空調運転(冷房運転)を行う。   In the present embodiment, the control device 10 is controlled by the engine control means 11, the power generation control means 12, the electric motor control means 13, and the circulation path control means 14, while switching the refrigerant circulation state. Evaporator) An air-conditioning operation (cooling operation) is performed in which air-conditioning air heat-exchanged with the refrigerant flowing through H2 is supplied to the air-conditioning target space.

図3は、第1冷房循環状態での冷媒の循環状態を説明する図である。図3では、第1圧縮機Cgから送出される冷媒を太実線で描き、第2圧縮機Ceから送出される冷媒を太破線で描いている。この場合、エンジンEは動作し、エンジンEの駆動力は第1圧縮機Cg及び発電機Gの双方に伝達される。そして、発電機Gで発電された電力は電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。
この第1冷房循環状態では、四方弁V7は、第1圧縮機Cgから送出された冷媒が先ず室外用熱交換器H1に流入するように切り替えられる。四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室外用熱交換器H1に流入するように切り替えられる。弁V1は開放され、弁V2は開放され、弁V3は閉止され、弁V4は開放されて膨張弁(第1膨張弁)として機能し、弁V5は閉止され、弁V6は閉止される。そして、冷媒が弁(第1膨張弁)V4と室内用熱交換器(蒸発器)H2とを順に通流した後で分流され、当該分流された冷媒の一方が第1圧縮機Cgと室外用熱交換器(第1凝縮器)H1とを順に通流した後で弁(第1膨張弁)V4に帰還し、及び、上記分流された冷媒の他方が第2圧縮機Ceと室外用熱交換器(第2凝縮器)H1とを順に通流した後で弁(第1膨張弁)V4に帰還する。
FIG. 3 is a diagram for explaining the circulation state of the refrigerant in the first cooling circulation state. In FIG. 3, the refrigerant sent from the first compressor Cg is drawn with a thick solid line, and the refrigerant sent from the second compressor Ce is drawn with a thick broken line. In this case, the engine E operates, and the driving force of the engine E is transmitted to both the first compressor Cg and the generator G. The electric power generated by the generator G is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the second compressor Ce.
In this first cooling circulation state, the four-way valve V7 is switched so that the refrigerant sent from the first compressor Cg first flows into the outdoor heat exchanger H1. The four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the outdoor heat exchanger H1. The valve V1 is opened, the valve V2 is opened, the valve V3 is closed, the valve V4 is opened and functions as an expansion valve (first expansion valve), the valve V5 is closed, and the valve V6 is closed. Then, the refrigerant is divided after passing through the valve (first expansion valve) V4 and the indoor heat exchanger (evaporator) H2 in order, and one of the divided refrigerant is used for the first compressor Cg and the outdoor use. After passing through the heat exchanger (first condenser) H1 in order, the heat is returned to the valve (first expansion valve) V4, and the other of the divided refrigerant is exchanged with the second compressor Ce for outdoor heat. After passing through the condenser (second condenser) H1 in order, it returns to the valve (first expansion valve) V4.

冷媒が図3に示す第1冷房循環状態で循環された状態で空調運転が行われた場合、第1圧縮機Cgから送出する冷媒及び第2圧縮機Ceから送出する冷媒が合流された上で、弁(第1膨張弁)V4と室内用熱交換器(蒸発器)H2とを順に通流し、その室内用熱交換器H2を通流する冷媒と熱交換した空調用空気が空調対象空間へ供給される空調運転、即ち、冷房運転が行われる。つまり、弁(第1膨張弁)V4と室内用熱交換器(蒸発器)H2とに対して第1圧縮機Cg及び第2圧縮機Ceは並列に設けられるので、室内用熱交換器(蒸発器)H2で必要とされる冷媒量(即ち、空調負荷に必要な冷媒量)は第1圧縮機Cg及び第2圧縮機Ceで分担して送出すればよい。加えて、エンジンEの出力は第1圧縮機Cg及び発電機Gに供給され、発電機Gの発電電力は、第2圧縮機Ceを駆動する電動モータMで消費されており、エンジンEの出力は第1圧縮機Cg及び第2圧縮機Ceを駆動するために利用されている。このように、第1圧縮機Cg及び第2圧縮機Ceを併用することで、例えば、エンジンEの出力を全て第1圧縮機Cgに供給して、室内用熱交換器(蒸発器)H2で必要とされる冷媒量の全てを第1圧縮機Cgから供給する場合に比べて、エンジンEの回転速度を低くして、大きいトルクが得られる状態でエンジンEを動作させることができる。   When the air conditioning operation is performed in a state where the refrigerant is circulated in the first cooling circulation state shown in FIG. 3, the refrigerant sent from the first compressor Cg and the refrigerant sent from the second compressor Ce are merged. The air-conditioning air that has passed through the valve (first expansion valve) V4 and the indoor heat exchanger (evaporator) H2 in order and exchanged heat with the refrigerant flowing through the indoor heat exchanger H2 enters the air-conditioning target space. The supplied air conditioning operation, that is, cooling operation is performed. That is, since the first compressor Cg and the second compressor Ce are provided in parallel to the valve (first expansion valve) V4 and the indoor heat exchanger (evaporator) H2, the indoor heat exchanger (evaporation) The refrigerant amount required for H2 (that is, the refrigerant amount necessary for the air conditioning load) may be shared by the first compressor Cg and the second compressor Ce and sent out. In addition, the output of the engine E is supplied to the first compressor Cg and the generator G, and the generated power of the generator G is consumed by the electric motor M that drives the second compressor Ce. Is used to drive the first compressor Cg and the second compressor Ce. Thus, by using together the 1st compressor Cg and the 2nd compressor Ce, for example, all the outputs of the engine E are supplied to the 1st compressor Cg, and it is with the indoor heat exchanger (evaporator) H2. The engine E can be operated in a state where a large torque can be obtained by lowering the rotational speed of the engine E as compared with the case where all of the required refrigerant amount is supplied from the first compressor Cg.

図4は、第2冷房循環状態での冷媒の循環状態を説明する図である。この場合、エンジンEは動作し、エンジンEの駆動力は第1圧縮機Cg及び発電機Gの双方に伝達される。そして、発電機Gで発電された電力は電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。
この第2冷房循環状態では、四方弁V7は、第1圧縮機Cgから送出された冷媒が先ず室外用熱交換器H1に流入するように切り替えられる。四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室外用熱交換器H1に流入するように切り替えられる。弁V1は開放され、弁V2は閉止され、弁V3は開放されて膨張弁(第2膨張弁)として機能し、弁V4は開放されて膨張弁(第1膨張弁)として機能し、弁V5は閉止され、弁V6は閉止される。そして、第1圧縮機Cgから送出される冷媒が、室外用熱交換器(第1凝縮器)H1と熱交換器H4と弁(第1膨張弁)V4と室内用熱交換器(蒸発器)H2とを順に通流した後で第1圧縮機Cgに帰還し、及び、第2圧縮機Ceから送出される冷媒が、室外用熱交換器(第2凝縮器)H1と弁(第2膨張弁)V3と熱交換器H4とを順に通流した後で第2圧縮機Ceに帰還する。尚、室外用熱交換器H1では、第1圧縮機Cgから送出される冷媒と第2圧縮機Ceから送出される冷媒とは混合されない。
FIG. 4 is a diagram illustrating the refrigerant circulation state in the second cooling circulation state. In this case, the engine E operates, and the driving force of the engine E is transmitted to both the first compressor Cg and the generator G. The electric power generated by the generator G is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the second compressor Ce.
In this second cooling circulation state, the four-way valve V7 is switched so that the refrigerant sent from the first compressor Cg first flows into the outdoor heat exchanger H1. The four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the outdoor heat exchanger H1. The valve V1 is opened, the valve V2 is closed, the valve V3 is opened and functions as an expansion valve (second expansion valve), the valve V4 is opened and functions as an expansion valve (first expansion valve), and the valve V5 Is closed and the valve V6 is closed. The refrigerant sent out from the first compressor Cg includes an outdoor heat exchanger (first condenser) H1, a heat exchanger H4, a valve (first expansion valve) V4, and an indoor heat exchanger (evaporator). After passing through H2 in order, the refrigerant returns to the first compressor Cg and is sent from the second compressor Ce to the outdoor heat exchanger (second condenser) H1 and the valve (second expansion). Valve) V3 and the heat exchanger H4 are sequentially passed, and then returned to the second compressor Ce. In the outdoor heat exchanger H1, the refrigerant sent from the first compressor Cg and the refrigerant sent from the second compressor Ce are not mixed.

このように、冷媒が第2冷房循環状態で循環された状態で空調運転が行われた場合、第1圧縮機Cgと室外用熱交換器(第1凝縮器)H1とを順に通流した冷媒は熱交換器H4に流入し、第2圧縮機Ceと室外用熱交換器(第2凝縮器)H1と弁(第2膨張弁)V3とを順に通流した冷媒は熱交換器H4に流入し、熱交換器H4ではそれら二つの冷媒同士を混合せずに熱交換させる。つまり、熱交換器H4は、第1圧縮機Cgと室外用熱交換器(第1凝縮器)H1とを順に通流した冷媒を、第2圧縮機Ceと室外用熱交換器(第2凝縮器)H1と弁(第2膨張弁)V3とを順に通流した冷媒によって更に冷却する過冷却器として作用する。このとき、制御装置10は、弁(第2膨張弁)V3の動作を制御して、弁(第2膨張弁)V3よりも下流側の温度センサT1で測定される冷媒の温度を調節することで過冷却の効果を制御できる。
このように、第1圧縮機Cg及び第2圧縮機Ceを併用すると共に熱交換器H4による過冷却によって空調能力を稼ぐことができるので、例えば第1圧縮機Cgから送出される冷媒量を相対的に少なく(即ち、エンジンEの回転速度を相対的に遅く)して、大きいトルクが得られる状態でエンジンEを動作させることができる。その結果、エンジンEを効率的に運転させることができる。
Thus, when the air-conditioning operation is performed in a state where the refrigerant is circulated in the second cooling circulation state, the refrigerant that sequentially flows through the first compressor Cg and the outdoor heat exchanger (first condenser) H1. Flows into the heat exchanger H4, and the refrigerant that has passed through the second compressor Ce, the outdoor heat exchanger (second condenser) H1, and the valve (second expansion valve) V3 sequentially flows into the heat exchanger H4. In the heat exchanger H4, heat is exchanged without mixing the two refrigerants. That is, the heat exchanger H4 uses the refrigerant that has passed through the first compressor Cg and the outdoor heat exchanger (first condenser) H1 in order, the second compressor Ce and the outdoor heat exchanger (second condensation). Device) acts as a subcooler that further cools by the refrigerant that has passed through H1 and the valve (second expansion valve) V3 in order. At this time, the control device 10 controls the operation of the valve (second expansion valve) V3 to adjust the temperature of the refrigerant measured by the temperature sensor T1 downstream of the valve (second expansion valve) V3. Can control the effect of supercooling.
In this way, the first compressor Cg and the second compressor Ce can be used together, and the air conditioning capacity can be gained by supercooling by the heat exchanger H4. For example, the amount of refrigerant sent from the first compressor Cg is relatively Therefore, the engine E can be operated in a state where a large torque can be obtained by reducing the rotational speed of the engine E (ie, the rotational speed of the engine E is relatively slow). As a result, the engine E can be operated efficiently.

上述した第1冷房循環状態と第2冷房循環状態との切り替えは制御装置10が行う。具体的には、制御装置10は、空調運転を行っている間の所定のタイミングで冷媒を第2冷房循環状態で循環させながら冷媒の温度を検証する冷媒温度検証処理を行う。本実施形態では、温度センサT1で計測される熱交換器H4での冷媒の温度と、温度センサT2で計測される室内用熱交換器(蒸発器)H2での冷媒の温度とが比較される。ここで、温度センサT2で計測される室内用熱交換器(蒸発器)H2での冷媒の温度は、第1圧縮機Cgから送出された冷媒が、室外用熱交換器H1と弁V1と熱交換器H4と弁V4とを経て室内用熱交換器(蒸発器)H2に至り、その後、第1圧縮機Cgを流れる冷媒の温度である。また、温度センサT1で計測される熱交換器H4での冷媒の温度は、第2圧縮機Ceから送出された冷媒が、室外用熱交換器H1と弁V3とを経て熱交換器H4に至り、その後、第2圧縮機Ceを流れる冷媒の温度である。そして、制御装置10は、冷媒温度検証処理において、室内用熱交換器(蒸発器)H2での冷媒の温度(温度センサT2で測定された冷媒の温度)が熱交換器H4での冷媒の温度(温度センサT1で測定された冷媒の温度)より低いと判定したとき、冷媒の循環状態を第2冷房循環状態にしてその後の空調運転を行わせる。これに対して、制御装置10は、冷媒温度検証処理において、室内用熱交換器(蒸発器)H2での冷媒の温度(T2)が熱交換器H4での冷媒の温度(T1)以上であると判定したとき、冷媒の循環状態を第1冷房循環状態にしてその後の空調運転を行わせる。このように、上記第2冷房循環状態で冷媒を循環させているときに温度センサT1で計測される熱交換器H4での冷媒の温度が低くなって温度センサT2で計測される室内用熱交換器(蒸発器)H2での冷媒の温度以下になると第2圧縮機Ceの動力が相対的に大きくなるが、上述のように冷媒の循環状態を第1冷房循環状態に切り替えることでそのような動力の上昇を抑えることができる。   The control device 10 performs switching between the first cooling circulation state and the second cooling circulation state described above. Specifically, the control device 10 performs a refrigerant temperature verification process for verifying the temperature of the refrigerant while circulating the refrigerant in the second cooling circulation state at a predetermined timing during the air conditioning operation. In the present embodiment, the refrigerant temperature in the heat exchanger H4 measured by the temperature sensor T1 is compared with the refrigerant temperature in the indoor heat exchanger (evaporator) H2 measured by the temperature sensor T2. . Here, the temperature of the refrigerant in the indoor heat exchanger (evaporator) H2 measured by the temperature sensor T2 is that the refrigerant sent from the first compressor Cg is heated by the outdoor heat exchanger H1, the valve V1, and the heat. It is the temperature of the refrigerant that reaches the indoor heat exchanger (evaporator) H2 through the exchanger H4 and the valve V4, and then flows through the first compressor Cg. The temperature of the refrigerant in the heat exchanger H4 measured by the temperature sensor T1 is such that the refrigerant sent from the second compressor Ce reaches the heat exchanger H4 via the outdoor heat exchanger H1 and the valve V3. Then, the temperature of the refrigerant flowing through the second compressor Ce. In the refrigerant temperature verification process, the control device 10 determines that the refrigerant temperature in the indoor heat exchanger (evaporator) H2 (the refrigerant temperature measured by the temperature sensor T2) is the refrigerant temperature in the heat exchanger H4. When it is determined that the refrigerant temperature is lower than (temperature of the refrigerant measured by the temperature sensor T1), the refrigerant circulation state is changed to the second cooling circulation state, and the subsequent air conditioning operation is performed. In contrast, in the refrigerant temperature verification process, the control device 10 has a refrigerant temperature (T2) in the indoor heat exchanger (evaporator) H2 that is equal to or higher than the refrigerant temperature (T1) in the heat exchanger H4. Is determined, the refrigerant circulation state is changed to the first cooling circulation state, and the subsequent air conditioning operation is performed. As described above, when the refrigerant is circulated in the second cooling circulation state, the temperature of the refrigerant in the heat exchanger H4 measured by the temperature sensor T1 is lowered, and the indoor heat exchange measured by the temperature sensor T2 is performed. When the temperature of the refrigerant in the evaporator (evaporator) H2 is equal to or lower than the temperature of the refrigerant, the power of the second compressor Ce becomes relatively large. However, by switching the refrigerant circulation state to the first cooling circulation state as described above, An increase in power can be suppressed.

尚、図中では、熱交換器H4での冷媒の温度を計測する温度センサT1は弁V3よりも下流側且つ熱交換器H4よりも上流側に描いており、及び、室内用熱交換器(蒸発器)H2での冷媒の温度を計測する温度センサT2は弁V4よりも下流側且つ室内用熱交換器(蒸発器)H2よりも上流側に描いているが、温度センサT1を熱交換器H4よりも下流側に設けてもよく、温度センサT2を室内用熱交換器(蒸発器)H2よりも下流側に設けてもよい。但し、温度センサT1を熱交換器H4よりも上流側に設けるのであれば温度センサT2も室内用熱交換器(蒸発器)H2よりも上流側に設け、温度センサT1を熱交換器H4よりも下流側に設けるのであれば温度センサT2も室内用熱交換器(蒸発器)H2よりも下流側に設ける必要がある。或いは、各温度センサをそれぞれの上流側及び下流側の両方に設けて平均値を導出してもよい。   In the drawing, the temperature sensor T1 for measuring the temperature of the refrigerant in the heat exchanger H4 is drawn downstream from the valve V3 and upstream from the heat exchanger H4, and an indoor heat exchanger ( Although the temperature sensor T2 for measuring the temperature of the refrigerant in the evaporator H2 is drawn downstream of the valve V4 and upstream of the indoor heat exchanger (evaporator) H2, the temperature sensor T1 is shown as a heat exchanger. It may be provided downstream of H4, and the temperature sensor T2 may be provided downstream of the indoor heat exchanger (evaporator) H2. However, if the temperature sensor T1 is provided upstream from the heat exchanger H4, the temperature sensor T2 is also provided upstream from the indoor heat exchanger (evaporator) H2, and the temperature sensor T1 is provided from the heat exchanger H4. If provided on the downstream side, the temperature sensor T2 also needs to be provided on the downstream side of the indoor heat exchanger (evaporator) H2. Alternatively, the average value may be derived by providing each temperature sensor on both the upstream side and the downstream side.

図5は、第3冷房循環状態での冷媒の循環状態を説明する図である。この場合、エンジンEは停止しているため第1圧縮機Cgは動作しない。そして、電力系統1から受電した電力が電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。
この第3冷房循環状態では、四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室外用熱交換器(第2凝縮器)H1に流入するように切り替えられる。弁V1は閉止され、弁V2は開放され、弁V3は閉止され、弁V4は開放されて膨張弁(第1膨張弁)として機能し、弁V5は閉止され、弁V6は閉止される。そして、第2圧縮機Ceから送出される冷媒が、室外用熱交換器(第2凝縮器)H1と弁(第1膨張弁)V4と室内用熱交換器(蒸発器)H2とを順に通流した後で第2圧縮機Ceに帰還する。
FIG. 5 is a diagram illustrating the refrigerant circulation state in the third cooling circulation state. In this case, since the engine E is stopped, the first compressor Cg does not operate. And the electric power received from the electric power grid | system 1 is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the 2nd compressor Ce.
In this third cooling circulation state, the four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the outdoor heat exchanger (second condenser) H1. The valve V1 is closed, the valve V2 is opened, the valve V3 is closed, the valve V4 is opened and functions as an expansion valve (first expansion valve), the valve V5 is closed, and the valve V6 is closed. The refrigerant delivered from the second compressor Ce passes through the outdoor heat exchanger (second condenser) H1, the valve (first expansion valve) V4, and the indoor heat exchanger (evaporator) H2 in order. After flowing, it returns to the second compressor Ce.

制御装置10は、空調運転に要求されている要求負荷が基準負荷以上のとき、冷媒を上記第1冷房循環状態又は上記第2冷房循環状態で循環させながら空調運転を行う。加えて、上述したように、制御装置10は、冷媒温度検証処理での検証結果に基づいて、冷媒を上記第1冷房循環状態で循環させるのか、或いは、冷媒を上記第2冷房循環状態で循環させるのかを切り替える。
これに対して、制御装置10は、操作スイッチSWが取得する要求負荷が基準負荷未満のとき、エンジンEを動作させず(即ち、発電機Gを動作させず)、第2圧縮機Ceを電動モータMで動作させて、冷媒を上記第3冷房循環状態で循環させる。このような運転を行うことで、エンジンEの効率が低くなることを避けながら、空調運転に要求されている要求負荷を賄うことができる。
When the required load required for the air conditioning operation is equal to or higher than the reference load, the control device 10 performs the air conditioning operation while circulating the refrigerant in the first cooling circulation state or the second cooling circulation state. In addition, as described above, the control device 10 circulates the refrigerant in the first cooling circulation state based on the verification result in the refrigerant temperature verification process, or circulates the refrigerant in the second cooling circulation state. Switch what to do.
On the other hand, when the required load acquired by the operation switch SW is less than the reference load, the control device 10 does not operate the engine E (that is, does not operate the generator G) and operates the second compressor Ce. Operated by the motor M, the refrigerant is circulated in the third cooling circulation state. By performing such an operation, the required load required for the air-conditioning operation can be covered while avoiding a decrease in the efficiency of the engine E.

〔暖房運転〕
次に、空気調和システムが暖房運転を行うときの動作について説明する。例えば、使用者が室内用熱交換器H2に設けられている操作スイッチSWを操作して空気調和システムが暖房運転することを指令したとき、その指令は制御装置10に伝達され、後述するような暖房運転が行われる。空気調和システムが暖房運転を行うとき、室外用熱交換器H1は蒸発器として機能し、室内用熱交換器H2は凝縮器として機能する。
つまり、暖房運転時の空気調和システムは、エンジンEと、第1圧縮機Cgと、発電機Gと、電動モータMと、第2圧縮機Ceと、冷媒から放熱させる凝縮器(室内用熱交換器H2)と、冷媒を膨張させる第1膨張弁(弁V1)と、冷媒を膨張させる第2膨張弁(弁V2)と、冷媒を膨張させる第3膨張弁(弁V5)と、冷媒に吸熱させる第1蒸発器(室外用熱交換器H1)と、冷媒に吸熱させる第2蒸発器(室外用熱交換器H1)と、エンジンEから回収した排熱を冷媒に吸熱させる第3蒸発器(排熱回収用熱交換器H3)と、制御装置10とを備える。
加えて、暖房運転時の空気調和システムは、冷媒を膨張させる第4膨張弁(弁V6)と、エンジンEから回収した排熱を冷媒に吸熱させる第4蒸発器(排熱回収用熱交換器H3)とを備える。
[Heating operation]
Next, the operation when the air conditioning system performs the heating operation will be described. For example, when the user operates the operation switch SW provided in the indoor heat exchanger H2 to command the air conditioning system to perform a heating operation, the command is transmitted to the control device 10 and will be described later. Heating operation is performed. When the air conditioning system performs heating operation, the outdoor heat exchanger H1 functions as an evaporator, and the indoor heat exchanger H2 functions as a condenser.
That is, the air conditioning system during heating operation includes an engine E, a first compressor Cg, a generator G, an electric motor M, a second compressor Ce, and a condenser that radiates heat from the refrigerant (indoor heat exchange). H2), a first expansion valve (valve V1) for expanding the refrigerant, a second expansion valve (valve V2) for expanding the refrigerant, a third expansion valve (valve V5) for expanding the refrigerant, and the refrigerant absorbing heat. A first evaporator (outdoor heat exchanger H1) to be made, a second evaporator (outdoor heat exchanger H1) to absorb heat in the refrigerant, and a third evaporator (into the refrigerant to absorb the exhaust heat recovered from the engine E) A heat exchanger H3) for exhaust heat recovery and a control device 10 are provided.
In addition, the air conditioning system during heating operation includes a fourth expansion valve (valve V6) that expands the refrigerant, and a fourth evaporator (exhaust heat recovery heat exchanger) that absorbs the exhaust heat recovered from the engine E. H3).

そして、本実施形態において制御装置10は、エンジン制御手段11と発電制御手段12と電動モータ制御手段13と循環経路制御手段14とによる制御によって、冷媒の循環状態を切り替えながら室内用熱交換器(凝縮器)H2を通流する冷媒と熱交換した空調用空気を空調対象空間へ供給する空調運転(暖房運転)を行う。   In the present embodiment, the control device 10 is controlled by the engine control means 11, the power generation control means 12, the electric motor control means 13, and the circulation path control means 14, while switching the refrigerant circulation state. Condenser) An air conditioning operation (heating operation) is performed in which air conditioning air that has exchanged heat with the refrigerant flowing through H2 is supplied to the air conditioning target space.

図6は、第1暖房循環状態での冷媒の循環状態を説明する図である。この場合、エンジンEは動作し、エンジンEの駆動力は第1圧縮機Cg及び発電機Gの双方に伝達される。そして、発電機Gで発電された電力は電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。この第1暖房循環状態では、四方弁V7は、第1圧縮機Cgから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。弁V1は開放されて膨張弁(第1膨張弁)として機能し、弁V2は開放されて膨張弁(第2膨張弁)として機能し、弁V3は閉止され、弁V4は開放され、弁V5は閉止され、弁V6は閉止される。そして、冷媒が室内用熱交換器(凝縮器)H2を通流した後で分流され、当該分流された冷媒の一方が弁(第1膨張弁)V1と室外用熱交換器(第1蒸発器)H1と第1圧縮機Cgとを順に通流した後で室内用熱交換器(凝縮器)H2に帰還し、及び、上記分流された冷媒の他方が弁(第2膨張弁)V2と室外用熱交換器(第2蒸発器)H1と第2圧縮機Ceとを順に通流した後で室内用熱交換器(凝縮器)H2に帰還する。   FIG. 6 is a diagram for explaining the circulation state of the refrigerant in the first heating circulation state. In this case, the engine E operates, and the driving force of the engine E is transmitted to both the first compressor Cg and the generator G. The electric power generated by the generator G is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the second compressor Ce. In the first heating circulation state, the four-way valve V7 is switched so that the refrigerant sent from the first compressor Cg first flows into the indoor heat exchanger H2. The four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the indoor heat exchanger H2. The valve V1 is opened and functions as an expansion valve (first expansion valve), the valve V2 is opened and functions as an expansion valve (second expansion valve), the valve V3 is closed, the valve V4 is opened, and the valve V5 Is closed and the valve V6 is closed. Then, the refrigerant is divided after flowing through the indoor heat exchanger (condenser) H2, and one of the divided refrigerant is the valve (first expansion valve) V1 and the outdoor heat exchanger (first evaporator). ) After passing H1 and the first compressor Cg in order, they are returned to the indoor heat exchanger (condenser) H2, and the other of the divided refrigerant is the valve (second expansion valve) V2 and the outdoor After passing through the heat exchanger (second evaporator) H1 and the second compressor Ce in order, the air is returned to the indoor heat exchanger (condenser) H2.

冷媒が図6に示す上記第1暖房循環状態で循環された状態で空調運転が行われた場合、第1圧縮機Cgから送出する冷媒及び第2圧縮機Ceから送出する冷媒が合流された上で室内用熱交換器(凝縮器)H2に供給され、その室内用熱交換器(凝縮器)H2を通流する冷媒と熱交換した空調用空気が空調対象空間へ供給される空調運転、即ち、暖房運転が行われる。つまり、室内用熱交換器(凝縮器)H2に対して第1圧縮機Cg及び第2圧縮機Ceは並列に設けられるので、室内用熱交換器(凝縮器)H2で必要とされる冷媒量(即ち、空調負荷に必要な冷媒量)は第1圧縮機Cg及び第2圧縮機Ceで分担して送出すればよい。加えて、エンジンEの出力は第1圧縮機Cg及び発電機Gに供給され、発電機Gの発電電力は、第2圧縮機Ceを駆動する電動モータMで消費されており、エンジンEの出力は第1圧縮機Cg及び第2圧縮機Ceを駆動するために利用されている。このように、第1圧縮機Cg及び第2圧縮機Ceを併用することで、例えば、エンジンEの出力を全て第1圧縮機Cgに供給して、蒸発器で必要とされる冷媒量の全てを第1圧縮機Cgから供給する場合に比べて、エンジンEの回転速度を低くして、大きいトルクが得られる状態でエンジンEを動作させることができる。その結果、エンジンEを効率的に運転させることができる。   When the air conditioning operation is performed in a state where the refrigerant is circulated in the first heating circulation state shown in FIG. 6, the refrigerant sent out from the first compressor Cg and the refrigerant sent out from the second compressor Ce are merged. Is supplied to the indoor heat exchanger (condenser) H2, and the air-conditioning operation in which the air-conditioning air exchanged with the refrigerant flowing through the indoor heat exchanger (condenser) H2 is supplied to the air-conditioning target space. Heating operation is performed. That is, since the first compressor Cg and the second compressor Ce are provided in parallel to the indoor heat exchanger (condenser) H2, the amount of refrigerant required in the indoor heat exchanger (condenser) H2 (In other words, the amount of refrigerant necessary for the air conditioning load) may be shared and sent by the first compressor Cg and the second compressor Ce. In addition, the output of the engine E is supplied to the first compressor Cg and the generator G, and the generated power of the generator G is consumed by the electric motor M that drives the second compressor Ce. Is used to drive the first compressor Cg and the second compressor Ce. Thus, by using together the 1st compressor Cg and the 2nd compressor Ce, for example, all the output of the engine E is supplied to the 1st compressor Cg, and all the refrigerant | coolants amount required by an evaporator is used. As compared with the case where the engine E is supplied from the first compressor Cg, the rotational speed of the engine E can be lowered and the engine E can be operated in a state where a large torque can be obtained. As a result, the engine E can be operated efficiently.

図7は、第2暖房循環状態での冷媒の循環状態を説明する図である。この場合、エンジンEは動作し、エンジンEの駆動力は第1圧縮機Cg及び発電機Gの双方に伝達される。そして、発電機Gで発電された電力は電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。この第2暖房循環状態では、四方弁V7は、第1圧縮機Cgから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。弁V1は開放されて膨張弁(第1膨張弁)として機能し、弁V2は閉止され、弁V3は閉止され、弁V4は開放され、弁V5は開放されて膨張弁(第3膨張弁)として機能し、弁V6は閉止される。そして、冷媒が室内用熱交換器(凝縮器)H2を通流した後で分流され、当該分流された後の冷媒の一方が弁(第1膨張弁)V1と室外用熱交換器(第1蒸発器)H1と第1圧縮機Cgとを順に通流した後で室内用熱交換器(凝縮器)H2に帰還し、及び、上記分流された後の冷媒の他方が弁(第3膨張弁)V5と排熱回収用熱交換器(第3蒸発器)H3と第2圧縮機Ceとを順に通流した後で室内用熱交換器(凝縮器)H2に帰還する。   FIG. 7 is a diagram illustrating a refrigerant circulation state in the second heating circulation state. In this case, the engine E operates, and the driving force of the engine E is transmitted to both the first compressor Cg and the generator G. The electric power generated by the generator G is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the second compressor Ce. In the second heating circulation state, the four-way valve V7 is switched so that the refrigerant sent from the first compressor Cg first flows into the indoor heat exchanger H2. The four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the indoor heat exchanger H2. The valve V1 is opened and functions as an expansion valve (first expansion valve), the valve V2 is closed, the valve V3 is closed, the valve V4 is opened, and the valve V5 is opened and the expansion valve (third expansion valve). And the valve V6 is closed. Then, the refrigerant is divided after flowing through the indoor heat exchanger (condenser) H2, and one of the divided refrigerant is the valve (first expansion valve) V1 and the outdoor heat exchanger (first Evaporator) H1 and first compressor Cg are sequentially passed through, and then returned to indoor heat exchanger (condenser) H2, and the other refrigerant after the flow-divided is a valve (third expansion valve). ) V5, exhaust heat recovery heat exchanger (third evaporator) H3, and second compressor Ce are sequentially passed, and then returned to the indoor heat exchanger (condenser) H2.

冷媒が第2暖房循環状態で循環された状態で空調運転が行われた場合、室内用熱交換器(凝縮器)H2の下流側で分流された後の冷媒の一方は、弁(第1膨張弁)V1と室外用熱交換器(第1蒸発器)H1と第1圧縮機Cgとを順に通流した後で室内用熱交換器(凝縮器)H2に帰還し、及び、室内用熱交換器(凝縮器)H2の下流側で分流された後の冷媒の他方は、弁(第3膨張弁)V5と排熱回収用熱交換器(第3蒸発器)H3と第2圧縮機Ceとを順に通流した後で室内用熱交換器(凝縮器)H2に帰還する。つまり、排熱回収用熱交換器(第3蒸発器)H3では、冷媒に吸熱させるために、エンジンEから回収した排熱を有効に活用することができる。特に、エンジンEから回収した排熱は、大気等から回収できる熱よりも高温であるので、排熱回収用熱交換器(第3蒸発器)H3での冷媒の蒸発温度を高くすることができ、第2圧縮機Ceの動力を低減できる。
このように、第1圧縮機Cg及び第2圧縮機Ceを併用すると共に排熱回収用熱交換器(第3蒸発器)H3による冷媒の吸熱によって空調能力を稼ぐことができるので、例えば第1圧縮機Cgから送出される冷媒量を相対的に少なく(即ち、エンジンEの回転速度を相対的に遅く)して、大きいトルクが得られる状態でエンジンEを動作させることができる。その結果、エンジンEを効率的に運転させることができる。
When the air conditioning operation is performed in a state where the refrigerant is circulated in the second heating circulation state, one of the refrigerants after being divided on the downstream side of the indoor heat exchanger (condenser) H2 is a valve (first expansion). Valve) V1, outdoor heat exchanger (first evaporator) H1, and first compressor Cg are passed in order, and then returned to the indoor heat exchanger (condenser) H2, and indoor heat exchange is performed. The other refrigerant after being divided on the downstream side of the condenser (condenser) H2 is the valve (third expansion valve) V5, the exhaust heat recovery heat exchanger (third evaporator) H3, the second compressor Ce, Are sequentially passed through and then returned to the indoor heat exchanger (condenser) H2. That is, in the heat exchanger for recovering exhaust heat (third evaporator) H3, the exhaust heat recovered from the engine E can be effectively used in order to absorb heat by the refrigerant. In particular, since the exhaust heat recovered from the engine E is higher than the heat recoverable from the atmosphere or the like, the evaporation temperature of the refrigerant in the exhaust heat recovery heat exchanger (third evaporator) H3 can be increased. The power of the second compressor Ce can be reduced.
Thus, since the first compressor Cg and the second compressor Ce can be used together and the air conditioning capacity can be gained by the heat absorption of the refrigerant by the exhaust heat recovery heat exchanger (third evaporator) H3, for example, the first compressor The engine E can be operated in a state where a large torque can be obtained by relatively reducing the amount of refrigerant delivered from the compressor Cg (that is, relatively slowing the rotational speed of the engine E). As a result, the engine E can be operated efficiently.

上述した第1暖房循環状態と第2暖房循環状態との切り替えは制御装置10が行う。具体的には、制御装置10は、空調運転を行っている間の所定のタイミングで冷媒を第2暖房循環状態で循環させながら冷媒の温度を検証する冷媒温度検証処理を行う。本実施形態では、温度センサT3で計測される排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度と、温度センサT4で計測される室外用熱交換器(第1蒸発器)H1での冷媒の温度とが比較される。ここで、温度センサT4で計測される室外用熱交換器(第1蒸発器)H1での冷媒の温度は、弁V1を経て室外用熱交換器(第1蒸発器)H1に至り、その後、第1圧縮機Cgを流れる冷媒の温度である。また、温度センサT3で計測される排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度は、弁V5を経て排熱回収用熱交換器(第3蒸発器)H3に至り、その後、第2圧縮機Ceを流れる冷媒の温度である。そして、制御装置10は、冷媒温度検証処理において、排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度(温度センサT3で測定された冷媒の温度)が室外用熱交換器(第1蒸発器)H1での冷媒の温度(温度センサT4で測定された冷媒の温度)より高いと判定したとき、冷媒の循環状態を第2暖房循環状態にしてその後の空調運転を行わせる。これに対して、制御装置10は、冷媒温度検証処理において、排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度(温度センサT3で測定された冷媒の温度)が室外用熱交換器(第1蒸発器)H1での冷媒の温度(温度センサT4で測定された冷媒の温度)以下であると判定したとき、冷媒の循環状態を第1暖房循環状態にしてその後の空調運転を行わせる。   The control device 10 performs switching between the first heating circulation state and the second heating circulation state described above. Specifically, the control device 10 performs a refrigerant temperature verification process for verifying the temperature of the refrigerant while circulating the refrigerant in the second heating circulation state at a predetermined timing during the air conditioning operation. In the present embodiment, the temperature of the refrigerant in the exhaust heat recovery heat exchanger (third evaporator) H3 measured by the temperature sensor T3 and the outdoor heat exchanger (first evaporator) measured by the temperature sensor T4. ) The refrigerant temperature at H1 is compared. Here, the temperature of the refrigerant in the outdoor heat exchanger (first evaporator) H1 measured by the temperature sensor T4 reaches the outdoor heat exchanger (first evaporator) H1 via the valve V1, and then It is the temperature of the refrigerant flowing through the first compressor Cg. The temperature of the refrigerant in the exhaust heat recovery heat exchanger (third evaporator) H3 measured by the temperature sensor T3 reaches the exhaust heat recovery heat exchanger (third evaporator) H3 via the valve V5. Then, the temperature of the refrigerant flowing through the second compressor Ce. Then, in the refrigerant temperature verification process, the control device 10 determines that the refrigerant temperature in the exhaust heat recovery heat exchanger (third evaporator) H3 (the refrigerant temperature measured by the temperature sensor T3) is an outdoor heat exchanger. (First evaporator) When it is determined that the temperature of the refrigerant in H1 is higher than the temperature of the refrigerant (the temperature of the refrigerant measured by temperature sensor T4), the refrigerant circulation state is changed to the second heating circulation state, and the subsequent air conditioning operation is performed. . On the other hand, in the refrigerant temperature verification process, the control device 10 uses the temperature of the refrigerant in the exhaust heat recovery heat exchanger (third evaporator) H3 (the temperature of the refrigerant measured by the temperature sensor T3) for outdoor use. When it is determined that the temperature of the refrigerant in the heat exchanger (first evaporator) H1 is equal to or lower than the temperature of the refrigerant (the temperature of the refrigerant measured by the temperature sensor T4), the refrigerant is circulated in the first heating circulation state and then air-conditioned. Let's drive.

尚、図中では、排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度を計測する温度センサT3は弁V5よりも下流側且つ排熱回収用熱交換器(第3蒸発器)H3よりも上流側に描いており、及び、室外用熱交換器(第1蒸発器)H1での冷媒の温度を計測する温度センサT4は弁V1よりも下流側且つ室外用熱交換器(第1蒸発器)H1よりも上流側に描いているが、温度センサT3を排熱回収用熱交換器(第3蒸発器)H3よりも下流側に設けてもよく、温度センサT4を室外用熱交換器(第1蒸発器)H1よりも下流側に設けてもよい。但し、温度センサT3を排熱回収用熱交換器(第3蒸発器)H3よりも上流側に設けるのであれば温度センサT4も室外用熱交換器(第1蒸発器)H1よりも上流側に設け、温度センサT3を排熱回収用熱交換器(第3蒸発器)H3よりも下流側に設けるのであれば温度センサT4も室外用熱交換器(第1蒸発器)H1よりも下流側に設ける必要がある。或いは、各温度センサをそれぞれの上流側及び下流側の両方に設けて平均値を導出してもよい。   In the figure, the temperature sensor T3 for measuring the temperature of the refrigerant in the exhaust heat recovery heat exchanger (third evaporator) H3 is downstream of the valve V5 and the exhaust heat recovery heat exchanger (third evaporation). The temperature sensor T4, which is drawn upstream of the H3 and measures the temperature of the refrigerant in the outdoor heat exchanger (first evaporator) H1, is downstream of the valve V1 and the outdoor heat exchanger. (First evaporator) Although drawn on the upstream side of H1, the temperature sensor T3 may be provided downstream of the exhaust heat recovery heat exchanger (third evaporator) H3, and the temperature sensor T4 is provided outdoors. The heat exchanger (first evaporator) H1 may be provided on the downstream side. However, if the temperature sensor T3 is provided upstream of the exhaust heat recovery heat exchanger (third evaporator) H3, the temperature sensor T4 is also provided upstream of the outdoor heat exchanger (first evaporator) H1. If the temperature sensor T3 is provided downstream of the exhaust heat recovery heat exchanger (third evaporator) H3, the temperature sensor T4 is also provided downstream of the outdoor heat exchanger (first evaporator) H1. It is necessary to provide it. Alternatively, the average value may be derived by providing each temperature sensor on both the upstream side and the downstream side.

冷媒が図7に示す上記第2暖房循環状態で循環しているときに上記排熱回収用熱交換器(第3蒸発器)H3での冷媒に対する加熱の効果の方が大きいときは、その排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度(T3)が、同じく冷媒に対する加熱が行われる上記室外用熱交換器(第1蒸発器)H1での冷媒の温度(T4)より高くなる。従って、冷媒温度検証処理において、排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度(T3)が室外用熱交換器(第1蒸発器)H1での冷媒の温度(T4)より高いと判定したとき、冷媒の循環状態を第2暖房循環状態にしてその後の空調運転を行わせることで、上記排熱回収用熱交換器(第3蒸発器)H3による冷媒の加熱の効果を得ることができる。   When the refrigerant is circulated in the second heating circulation state shown in FIG. 7 and the heating effect on the refrigerant in the exhaust heat recovery heat exchanger (third evaporator) H3 is greater, the exhaust is recovered. The refrigerant temperature (T3) in the heat recovery heat exchanger (third evaporator) H3 is the same as the refrigerant temperature (T4) in the outdoor heat exchanger (first evaporator) H1 where the refrigerant is also heated. ) Will be higher. Therefore, in the refrigerant temperature verification process, the refrigerant temperature (T3) in the exhaust heat recovery heat exchanger (third evaporator) H3 is equal to the refrigerant temperature (T4) in the outdoor heat exchanger (first evaporator) H1. ) When it is determined that the refrigerant is higher, the refrigerant is in the second heating circulation state and the subsequent air conditioning operation is performed, whereby the exhaust heat recovery heat exchanger (third evaporator) H3 is used to heat the refrigerant. An effect can be obtained.

これに対して、冷媒が上記第2暖房循環状態で循環しているときに上記室外用熱交換器(第1蒸発器)H1による冷媒に対する加熱の効果の方が大きいとき或いは両者による冷媒に対する加熱の効果が同等であるときは、排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度(T3)が、同じく冷媒に対する加熱が行われる上記室外用熱交換器(第1蒸発器)H1での冷媒の温度(T4)以下になる。従って、冷媒温度検証処理において、排熱回収用熱交換器(第3蒸発器)H3での冷媒の温度(T3)が室外用熱交換器(第1蒸発器)H1での冷媒の温度(T4)以下であると判定したとき、冷媒の循環状態を第1暖房循環状態にしてその後の空調運転を行わせることで、上記室外用熱交換器(第1蒸発器)H1による冷媒の加熱の効果を得ることができる。   In contrast, when the refrigerant circulates in the second heating circulation state, the heating effect on the refrigerant by the outdoor heat exchanger (first evaporator) H1 is greater or the heating by both of the refrigerants. When the effects of the above are equal, the temperature (T3) of the refrigerant in the heat exchanger for recovering exhaust heat (third evaporator) H3 is the same as that for the outdoor heat exchanger (first evaporation) where the refrigerant is also heated. The temperature of the refrigerant at H1 is equal to or lower than the temperature (T4). Therefore, in the refrigerant temperature verification process, the refrigerant temperature (T3) in the exhaust heat recovery heat exchanger (third evaporator) H3 is equal to the refrigerant temperature (T4) in the outdoor heat exchanger (first evaporator) H1. ) When it is determined that the refrigerant is in the following condition, the refrigerant circulation state is changed to the first heating circulation state, and the subsequent air conditioning operation is performed, so that the effect of heating the refrigerant by the outdoor heat exchanger (first evaporator) H1 is achieved. Can be obtained.

図8は、第3暖房循環状態での冷媒の循環状態を説明する図である。第3暖房循環状態は、第1圧縮機Cgから送出される冷媒の流路が上記第2暖房循環状態と異なっており、第2圧縮機Ceから送出される冷媒の流路は上記第2暖房循環状態と同じである。
この場合、エンジンEは動作し、エンジンEの駆動力は第1圧縮機Cg及び発電機Gの双方に伝達される。そして、発電機Gで発電された電力は電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。この第3暖房循環状態では、四方弁V7は、第1圧縮機Cgから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。弁V1は開放されて膨張弁(第1膨張弁)として機能し、弁V2は閉止され、弁V3は閉止され、弁V4は開放され、弁V5は開放されて膨張弁(第3膨張弁)として機能し、弁V6は開放されて膨張弁(第4膨張弁)として機能する。そして、冷媒が室内用熱交換器(凝縮器)H2を通流した後で分流され、当該分流された冷媒のうち、弁(第1膨張弁)V1と室外用熱交換器(第1蒸発器)H1とを順に通流した冷媒と、弁(第4膨張弁)V6と排熱回収用熱交換器(第4蒸発器)H3とを順に通流した冷媒が合流して更に第1圧縮機Cgを通流した後で室内用熱交換器(凝縮器)H2に帰還し、及び、上記分流された冷媒のうち、弁(第3膨張弁)V5と排熱回収用熱交換器(第3蒸発器)H3と第2圧縮機Ceとを順に通流した冷媒が室内用熱交換器(凝縮器)H2に帰還する。
FIG. 8 is a diagram illustrating the refrigerant circulation state in the third heating circulation state. In the third heating circulation state, the flow path of the refrigerant sent from the first compressor Cg is different from the second heating circulation state, and the flow path of the refrigerant sent from the second compressor Ce is the second heating heating state. Same as the circulation state.
In this case, the engine E operates, and the driving force of the engine E is transmitted to both the first compressor Cg and the generator G. The electric power generated by the generator G is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the second compressor Ce. In the third heating circulation state, the four-way valve V7 is switched so that the refrigerant sent from the first compressor Cg first flows into the indoor heat exchanger H2. The four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the indoor heat exchanger H2. The valve V1 is opened and functions as an expansion valve (first expansion valve), the valve V2 is closed, the valve V3 is closed, the valve V4 is opened, and the valve V5 is opened and the expansion valve (third expansion valve). The valve V6 is opened and functions as an expansion valve (fourth expansion valve). Then, the refrigerant is divided after flowing through the indoor heat exchanger (condenser) H2, and among the divided refrigerant, the valve (first expansion valve) V1 and the outdoor heat exchanger (first evaporator). ) The refrigerant that has passed through H1 in order, the refrigerant that has passed through the valve (fourth expansion valve) V6 and the heat exchanger for exhaust heat recovery (fourth evaporator) H3 join together, and further the first compressor After flowing through Cg, the flow returns to the indoor heat exchanger (condenser) H2, and among the divided refrigerant, the valve (third expansion valve) V5 and the exhaust heat recovery heat exchanger (third The refrigerant that has passed through the evaporator H3 and the second compressor Ce in turn returns to the indoor heat exchanger (condenser) H2.

冷媒が図8に示す第3暖房循環状態で循環された状態で空調運転が行われた場合、室内用熱交換器(凝縮器)H2の下流側で分流された後の冷媒の一方は、第1圧縮機Cgを通流した後で室内用熱交換器(凝縮器)H2に帰還し、及び、室内用熱交換器(凝縮器)H2の下流側で分流された後の冷媒の他方は、第2圧縮機Ceを通流した後で室内用熱交換器(凝縮器)H2に帰還する。更に、第1圧縮機Cgを通流する冷媒の一部は、エンジンEから回収した排熱を用いて冷媒を加熱する排熱回収用熱交換器(第4蒸発器)H3を順に通流した冷媒である。つまり、排熱回収用熱交換器(第4蒸発器)H3では、冷媒に吸熱させるために、エンジンEから回収した排熱を有効に活用することができる。特に、エンジンEから回収した排熱は、大気等から回収できる熱よりも高温であるので、排熱回収用熱交換器(第4蒸発器)H3での冷媒の蒸発温度を高くすることができ、第1圧縮機Cgの動力を低減できる。   When the air conditioning operation is performed in a state where the refrigerant is circulated in the third heating circulation state shown in FIG. 8, one of the refrigerants after being divided on the downstream side of the indoor heat exchanger (condenser) H2 is 1 After flowing through the compressor Cg, the refrigerant is returned to the indoor heat exchanger (condenser) H2, and the other refrigerant after being divided on the downstream side of the indoor heat exchanger (condenser) H2, After flowing through the second compressor Ce, it returns to the indoor heat exchanger (condenser) H2. Further, a part of the refrigerant flowing through the first compressor Cg sequentially passed through the exhaust heat recovery heat exchanger (fourth evaporator) H3 that heats the refrigerant using the exhaust heat recovered from the engine E. Refrigerant. That is, in the heat exchanger for recovering exhaust heat (fourth evaporator) H3, the exhaust heat recovered from the engine E can be effectively used in order to absorb heat by the refrigerant. In particular, since the exhaust heat recovered from the engine E is higher than the heat recoverable from the atmosphere or the like, the evaporation temperature of the refrigerant in the exhaust heat recovery heat exchanger (fourth evaporator) H3 can be increased. The power of the first compressor Cg can be reduced.

第2暖房循環状態で冷媒を循環させるのか、又は、第3暖房循環状態で冷媒を循環させるのかは、冷媒が室外用熱交換器(第1蒸発器)H1で充分な熱を回収できているか否かに基づいて切り替えることができる。
例えば、制御装置10は、室外用熱交換器(第1蒸発器)H1に供給される外気の温度が基準外気温度以上であれば第2暖房循環状態で冷媒を循環させ、室外用熱交換器(第1蒸発器)H1に供給される外気の温度が基準外気温度未満であれば第3暖房循環状態で冷媒を循環させるといった切り替えを行う。
或いは、制御装置10は、例えば、室外用熱交換器(第1蒸発器)H1での冷媒の蒸発温度(温度センサT4で計測される冷媒の温度)が基準冷媒温度以上であれば、冷媒が室外用熱交換器(第1蒸発器)H1で充分な熱を回収できていると判定して、第2暖房循環状態で冷媒を循環させ、室外用熱交換器(第1蒸発器)H1での冷媒の蒸発温度(温度センサT4で計測される冷媒の温度)が基準冷媒温度未満であれば、冷媒が室外用熱交換器(第1蒸発器)H1で充分な熱を回収できていないと判定して、第3暖房循環状態で冷媒を循環させる。
Whether the refrigerant circulates in the second heating circulation state or whether the refrigerant is circulated in the third heating circulation state, is the refrigerant recovering sufficient heat in the outdoor heat exchanger (first evaporator) H1? It can be switched based on whether or not.
For example, the control device 10 causes the refrigerant to circulate in the second heating circulation state if the temperature of the outside air supplied to the outdoor heat exchanger (first evaporator) H1 is equal to or higher than the reference outside air temperature, and the outdoor heat exchanger (First evaporator) When the temperature of the outside air supplied to H1 is lower than the reference outside air temperature, switching is performed such that the refrigerant is circulated in the third heating circulation state.
Alternatively, for example, if the evaporation temperature of the refrigerant in the outdoor heat exchanger (first evaporator) H1 (the refrigerant temperature measured by the temperature sensor T4) is equal to or higher than the reference refrigerant temperature, the control device 10 It is determined that sufficient heat can be recovered by the outdoor heat exchanger (first evaporator) H1, the refrigerant is circulated in the second heating circulation state, and the outdoor heat exchanger (first evaporator) H1 is used. If the evaporation temperature of the refrigerant (the temperature of the refrigerant measured by the temperature sensor T4) is lower than the reference refrigerant temperature, the refrigerant has not recovered sufficient heat in the outdoor heat exchanger (first evaporator) H1. It determines and circulates a refrigerant | coolant in a 3rd heating circulation state.

図9は、第4暖房循環状態での冷媒の循環状態を説明する図である。この場合、エンジンEは停止しているため第1圧縮機Cgは動作しない。そして、電力系統1から受電した電力が電動モータMに供給されて、電動モータMの駆動力が第2圧縮機Ceに伝達される。この第4暖房循環状態では、四方弁V8は、第2圧縮機Ceから送出された冷媒が先ず室内用熱交換器H2に流入するように切り替えられる。弁V1は閉止され、弁V2は開放されて膨張弁(第2膨張弁)として機能し、弁V3は閉止され、弁V4は開放され、弁V5は閉止され、弁V6は閉止される。そして、第2圧縮機Ceから送出される冷媒が、室内用熱交換器(凝縮器)H2と弁(第2膨張弁)V2と室外用熱交換器(第2蒸発器)H1とを順に通流した後で第2圧縮機Ceに帰還する。   FIG. 9 is a diagram illustrating the refrigerant circulation state in the fourth heating circulation state. In this case, since the engine E is stopped, the first compressor Cg does not operate. And the electric power received from the electric power grid | system 1 is supplied to the electric motor M, and the driving force of the electric motor M is transmitted to the 2nd compressor Ce. In the fourth heating circulation state, the four-way valve V8 is switched so that the refrigerant sent from the second compressor Ce first flows into the indoor heat exchanger H2. The valve V1 is closed, the valve V2 is opened and functions as an expansion valve (second expansion valve), the valve V3 is closed, the valve V4 is opened, the valve V5 is closed, and the valve V6 is closed. The refrigerant delivered from the second compressor Ce passes through the indoor heat exchanger (condenser) H2, the valve (second expansion valve) V2, and the outdoor heat exchanger (second evaporator) H1 in this order. After flowing, it returns to the second compressor Ce.

制御装置10は、空調運転に要求されている要求負荷が基準負荷以上のとき、第1圧縮機Cg及び第2圧縮機Ceの両方を動作させて、冷媒を上記第1暖房循環状態又は上記第2暖房循環状態又は上記第3暖房循環状態で循環させる。このように、空調運転に要求されている要求負荷が相対的に大きいとき、即ち、空調用空気と冷媒との熱交換を行う室内用熱交換器(凝縮器)H2に通流させる冷媒量が相対的に多く必要になるとき、駆動されるエンジンEには相対的に大きな出力が要求される。つまり、効率が高くなる状態でエンジンEを動作させながら空調運転を行うことができる。そして、上述したように、制御装置10は、冷媒温度検証処理での検証結果に基づいて、冷媒を上記第1暖房循環状態で循環させるのか、或いは、冷媒を上記第2暖房循環状態又は上記第3暖房循環状態で循環させるのかを切り替える。更に、上述したように、制御装置10は、例えば外気温度に基づいて、冷媒を上記第2暖房循環状態で循環させるのか、又は、冷媒を上記第3暖房循環状態で循環させるのかを切り替える。   The control device 10 operates both the first compressor Cg and the second compressor Ce when the required load required for the air-conditioning operation is equal to or higher than the reference load, and causes the refrigerant to be in the first heating circulation state or the first heating state. It circulates in 2 heating circulation state or the said 3rd heating circulation state. As described above, when the required load required for the air conditioning operation is relatively large, that is, the amount of refrigerant to be passed through the indoor heat exchanger (condenser) H2 that performs heat exchange between the air for air conditioning and the refrigerant is small. When a relatively large amount is required, the driven engine E is required to have a relatively large output. That is, the air conditioning operation can be performed while operating the engine E in a state where the efficiency is high. Then, as described above, the control device 10 circulates the refrigerant in the first heating circulation state based on the verification result in the refrigerant temperature verification processing, or the refrigerant is in the second heating circulation state or the second heating circulation state. 3 Switch whether to circulate in the heating circulation state. Furthermore, as described above, the control device 10 switches whether the refrigerant is circulated in the second heating circulation state or the refrigerant is circulated in the third heating circulation state based on, for example, the outside air temperature.

これに対して、空調運転に要求されている要求負荷が基準負荷未満のとき、エンジンEを動作させず(即ち、発電機Gを動作させず)、第2圧縮機Ceを電力系統1から受電した電力で動作させて、冷媒を上記第4暖房循環状態で循環させる。このような運転を行うことで、エンジンEの効率が低くなることを避けながら、空調運転に要求されている要求負荷を賄うことができる。   On the other hand, when the required load required for the air conditioning operation is less than the reference load, the engine E is not operated (that is, the generator G is not operated), and the second compressor Ce is received from the power system 1. The electric power is operated to circulate the refrigerant in the fourth heating circulation state. By performing such an operation, the required load required for the air-conditioning operation can be covered while avoiding a decrease in the efficiency of the engine E.

<別実施形態>
<1>
上記実施形態では、本発明の空気調和システムの構成について具体例を挙げて説明したが、その構成は適宜変更可能である。例えば、冷媒が流れる冷媒流路L1の取り回しや、各弁の設置場所などは適宜変更可能である。
<Another embodiment>
<1>
In the said embodiment, although the specific example was given and demonstrated about the structure of the air conditioning system of this invention, the structure can be changed suitably. For example, the handling of the refrigerant flow path L1 through which the refrigerant flows, the installation location of each valve, and the like can be changed as appropriate.

<2>
制御装置10が、エンジンEから排熱を回収した後の冷却水の温度を計測する温度センサT5の測定結果を参照して、冷媒の循環状態を切り替えてもよい。例えば、エンジンEの始動時では、エンジンEから高温の排熱を回収することができないため、冷媒は排熱回収用熱交換器H3で熱交換を行っても、充分に高温の熱を回収することができない。従って、制御装置10は、温度センサT5で計測される冷却水温度(排熱温度)が下限温度以下のとき、冷媒を排熱回収用熱交換器H3には通流させないようにする。つまり、制御装置10は、温度センサT5で計測される冷却水温度(排熱温度)が下限温度以下のとき、冷媒の循環状態を、上述した第1暖房循環状態にして空調運転を行い、温度センサT5で計測される冷却水温度(排熱温度)が下限温度より高いとき、冷媒の循環状態を、上述した第2暖房循環状態又は第3暖房循環状態にして空調運転を行ってもよい。
<2>
The control device 10 may switch the circulation state of the refrigerant with reference to the measurement result of the temperature sensor T5 that measures the temperature of the cooling water after recovering the exhaust heat from the engine E. For example, when the engine E is started, high-temperature exhaust heat cannot be recovered from the engine E. Therefore, the refrigerant recovers sufficiently high-temperature heat even if heat is exchanged by the exhaust heat recovery heat exchanger H3. I can't. Therefore, the control device 10 prevents the refrigerant from flowing through the exhaust heat recovery heat exchanger H3 when the coolant temperature (exhaust heat temperature) measured by the temperature sensor T5 is equal to or lower than the lower limit temperature. That is, when the cooling water temperature (exhaust heat temperature) measured by the temperature sensor T5 is equal to or lower than the lower limit temperature, the control device 10 performs the air conditioning operation with the refrigerant circulation state set to the first heating circulation state described above. When the coolant temperature (exhaust heat temperature) measured by the sensor T5 is higher than the lower limit temperature, the refrigerant may be circulated in the second heating circulation state or the third heating circulation state described above to perform the air conditioning operation.

<3>
上記実施形態では、室内用熱交換器H2が1台だけ設けられた例を説明したが、室内用熱交換器H2が複数台設けられていてもよい。そして、上記実施形態で説明した室内用熱交換器H2での冷媒の温度(温度センサT2で計測される冷媒の温度)として、それら複数台の室内用熱交換器H2での冷媒温度の平均値などを採用してもよい。
<3>
In the above embodiment, an example in which only one indoor heat exchanger H2 is provided has been described. However, a plurality of indoor heat exchangers H2 may be provided. And as the temperature of the refrigerant in the indoor heat exchanger H2 described in the above embodiment (the temperature of the refrigerant measured by the temperature sensor T2), the average value of the refrigerant temperature in the plurality of indoor heat exchangers H2 Etc. may be adopted.

<4>
上記実施形態において、制御装置10は、第1冷房循環状態と第2冷房循環状態とを別の判定基準に基づいて切り替えてもよい。
例えば、制御装置10は、室内用熱交換器H2に吸い込まれる室内空気の温度(温度センサT6で測定された室内空気の温度)が、室外用熱交換器H1に吸い込まれる外気の温度(温度センサT7で測定された空気の温度)より低いと判定したとき、冷媒の循環状態を第2冷房循環状態にしてその後の空調運転を行わせる。これに対して、制御装置10は、室内用熱交換器H2に吸い込まれる室内空気の温度(T6)が外気の温度(T7)以上であると判定したとき、冷媒の循環状態を第1冷房循環状態にしてその後の空調運転を行わせる。ここで、室内用熱交換器H2が複数台設けられている場合には、それら複数台の室内用熱交換器H2のそれぞれに吸い込まれる室内空気の温度の平均値を、上述した室内空気の温度として採用してもよい。
<4>
In the above embodiment, the control device 10 may switch between the first cooling circulation state and the second cooling circulation state based on another determination criterion.
For example, the controller 10 determines that the temperature of the indoor air sucked into the indoor heat exchanger H2 (the temperature of the indoor air measured by the temperature sensor T6) is the temperature of the outdoor air sucked into the outdoor heat exchanger H1 (temperature sensor). When it is determined that the temperature is lower than the temperature of the air measured in T7, the refrigerant circulation state is changed to the second cooling circulation state, and the subsequent air conditioning operation is performed. On the other hand, when the control device 10 determines that the temperature (T6) of the indoor air sucked into the indoor heat exchanger H2 is equal to or higher than the temperature (T7) of the outside air, the circulation state of the refrigerant is changed to the first cooling circulation. The air conditioning operation is performed after that. Here, when a plurality of indoor heat exchangers H2 are provided, the average value of the temperature of the indoor air sucked into each of the plurality of indoor heat exchangers H2 is the temperature of the indoor air described above. May be adopted.

他にも、制御装置10は、過冷却効果が得られるか否かに基づいて、第1冷房循環状態と第2冷房循環状態とを切り替えてもよい。
例えば、制御装置10は、空調運転を行っている間の所定のタイミングで冷媒を第2冷房循環状態で循環させながら冷媒の温度を検証する冷媒温度検証処理を行う。この冷媒温度検証処理では、制御装置10は、第1圧縮機Cgから送出される冷媒の循環系統の途中で、室外用熱交換器H1と熱交換器(過冷却器)H4との間を流れる冷媒の温度(温度センサT4で測定される冷媒の温度)と、熱交換器H4と弁V4との間を流れる冷媒の温度(温度センサT8で測定される冷媒の温度)とを比較する。ここで、室外用熱交換器H1と熱交換器(過冷却器)H4との間を流れる冷媒温度(T4)は過冷却が施される前の冷媒温度であり、熱交換器H4と弁V4との間を流れる冷媒の温度(T8)は過冷却が施された後の冷媒の温度である。つまり、制御装置10は、熱交換器(過冷却器)H4による過冷却が施される前後での冷媒の温度を比較している。そして、制御装置10は、熱交換器H4と弁V4との間を流れる冷媒の温度(T8)が、室外用熱交換器H1と熱交換器(過冷却器)H4との間を流れる冷媒温度(T4)よりも所定温度以上低くなっているときには、相対的に大きな過冷却効果が得られていると判定して、冷媒を第2冷房循環状態で循環させた状態で空調運転を行う。これに対して、制御装置10は、熱交換器H4と弁V4との間を流れる冷媒の温度(T8)が、室外用熱交換器H1と熱交換器(過冷却器)H4との間を流れる冷媒温度(T4)よりも所定温度以上低くなっていないときには、相対的に大きな過冷却効果が得られていないと判定して、冷媒を第1冷房循環状態で循環させた状態で空調運転を行う。
In addition, the control device 10 may switch between the first cooling circulation state and the second cooling circulation state based on whether or not the supercooling effect is obtained.
For example, the control device 10 performs a refrigerant temperature verification process for verifying the temperature of the refrigerant while circulating the refrigerant in the second cooling circulation state at a predetermined timing during the air conditioning operation. In this refrigerant temperature verification process, the control device 10 flows between the outdoor heat exchanger H1 and the heat exchanger (supercooler) H4 in the middle of the circulation system of the refrigerant sent from the first compressor Cg. The temperature of the refrigerant (the temperature of the refrigerant measured by the temperature sensor T4) is compared with the temperature of the refrigerant flowing between the heat exchanger H4 and the valve V4 (the temperature of the refrigerant measured by the temperature sensor T8). Here, the refrigerant temperature (T4) flowing between the outdoor heat exchanger H1 and the heat exchanger (supercooler) H4 is the refrigerant temperature before the supercooling, and the heat exchanger H4 and the valve V4. The temperature (T8) of the refrigerant flowing between the two is the temperature of the refrigerant after being supercooled. That is, the control device 10 compares the refrigerant temperatures before and after the supercooling by the heat exchanger (supercooler) H4. And the control apparatus 10 is the temperature of the refrigerant | coolant which the temperature (T8) of the refrigerant | coolant which flows between the heat exchanger H4 and the valve V4 flows between the outdoor heat exchanger H1 and the heat exchanger (supercooler) H4. When the temperature is lower than the predetermined temperature by (T4) or more, it is determined that a relatively large supercooling effect is obtained, and the air conditioning operation is performed in a state where the refrigerant is circulated in the second cooling circulation state. On the other hand, the control device 10 determines that the temperature (T8) of the refrigerant flowing between the heat exchanger H4 and the valve V4 is between the outdoor heat exchanger H1 and the heat exchanger (supercooler) H4. When the refrigerant temperature (T4) is not lower than the predetermined temperature by a predetermined temperature or more, it is determined that a relatively large supercooling effect is not obtained, and the air conditioning operation is performed with the refrigerant circulated in the first cooling circulation state. Do.

本発明は、冷媒の流路が最適化された空気調和システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for an air conditioning system in which the refrigerant flow path is optimized.

1 電力系統
H1 室外用熱交換器(蒸発器、凝縮器)
H2 室内用熱交換器(蒸発器、凝縮器)
H3 排熱回収用熱交換器(蒸発器)
H4 過冷却器(熱交換器)
Cg 第1圧縮機
Ce 第2圧縮機
G 発電機
E エンジン
M 電動モータ
V1 弁(膨張弁)
V2 弁(膨張弁)
V3 弁(膨張弁)
V4 弁(膨張弁)
V5 弁(膨張弁)
V6 弁(膨張弁)
10 制御装置
11 エンジン制御手段
12 発電制御手段
13 電動モータ制御手段
14 循環経路制御手段
1 Power system H1 Outdoor heat exchanger (evaporator, condenser)
H2 Indoor heat exchanger (evaporator, condenser)
H3 Waste heat recovery heat exchanger (evaporator)
H4 subcooler (heat exchanger)
Cg 1st compressor Ce 2nd compressor G Generator E Engine M Electric motor V1 Valve (expansion valve)
V2 valve (expansion valve)
V3 valve (expansion valve)
V4 valve (expansion valve)
V5 valve (expansion valve)
V6 valve (expansion valve)
DESCRIPTION OF SYMBOLS 10 Control apparatus 11 Engine control means 12 Electric power generation control means 13 Electric motor control means 14 Circulation path control means

Claims (5)

エンジンと、前記エンジンによって駆動されて冷媒を圧縮する第1圧縮機と、前記エンジンによって駆動されて発電する発電機と、前記発電機から供給される電力及び電力系統から受電した電力の内の前記発電機から供給される電力を優先して消費して動作する電動モータと、前記電動モータによって駆動されて冷媒を圧縮する第2圧縮機と、冷媒から放熱させる凝縮器と、冷媒を膨張させる第1膨張弁と、冷媒を膨張させる第2膨張弁と、冷媒を膨張させる第3膨張弁と、冷媒に吸熱させる第1蒸発器と、冷媒に吸熱させる第2蒸発器と、前記エンジンから回収した排熱を冷媒に吸熱させる第3蒸発器と、前記エンジンの動作を制御するエンジン制御手段、及び、前記発電機の動作を制御する発電制御手段、及び、前記電動モータの動作を制御する電動モータ制御手段、及び、冷媒の循環経路を切り替える循環経路制御手段を有する制御装置とを備え、
前記制御装置は、前記エンジン制御手段と前記発電制御手段と前記電動モータ制御手段と前記循環経路制御手段とによる制御によって、冷媒の循環状態を切り替えながら前記凝縮器を通流する冷媒と熱交換した空調用空気を空調対象空間へ供給する空調運転を行うように構成され、
冷媒の循環状態の一つは、冷媒が前記凝縮器を通流した後で分流され、当該分流された冷媒の一方が前記第1膨張弁と前記第1蒸発器と前記第1圧縮機とを順に通流した後で前記凝縮器に帰還し、及び、前記分流された冷媒の他方が前記第2膨張弁と前記第2蒸発器と前記第2圧縮機とを順に通流した後で前記凝縮器に帰還する第1暖房循環状態であり、
冷媒の循環状態の別の一つは、冷媒が前記凝縮器を通流した後で分流され、当該分流された後の冷媒の一方が前記第1膨張弁と前記第1蒸発器と前記第1圧縮機とを順に通流した後で前記凝縮器に帰還し、及び、前記分流された後の冷媒の他方が前記第3膨張弁と前記第3蒸発器と前記第2圧縮機とを順に通流した後で前記凝縮器に帰還する第2暖房循環状態である空気調和システム。
Of the engine, the first compressor driven by the engine to compress the refrigerant, the generator driven by the engine to generate power, the power supplied from the generator and the power received from the power system An electric motor that operates by preferentially consuming electric power supplied from the generator, a second compressor that is driven by the electric motor to compress the refrigerant, a condenser that dissipates heat from the refrigerant, and a second that expands the refrigerant. 1 expansion valve, a second expansion valve for expanding the refrigerant, a third expansion valve for expanding the refrigerant, a first evaporator for absorbing heat into the refrigerant, a second evaporator for absorbing heat into the refrigerant, and recovered from the engine A third evaporator that absorbs exhaust heat into the refrigerant, engine control means for controlling the operation of the engine, power generation control means for controlling the operation of the generator, and operations of the electric motor. Gosuru electric motor control means, and a control device having a circulation path control means for switching the circulation path of the refrigerant,
The control device exchanges heat with the refrigerant flowing through the condenser while switching the refrigerant circulation state under the control of the engine control means, the power generation control means, the electric motor control means, and the circulation path control means. It is configured to perform air conditioning operation to supply air conditioning air to the air conditioning target space,
One of the circulating states of the refrigerant is divided after the refrigerant flows through the condenser, and one of the divided refrigerant passes through the first expansion valve, the first evaporator, and the first compressor. The refrigerant is returned to the condenser after flowing in order, and the other of the divided refrigerant flows through the second expansion valve, the second evaporator, and the second compressor in order, and then the condensation is performed. The first heating circulation state returning to the oven,
Another one of the circulation states of the refrigerant is divided after the refrigerant flows through the condenser, and one of the divided refrigerant is the first expansion valve, the first evaporator, and the first. After passing through the compressor in order, the refrigerant is returned to the condenser, and the other of the divided refrigerant passes through the third expansion valve, the third evaporator, and the second compressor in order. The air conditioning system which is the 2nd heating circulation state which returns to the said condenser after flowing.
前記制御装置は、前記空調運転を行っている間の所定のタイミングで冷媒を前記第2暖房循環状態で循環させながら冷媒の温度を検証する冷媒温度検証処理を行い、
前記冷媒温度検証処理において、前記第3蒸発器での冷媒の温度が前記第1蒸発器での冷媒の温度より高いと判定したとき、冷媒の循環状態を前記第2暖房循環状態にしてその後の前記空調運転を行わせ、
前記冷媒温度検証処理において、前記第3蒸発器での冷媒の温度が前記第1蒸発器での冷媒の温度以下であると判定したとき、冷媒の循環状態を前記第1暖房循環状態にしてその後の前記空調運転を行わせる請求項1に記載の空気調和システム。
The control device performs a refrigerant temperature verification process for verifying the temperature of the refrigerant while circulating the refrigerant in the second heating circulation state at a predetermined timing during the air conditioning operation,
In the refrigerant temperature verification process, when it is determined that the temperature of the refrigerant in the third evaporator is higher than the temperature of the refrigerant in the first evaporator, the refrigerant circulation state is changed to the second heating circulation state and thereafter Let the air conditioning operation
In the refrigerant temperature verification process, when it is determined that the refrigerant temperature in the third evaporator is equal to or lower than the refrigerant temperature in the first evaporator, the refrigerant circulation state is changed to the first heating circulation state and thereafter The air conditioning system according to claim 1, wherein the air conditioning operation is performed.
冷媒を膨張させる第4膨張弁と、
前記エンジンから回収した排熱を冷媒に吸熱させる第4蒸発器とを備え、
前記制御装置が前記空調運転を行うときの冷媒の循環状態の更に別の一つは、冷媒が前記凝縮器を通流した後で分流され、当該分流された冷媒のうち、前記第1膨張弁と前記第1蒸発器とを順に通流した冷媒と、前記第4膨張弁と前記第4蒸発器とを順に通流した冷媒とが合流して更に前記第1圧縮機を通流した後で前記凝縮器に帰還し、及び、前記分流された冷媒のうち、前記第3膨張弁と前記第3蒸発器と前記第2圧縮機とを順に通流した冷媒が前記凝縮器に帰還する第3暖房循環状態である請求項1又は2に記載の空気調和システム。
A fourth expansion valve for expanding the refrigerant;
A fourth evaporator that causes the refrigerant to absorb the exhaust heat recovered from the engine,
Another one of the circulation states of the refrigerant when the control device performs the air conditioning operation is that the refrigerant is diverted after flowing through the condenser, and the first expansion valve among the diverted refrigerant is used. And the refrigerant that has passed through the first evaporator and the refrigerant that has passed through the fourth expansion valve and the fourth evaporator have joined together and further passed through the first compressor. Returning to the condenser, and among the divided refrigerant, the refrigerant that has passed through the third expansion valve, the third evaporator, and the second compressor in turn returns to the condenser. The air conditioning system according to claim 1 or 2, which is in a heating circulation state.
前記制御装置が前記空調運転を行うときの冷媒の循環状態の更に別の一つは、前記第2圧縮機から送出される冷媒が、前記凝縮器と前記第2膨張弁と前記第2蒸発器とを順に通流した後で前記第2圧縮機に帰還する第4暖房循環状態であり、
前記制御装置は、前記空調運転に要求されている要求負荷が基準負荷以上のとき、冷媒を前記第1暖房循環状態又は前記第2暖房循環状態で循環させながら前記空調運転を行い、及び、前記要求負荷が前記基準負荷未満のとき、前記エンジンを動作させず、冷媒を前記第4暖房循環状態で循環させながら前記空調運転を行う請求項1〜3の何れか一項に記載の空気調和システム。
Another one of the circulation states of the refrigerant when the control device performs the air conditioning operation is that the refrigerant sent from the second compressor is the condenser, the second expansion valve, and the second evaporator. And the fourth heating circulation state of returning to the second compressor after sequentially passing
The control device performs the air conditioning operation while circulating the refrigerant in the first heating circulation state or the second heating circulation state when a required load required for the air conditioning operation is a reference load or more, and The air conditioning system according to any one of claims 1 to 3, wherein when the required load is less than the reference load, the air conditioning operation is performed while circulating the refrigerant in the fourth heating circulation state without operating the engine. .
前記凝縮器は、前記空調対象空間内に供給する前記空調用空気と熱交換する室内用熱交換器であり、
前記第1蒸発器及び前記第2蒸発器は、前記空調対象空間外に存在する外気と熱交換する室外用熱交換器である請求項1〜4の何れか一項に記載の空気調和システム。
The condenser is an indoor heat exchanger that exchanges heat with the air-conditioning air supplied into the air-conditioning target space,
The air conditioning system according to any one of claims 1 to 4, wherein the first evaporator and the second evaporator are outdoor heat exchangers that exchange heat with outside air existing outside the air-conditioning target space.
JP2014212934A 2014-10-17 2014-10-17 Air conditioning system Active JP6448295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212934A JP6448295B2 (en) 2014-10-17 2014-10-17 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212934A JP6448295B2 (en) 2014-10-17 2014-10-17 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2016080276A true JP2016080276A (en) 2016-05-16
JP6448295B2 JP6448295B2 (en) 2019-01-09

Family

ID=55956097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212934A Active JP6448295B2 (en) 2014-10-17 2014-10-17 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6448295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080275A (en) * 2014-10-17 2016-05-16 大阪瓦斯株式会社 Air conditioning system
WO2018079517A1 (en) * 2016-10-31 2018-05-03 パナソニックIpマネジメント株式会社 Air conditioning apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168540A (en) * 2000-12-01 2002-06-14 Tokyo Gas Co Ltd Multiple air conditioner
JP2003056944A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005226873A (en) * 2004-02-10 2005-08-25 Mitsubishi Heavy Ind Ltd Air conditioner
EP1744109A2 (en) * 2005-07-12 2007-01-17 Lg Electronics Inc. Cogeneration system
JP6351478B2 (en) * 2014-10-17 2018-07-04 大阪瓦斯株式会社 Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168540A (en) * 2000-12-01 2002-06-14 Tokyo Gas Co Ltd Multiple air conditioner
JP2003056944A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005226873A (en) * 2004-02-10 2005-08-25 Mitsubishi Heavy Ind Ltd Air conditioner
EP1744109A2 (en) * 2005-07-12 2007-01-17 Lg Electronics Inc. Cogeneration system
JP6351478B2 (en) * 2014-10-17 2018-07-04 大阪瓦斯株式会社 Air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080275A (en) * 2014-10-17 2016-05-16 大阪瓦斯株式会社 Air conditioning system
WO2018079517A1 (en) * 2016-10-31 2018-05-03 パナソニックIpマネジメント株式会社 Air conditioning apparatus
GB2570817A (en) * 2016-10-31 2019-08-07 Panasonic Ip Man Co Ltd Air conditioning apparatus
GB2570817B (en) * 2016-10-31 2021-03-24 Panasonic Ip Man Co Ltd Air conditioning apparatus

Also Published As

Publication number Publication date
JP6448295B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP5611376B2 (en) Air conditioner
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
JP6641500B2 (en) Air conditioning system
JP6000373B2 (en) Air conditioner
KR102510371B1 (en) Heat exchange system for vehicle
KR20160086636A (en) Air conditioner
JP6351478B2 (en) Air conditioning system
WO2011052049A1 (en) Air conditioning device
WO2017163659A1 (en) Air conditioner for vehicle
JP6448295B2 (en) Air conditioning system
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP5312616B2 (en) Air conditioner
JP2009270773A (en) Cold system
JP2006300396A (en) Air conditioner
KR20170074226A (en) Air conditioning system for vehicle
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems
KR20100024157A (en) Heat pump system and method for controlling the same
JP6258005B2 (en) Air conditioning system
JP6422363B2 (en) Air conditioning system
JP6425576B2 (en) Air conditioning system
KR102066694B1 (en) An engine-driven heat pump system
JP5907812B2 (en) Heat pump system and operation method thereof
JP2011226757A (en) Air conditioner for fan coil type radiation air conditioning panel with heat pump
KR101361225B1 (en) A system for heating water which can operates air conditioning
KR101374912B1 (en) A system for heating water which can operates air conditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150