JP2016079872A - Ozone supply device - Google Patents

Ozone supply device Download PDF

Info

Publication number
JP2016079872A
JP2016079872A JP2014211161A JP2014211161A JP2016079872A JP 2016079872 A JP2016079872 A JP 2016079872A JP 2014211161 A JP2014211161 A JP 2014211161A JP 2014211161 A JP2014211161 A JP 2014211161A JP 2016079872 A JP2016079872 A JP 2016079872A
Authority
JP
Japan
Prior art keywords
ozone
concentration
amount
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014211161A
Other languages
Japanese (ja)
Other versions
JP6515481B2 (en
Inventor
真央 細田
Mao Hosoda
真央 細田
矢羽田 茂人
Shigeto Yabaneta
茂人 矢羽田
祐季 樽澤
Yuki Tarusawa
祐季 樽澤
衣川 真澄
Masumi Kinugawa
真澄 衣川
佑輔 真島
Yusuke Majima
佑輔 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014211161A priority Critical patent/JP6515481B2/en
Priority to DE102015116257.1A priority patent/DE102015116257B4/en
Publication of JP2016079872A publication Critical patent/JP2016079872A/en
Application granted granted Critical
Publication of JP6515481B2 publication Critical patent/JP6515481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/204Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2025Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/38Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress excess and deficiency in amount of produced ozone.SOLUTION: There is provided an ozone supply device for oxidizing NO contained in the exhaust gas into NOby supplying ozone to an upstream side of NOx removal device 12 in the exhaust gas passage 10ex of an internal combustion engine 10. This ozone supply device comprises: an ozonizer 30 for generating ozone through electrical discharge; taking means 41a and a control means 41b to be described as follows. The taking means 41a takes as NO reduction correlation values, some physical quantities related to a cause for reducing NOinto NO in a portion upstream of the NOx removal device 12, of the exhaust passage 10ex or within the NOx removal device. The control means 41b controls ozone production amount by the ozonizer 30 in accordance with NO reduction correlation value got by the taking means 41a.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気通路のうちNOx浄化装置の上流側へオゾンを供給することで、排気中のNOをNOに変化させるオゾン供給装置に関する。 The present invention relates to an ozone supply device that changes NO in exhaust gas to NO 2 by supplying ozone to an upstream side of a NOx purification device in an exhaust passage of an internal combustion engine.

排気中のNOx(窒素酸化物)を浄化するシステムの一つに、排気中のNOx(窒素酸化物)を吸蔵して浄化するものがある。このようなNOx吸蔵の反応は、NO(一酸化窒素)に比べてNO(二酸化窒素)の方が活発である。そのため、特許文献1に記載の如く、オゾン供給装置により排気通路へオゾンを供給してNOをNOに酸化させれば、吸蔵効率を向上できる。 One system that purifies NOx (nitrogen oxide) in exhaust gas is one that stores and purifies NOx (nitrogen oxide) in exhaust gas. In such NOx occlusion reaction, NO 2 (nitrogen dioxide) is more active than NO (nitrogen monoxide). Therefore, as described in Patent Document 1, if the oxidation of NO with ozone is supplied to the exhaust passage to the NO 2 by ozone supply device, it is possible to improve the storage efficiency.

また、別のNOx浄化システムの一つとして、還元触媒上で還元剤によりNOxを還元させて浄化するものがある。この種のシステムの場合、排気通路へ尿素水を供給して、アンモニアを還元剤として還元触媒へ供給するものや、炭化水素を還元剤として排気通路へ供給するものがある。これらのシステムの場合には、排気中のNOとNOの比率を最適値にするとNOx浄化率が向上することが知られている。そのため、オゾン供給装置により排気通路へオゾンを供給してNOをNOに酸化させることで、NOとNOの比率を最適値にすることでNOx浄化率を向上させることが望ましい。 As another NOx purification system, there is a system in which NOx is reduced and reduced by a reducing agent on a reduction catalyst. In the case of this type of system, there is a system in which urea water is supplied to the exhaust passage and ammonia is supplied to the reduction catalyst as a reducing agent, and a hydrocarbon is supplied to the exhaust passage as a reducing agent. In the case of these systems, it is known that the NOx purification rate is improved by optimizing the ratio of NO and NO 2 in the exhaust gas. Therefore, the NO and supplying ozone to the exhaust passage by oxidizing to NO 2 by ozone supply device, it is desirable to improve the NOx purification rate by the optimum value the ratio of NO and NO 2.

特開2008−163887号公報JP 2008-163887 A

さて、オゾンは放電により生成することが一般的であるが、オゾン生成量を必要最小限にして、放電での消費電力を低減させることが要求される。そこで、上述した各種のNOx浄化システムに用いられる従来のオゾン供給装置では、排気中のNO量に応じた量だけオゾンを生成して排気通路へ供給させている。   Now, ozone is generally generated by discharge, but it is required to reduce the amount of ozone generated and to reduce power consumption in discharge. Therefore, in the conventional ozone supply device used in the various NOx purification systems described above, ozone is generated in an amount corresponding to the NO amount in the exhaust gas and supplied to the exhaust passage.

しかしながら、排気通路のうちNOx浄化装置の上流部分またはNOx浄化装置の内部において、オゾン供給によりNOから生成されたNOが、還元されてNOに戻る現象が生じる場合がある、との知見を本発明者らは得た。そして、このような現象が生じると、所望のNO量よりも実際のNO量が少なくなり、NOx浄化効率の悪化を招くことが懸念される。 However, based on the knowledge that NO 2 generated from NO by ozone supply may be reduced to return to NO in the upstream portion of the NOx purification device or inside the NOx purification device in the exhaust passage. The inventors obtained. When such a phenomenon occurs, the less the actual NO 2 content than the desired NO 2 amount, there is a concern that leads to deterioration of the NOx purification efficiency.

本発明は、上記問題を鑑みてなされたもので、その目的は、オゾン生成量の過不足抑制を図ったオゾン供給装置を提供することにある。   This invention is made | formed in view of the said problem, The objective is to provide the ozone supply apparatus aiming at suppression of excess and deficiency of the amount of ozone production.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。   The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the invention. .

開示される発明のひとつは、内燃機関(10)の排気通路(10ex)に配置され、排気中のNOxを浄化するNOx浄化装置(12、12A)を備えた燃焼システムに設けられ、排気通路のうちNOx浄化装置の上流側へオゾンを供給することで、排気中のNOをNOに酸化させるオゾン供給装置において、放電によりオゾンを生成するオゾナイザ(30)と、排気通路のうちNOx浄化装置よりも上流側の部分またはNOx浄化装置の内部でNOをNOに還元させる要因と相関のある物理量を、NO還元相関値として取得する取得手段(41a)と、取得手段により取得されたNO還元相関値に応じて、オゾナイザによるオゾン生成量を制御する制御手段(41b)と、を備えることを特徴とする。 One of the disclosed inventions is provided in a combustion system that is disposed in an exhaust passage (10ex) of an internal combustion engine (10) and includes a NOx purification device (12, 12A) that purifies NOx in exhaust gas. Among them, in the ozone supply device that oxidizes NO in the exhaust to NO 2 by supplying ozone to the upstream side of the NOx purification device, the ozonizer (30) that generates ozone by discharge, and the NOx purification device in the exhaust passage Acquisition means (41a) that acquires, as the NO reduction correlation value, a physical quantity that correlates with a factor that reduces NO 2 to NO in the upstream portion or inside the NOx purification device, and NO reduction correlation acquired by the acquisition means And a control means (41b) for controlling the amount of ozone generated by the ozonizer according to the value.

この発明によれば、NOをNOに還元させる要因と相関のある物理量(NO還元相関値)に応じて、オゾン生成量を制御する。そのため、NOをNOに還元させる要因に応じて、オゾン生成量を増大させてNOをNOに酸化させる反応を促進できる。よって、NOへの還元要因を考慮してオゾン生成量を調整できるので、上記現象に起因してオゾン生成量に過不足が生じることを抑制できる。 According to the present invention, the ozone generation amount is controlled according to the physical quantity (NO reduction correlation value) correlated with the factor that reduces NO 2 to NO. Therefore, the reaction of increasing the amount of ozone generated and oxidizing NO to NO 2 can be promoted according to the factor that reduces NO 2 to NO. Therefore, since the ozone generation amount can be adjusted in consideration of the reduction factor to NO, it is possible to suppress the excess or deficiency in the ozone generation amount due to the above phenomenon.

本発明の第1実施形態に係るオゾン供給装置としての機能を有する還元剤供給装置、およびこの装置が適用される燃焼システムを示す模式図。The schematic diagram which shows the reducing system which has a function as an ozone supply apparatus which concerns on 1st Embodiment of this invention, and the combustion system to which this apparatus is applied. 冷炎反応と熱炎反応の2段階で酸化反応が生じることを説明するグラフ。The graph explaining that an oxidation reaction arises in two steps, a cold flame reaction and a hot flame reaction. 冷炎反応の反応経路を説明する図。The figure explaining the reaction course of a cold flame reaction. 雰囲気温度および当量比の、2段階酸化反応が生じる範囲を示す図。The figure which shows the range which two-step oxidation reaction produces of atmospheric temperature and equivalent ratio. 図1に示す還元剤供給装置に係る、制御の処理手順を説明するフローチャート。The flowchart explaining the process sequence of control based on the reducing agent supply apparatus shown in FIG. 図5に示す強酸化制御に係る、サブルーチン処理の手順を示すフローチャート。The flowchart which shows the procedure of the subroutine process regarding the strong oxidation control shown in FIG. 図5に示すオゾン供給制御に係る、サブルーチン処理の手順を示すフローチャート。The flowchart which shows the procedure of the subroutine process based on the ozone supply control shown in FIG. 図7の処理で用いる、オゾン供給量を補正する係数とHC濃度との関係を示すマップ。The map which shows the relationship between the coefficient which correct | amends the ozone supply amount used in the process of FIG. 7, and HC density | concentration. 図7の処理で用いる、オゾン供給量を補正する係数とCO濃度との関係を示すマップ。The map which shows the relationship between the coefficient which correct | amends the ozone supply amount used by the process of FIG. 7, and CO density | concentration. 図7の処理で用いる、オゾン供給量を補正する係数と排気温度との関係を示すマップ。The map which shows the relationship between the coefficient which correct | amends the ozone supply amount used in the process of FIG. 7, and exhaust temperature. 図7の処理で用いる、オゾン供給量を補正する係数と触媒温度との関係を示すマップであって、還元触媒上での反応速度を考慮したマップ。FIG. 8 is a map showing a relationship between a coefficient for correcting an ozone supply amount and a catalyst temperature used in the process of FIG. 7, taking into consideration a reaction rate on a reduction catalyst. 図7の処理で用いる、オゾン供給量を補正する係数と触媒温度との関係を示すマップであって、吸着力を考慮したマップ。FIG. 8 is a map showing a relationship between a coefficient for correcting an ozone supply amount and a catalyst temperature used in the process of FIG. CO濃度とNOx吸着率との関係を示す試験結果。The test result which shows the relationship between CO density | concentration and NOx adsorption rate. HC濃度とNOx吸着率との関係を示す試験結果。The test result which shows the relationship between HC density | concentration and NOx adsorption rate. COが原因で低下するNOx吸着率を、オゾンで改善できる旨を表した試験結果。Test results showing that the NOx adsorption rate, which decreases due to CO, can be improved by ozone. HCが原因で低下するNOx吸着率を、オゾンで改善できる旨を表した試験結果。Test results showing that the NOx adsorption rate, which decreases due to HC, can be improved by ozone. 本発明の第2実施形態に係るオゾン供給装置、およびこの装置が適用される燃焼システムを示す模式図。The schematic diagram which shows the ozone supply apparatus which concerns on 2nd Embodiment of this invention, and the combustion system to which this apparatus is applied.

以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。   Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.

(第1実施形態)
図1に示す燃焼システムは、以下に詳述する内燃機関10、過給機11、NOx浄化装置12、微粒子捕集装置(DPF13)、および還元剤添加装置を備える。燃焼システムは車両に搭載されたものであり、当該車両は、内燃機関10の出力を駆動源として走行する。内燃機関10は、圧縮自着火式のディーゼルエンジンであり、燃焼に用いる燃料には、炭化水素化合物である軽油を用いている。内燃機関10は、基本的にはリーン状態で燃焼させるように作動する。つまり、燃焼室に噴射された燃料と燃焼室に吸入される空気との比率である空燃比が、空気過剰に設定された状態で燃焼(リーン燃焼)させている。
(First embodiment)
The combustion system shown in FIG. 1 includes an internal combustion engine 10, a supercharger 11, a NOx purification device 12, a particulate collection device (DPF 13), and a reducing agent addition device, which will be described in detail below. The combustion system is mounted on a vehicle, and the vehicle travels using the output of the internal combustion engine 10 as a drive source. The internal combustion engine 10 is a compression self-ignition type diesel engine, and light oil which is a hydrocarbon compound is used as a fuel used for combustion. The internal combustion engine 10 basically operates to burn in a lean state. That is, combustion is performed (lean combustion) in a state where the air-fuel ratio, which is the ratio between the fuel injected into the combustion chamber and the air sucked into the combustion chamber, is set to an excess of air.

過給機11は、タービン11a、回転軸11bおよびコンプレッサ11cを備える。タービン11aは、内燃機関10の排気通路10exに配置され、排気の運動エネルギにより回転する。回転軸11bは、タービン11aおよびコンプレッサ11cの各インペラを結合することで、タービン11aの回転力をコンプレッサ11cに伝達する。コンプレッサ11cは、内燃機関10の吸気通路10inに配置され、吸気を圧縮して内燃機関10へ過給する。   The supercharger 11 includes a turbine 11a, a rotating shaft 11b, and a compressor 11c. The turbine 11a is disposed in the exhaust passage 10ex of the internal combustion engine 10 and rotates by the kinetic energy of the exhaust. The rotating shaft 11b couples the impellers of the turbine 11a and the compressor 11c to transmit the rotational force of the turbine 11a to the compressor 11c. The compressor 11c is disposed in the intake passage 10in of the internal combustion engine 10, compresses the intake air, and supercharges the internal combustion engine 10.

吸気通路10inのうちコンプレッサ11cの下流側には、コンプレッサ11cで圧縮された吸気(加圧空気)を冷却する冷却器(図示せず)が配置されている。冷却器により冷却された圧縮吸気は、スロットルバルブ(図示せず)により流量調整され、内燃機関10が有する複数の燃焼室へ分配される。排気通路10exのうちタービン11aの下流側にはNOx浄化装置12が配置され、さらにその下流側にはDPF13(Diesel Particulate Filter)が配置されている。DPF13は、排気に含まれている微粒子を捕集する。   A cooler (not shown) for cooling the intake air (pressurized air) compressed by the compressor 11c is disposed on the downstream side of the compressor 11c in the intake passage 10in. The compressed intake air cooled by the cooler is adjusted in flow rate by a throttle valve (not shown) and distributed to a plurality of combustion chambers of the internal combustion engine 10. A NOx purification device 12 is disposed downstream of the turbine 11a in the exhaust passage 10ex, and a DPF 13 (Diesel Particulate Filter) is disposed further downstream. The DPF 13 collects fine particles contained in the exhaust.

排気通路10exのうちNOx浄化装置12の上流側には、還元剤添加装置の供給管23が接続されている。この供給管23から排気通路10exへ、還元剤添加装置により生成された改質燃料が還元剤として添加される。改質燃料とは、還元剤として用いる炭化水素化合物(燃料)を部分的に酸化して、アルデヒド等の部分酸化炭化水素に改質したものであり、図3を用いて後に詳述する。また、還元剤添加装置は、供給管23から排気通路10exへオゾンを供給する機能を有しており、オゾン供給装置を提供する。   A supply pipe 23 of the reducing agent addition device is connected to the exhaust passage 10ex on the upstream side of the NOx purification device 12. The reformed fuel generated by the reducing agent addition device is added as a reducing agent from the supply pipe 23 to the exhaust passage 10ex. The reformed fuel is obtained by partially oxidizing a hydrocarbon compound (fuel) used as a reducing agent and reforming it into a partially oxidized hydrocarbon such as an aldehyde, which will be described in detail later with reference to FIG. Further, the reducing agent addition device has a function of supplying ozone from the supply pipe 23 to the exhaust passage 10ex, and provides an ozone supply device.

NOx浄化装置12は、ハウジング内にハニカム状の担体を収容して構成される。担体の表面にはコーティング材が設けられており、そのコーティング材には還元触媒が担持されている。NOx浄化装置12は、排気中のNOxを還元触媒上で改質燃料と反応させてNに還元することで、排気に含まれているNOxを浄化する。なお、排気中にはNOxの他にO(酸素)も含まれているが、改質燃料はO存在下においてNOxと選択的に反応する。 The NOx purification device 12 is configured by accommodating a honeycomb-shaped carrier in a housing. A coating material is provided on the surface of the carrier, and a reduction catalyst is supported on the coating material. The NOx purification device 12 purifies NOx contained in the exhaust by reacting NOx in the exhaust with the reformed fuel on the reduction catalyst and reducing it to N 2 . The exhaust gas contains O 2 (oxygen) in addition to NOx, but the reformed fuel reacts selectively with NOx in the presence of O 2 .

還元触媒には、NOxを吸着する機能を有したものが用いられている。詳細には、還元反応が可能となる活性化温度よりも触媒温度が低い場合に、還元触媒は排気中のNOxを吸着する機能を発揮する。例えば、担体に担持された銀アルミナによる還元触媒により、NOx吸着機能を有したNOx浄化装置12が提供される。詳細には、担体表面にコーティングされたアルミナに、還元触媒としての銀を担持させた構造である。吸着されていたNOxは、触媒温度が活性化温度以上の場合には、還元触媒から脱離する。そして、脱離したNOxは改質燃料により還元されて浄化される。   A reduction catalyst having a function of adsorbing NOx is used. Specifically, when the catalyst temperature is lower than the activation temperature at which the reduction reaction is possible, the reduction catalyst exhibits a function of adsorbing NOx in the exhaust. For example, the NOx purification device 12 having a NOx adsorption function is provided by a reduction catalyst made of silver alumina supported on a carrier. Specifically, it is a structure in which silver as a reduction catalyst is supported on alumina coated on the support surface. The adsorbed NOx is desorbed from the reduction catalyst when the catalyst temperature is equal to or higher than the activation temperature. The desorbed NOx is reduced and purified by the reformed fuel.

次に、改質燃料を生成して供給管23から排気通路10exへ添加する還元剤添加装置について説明する。還元剤添加装置は、以下に詳述する反応容器20、ヒータ21、噴射弁22、オゾナイザ30およびエアポンプ30pを備える。さらに還元剤添加装置は、以下に詳述する供給管23および送風管26を備え、さらに電子制御装置(ECU40)を備える。   Next, a reducing agent addition device that generates reformed fuel and adds it to the exhaust passage 10ex from the supply pipe 23 will be described. The reducing agent addition apparatus includes a reaction vessel 20, a heater 21, an injection valve 22, an ozonizer 30, and an air pump 30p described in detail below. Further, the reducing agent adding device includes a supply pipe 23 and a blower pipe 26 which will be described in detail below, and further includes an electronic control unit (ECU 40).

オゾナイザ30は、内部に流通路32aを形成するハウジング32を備え、流通路32aには複数の電極31が配置されている。これらの電極31は、互いに平行に対向するように配置された平板形状であり、高電圧が印加される電極と接地電圧の電極とが交互に配置されている。電極31への電圧印加は、ECU40が備えるマイクロコンピュータ(マイコン41)により制御される。   The ozonizer 30 includes a housing 32 that forms a flow passage 32a therein, and a plurality of electrodes 31 are disposed in the flow passage 32a. These electrodes 31 have a flat plate shape arranged so as to face each other in parallel, and electrodes to which a high voltage is applied and electrodes having a ground voltage are alternately arranged. The voltage application to the electrode 31 is controlled by a microcomputer (microcomputer 41) provided in the ECU 40.

オゾナイザ30のハウジング32には、エアポンプ30pにより送風された空気が流入する。エアポンプ30pは、遠心式のエアポンプであり、電動モータにより駆動されるインペラをケース内に収容して構成される。この電動モータはマイコン41により制御される。エアポンプ30pは、ケースに形成された吸入口30inから大気を吸入して加圧し、オゾナイザ30へ送風する。オゾナイザ30へ送風された空気は、ハウジング32内の流通路32aに流入し、電極31間の通路である電極間通路31aを流通する。   The air blown by the air pump 30p flows into the housing 32 of the ozonizer 30. The air pump 30p is a centrifugal air pump, and is configured by housing an impeller driven by an electric motor in a case. This electric motor is controlled by the microcomputer 41. The air pump 30p sucks and pressurizes the air from the suction port 30in formed in the case, and blows air to the ozonizer 30. The air blown to the ozonizer 30 flows into the flow passage 32 a in the housing 32 and flows through the interelectrode passage 31 a that is a passage between the electrodes 31.

オゾナイザ30は、送風管26を介して反応容器20に接続される。送風管26には、電磁駆動式の逆止弁26vが取り付けられている。逆止弁26vの開閉駆動はマイコン41により制御される。詳細には、逆止弁26vの弁体は全開位置と全閉位置とに切り替え制御される。したがって、エアポンプ30pを駆動させて逆止弁26vを開弁駆動させると、電極間通路31aを流通した空気は、送風管26、反応容器20および供給管23を順に流通して排気通路10exへ流入することとなる。つまり、供給管23および送風管26は、エアポンプ30pにより送風される空気を排気通路10exへ導く送風管を提供する。   The ozonizer 30 is connected to the reaction vessel 20 through the blower pipe 26. An electromagnetically driven check valve 26v is attached to the blower pipe 26. The microcomputer 41 controls the opening / closing drive of the check valve 26v. Specifically, the valve body of the check valve 26v is controlled to be switched between a fully open position and a fully closed position. Therefore, when the air pump 30p is driven to open the check valve 26v, the air that has flowed through the interelectrode passage 31a flows through the blower pipe 26, the reaction vessel 20, and the supply pipe 23 in order and flows into the exhaust passage 10ex. Will be. That is, the supply pipe 23 and the blower pipe 26 provide a blower pipe that guides the air blown by the air pump 30p to the exhaust passage 10ex.

反応容器20には、ヒータ21および噴射弁22が取り付けられており、反応容器20の内部には、流入口20inおよび流出口20outと連通する反応室20aが形成されている。ヒータ21は、通電により発熱する発熱部を有し、発熱部への通電はマイコン41により制御される。具体的には、発熱部への電力供給量をマイコン41がデューティ制御することにより、発熱量が制御される。発熱部は反応室20aに配置され、噴射弁22から反応室20aへ噴射された燃料を加熱する。反応室20aの温度は反応室温度センサ27により検出される。反応室温度センサ27は、検出した温度の情報(反応室温度Th)をECU40へ出力する。   A heater 21 and an injection valve 22 are attached to the reaction vessel 20, and a reaction chamber 20a communicating with the inflow port 20in and the outflow port 20out is formed inside the reaction vessel 20. The heater 21 has a heat generating portion that generates heat when energized, and power supply to the heat generating portion is controlled by the microcomputer 41. Specifically, the amount of heat generated is controlled by the microcomputer 41 performing duty control on the amount of power supplied to the heat generating unit. The heat generating portion is disposed in the reaction chamber 20a and heats the fuel injected from the injection valve 22 to the reaction chamber 20a. The temperature of the reaction chamber 20 a is detected by a reaction chamber temperature sensor 27. The reaction chamber temperature sensor 27 outputs the detected temperature information (reaction chamber temperature Th) to the ECU 40.

噴射弁22は、噴孔が形成されたボデー、電気アクチュエータおよび弁体を有する。電気アクチュエータを通電オンさせると、弁体が開弁作動して噴孔から反応室20aへ燃料が噴射され、通電オフさせると弁体が閉弁作動して燃料噴射が停止される。マイコン41は、電気アクチュエータへの通電を制御することで、反応室20aへの単位時間当たりの燃料噴射量を制御する。図示しない燃料タンク内の液体燃料は、図示しない燃料ポンプにより噴射弁22へ供給される。燃料タンク内の燃料は、先述した燃焼用の燃料としても用いられており、内燃機関10の燃焼に用いる燃料と、還元剤として用いる燃料は共用される。   The injection valve 22 has a body in which an injection hole is formed, an electric actuator, and a valve body. When the electric actuator is energized, the valve body opens and fuel is injected from the nozzle hole into the reaction chamber 20a. When the electric actuator is turned off, the valve body closes and fuel injection is stopped. The microcomputer 41 controls the amount of fuel injected per unit time into the reaction chamber 20a by controlling energization to the electric actuator. Liquid fuel in a fuel tank (not shown) is supplied to the injection valve 22 by a fuel pump (not shown). The fuel in the fuel tank is also used as the fuel for combustion described above, and the fuel used for combustion of the internal combustion engine 10 and the fuel used as the reducing agent are shared.

噴射弁22から反応室20aへ噴射された燃料は、発熱部に衝突し、加熱されて気化する。気化した燃料は、流入口20inから反応室20aへ流入した空気と混合される。その結果、空気中の酸素により気体燃料が部分的に酸化され、アルデヒド等の部分酸化炭化水素に改質される。このように改質された気体燃料(改質燃料)は、供給管23を通じて排気通路10exに流入する。   The fuel injected from the injection valve 22 into the reaction chamber 20a collides with the heat generating portion and is heated and vaporized. The vaporized fuel is mixed with the air flowing into the reaction chamber 20a from the inflow port 20in. As a result, the gaseous fuel is partially oxidized by oxygen in the air and reformed into partially oxidized hydrocarbons such as aldehydes. The reformed gaseous fuel (reformed fuel) flows into the exhaust passage 10ex through the supply pipe 23.

さて、オゾナイザ30の電極31へ通電すると、電極31から放出された電子が、電極間通路31aの空気中に含まれる酸素分子に衝突する。すると、酸素分子からオゾンが生成される。つまり、オゾナイザ30は、放電により酸素分子をプラズマ状態にして、活性酸素としてのオゾンを生成する。したがって、オゾナイザ30への通電時には、送風管26を流通する空気にオゾンが含まれる。   When the electrode 31 of the ozonizer 30 is energized, electrons emitted from the electrode 31 collide with oxygen molecules contained in the air in the interelectrode passage 31a. Then, ozone is generated from oxygen molecules. That is, the ozonizer 30 generates oxygen as active oxygen by bringing oxygen molecules into a plasma state by discharge. Therefore, ozone is contained in the air flowing through the blower pipe 26 when the ozonizer 30 is energized.

反応室20aでは以下に詳述する冷炎反応が生じている。この冷炎反応は、流入口20inから流入する空気中の酸素により気体燃料が部分的に酸化される反応である。このように部分的に酸化された燃料(改質燃料)の具体例として、燃料(炭化水素化合物)の一部がアルデヒド基(CHO)に酸化された状態の部分酸化物(例えばアルデヒド)が挙げられる。   In the reaction chamber 20a, a cold flame reaction described in detail below occurs. This cold flame reaction is a reaction in which gaseous fuel is partially oxidized by oxygen in the air flowing in from the inlet 20in. Specific examples of such partially oxidized fuel (reformed fuel) include partial oxides (for example, aldehydes) in which a part of the fuel (hydrocarbon compound) is oxidized to aldehyde groups (CHO). It is done.

ここで、冷炎反応について図2および図3を用いて詳述する。   Here, the cold flame reaction will be described in detail with reference to FIGS.

図2は、燃料(ヘキサデカン)をヒータ21に噴き付けて気化させ、気化した燃料がヒータ21近傍に滞留して改質される現象を模擬したシミュレーション結果である。具体的には、気体燃料(ヘキサデカン)を430℃に暴露した場合における、暴露開始からの経過時間に対する各種物理量の変化を示す。すなわち、図中の(a)は雰囲気温度の変化を示す。(b)は、燃料(ヘキサデカン)のモル濃度の変化を示す。(c)は、酸化で消費された酸素分子、酸化で生成された水分子および二酸化炭素分子について、各々のモル濃度の変化を示す。(d)は、冷炎反応により生成された改質燃料であるアセトアルデヒドおよびプロピオンアルデヒドのモル濃度の変化を示す。燃料噴射開始時点での初期条件は、1気圧、ヘキサデカン濃度2200ppm、酸素濃度20%、二酸化炭素濃度9%、水濃度2%である。   FIG. 2 is a simulation result simulating a phenomenon in which fuel (hexadecane) is sprayed on the heater 21 to be vaporized, and the vaporized fuel stays in the vicinity of the heater 21 and is reformed. Specifically, it shows changes in various physical quantities with respect to the elapsed time from the start of exposure when gaseous fuel (hexadecane) is exposed to 430 ° C. That is, (a) in the figure shows the change in ambient temperature. (B) shows the change in the molar concentration of fuel (hexadecane). (C) shows the change in the molar concentration of each of oxygen molecules consumed by oxidation, water molecules generated by oxidation, and carbon dioxide molecules. (D) shows the change in the molar concentration of acetaldehyde and propionaldehyde, which are reformed fuels produced by the cold flame reaction. Initial conditions at the start of fuel injection are 1 atm, hexadecane concentration 2200 ppm, oxygen concentration 20%, carbon dioxide concentration 9%, and water concentration 2%.

図2に示されるように、燃料を噴射すると直ぐ、雰囲気温度が上昇するとともに燃料のモル濃度が減少し、かつ、改質燃料のモル濃度が増加している。この現象は、燃料が酸素に酸化されて発熱していることと、燃料から改質燃料が生成されていることを意味する。つまり、冷炎反応が生じていることを意味する。但し、このような温度上昇や各種モル濃度の変化は一時的なものであり、燃料噴射開始から4秒ほどの期間は、温度上昇やモル濃度の変化は現れない。   As shown in FIG. 2, as soon as fuel is injected, the ambient temperature increases, the molar concentration of the fuel decreases, and the molar concentration of the reformed fuel increases. This phenomenon means that the fuel is oxidized to oxygen and generates heat, and reformed fuel is generated from the fuel. That is, a cold flame reaction is occurring. However, such a temperature rise and changes in various molar concentrations are temporary, and during the period of about 4 seconds from the start of fuel injection, no temperature rise and no change in molar concentration appear.

そして、約4秒経過した時点で、雰囲気温度がさらに上昇するとともに改質燃料のモル濃度が減少し、かつ、二酸化炭素および水の生成量と、酸素の消費量が増加している。この現象は、改質燃料が酸素に酸化されて発熱していることと、改質燃料が完全燃焼して二酸化炭素および水が生成されていることを意味する。つまり、熱炎反応が生じていることを意味する。なお、冷炎反応による温度上昇量は、熱炎反応による温度上昇量よりも小さい。また、冷炎反応による酸素消費量は、熱炎反応による酸素消費量よりも少ない。   When about 4 seconds elapse, the atmospheric temperature further rises, the reformed fuel molar concentration decreases, and the amount of carbon dioxide and water produced and the amount of oxygen consumed increase. This phenomenon means that the reformed fuel is oxidized to oxygen and generates heat, and the reformed fuel is completely burned to generate carbon dioxide and water. That is, a hot flame reaction is occurring. In addition, the temperature rise amount by a cold flame reaction is smaller than the temperature rise amount by a hot flame reaction. Moreover, the oxygen consumption by a cold flame reaction is less than the oxygen consumption by a hot flame reaction.

2段階で酸化反応が生じる場合には、冷炎反応が為されてから熱炎反応が開始されるまでの期間に、改質燃料が中間生成物として現れる。中間生成物には、アルデヒドやケトン等、様々な炭化水素化合物が具体例として挙げられる。図3では、アルデヒドが生成される主要な反応経路の一例を示す。   When the oxidation reaction occurs in two stages, the reformed fuel appears as an intermediate product during the period from the start of the cold flame reaction to the start of the hot flame reaction. Specific examples of the intermediate product include various hydrocarbon compounds such as aldehydes and ketones. FIG. 3 shows an example of a main reaction route through which aldehyde is generated.

先ず、図中の(1)に示すように、炭化水素(軽油)が酸素分子と反応して炭化水素ペルオキシラジカルが生成される。この炭化水素ペルオキシラジカルは、アルデヒドと炭化水素ラジカルに分解される((2)参照)。この炭化水素ラジカルと酸素分子とが反応して別の炭化水素ペルオキシラジカルが生成される((3)参照)。この炭化水素ペルオキシラジカルは、アルデヒドと炭化水素ラジカルに分解される((4)参照)。この炭化水素ラジカルと酸素分子とが反応して別の炭化水素ペルオキシラジカルが生成される((5)参照)。このように、炭素数を減らしながら繰り返し炭化水素ペルオキシラジカルが生成され、その生成の都度、アルデヒドが生成されていく。なお、熱炎反応では、燃料が完全燃焼して二酸化炭素と水が生成され、中間生成物は現れない。すなわち、冷炎反応により生成された中間生成物は、酸化されて二酸化炭素と水になる。   First, as shown in (1) in the figure, hydrocarbon (light oil) reacts with oxygen molecules to generate hydrocarbon peroxy radicals. This hydrocarbon peroxy radical is decomposed into an aldehyde and a hydrocarbon radical (see (2)). This hydrocarbon radical reacts with oxygen molecules to generate another hydrocarbon peroxy radical (see (3)). This hydrocarbon peroxy radical is decomposed into an aldehyde and a hydrocarbon radical (see (4)). This hydrocarbon radical reacts with oxygen molecules to generate another hydrocarbon peroxy radical (see (5)). In this way, hydrocarbon peroxy radicals are repeatedly generated while reducing the number of carbon atoms, and aldehydes are generated each time the carbon peroxy radical is generated. In the hot flame reaction, the fuel is completely burned to generate carbon dioxide and water, and no intermediate product appears. That is, the intermediate product produced by the cold flame reaction is oxidized to carbon dioxide and water.

図2に示すシミュレーションでは、暴露温度を430℃としていた。これに対し、さらに本発明者らは、暴露温度を異ならせてシミュレーションによる解析を実施した。その結果、暴露温度が530℃の場合には冷炎反応で留まる期間が殆ど無く、1段で酸化反応が完了する。暴露温度を330℃にすると、430℃にした場合に比べて冷炎反応の開始時期が遅くなる。暴露温度を230℃以下にすると、冷炎反応および熱炎反応のいずれもが生じなくなり、酸化反応が生じない。   In the simulation shown in FIG. 2, the exposure temperature was 430 ° C. On the other hand, the present inventors further conducted analysis by simulation with different exposure temperatures. As a result, when the exposure temperature is 530 ° C., there is almost no period of staying in the cold flame reaction, and the oxidation reaction is completed in one stage. When the exposure temperature is set to 330 ° C., the start time of the cold flame reaction is delayed as compared with the case where the exposure temperature is set to 430 ° C. When the exposure temperature is 230 ° C. or lower, neither a cold flame reaction nor a hot flame reaction occurs, and no oxidation reaction occurs.

図2に示すシミュレーションでは、噴射した燃料と供給される空気の比率である当量比を0.23としていた。これに対し、さらに本発明者らは、当量比を異ならせてシミュレーションによる解析を実施した。なお、当量比を厳密に定義すると、「実際の混合気が含む燃料の重量」を、「完全燃焼できる燃料の重量」で除算した値である。当量比を1.0にすると、冷炎反応で留まる期間が殆ど無く、1段で酸化反応が完了する。また、当量比を0.37にすると、当量比を0.23にした場合に比べて、冷炎反応の開始時期が早くなる。また、冷炎反応速度が速くなり、冷炎反応期間が短くなる。また、冷炎反応が終了した時点での雰囲気温度が高くなる。   In the simulation shown in FIG. 2, the equivalence ratio, which is the ratio between the injected fuel and the supplied air, is 0.23. On the other hand, the present inventors further performed analysis by simulation with different equivalence ratios. If the equivalence ratio is strictly defined, it is a value obtained by dividing "the weight of fuel contained in the actual air-fuel mixture" by "the weight of fuel capable of complete combustion". When the equivalence ratio is 1.0, there is almost no period of staying in the cold flame reaction, and the oxidation reaction is completed in one stage. In addition, when the equivalent ratio is 0.37, the start time of the cold flame reaction is earlier than when the equivalent ratio is 0.23. In addition, the cold flame reaction rate is increased and the cold flame reaction period is shortened. In addition, the atmospheric temperature at the time when the cold flame reaction ends is increased.

図4は、これらの解析結果をまとめて表したものである。つまり暴露温度(雰囲気温度)および当量比と、冷炎反応発生有無との関係を表しており、図4の横軸はヒータ温度(雰囲気温度)、縦軸は当量比を示す。図中のドットを付した領域は、2段酸化反応が生じる領域を表す。図示されるように、雰囲気温度が下限値よりも低い領域では、酸化反応が生じない無反応領域となる。雰囲気温度が下限値よりも高い場合であっても、当量比が1.0以上の領域であれば、1段で酸化反応が完了する1段酸化反応領域となる。   FIG. 4 summarizes these analysis results. That is, the relationship between the exposure temperature (atmosphere temperature) and the equivalence ratio and the presence / absence of the occurrence of a cold flame reaction is shown. The horizontal axis in FIG. A region with dots in the figure represents a region where a two-stage oxidation reaction occurs. As shown in the figure, in the region where the ambient temperature is lower than the lower limit value, it becomes a non-reactive region where no oxidation reaction occurs. Even if the atmospheric temperature is higher than the lower limit, if the equivalent ratio is in the region of 1.0 or more, it becomes a one-step oxidation reaction region where the oxidation reaction is completed in one step.

また、2段酸化反応領域と1段酸化反応領域との境界線は、雰囲気温度および当量比に応じて変化する。つまり、雰囲気温度が所定の温度範囲であり、かつ、当量比が所定の当量比範囲である場合に、2段酸化反応が生じる。これらの温度範囲および当量比範囲は、図4中のドットを付した領域の範囲に相当する。所定の温度範囲のうち最適温度(例えば370℃)に雰囲気温度を調整すると、上記境界線における当量比が最大値(例えば1.0)となる。したがって、冷炎反応を早期に生じさせるには、ヒータ温度を最適温度に調整し、当量比を1.0にすればよい。但し、当量比が1.0を超えると冷炎反応が生じなくなるので、1.0よりも余裕分だけ小さい値に当量比を調整することが望ましい。   Further, the boundary line between the two-stage oxidation reaction region and the first-stage oxidation reaction region varies depending on the ambient temperature and the equivalence ratio. That is, a two-stage oxidation reaction occurs when the ambient temperature is in a predetermined temperature range and the equivalent ratio is in a predetermined equivalent ratio range. These temperature range and equivalent ratio range correspond to the range of the region with dots in FIG. When the atmospheric temperature is adjusted to an optimum temperature (for example, 370 ° C.) within a predetermined temperature range, the equivalent ratio at the boundary line becomes the maximum value (for example, 1.0). Therefore, in order to cause the cold flame reaction at an early stage, the heater temperature is adjusted to the optimum temperature and the equivalence ratio is set to 1.0. However, since the cold flame reaction does not occur when the equivalent ratio exceeds 1.0, it is desirable to adjust the equivalent ratio to a value smaller than the margin by 1.0.

図2に示すシミュレーションでは、空気中のオゾン濃度をゼロにしている。これに対し、さらに本発明者らは、空気中のオゾン濃度を異ならせたシミュレーションによる解析を実施した。このシミュレーションでの初期条件は、1気圧、ヘキサデカン濃度2200ppm、雰囲気温度330℃である。その結果、オゾン濃度が大きいほど、冷炎反応の開始時期が早くなることが確認された。このようなオゾンによる現象は以下の理由により生じる。すなわち、図3中の(1)(3)(5)では、炭化水素ラジカルと酸素分子とが反応しているが、空気中にオゾンが含まれている場合にはこの反応が促進され、アルデヒドが短時間で生成されることとなる。   In the simulation shown in FIG. 2, the ozone concentration in the air is zero. On the other hand, the present inventors further performed an analysis by simulation with different ozone concentrations in the air. The initial conditions in this simulation are 1 atm, hexadecane concentration 2200 ppm, and ambient temperature 330 ° C. As a result, it was confirmed that the start time of the cold flame reaction was earlier as the ozone concentration was higher. Such a phenomenon caused by ozone occurs for the following reason. That is, in (1), (3), and (5) in FIG. 3, hydrocarbon radicals and oxygen molecules react, but when ozone is contained in the air, this reaction is promoted, and aldehyde Will be generated in a short time.

ECU40が備えるマイコン41は、プログラムを記憶する記憶装置と、記憶されたプログラムにしたがって演算処理を実行する中央演算処理装置と、を備える。ECU40は、アクセルペダル踏込量(エンジン負荷)、機関回転速度(エンジン回転数)、吸気圧、排気圧等の各種検出値に基づき、内燃機関10の作動を制御する。   The microcomputer 41 provided in the ECU 40 includes a storage device that stores a program, and a central processing unit that executes arithmetic processing according to the stored program. The ECU 40 controls the operation of the internal combustion engine 10 based on various detected values such as an accelerator pedal depression amount (engine load), an engine speed (engine speed), an intake pressure, an exhaust pressure, and the like.

さらにECU40は、エンジン負荷やエンジン回転数等の内燃機関10の作動状態の検出値に加え、反応室温度センサ27および触媒温度センサ42により検出された物理量に基づき、還元剤添加装置の作動を制御する。なお、触媒温度センサ42は、NOx浄化装置12に取り付けられ、還元触媒の雰囲気温度(触媒温度)を検出する。   Further, the ECU 40 controls the operation of the reducing agent addition device based on the physical quantity detected by the reaction chamber temperature sensor 27 and the catalyst temperature sensor 42 in addition to the detected value of the operating state of the internal combustion engine 10 such as the engine load and the engine speed. To do. The catalyst temperature sensor 42 is attached to the NOx purification device 12 and detects the atmospheric temperature (catalyst temperature) of the reduction catalyst.

概略、ECU40は以下のように還元剤添加装置の作動を制御する。すなわち、反応室温度Thに基づき、排気通路10exへ還元剤を供給する還元剤供給制御とオゾンを供給するオゾン供給制御とを切り替える。また、還元剤添加制御を実施するにあたり、反応室温度Thに基づき、強酸化制御、弱酸化制御および酸化停止制御を切り替える。   In general, the ECU 40 controls the operation of the reducing agent adding device as follows. That is, based on the reaction chamber temperature Th, switching is performed between a reducing agent supply control for supplying a reducing agent to the exhaust passage 10ex and an ozone supply control for supplying ozone. Further, when carrying out the reducing agent addition control, strong oxidation control, weak oxidation control, and oxidation stop control are switched based on the reaction chamber temperature Th.

具体的には、図5に示す手順のプログラムをマイコン41が所定周期で繰り返し実行することで、還元剤添加装置の作動を制御する。先ず、図5のステップS10において、内燃機関10が運転中であるか否かを判定する。運転中でないと判定された場合、浄化対象となるNOxが排気通路10exに存在しないとみなし、ステップS18において還元剤添加装置の作動を停止させる全停止制御を実施する。全停止制御は、オゾンおよび還元剤のいずれについても排気通路10exへの供給を停止させる制御である。つまり、エアポンプ30p、オゾナイザ30、ヒータ21、噴射弁22を全て停止させ、逆止弁26vを閉弁作動させる。   Specifically, the microcomputer 41 repeatedly executes the program of the procedure shown in FIG. 5 at a predetermined cycle, thereby controlling the operation of the reducing agent adding device. First, in step S10 of FIG. 5, it is determined whether or not the internal combustion engine 10 is in operation. If it is determined that the engine is not in operation, it is assumed that NOx to be purified does not exist in the exhaust passage 10ex, and in step S18, full stop control is performed to stop the operation of the reducing agent addition device. The total stop control is control for stopping supply of the ozone and the reducing agent to the exhaust passage 10ex. That is, the air pump 30p, the ozonizer 30, the heater 21, and the injection valve 22 are all stopped, and the check valve 26v is closed.

一方、ステップS10により内燃機関10が運転中であると判定された場合、ステップS11において、触媒温度が所定温度T1より高温であるか否かを判定する。所定温度T1より低温であると判定された場合、続くステップS12において、触媒温度が第2所定温度T2より高温であるか否かを判定する。第2所定温度より低温であると判定された場合、続くステップS13において、触媒温度が活性化温度T3より高温であるか否かを判定する。   On the other hand, if it is determined in step S10 that the internal combustion engine 10 is in operation, it is determined in step S11 whether or not the catalyst temperature is higher than a predetermined temperature T1. When it is determined that the temperature is lower than the predetermined temperature T1, it is determined in subsequent step S12 whether or not the catalyst temperature is higher than the second predetermined temperature T2. When it is determined that the temperature is lower than the second predetermined temperature, it is determined in subsequent step S13 whether or not the catalyst temperature is higher than the activation temperature T3.

所定温度T1および第2所定温度T2は、活性化温度T3より高温に設定されている。所定温度T1は、第2所定温度T2より高温に設定されている。例えば、活性化温度T3が200℃である場合、第2所定温度T2を350℃、所定温度T1を400℃に設定する。ここで、還元触媒の活性化温度T3とは、還元触媒上でNOxを還元浄化できる最低温度のことである。   The predetermined temperature T1 and the second predetermined temperature T2 are set to be higher than the activation temperature T3. The predetermined temperature T1 is set to be higher than the second predetermined temperature T2. For example, when the activation temperature T3 is 200 ° C., the second predetermined temperature T2 is set to 350 ° C., and the predetermined temperature T1 is set to 400 ° C. Here, the activation temperature T3 of the reduction catalyst is the lowest temperature at which NOx can be reduced and purified on the reduction catalyst.

ステップS11、S12、S13の判定により、触媒温度が活性化温度T3より低温と判定された場合、ステップS14にてオゾン供給制御を実施する。触媒温度が活性化温度T3より高温、かつ第2所定温度T2より低温と判定された場合、ステップS15にて強酸化制御を実施する。触媒温度が第2所定温度T2より高温、かつ所定温度T1より低温と判定された場合、ステップS16にて弱酸化制御を実施する。触媒温度が所定温度T1より高温と判定された場合、ステップS17にて酸化停止制御を実施する。   If it is determined in steps S11, S12, and S13 that the catalyst temperature is lower than the activation temperature T3, ozone supply control is performed in step S14. When it is determined that the catalyst temperature is higher than the activation temperature T3 and lower than the second predetermined temperature T2, strong oxidation control is performed in step S15. When it is determined that the catalyst temperature is higher than the second predetermined temperature T2 and lower than the predetermined temperature T1, weak oxidation control is performed in step S16. When it is determined that the catalyst temperature is higher than the predetermined temperature T1, oxidation stop control is performed in step S17.

図5のステップS15に係る強酸化制御では、図6に示すサブルーチン処理を実施する。先ず、図6のステップS20において、反応室温度センサ27による検出値(反応室温度Th)を取得する。続くステップS21では、取得した反応室温度Thが、予め設定しておいた目標温度Ttrgと一致するよう、ヒータ21をフィードバック制御する。目標温度Ttrgは、図4に示す2段酸化反応領域のうち、当量比が最大となる雰囲気温度(例えば370℃)に設定されている。   In the strong oxidation control according to step S15 in FIG. 5, a subroutine process shown in FIG. 6 is performed. First, in step S20 of FIG. 6, a detection value (reaction chamber temperature Th) by the reaction chamber temperature sensor 27 is acquired. In subsequent step S21, the heater 21 is feedback-controlled so that the obtained reaction chamber temperature Th matches the preset target temperature Ttrg. The target temperature Ttrg is set to an atmospheric temperature (for example, 370 ° C.) at which the equivalence ratio is maximum in the two-stage oxidation reaction region shown in FIG.

続くステップS22では、NOx浄化装置12へ流入したNOxの全てを還元するにあたり、過不足なくNOx浄化装置12へ供給するための還元剤添加量を、目標燃料量Ftrgとして設定する。上記目標燃料量Ftrgとは、単位時間当たりにNOx浄化装置12へ供給する燃料の質量である。   In subsequent step S22, when all the NOx flowing into the NOx purification device 12 is reduced, a reducing agent addition amount for supplying the NOx purification device 12 without excess or deficiency is set as a target fuel amount Ftrg. The target fuel amount Ftrg is the mass of fuel supplied to the NOx purification device 12 per unit time.

具体的には、以下に説明するNOx流入量および触媒温度に基づき、目標燃料量Ftrgを設定する。上記NOx流入量とは、単位時間当たりにNOx浄化装置12へ流入するNOxの質量である。例えば、内燃機関10の運転状態に基づき、NOx流入量を推定できる。そして、NOx流入量が多いほど、目標燃料量Ftrgを増大させる。また、触媒温度に応じて還元触媒上でNOxが還元される量(還元力)が異なってくるので、触媒温度による還元力の違いに応じて目標燃料量Ftrgを設定する。   Specifically, the target fuel amount Ftrg is set based on the NOx inflow amount and the catalyst temperature described below. The NOx inflow amount is the mass of NOx flowing into the NOx purification device 12 per unit time. For example, the NOx inflow amount can be estimated based on the operating state of the internal combustion engine 10. The target fuel amount Ftrg is increased as the NOx inflow amount increases. Further, since the amount (reducing power) in which NOx is reduced on the reduction catalyst varies depending on the catalyst temperature, the target fuel amount Ftrg is set according to the difference in the reducing power depending on the catalyst temperature.

続くステップS23では、ステップS22で設定した目標燃料量Ftrgに基づき、噴射弁22の作動を制御して燃料噴射を実施する。具体的には、目標燃料量Ftrgが多いほど噴射弁22の開弁時間を長くする。或いは、今回の噴射終了から次回の噴射開始までのインターバルを短くする。   In the subsequent step S23, fuel injection is performed by controlling the operation of the injection valve 22 based on the target fuel amount Ftrg set in step S22. Specifically, the valve opening time of the injection valve 22 is lengthened as the target fuel amount Ftrg increases. Alternatively, the interval from the end of the current injection to the start of the next injection is shortened.

続くステップS24では、反応室温度Thに基づき、冷炎反応を生じさせるように目標当量比φtrgを算出する。具体的には、2段酸化反応領域における当量比の最大値であって、雰囲気温度に対応する当量比の最大値、またはその最大値から所定の余裕分だけ減算した値を、目標当量比φtrgとしてマップ化してマイコン41に記憶させておく。検出された反応室温度Thに対応する目標当量比φtrgを、マップを参照して算出する。上述の如く余裕分を見込んで目標当量比φtrgを設定することにより、実際の当量比が目標当量比φtrgより大きくなったとしても、上記当量比の最大値を超えるおそれを低減でき、冷炎反応にとどまらず熱炎反応にまで至るおそれを低減できる。   In the subsequent step S24, the target equivalent ratio φtrg is calculated so as to cause a cold flame reaction based on the reaction chamber temperature Th. Specifically, a maximum value of the equivalent ratio in the two-stage oxidation reaction region, which is a maximum value of the equivalent ratio corresponding to the ambient temperature, or a value obtained by subtracting a predetermined margin from the maximum value is a target equivalent ratio φtrg. As a map and stored in the microcomputer 41. A target equivalent ratio φtrg corresponding to the detected reaction chamber temperature Th is calculated with reference to the map. By setting the target equivalent ratio φtrg in consideration of the margin as described above, even if the actual equivalent ratio becomes larger than the target equivalent ratio φtrg, the possibility of exceeding the maximum value of the equivalent ratio can be reduced. The risk of reaching a hot flame reaction can be reduced.

続くステップS25では、ステップS24で設定した目標当量比φtrg、およびステップS22で設定した目標燃料量Ftrgに基づき、目標空気量Atrgを算出する。具体的には、φtrg=Ftrg/Atrgとなるように目標空気量Atrgを算出する。続くステップS26では、ステップS25で算出した目標空気量Atrgに基づき、エアポンプ30pの作動を制御する。具体的には、目標空気量Atrgが大きいほど、エアポンプ30pへの通電デューティ比を増大させる。   In the subsequent step S25, the target air amount Atrg is calculated based on the target equivalent ratio φtrg set in step S24 and the target fuel amount Ftrg set in step S22. Specifically, the target air amount Atrg is calculated so that φtrg = Ftrg / Atrg. In the following step S26, the operation of the air pump 30p is controlled based on the target air amount Atrg calculated in step S25. Specifically, the duty ratio for energizing the air pump 30p is increased as the target air amount Atrg is larger.

上述のごとく目標燃料量Ftrgに応じて目標空気量Atrgを設定するとともに目標温度Ttrgを設定して、エアポンプ30pおよびヒータ21を制御することにより、反応室温度Thおよび当量比は、2段酸化反応領域に調整される。よって、冷炎反応を生じさせて先述した改質燃料が生成される。反応室温度Thが調整される温度範囲の下限は、1段酸化領域および2段酸化領域と無反応領域との境界線となる260℃である。上記温度範囲の上限は、1段酸化領域と2段酸化領域の境界線のうちの最大温度である。当量比が調整される範囲の上限は、1段酸化領域と2段酸化領域の境界線のうちの最大値であって、370℃に対応する当量比である。   As described above, the target air amount Atrg is set according to the target fuel amount Ftrg and the target temperature Ttrg is set, and the air pump 30p and the heater 21 are controlled, whereby the reaction chamber temperature Th and the equivalence ratio are set to the two-stage oxidation reaction. Adjusted to the area. Therefore, the above-described reformed fuel is generated by causing a cold flame reaction. The lower limit of the temperature range in which the reaction chamber temperature Th is adjusted is 260 ° C. serving as a boundary line between the first-stage oxidation region and the second-stage oxidation region and the non-reaction region. The upper limit of the temperature range is the maximum temperature on the boundary line between the first stage oxidation region and the second stage oxidation region. The upper limit of the range in which the equivalence ratio is adjusted is the maximum value of the boundary lines between the first stage oxidation region and the second stage oxidation region, and is an equivalent ratio corresponding to 370 ° C.

続くステップS27では、反応容器20内での燃料の濃度に応じて、オゾナイザ30への供給電力を制御する。詳細には、目標燃料量Ftrgに基づき目標オゾン量Otrgを算出する。具体的には、気化室25aにおけるオゾン濃度の燃料濃度に対する比率が所定値(例えば0.2)となるように、目標オゾン量Otrgを算出する。例えば、所定時間(例えば0.02秒)内に冷炎反応を完了させるよう、上記比率を設定する。また、還元触媒が低温であるほど目標オゾン量Otrgを増加させるように設定する。   In the subsequent step S27, the power supplied to the ozonizer 30 is controlled in accordance with the fuel concentration in the reaction vessel 20. Specifically, the target ozone amount Otrg is calculated based on the target fuel amount Ftrg. Specifically, the target ozone amount Otrg is calculated so that the ratio of the ozone concentration to the fuel concentration in the vaporizing chamber 25a becomes a predetermined value (for example, 0.2). For example, the ratio is set so that the cold flame reaction is completed within a predetermined time (for example, 0.02 seconds). Also, the target ozone amount Otrg is set to increase as the temperature of the reduction catalyst decreases.

そして、目標空気量Atrgおよび目標オゾン量Otrgに基づき、オゾナイザ30への目標通電量Ptrgを算出する。具体的には、目標空気量Atrgが多いほど、電極間通路31aでの空気の滞留時間が短くなるので、目標通電量Ptrgを大きくする。また、目標オゾン量Otrgが多いほど、目標通電量Ptrgを大きくする。次に、目標通電量Ptrgに基づき、オゾナイザ30への通電量を制御する。具体的には、目標通電量Ptrgが大きいほど、オゾナイザ30への通電デューティ比を増大させる。或いは、今回の通電終了から次回の通電開始までのインターバルを短くする。   Then, based on the target air amount Atrg and the target ozone amount Otrg, a target energization amount Ptrg to the ozonizer 30 is calculated. Specifically, as the target air amount Atrg is larger, the residence time of air in the interelectrode passage 31a is shortened, so the target energization amount Ptrg is increased. Further, the target energization amount Ptrg is increased as the target ozone amount Otrg is increased. Next, the energization amount to the ozonizer 30 is controlled based on the target energization amount Ptrg. Specifically, as the target energization amount Ptrg is larger, the energization duty ratio to the ozonizer 30 is increased. Alternatively, the interval from the end of current energization to the start of next energization is shortened.

このようなステップS27の処理を実行することにより、オゾンが生成され、そのオゾンが反応容器20内に供給されるので、冷炎反応の開始時期の早期化と冷炎反応時間の短縮化が図られる。よって、反応容器20内での燃料の滞留時間が短くなるように反応容器20を小型化しても、上記滞留時間内に冷炎反応が完了するようにできる。よって、反応容器20の小型化を図ることができる。続くステップS28では、逆止弁26vを開弁制御する。   By executing the process in step S27, ozone is generated and supplied to the reaction vessel 20, so that the start timing of the cool flame reaction is advanced and the cool flame reaction time is shortened. It is done. Therefore, even if the reaction vessel 20 is downsized so that the residence time of the fuel in the reaction vessel 20 is shortened, the cold flame reaction can be completed within the residence time. Therefore, the reaction vessel 20 can be downsized. In the subsequent step S28, the check valve 26v is controlled to open.

このように、図6の強酸化制御によれば、オゾナイザ30で生成されたオゾン、空気中の酸素、およびヒータ21により気化された燃料が混合され、オゾンが存在する環境下で燃料が部分酸化される。これに対し、図5のステップS16による弱酸化制御では、オゾナイザ30を停止させてオゾン生成を停止させることで、オゾンが存在しない環境下で燃料が部分酸化される。また、ステップS17による酸化停止制御では、オゾナイザ30およびヒータ21を停止させて、オゾン生成と燃料加熱を停止させることで、酸素やオゾンによる酸化が為されることなく部分酸化していない燃料が、排気通路10exへ添加される。そして、このように添加された燃料は、排気通路10exまたはNOx浄化装置12の内部で高温の排気に晒されて部分酸化する。   As described above, according to the strong oxidation control of FIG. 6, the ozone generated by the ozonizer 30, the oxygen in the air, and the fuel vaporized by the heater 21 are mixed, and the fuel is partially oxidized in an environment where ozone exists. Is done. On the other hand, in the weak oxidation control in step S16 of FIG. 5, the fuel is partially oxidized in an environment where ozone is not present by stopping the ozonizer 30 and stopping ozone generation. Further, in the oxidation stop control in step S17, the ozonizer 30 and the heater 21 are stopped to stop the ozone generation and the fuel heating, so that the fuel that is not partially oxidized without being oxidized by oxygen or ozone is obtained. It is added to the exhaust passage 10ex. The fuel added in this way is exposed to high-temperature exhaust gas in the exhaust passage 10ex or the NOx purification device 12 and partially oxidized.

より詳細に説明すると、弱酸化制御では、図6に示すステップS20〜S26と同様の処理を実施しつつ、ステップS27の処理を廃止している。つまり、ステップS21、S23、S26、S28によるヒータ制御、燃料噴射制御、エアポンプ制御、開弁制御、およびステップS22、S24、S25による目標燃料量Ftrg、目標当量比φtrg、目標空気量Atrgの設定を実施する。但し、ステップS27による放電制御を実施せず、オゾナイザ30への通電を停止させてオゾン生成を停止させる。   More specifically, in the weak oxidation control, the process of step S27 is abolished while performing the same process as steps S20 to S26 shown in FIG. That is, the heater control, fuel injection control, air pump control, valve opening control in steps S21, S23, S26, and S28, and the target fuel amount Ftrg, target equivalent ratio φtrg, and target air amount Atrg in steps S22, S24, and S25 are set. carry out. However, the discharge control in step S27 is not performed, and energization to the ozonizer 30 is stopped to stop ozone generation.

また、酸化停止制御では、図6に示すS20、S22〜S26と同様の処理を実施しつつ、図6のステップS21、S27の処理を廃止している。つまり、ステップS23、S26、S28による燃料噴射制御、エアポンプ制御、開弁制御、およびステップS22、S24、S25による目標燃料量Ftrg、目標当量比φtrg、目標空気量Atrgの設定を実施する。但し、ステップS27による放電制御を実施せず、オゾナイザ30への通電を停止させてオゾン生成を停止させる。また、ステップS21によるヒータ制御を実施せず、ヒータ21への通電を停止させて燃料の加熱を停止させる。   Further, in the oxidation stop control, the processes in steps S21 and S27 in FIG. 6 are abolished while the processes similar to S20 and S22 to S26 shown in FIG. 6 are performed. That is, fuel injection control, air pump control, valve opening control in steps S23, S26, and S28, and setting of the target fuel amount Ftrg, target equivalent ratio φtrg, and target air amount Atrg in steps S22, S24, and S25 are performed. However, the discharge control in step S27 is not performed, and energization to the ozonizer 30 is stopped to stop ozone generation. Further, the heater control in step S21 is not performed, and the energization to the heater 21 is stopped to stop the heating of the fuel.

図5のステップS14に係るオゾン供給制御では、概略、ヒータ21への通電を停止させるとともに、噴射弁22への通電を停止させて燃料噴射を停止させた状態で、オゾナイザ30でオゾンを生成する。そして、生成したオゾンを、送風管26および供給管23を通じて排気通路10exへ供給する。これにより、NOx浄化装置12の還元触媒が活性化していない場合において、排気中のNOがオゾンによりNOに酸化されて、還元触媒へのNOx吸着量が増大する。 In the ozone supply control according to step S14 in FIG. 5, the ozone generator 30 generally generates ozone in a state where the energization to the heater 21 is stopped and the energization to the injection valve 22 is stopped to stop the fuel injection. . The generated ozone is supplied to the exhaust passage 10ex through the blower pipe 26 and the supply pipe 23. As a result, when the reduction catalyst of the NOx purification device 12 is not activated, NO in the exhaust is oxidized to NO 2 by ozone, and the amount of NOx adsorbed on the reduction catalyst increases.

但し、排気に含まれるHCやCOはNOと反応(阻害反応)して、NOをNOに還元する。上記阻害反応は、排気通路10exのうちNOx浄化装置12よりも上流側の部分、または還元触媒上で生じる。具体的には、HCがNOと反応すると、HCの部分酸化物(HC−O)とNOが生じる。COがNOと反応するとNOとCOが生じる。 However, HC and CO contained in the exhaust gas react with NO 2 (inhibition reaction) and reduce NO 2 to NO. The inhibition reaction occurs on the upstream side of the NOx purification device 12 in the exhaust passage 10ex, or on the reduction catalyst. Specifically, when the HC is reacted with NO 2, partial oxide of HC (HC-O) and NO occurs. CO is NO and CO 2 occurs upon reaction with NO 2.

また、HCはオゾンと反応(阻害反応)してアルデヒド等の酸化物になるので、供給されたオゾンのうちHCと阻害反応した分だけ、NOをNOに酸化するのに用いられるオゾンの量が減少する。よって、これらの阻害反応が生じると、NO濃度が低下して還元触媒へのNOx吸着量が減少する。さらに、排気温度Texや触媒温度Tcatが高いほど、上述した阻害反応の反応速度が速くなり、NO濃度低下によるNOx吸着量減少が促進されてしまう。 In addition, since HC reacts with ozone (inhibition reaction) and becomes an oxide such as aldehyde, the amount of ozone used to oxidize NO to NO 2 by the amount of ozone that has been inhibited by HC in the supplied ozone. Decrease. Therefore, when these inhibition reactions occur, the NO 2 concentration decreases and the amount of NOx adsorbed on the reduction catalyst decreases. Furthermore, the higher the exhaust gas temperature Tex and the catalyst temperature Tcat, the faster the reaction rate of the inhibition reaction described above, and the more the NOx adsorption amount decreases due to the NO 2 concentration decrease.

したがって、HC濃度およびCO濃度が高いほど、また、排気温度Texおよび触媒温度Tcatが高いほど、阻害反応が促進される。つまり、HC濃度、CO濃度、排気温度Texおよび触媒温度Tcatは、NOをNOに還元させる要因と相関のある物理量(NO還元相関値)であると言える。これらの阻害反応の対策として、オゾン供給量を増大させれば、NOx吸着量が減少することを以下のように抑制できる。 Therefore, the inhibition reaction is promoted as the HC concentration and the CO concentration are higher and as the exhaust temperature Tex and the catalyst temperature Tcat are higher. That is, it can be said that the HC concentration, the CO concentration, the exhaust temperature Tex, and the catalyst temperature Tcat are physical quantities (NO reduction correlation values) correlated with factors that reduce NO 2 to NO. As measures against these inhibition reactions, if the ozone supply amount is increased, the NOx adsorption amount can be suppressed as follows.

すなわち、NOをNOに酸化するのに用いられるオゾンの余剰分は、排気中および還元触媒上で、阻害反応要因となっているCOと反応してCOに酸化させる。また、上記余剰分のオゾンは、阻害反応要因となっているHCと反応してアルデヒド等に酸化させる。このような酸化が生じることにより、阻害反応要因であるCOおよびHCの濃度が減少するので、阻害反応が抑制される。 That is, excess ozone used to oxidize NO to NO 2 reacts with CO, which is an inhibitory reaction factor, in the exhaust gas and on the reduction catalyst, and is oxidized to CO 2 . The surplus ozone reacts with HC, which is an inhibitory reaction factor, and is oxidized to aldehyde or the like. As a result of such oxidation, the concentration of CO and HC, which are inhibitory reaction factors, decreases, so that the inhibitory reaction is suppressed.

なお、触媒温度Tcatが高いほど、高活性の状態になって反応速度が速くなるので、先述した通り阻害反応が促進される。一方、触媒温度Tcatが低い場合であっても、NOの触媒への吸着力が弱くなるので、吸着した状態のNOがCOやHCと阻害反応しやすくなる。このような吸着力低下に起因した阻害反応の対策として、オゾン供給量を増大させれば、NOx吸着量が減少することを以下のように抑制できる。 The higher the catalyst temperature Tcat, the higher the activity and the faster the reaction rate, so that the inhibition reaction is promoted as described above. On the other hand, even when the catalyst temperature Tcat is low, the adsorptive power of NO 2 to the catalyst is weakened, so that the adsorbed NO 2 is easily inhibited by CO and HC. As a countermeasure against the inhibition reaction due to such a decrease in the adsorption power, if the ozone supply amount is increased, the NOx adsorption amount can be suppressed as follows.

すなわち、NOをNOに酸化するのに用いられるオゾンの余剰分は、NOをさらに酸化させてN(五酸化二窒素)およびHNO(硝酸)に変化させる。NおよびHNOはNOに比べて触媒への吸着力が強い。したがって、上記余剰分のオゾンは、NOに対する吸着力を増大させ、吸着した状態のNOがCOやHCと阻害反応することを抑制できる。 That is, the excess ozone used to oxidize NO to NO 2 further oxidizes NO 2 and changes it to N 2 O 5 (dinitrogen pentoxide) and HNO 3 (nitric acid). N 2 O 5 and HNO 3 have stronger adsorption power to the catalyst than NO 2 . Thus, the excess of ozone increases the suction force to NO 2, NO 2 adsorption state can be prevented to inhibit the reaction with CO and HC.

これらの点を鑑み、マイコン41は、NO還元相関値に応じてオゾン供給量を制御する。つまり、HC濃度が高いほど、CO濃度が高いほど、排気温度Texが高いほど、オゾナイザ30によるオゾン生成量を増大させて、オゾン供給量を増大させる。触媒温度Tcatについては、反応速度の影響および吸着力の影響の両者を考慮して、オゾン生成量を変化させる。   In view of these points, the microcomputer 41 controls the ozone supply amount according to the NO reduction correlation value. That is, as the HC concentration is higher, the CO concentration is higher, and the exhaust temperature Tex is higher, the ozone generation amount by the ozonizer 30 is increased and the ozone supply amount is increased. Regarding the catalyst temperature Tcat, the ozone generation amount is changed in consideration of both the influence of the reaction rate and the influence of the adsorption force.

以下、図7を用いてオゾン供給制御のサブルーチン処理について説明する。先ずステップS30において、排気中のNO濃度、HC濃度およびCO濃度を取得する。具体的には、内燃機関10の運転状態に基づきこれらの濃度を推定する。続くステップS31では、触媒温度Tcatおよび排気温度Texを取得する。触媒温度Tcatについては、触媒温度センサ42により検出して取得する。排気温度Texについては、内燃機関10の運転状態に基づき推定する。なお、上述の如くHC濃度、CO濃度、触媒温度Tcatおよび排気温度Texを取得している時のマイコン41は、先述した阻害反応の要因と相関のある物理量(NO還元相関値)を取得する取得手段41a(図1参照)を提供する。   Hereinafter, the subroutine of the ozone supply control will be described with reference to FIG. First, in step S30, the NO concentration, HC concentration, and CO concentration in the exhaust are acquired. Specifically, these concentrations are estimated based on the operating state of the internal combustion engine 10. In the subsequent step S31, the catalyst temperature Tcat and the exhaust temperature Tex are acquired. The catalyst temperature Tcat is detected and acquired by the catalyst temperature sensor 42. The exhaust temperature Tex is estimated based on the operating state of the internal combustion engine 10. Note that the microcomputer 41 when acquiring the HC concentration, the CO concentration, the catalyst temperature Tcat, and the exhaust temperature Tex as described above acquires the physical quantity (NO reduction correlation value) correlated with the factor of the inhibition reaction described above. Means 41a (see FIG. 1) is provided.

続くステップS32では、ステップS30で取得したNO濃度に基づき、ベースオゾン量Obaseを算出する。詳細には、内燃機関10の運転状態に基づき排気の流速を推定し、該流速とNO濃度に基づき、単位時間あたりにNOx浄化装置12へ流入するNO量を推定する。このNO量の全てをNOに酸化するのに必要なオゾン量が、ベースオゾン量Obaseである。 In subsequent step S32, a base ozone amount Obase is calculated based on the NO concentration acquired in step S30. Specifically, the exhaust flow rate is estimated based on the operating state of the internal combustion engine 10, and the NO amount flowing into the NOx purification device 12 per unit time is estimated based on the flow rate and the NO concentration. The amount of ozone necessary to oxidize all of this NO amount to NO 2 is the base ozone amount Obase.

続くステップS33では、ステップS30で取得したHC濃度に基づき、ベースオゾン量Obaseに対する補正係数K1を算出する。この補正係数K1は1以上の実数であり、補正係数K1の値が大きいほど、ベースオゾン量Obaseを増大する補正量は大きくなる。例えば、HC濃度に応じた補正係数K1の最適値を予め試験して取得しておき、その最適値を図8に示すマップの形式でECU40に記憶させておく。そして、該マップを参照して、取得したHC濃度に基づき補正係数K1を決定する。   In subsequent step S33, a correction coefficient K1 for the base ozone amount Obase is calculated based on the HC concentration acquired in step S30. The correction coefficient K1 is a real number equal to or greater than 1. The larger the value of the correction coefficient K1, the larger the correction amount that increases the base ozone amount Obase. For example, the optimum value of the correction coefficient K1 corresponding to the HC concentration is obtained by testing in advance, and the optimum value is stored in the ECU 40 in the map format shown in FIG. Then, referring to the map, the correction coefficient K1 is determined based on the acquired HC concentration.

続くステップS34では、ステップS30で取得したCO濃度に基づき、ベースオゾン量Obaseに対する補正係数K2を算出する。この補正係数K2は1以上の実数であり、補正係数K2の値が大きいほど、ベースオゾン量Obaseを増大する補正量は大きくなる。例えば、CO濃度に応じた補正係数K2の最適値を予め試験して取得しておき、その最適値を図9に示すマップの形式でECU40に記憶させておく。そして、該マップを参照して、取得したCO濃度に基づき補正係数K2を決定する。   In subsequent step S34, a correction coefficient K2 for the base ozone amount Obase is calculated based on the CO concentration acquired in step S30. The correction coefficient K2 is a real number equal to or greater than 1. The larger the value of the correction coefficient K2, the larger the correction amount that increases the base ozone amount Obase. For example, the optimum value of the correction coefficient K2 corresponding to the CO concentration is obtained by testing in advance, and the optimum value is stored in the ECU 40 in the map format shown in FIG. Then, referring to the map, the correction coefficient K2 is determined based on the acquired CO concentration.

ここで、HC濃度やCO濃度が高いほどオゾン増大量を多くすれば、先述した阻害反応の抑制を加味した、過不足の少ないオゾン供給量にできる。但し、HC濃度やCO濃度が所定濃度以上の領域では、オゾン増大による阻害反応抑制の効果が期待できなくなる。この点を鑑みて、HC濃度やCO濃度が所定濃度以上の領域であれば、HC濃度やCO濃度の違いに拘らずに補正係数K1、K2を最大値K1a、K2a(図8および図9参照)に設定する。   Here, if the ozone increase amount is increased as the HC concentration or the CO concentration is higher, the ozone supply amount can be reduced with less excess or deficiency in consideration of the suppression of the inhibition reaction described above. However, in the region where the HC concentration or CO concentration is equal to or higher than the predetermined concentration, the inhibitory reaction suppression effect due to the increase in ozone cannot be expected. In view of this point, if the HC concentration and the CO concentration are regions of a predetermined concentration or more, the correction coefficients K1 and K2 are set to the maximum values K1a and K2a regardless of the difference in the HC concentration and the CO concentration (see FIGS. 8 and 9). ).

続くステップS35では、ステップS31で取得した排気温度Texに基づき、ベースオゾン量Obaseに対する補正係数K3を算出する。この補正係数K3は1以上の実数であり、補正係数K3の値が大きいほど、ベースオゾン量Obaseを増大する補正量は大きくなる。例えば、排気温度Texに応じた補正係数K3の最適値を予め試験して取得しておき、その最適値を図10に示すマップの形式でECU40に記憶させておく。そして、該マップを参照して、取得した排気温度Texに基づき補正係数K3を決定する。   In subsequent step S35, a correction coefficient K3 for the base ozone amount Obase is calculated based on the exhaust temperature Tex acquired in step S31. The correction coefficient K3 is a real number equal to or greater than 1. The larger the value of the correction coefficient K3, the larger the correction amount that increases the base ozone amount Obase. For example, the optimum value of the correction coefficient K3 corresponding to the exhaust temperature Tex is obtained by testing in advance, and the optimum value is stored in the ECU 40 in the form of a map shown in FIG. Then, referring to the map, the correction coefficient K3 is determined based on the acquired exhaust gas temperature Tex.

図10に示す例では、排気温度Texが高いほどオゾン増大量を多くするように補正係数K3を設定しているが、還元触媒の種類等、各種の条件に応じて図10に示す特性線は異なる。例えば、排気温度Texが高いほどオゾン増大量を少なくする場合や、特性線を図10の上側に凸の曲線にする場合や、下側に凸の曲線にする場合も、各種条件によっては有り得る。   In the example shown in FIG. 10, the correction coefficient K3 is set so that the ozone increase amount increases as the exhaust gas temperature Tex increases. However, the characteristic line shown in FIG. 10 varies depending on various conditions such as the type of the reduction catalyst. Different. For example, when the exhaust gas temperature Tex is higher, the ozone increase amount is decreased, the characteristic line is a convex curve on the upper side of FIG. 10, or the lower curve is a convex curve, depending on various conditions.

続くステップS36では、ステップS31で取得した触媒温度Tcatに基づき、ベースオゾン量Obaseに対する補正係数K4を算出する。補正係数K4の値が大きいほど、ベースオゾン量Obaseを増大する補正量は大きくなる。補正係数K4は、以下に説明する2種類の補正係数K4a、K4bに基づき設定される。   In subsequent step S36, a correction coefficient K4 for the base ozone amount Obase is calculated based on the catalyst temperature Tcat acquired in step S31. The larger the value of the correction coefficient K4, the larger the correction amount that increases the base ozone amount Obase. The correction coefficient K4 is set based on two types of correction coefficients K4a and K4b described below.

すなわち、触媒温度Tcatが高いほど還元触媒上で生じる阻害反応の反応速度が速くなり、その一方で、触媒温度Tcatが低いほど還元触媒へのNOの吸着力が弱くなることは、先述した通りである。したがって、上記反応速度を考慮すると、高温であるほどオゾン量を増大させるように図11の如く補正係数K4aを設定することが望ましい。その一方で、上記吸着力を考慮すると、低温であるほどオゾン量を増大させるように図12の如く補正係数K4bを設定することが望ましい。 That is, the higher the catalyst temperature Tcat, the faster the reaction rate of the inhibition reaction that occurs on the reduction catalyst, while the lower the catalyst temperature Tcat, the weaker the NO 2 adsorption force on the reduction catalyst, as described above. It is. Therefore, considering the reaction rate, it is desirable to set the correction coefficient K4a as shown in FIG. 11 so that the ozone amount increases as the temperature increases. On the other hand, considering the adsorption force, it is desirable to set the correction coefficient K4b as shown in FIG. 12 so that the ozone amount increases as the temperature decreases.

例えば、触媒温度Tcatに応じた補正係数K4a、K4bの最適値を予め試験して取得しておき、その最適値を図11、図12に示すマップの形式でECU40に記憶させておく。そして、該マップを参照して、取得した触媒温度Tcatに基づき補正係数K4a、K4bを算出して補正係数K4を決定する。したがって、触媒温度Tcatに基づく補正係数K4は、温度領域によっては高温であるほどオゾンを増量させ、温度領域によっては高温であるほどオゾンを減量させることになり得る。   For example, the optimum values of the correction coefficients K4a and K4b corresponding to the catalyst temperature Tcat are obtained by testing in advance, and the optimum values are stored in the ECU 40 in the map format shown in FIGS. Then, with reference to the map, correction coefficients K4a and K4b are calculated based on the acquired catalyst temperature Tcat to determine the correction coefficient K4. Therefore, the correction coefficient K4 based on the catalyst temperature Tcat may increase the ozone as the temperature is higher depending on the temperature range, and decrease the ozone as the temperature is higher depending on the temperature range.

続くステップS37では、ステップS33〜S36で算出した補正係数K1、K2、K3、K4に基づき、ステップS32で算出したベースオゾン量Obaseを補正する。例えば、各々の補正係数K1、K2、K3、K4をベースオゾン量Obaseに乗算することで、補正後の目標オゾン量Otrgを算出する。要するに、阻害反応が生じやすい環境であるほど、ベースオゾン量Obaseを増大させる補正量を多くして、目標オゾン量Otrgが設定される。なお、目標オゾン量Otrgとは、単位時間あたりに排気通路10exへ供給するオゾン量の目標値である。   In subsequent step S37, the base ozone amount Obase calculated in step S32 is corrected based on the correction coefficients K1, K2, K3, and K4 calculated in steps S33 to S36. For example, the corrected target ozone amount Otrg is calculated by multiplying the base ozone amount Obase by each of the correction coefficients K1, K2, K3, and K4. In short, the target ozone amount Otrg is set by increasing the correction amount for increasing the base ozone amount Obase as the environment is more susceptible to an inhibition reaction. The target ozone amount Otrg is a target value of the ozone amount supplied to the exhaust passage 10ex per unit time.

続くステップS38では、ステップS37で算出した目標オゾン量Otrgに基づき、オゾナイザ30に対する放電制御を行う。詳細には、目標オゾン量Otrgが多いほど、電極31へ供給する電力量を増大させる。続くステップS39では、目標オゾン量Otrgに基づきエアポンプ30pの作動を制御する。詳細には、目標オゾン量Otrgが多いほど、エアポンプ30pの電動モータへ供給する電力量を増大させて、エアポンプ30pによる送風量を増大させる。   In subsequent step S38, discharge control for the ozonizer 30 is performed based on the target ozone amount Otrg calculated in step S37. Specifically, the amount of power supplied to the electrode 31 is increased as the target ozone amount Otrg is increased. In the subsequent step S39, the operation of the air pump 30p is controlled based on the target ozone amount Otrg. Specifically, as the target ozone amount Otrg increases, the amount of power supplied to the electric motor of the air pump 30p is increased to increase the amount of air blown by the air pump 30p.

続くステップS40では逆止弁26vを開弁制御する。続くステップS41では、ヒータ21への通電を停止させるとともに、噴射弁22への通電を停止させて燃料噴射を停止させる。本実施形態に反してヒータ21への通電を実施すると、オゾンは加熱されて崩壊する。また、燃料噴射を実施するとオゾンは燃料と反応してしまう。これらの点を鑑み、ステップS40にてヒータ21による加熱を停止させ、かつ、燃料噴射を停止させているので、オゾンが燃料と反応することや加熱崩壊を回避できる。よって、生成したオゾンがそのまま排気通路10exへ添加されることとなる。   In the subsequent step S40, the check valve 26v is controlled to open. In the subsequent step S41, energization to the heater 21 is stopped, and energization to the injection valve 22 is stopped to stop fuel injection. When the heater 21 is energized contrary to this embodiment, ozone is heated and collapses. Moreover, if fuel injection is implemented, ozone will react with fuel. In view of these points, since heating by the heater 21 is stopped and fuel injection is stopped in step S40, it is possible to avoid ozone reacting with the fuel and heating collapse. Therefore, the generated ozone is added to the exhaust passage 10ex as it is.

以上により、本実施形態によれば、NOをNOに還元させる要因と相関のある物理量(NO還元相関値)を取得する取得手段41aと、取得したNO還元相関値に基づきオゾン生成量を制御する制御手段41bと、を備える。そのため、NOをNOに還元させる要因、つまりHC濃度、CO濃度、排気温度Texおよび触媒温度Tcatに応じて、オゾン生成量を増大させてNOをNOに酸化させる反応を促進できる。よって、NOへの還元要因を考慮してオゾン生成量を調整できるので、阻害反応に起因してオゾン生成量に過不足が生じることを抑制できる。 As described above, according to the present embodiment, the acquisition unit 41a that acquires a physical quantity (NO reduction correlation value) correlated with the factor that reduces NO 2 to NO, and the ozone generation amount is controlled based on the acquired NO reduction correlation value. Control means 41b. Therefore, the reaction of increasing the amount of ozone generated and oxidizing NO to NO 2 can be promoted according to factors that reduce NO 2 to NO, that is, the HC concentration, the CO concentration, the exhaust temperature Tex, and the catalyst temperature Tcat. Therefore, since the ozone generation amount can be adjusted in consideration of the reduction factor to NO, it is possible to suppress the excess or deficiency in the ozone generation amount due to the inhibition reaction.

本発明者らは以下の知見を得た。すなわち、先述したように、HC濃度およびCO濃度が高濃度であるほど、阻害反応によるNO濃度減少の懸念が高くなる。これに対し、オゾン供給量を増大させればHCおよびCOがオゾンに酸化される度合いが高くなるので、上記懸念を抑制できる。さらに、オゾン供給量を増大させればNOがさらに酸化されて吸着力が増大する。これらの知見を鑑みた本実施形態では、取得手段41aにより取得されるNO還元相関値には、排気中のHC濃度およびCO濃度が含まれており、制御手段41bは、取得されたHC濃度またはCO濃度が高濃度であるほどオゾン生成量を増大させる。よって、オゾン生成量に過不足が生じることを抑制できる。 The present inventors have obtained the following findings. That is, as described above, the higher the HC concentration and the CO concentration, the higher the concern about the NO 2 concentration decrease due to the inhibition reaction. On the other hand, since the degree to which HC and CO are oxidized to ozone increases if the ozone supply amount is increased, the concern can be suppressed. Further, if the ozone supply amount is increased, NO 2 is further oxidized and the adsorption power is increased. In the present embodiment in view of these findings, the NO reduction correlation value acquired by the acquisition unit 41a includes the HC concentration and the CO concentration in the exhaust, and the control unit 41b The higher the CO concentration, the greater the ozone generation amount. Therefore, it can suppress that excess and deficiency arises in the amount of ozone production.

本発明者らは、上述の如くオゾン生成量を増大させることによる効果を、図13〜図16に示す試験結果により確認している。なお、図1に示す還元触媒は、O存在下において還元剤をNOxと選択的に反応させるものであるのに対し、本試験で用いた触媒は、O存在下であるリーン環境でNOxを吸蔵し、リッチ環境で還元剤をNOxと反応させるものである。 The present inventors have confirmed the effect of increasing the ozone generation amount as described above based on the test results shown in FIGS. The reduction catalyst shown in FIG. 1 selectively reacts the reducing agent with NOx in the presence of O 2 , whereas the catalyst used in this test is NOx in a lean environment in the presence of O 2. And the reducing agent reacts with NOx in a rich environment.

図13の試験条件は、NO濃度100ppm、オゾン濃度100ppm、HC濃度ゼロ、触媒温度180℃であり、CO濃度を変化させてNOx吸着率を計測している。図13に示す試験結果は、CO濃度が高いほど、NOx吸着率が低下することを表す。図14の試験条件は、NO濃度100ppm、オゾン濃度100ppm、CO濃度ゼロ、触媒温度180℃であり、C濃度を変化させてNOx吸着率を計測している。図14に示す試験結果は、C濃度が高いほど、NOx吸着率が低下することを表す。 The test conditions in FIG. 13 are an NO concentration of 100 ppm, an ozone concentration of 100 ppm, an HC concentration of zero, and a catalyst temperature of 180 ° C., and the NOx adsorption rate is measured by changing the CO concentration. The test results shown in FIG. 13 indicate that the NOx adsorption rate decreases as the CO concentration increases. The test conditions in FIG. 14 are an NO concentration of 100 ppm, an ozone concentration of 100 ppm, a CO concentration of zero, and a catalyst temperature of 180 ° C., and the NO x adsorption rate is measured by changing the C 3 H 6 concentration. The test results shown in FIG. 14 indicate that the NOx adsorption rate decreases as the C 3 H 6 concentration increases.

図15の試験条件は、NO濃度100ppm、CO濃度300ppm、HC濃度ゼロ、触媒温度180℃であり、オゾン濃度を変化させてNOx吸着率を計測している。図15に示す試験結果は、CO濃度300ppmの環境下において、オゾン濃度ゼロにするとNOx吸着率が殆どゼロであるのに対し、オゾン濃度を増大させるとNOx吸着率を大幅に改善できることを表す。   The test conditions of FIG. 15 are NO concentration 100 ppm, CO concentration 300 ppm, HC concentration zero, catalyst temperature 180 ° C., and the NOx adsorption rate is measured by changing the ozone concentration. The test results shown in FIG. 15 indicate that the NOx adsorption rate is almost zero when the ozone concentration is zero in an environment with a CO concentration of 300 ppm, whereas the NOx adsorption rate can be significantly improved by increasing the ozone concentration.

図16の試験条件は、NO濃度100ppm、C濃度300ppm、CO濃度ゼロ、触媒温度180℃であり、オゾン濃度を変化させてNOx吸着率を計測している。図16に示す試験結果は、C濃度300ppmの環境下において、オゾン濃度ゼロにするとNOx吸着率が殆どゼロであるのに対し、オゾン濃度を増大させるとNOx吸着率を大幅に改善できることを表す。以上により、図13〜図16の試験結果によれば、HCおよびCOが原因で生じるNOx吸着率の低下が、オゾンを供給することで改善されることが明らかとなった。 The test conditions in FIG. 16 are an NO concentration of 100 ppm, a C 3 H 6 concentration of 300 ppm, a CO concentration of zero, and a catalyst temperature of 180 ° C., and the NOx adsorption rate is measured by changing the ozone concentration. The test results shown in FIG. 16 show that the NOx adsorption rate is almost zero when the ozone concentration is zero in an environment with a C 3 H 6 concentration of 300 ppm, whereas the NOx adsorption rate can be greatly improved by increasing the ozone concentration. Represents. From the above, according to the test results of FIGS. 13 to 16, it has been clarified that the decrease in the NOx adsorption rate caused by HC and CO is improved by supplying ozone.

さらに本発明者らは以下の知見を得た。すなわち、図8および図9を用いて先述したように、HC濃度またはCO濃度が所定濃度以上の領域では、オゾン増大による阻害反応抑制の効果が期待できなくなる。この知見を鑑みた本実施形態では、制御手段41bは、取得されたHC濃度またはCO濃度が所定濃度以上の領域であれば、HC濃度またはCO濃度の違いに拘らずに補正係数K1、K2を固定して、オゾン生成量を設定する。よって、不必要にオゾン生成量を増大させることを回避できる。   Furthermore, the present inventors obtained the following knowledge. That is, as described above with reference to FIGS. 8 and 9, in the region where the HC concentration or the CO concentration is equal to or higher than the predetermined concentration, the effect of suppressing the inhibition reaction due to the increase in ozone cannot be expected. In the present embodiment in view of this knowledge, the control unit 41b sets the correction coefficients K1 and K2 regardless of the difference in the HC concentration or the CO concentration as long as the acquired HC concentration or the CO concentration is in the region of the predetermined concentration or more. Fix and set the amount of ozone generated. Therefore, it is possible to avoid unnecessarily increasing the ozone generation amount.

さらに本発明者らは以下の知見を得た。すなわち、先述したように、排気温度Texが高いほど、阻害反応が促進されてNO濃度減少の懸念が高くなる。これに対し、オゾン供給量を増大させればHCおよびCOがオゾンに酸化される度合いが高くなるので、上記懸念を抑制できる。この知見を鑑みた本実施形態では、取得手段41aにより取得されるNO還元相関値に排気温度Texが含まれており、排気温度Texに応じてオゾン生成量を制御するので、オゾン生成量に過不足が生じることを抑制できる。 Furthermore, the present inventors obtained the following knowledge. That is, as described above, the higher the exhaust gas temperature Tex, the more the inhibition reaction is promoted, and the fear of the NO 2 concentration decrease increases. On the other hand, since the degree to which HC and CO are oxidized to ozone increases if the ozone supply amount is increased, the concern can be suppressed. In the present embodiment in view of this knowledge, the NO reduction correlation value acquired by the acquisition unit 41a includes the exhaust gas temperature Tex, and the ozone generation amount is controlled according to the exhaust gas temperature Tex. The shortage can be suppressed.

さらに本発明者らは以下の知見を得た。すなわち、先述したように、触媒温度Tcatが低いほど、NOの吸着力が低下して脱離し、NOに還元される阻害反応によりNO濃度減少の懸念が高くなる。これに対し、オゾン供給量を増大させればNOがさらに酸化されて吸着力の強い硝酸に変化するので、上記懸念を抑制できる。この知見を鑑みた本実施形態では、取得手段41aにより取得されるNO還元相関値に触媒温度Tcatが含まれており、触媒温度Tcatに応じてオゾン生成量を制御するので、オゾン生成量に過不足が生じることを抑制できる。 Furthermore, the present inventors obtained the following knowledge. That is, as described above, the lower the catalyst temperature Tcat, the lower the NO 2 adsorbing power, so that the NO 2 concentration decreases due to the inhibition reaction reduced to NO. On the other hand, if the ozone supply amount is increased, NO 2 is further oxidized and changed to nitric acid having a strong adsorptive power. In the present embodiment in view of this knowledge, the NO reduction correlation value acquired by the acquisition unit 41a includes the catalyst temperature Tcat, and the ozone generation amount is controlled according to the catalyst temperature Tcat. The shortage can be suppressed.

さて、内燃機関10の定常運転時においては、排気温度Texと触媒温度Tcatは殆ど同じ値になる。しかし、内燃機関10を負荷が急上昇する過渡運転時には、排気温度Texの上昇に遅れて触媒温度Tcatが上昇するので、両温度に差が生じる。この点を鑑みた本実施形態では、排気温度Texおよび触媒温度Tcatを各々取得し、各々の温度に応じて補正係数K3、K4を設定している。よって、上述の如く排気温度Texと触媒温度Tcatに差が生じている場合であっても、オゾンを過不足なく生成することを高精度で制御できる。   Now, during steady operation of the internal combustion engine 10, the exhaust gas temperature Tex and the catalyst temperature Tcat are almost the same value. However, during a transient operation in which the load suddenly increases in the internal combustion engine 10, the catalyst temperature Tcat rises behind the rise in the exhaust gas temperature Tex, so that there is a difference between the two temperatures. In this embodiment in view of this point, the exhaust temperature Tex and the catalyst temperature Tcat are acquired, and the correction coefficients K3 and K4 are set according to each temperature. Therefore, even when there is a difference between the exhaust temperature Tex and the catalyst temperature Tcat as described above, it is possible to control the generation of ozone without excess or deficiency.

さらに本実施形態によれば、還元触媒は少なくとも銀を含む物質である。具体的には、担体にコーティングされたアルミナ上に銀触媒が担持されている。このように銀触媒を採用することで、例えば白金触媒を採用した場合に比べて図3の部分酸化反応が生じやすくなる。よって、銀触媒を採用する本実施形態によれば、白金触媒を採用した場合に比べてNOx浄化率を向上できる。特に、触媒温度Tcatが活性化している温度領域のうち、低温の領域において、NOx浄化率向上の効果が顕著に発揮されるようになる。   Furthermore, according to this embodiment, the reduction catalyst is a substance containing at least silver. Specifically, a silver catalyst is supported on alumina coated on a carrier. By employing a silver catalyst in this way, the partial oxidation reaction of FIG. 3 is more likely to occur than when a platinum catalyst is employed, for example. Therefore, according to this embodiment that employs a silver catalyst, the NOx purification rate can be improved as compared with the case where a platinum catalyst is employed. In particular, the effect of improving the NOx purification rate is remarkably exhibited in the low temperature region of the temperature region where the catalyst temperature Tcat is activated.

さらに本実施形態では、ヒータ21により所定温度以上に加熱された還元剤を、空気中に含まれる酸素により部分的に酸化させて改質する。これによれば、燃料が部分酸化することを容易に実現でき、還元剤の改質を容易に実現できる。また、ヒータ21で燃料を加熱することにより、炭素数の少ない炭化水素化合物に燃料を分解させるクラッキングが生じるようになる。そして、クラッキングにより炭素数が少なくなった炭化水素は沸点が低くなるので、気化した燃料が液体に戻ることが抑制される。   Furthermore, in this embodiment, the reducing agent heated to a predetermined temperature or higher by the heater 21 is partially oxidized by oxygen contained in the air to be reformed. According to this, partial oxidation of the fuel can be easily realized, and reforming of the reducing agent can be easily realized. Further, by heating the fuel with the heater 21, cracking that causes the fuel to decompose into a hydrocarbon compound having a small number of carbon atoms occurs. And since the boiling point of the hydrocarbon whose carbon number decreased by cracking becomes low, it is suppressed that the vaporized fuel returns to a liquid.

さらに本実施形態では、強酸化制御により冷炎反応を生じさせる時に、オゾナイザ30により生成されたオゾンを供給する。そのため、冷炎反応の開始時期の早期化と、冷炎反応時間の短縮化を図ることができる。よって、反応室20aでの燃料の滞留時間が短くなるように反応容器20を小型化しても、上記滞留時間内に冷炎反応が完了するようにできる。よって、反応容器20の小型化を図ることができる。   Furthermore, in the present embodiment, ozone generated by the ozonizer 30 is supplied when a cold flame reaction is caused by strong oxidation control. Therefore, it is possible to accelerate the start time of the cold flame reaction and shorten the cold flame reaction time. Therefore, even if the reaction vessel 20 is downsized so that the residence time of the fuel in the reaction chamber 20a is shortened, the cold flame reaction can be completed within the residence time. Therefore, the reaction vessel 20 can be downsized.

(第2実施形態)
上記第1実施形態では、オゾンを供給する機能を有した還元剤添加装置が、本発明に係るオゾン供給装置を提供している。これに対し本実施形態では、図1に示す反応容器20、ヒータ21および噴射弁22を廃止した装置であって、図17に示すオゾン供給装置を提供している。このオゾン供給装置は、オゾナイザ30、エアポンプ30p、送風管26、供給管23、逆止弁26vおよびECU40を備える。
(Second Embodiment)
In the first embodiment, the reducing agent addition device having a function of supplying ozone provides the ozone supply device according to the present invention. On the other hand, in the present embodiment, the ozone supply device shown in FIG. 17 is provided, which is a device in which the reaction vessel 20, the heater 21, and the injection valve 22 shown in FIG. 1 are eliminated. The ozone supply device includes an ozonizer 30, an air pump 30p, a blower pipe 26, a supply pipe 23, a check valve 26v, and an ECU 40.

また、図1に示すNOx浄化装置12は、O存在下において還元剤をNOxと選択的に反応させる還元触媒を採用している。これに対し、本実施形態に係るNOx浄化装置12Aは、O存在下であるリーン環境でNOxを吸蔵し、リッチ環境で還元剤をNOxと反応させる還元触媒を採用している。 Further, the NOx purification device 12 shown in FIG. 1 employs a reduction catalyst that selectively reacts the reducing agent with NOx in the presence of O 2 . In contrast, the NOx purification device 12A according to the present embodiment employs a reduction catalyst that stores NOx in a lean environment in the presence of O 2 and reacts a reducing agent with NOx in a rich environment.

また、本実施形態による制御では、図5および図6に示す処理内容を次のように変更している。すなわち、図5に示すステップS11、S12の判定を廃止するとともに、ステップS15、S16、S17による還元剤供給の制御を廃止する。なお、ステップS13にて触媒温度がT3より大きいと判定された場合には、ステップS18の全停止制御を実施する。   In the control according to the present embodiment, the processing contents shown in FIGS. 5 and 6 are changed as follows. That is, the determinations in steps S11 and S12 shown in FIG. 5 are abolished, and the reducing agent supply control in steps S15, S16, and S17 is abolished. When it is determined in step S13 that the catalyst temperature is higher than T3, the full stop control in step S18 is performed.

また、図6に示すステップS20、S21、S22、S25の処理を廃止する。ステップS26のエアポンプ制御に用いる目標空気量Atrgは、排気中のNO濃度に応じて設定される。ステップS27では、排気中のNO濃度に応じてオゾナイザ30への供給電力が制御される。要するに、排気中のNO濃度が高いほど、供給するオゾンの量を増大させる。   Further, the processing of steps S20, S21, S22, and S25 shown in FIG. 6 is abolished. The target air amount Atrg used for the air pump control in step S26 is set according to the NO concentration in the exhaust. In step S27, the power supplied to the ozonizer 30 is controlled according to the NO concentration in the exhaust gas. In short, the higher the NO concentration in the exhaust, the greater the amount of ozone supplied.

そして、図7の処理については、本実施形態においても上記第1実施形態と同様に実施する。つまり、NO還元相関値に基づきオゾン生成量を制御する。そのため、本実施形態によっても上記第1実施形態と同様にして、阻害反応に起因してオゾン生成量に過不足が生じることを抑制できる。   The processing of FIG. 7 is performed in the present embodiment as well as in the first embodiment. That is, the ozone generation amount is controlled based on the NO reduction correlation value. Therefore, according to the present embodiment as well, it is possible to suppress an excess or deficiency in the ozone generation amount due to the inhibition reaction in the same manner as in the first embodiment.

(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made as illustrated below. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of embodiments even if they are not explicitly stated, unless there is a problem with the combination. Is also possible.

本発明者らは以下の知見を得た。すなわち、排気中には硫黄成分が含まれており、この硫黄成分は触媒に吸着し得る。吸着した硫黄成分はNOに比べて触媒から脱離しにくく、触媒に蓄積されやすいので、触媒への硫黄吸着量は増大していき、ひいてはNO吸着量が減少するといった硫黄被毒の問題がある。そして、硫黄被毒が進行すると、触媒のNOに対する吸着力が弱くなる。すると、吸着した状態のNOが、COやHCと阻害反応しやすくなる。したがって、硫黄吸着量(被毒量)が多いほど、NOの吸着力が低下する。つまり、硫黄吸着量は、NOの捕捉力と相関のある物理量(捕捉力相関値)であると言える。この点を鑑み、取得手段41aが硫黄吸着量を取得し、制御手段41bは、取得した硫黄吸着量に基づきオゾン生成量を制御してもよい。 The present inventors have obtained the following findings. That is, the exhaust contains sulfur components, which can be adsorbed by the catalyst. The adsorbed sulfur component is less likely to be desorbed from the catalyst than NO 2 and is likely to accumulate in the catalyst, so that the amount of sulfur adsorbed on the catalyst increases and eventually the NO 2 adsorption amount decreases. is there. When the sulfur poisoning progresses, the suction force to NO 2 in the catalyst is weakened. As a result, the adsorbed NO 2 is liable to inhibit the CO and HC. Therefore, the greater the sulfur adsorption amount (the poisoning amount), the lower the NO 2 adsorption power. That is, it can be said that the sulfur adsorption amount is a physical quantity (capture force correlation value) correlated with the NO 2 capture force. In view of this point, the acquisition unit 41a may acquire the sulfur adsorption amount, and the control unit 41b may control the ozone generation amount based on the acquired sulfur adsorption amount.

図10および図11に例示する特性線は、HC濃度とCO濃度の比率に応じて異なる場合がある。この点を鑑みて、触媒温度Tcatまたは排気温度Texに応じたオゾン供給量の補正係数K3、K4を、上記比率に応じて可変設定してもよい。また、HC濃度、CO濃度、排気温度Tex、触媒温度Tcat等の複数種類のNO還元相関値と、トータル補正係数との関係を表した関数を予めマイコン41に記憶させておく。そして、取得した複数種類のNO還元相関値を上記関数に代入することでトータル補正係数を算出し、ベースオゾン量Obaseにトータル補正係数を乗算して目標オゾン量Otrgを算出してもよい。   The characteristic lines illustrated in FIGS. 10 and 11 may be different depending on the ratio between the HC concentration and the CO concentration. In view of this point, the ozone supply amount correction coefficients K3 and K4 according to the catalyst temperature Tcat or the exhaust temperature Tex may be variably set according to the ratio. Further, a function representing the relationship between a plurality of types of NO reduction correlation values such as HC concentration, CO concentration, exhaust gas temperature Tex, catalyst temperature Tcat and the like and the total correction coefficient is stored in the microcomputer 41 in advance. Then, the total correction coefficient may be calculated by substituting the obtained plural types of NO reduction correlation values into the above function, and the target ozone amount Otrg may be calculated by multiplying the base ozone amount Obase by the total correction coefficient.

上記各実施形態では、NO還元相関値に応じてオゾン供給量を制御するにあたり、HC濃度、CO濃度、排気温度Texおよび触媒温度TcatをNO還元相関値としている。これに対し本発明は、これら全てのNO還元相関値を取得してオゾン供給量を制御することに限定されるものではなく、例えば、これら全てのNO還元相関値のうち、少なくとも1つを取得してオゾン供給量を制御するようにしてもよい。   In each of the above embodiments, the HC concentration, the CO concentration, the exhaust gas temperature Tex, and the catalyst temperature Tcat are used as the NO reduction correlation value in controlling the ozone supply amount according to the NO reduction correlation value. In contrast, the present invention is not limited to acquiring all these NO reduction correlation values and controlling the ozone supply amount. For example, at least one of all these NO reduction correlation values is acquired. Then, the ozone supply amount may be controlled.

上記各実施形態では、NOx浄化装置12に取り付けられた触媒温度センサ42を備え、還元触媒の雰囲気温度(触媒温度)を直接検出している。これに対し、触媒温度センサ42を廃止して、例えば内燃機関10の運転状態等に基づき、触媒温度を推定してもよい。   In each of the above embodiments, the catalyst temperature sensor 42 attached to the NOx purification device 12 is provided, and the atmospheric temperature (catalyst temperature) of the reduction catalyst is directly detected. On the other hand, the catalyst temperature sensor 42 may be eliminated, and the catalyst temperature may be estimated based on, for example, the operating state of the internal combustion engine 10.

図7のステップS30では、排気中のNO濃度、HC濃度およびCO濃度を、内燃機関10の運転状態に基づき推定しているが、これらの濃度をセンサで直接検出してもよい。図7のステップS31では、触媒温度センサ42により触媒温度Tcatを検出しているが、内燃機関10の運転状態や排気温センサの検出値に基づき、触媒温度Tcatを推定してもよい。図7のステップS31では、内燃機関10の運転状態に基づき排気温度Texを推定しているが、排気温度センサを備えて排気温度Texを直接検出してもよい。   In step S30 in FIG. 7, the NO concentration, HC concentration, and CO concentration in the exhaust gas are estimated based on the operating state of the internal combustion engine 10, but these concentrations may be directly detected by a sensor. In step S31 of FIG. 7, the catalyst temperature Tcat is detected by the catalyst temperature sensor 42. However, the catalyst temperature Tcat may be estimated based on the operating state of the internal combustion engine 10 and the detected value of the exhaust temperature sensor. In step S31 of FIG. 7, the exhaust gas temperature Tex is estimated based on the operating state of the internal combustion engine 10, but an exhaust gas temperature sensor may be provided to directly detect the exhaust gas temperature Tex.

上記第1実施形態では、銀を含んだ触媒を還元触媒として用いているが、本発明はこのような銀触媒に限定されるものではなく、例えば銅または鉄を含んだ触媒を還元触媒として用いてもよい。また、上記第1実施形態では、NOxを物理的に捕捉(つまり吸着)する還元触媒が採用されているが、NOxを化学的結合により捕捉(つまり吸蔵)する還元触媒が採用された燃焼システムに、還元剤添加装置を適用させてもよい。このように吸蔵する還元触媒の具体例として、バリウム等のアルカリ土類金属やリチウム等のアルカリ金属を白金に組合せた触媒が挙げられる。   In the first embodiment, a catalyst containing silver is used as the reduction catalyst. However, the present invention is not limited to such a silver catalyst. For example, a catalyst containing copper or iron is used as the reduction catalyst. May be. In the first embodiment, a reduction catalyst that physically captures (that is, adsorbs) NOx is employed. However, the combustion system employs a reduction catalyst that captures (or stores) NOx by chemical bonding. A reducing agent addition device may be applied. Specific examples of the reduction catalyst that occludes in this way include a catalyst in which an alkaline earth metal such as barium or an alkali metal such as lithium is combined with platinum.

内燃機関10が理論空燃比よりもリーンな状態で燃焼させている時に、NOx浄化装置12がNOxを吸着し、リーン燃焼以外の時にNOxを還元させる燃焼システムに、還元剤添加装置を適用させてもよい。この場合、リーン燃焼時にはオゾンを生成し、リーン燃焼以外の時に改質燃料を生成させればよい。このようにリーン燃焼時にNOxを捕捉する触媒の具体例としては、担体に担持された白金とバリウムによる吸蔵還元触媒が挙げられる。また、上記第1実施形態では、排気通路10exへ添加する還元剤に燃料を用いているが、尿素水を添加して、アンモニアを還元剤として用いた燃焼システムに、本発明に係るオゾン供給装置を適用させてもよい。   When the internal combustion engine 10 is burning in a state leaner than the stoichiometric air-fuel ratio, the reducing agent addition device is applied to a combustion system in which the NOx purification device 12 adsorbs NOx and reduces NOx in other than lean combustion. Also good. In this case, ozone may be generated during lean combustion, and reformed fuel may be generated at times other than lean combustion. As a specific example of the catalyst that captures NOx during lean combustion in this way, an occlusion reduction catalyst using platinum and barium supported on a carrier can be cited. Moreover, in the said 1st Embodiment, although the fuel is used for the reducing agent added to the exhaust passage 10ex, the ozone supply apparatus which concerns on this invention is added to the combustion system which added urea water and used ammonia as a reducing agent. May be applied.

上記第1実施形態では、電磁駆動式の逆止弁26vを採用しているが、機械式の逆止弁を採用してもよい。上記第1実施形態では、エアポンプ30pをオゾナイザ30の上流側に配置しているが、オゾナイザ30の下流側に配置してもよい。上記各実施形態では、DPF13を、排気通路10exのうちNOx浄化装置12の下流側に配置しているが、NOx浄化装置12の上流側に配置してもよい。   Although the electromagnetically driven check valve 26v is employed in the first embodiment, a mechanical check valve may be employed. In the first embodiment, the air pump 30p is disposed on the upstream side of the ozonizer 30, but may be disposed on the downstream side of the ozonizer 30. In each of the above embodiments, the DPF 13 is disposed on the downstream side of the NOx purification device 12 in the exhaust passage 10ex, but may be disposed on the upstream side of the NOx purification device 12.

上記第1実施形態に係る改質では、還元剤供給制御の実施にあたり、還元剤に含まれるアルデヒドの割合が所定割合(例えば10%)となるように改質している。これに対し、NOx浄化装置12へ流入するNOx量や触媒温度に応じて、アルデヒドの割合を可変設定して改質してもよい。また、本発明に係る改質還元剤は、アルデヒドを含むことに限定されるものではない。例えば、アルコール、アセテート、一酸化炭素、水素を部分酸化物として用いた還元剤添加装置であってもよい。   In the reforming according to the first embodiment, when the reducing agent supply control is performed, the reforming is performed so that the ratio of the aldehyde contained in the reducing agent is a predetermined ratio (for example, 10%). On the other hand, according to the amount of NOx flowing into the NOx purification device 12 and the catalyst temperature, the aldehyde ratio may be variably set for reforming. Further, the modified reducing agent according to the present invention is not limited to containing an aldehyde. For example, a reducing agent addition apparatus using alcohol, acetate, carbon monoxide, or hydrogen as a partial oxide may be used.

図1に示す実施形態では、車両に搭載された燃焼システムに還元剤添加装置を適用させている。これに対し、定置式の燃焼システムに還元剤添加装置を適用させてもよい。図1に示す実施形態では、圧縮自着火式のディーゼルエンジンに還元剤添加装置を適用させており、燃焼用の燃料として用いる軽油を還元剤として用いている。これに対し、点火着火式のガソリンエンジンに還元剤添加装置を適用させて、燃焼用の燃料として用いるガソリンを還元剤として用いてもよい。   In the embodiment shown in FIG. 1, a reducing agent addition device is applied to a combustion system mounted on a vehicle. On the other hand, a reducing agent addition device may be applied to a stationary combustion system. In the embodiment shown in FIG. 1, a reducing agent addition device is applied to a compression self-ignition diesel engine, and light oil used as a fuel for combustion is used as a reducing agent. On the other hand, gasoline used as a fuel for combustion may be used as a reducing agent by applying a reducing agent addition device to an ignition ignition type gasoline engine.

ECU40(制御装置)が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。   Means and / or functions provided by the ECU 40 (control device) can be provided by software recorded in a substantial storage medium and a computer that executes the software, only software, only hardware, or a combination thereof. For example, if the controller is provided by a circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.

10…内燃機関、10ex…排気通路、12、12A…NOx浄化装置、30…オゾナイザ、41a…取得手段、41b…制御手段。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 10ex ... Exhaust passage, 12, 12A ... NOx purification apparatus, 30 ... Ozonizer, 41a ... Acquisition means, 41b ... Control means.

Claims (5)

内燃機関(10)の排気通路(10ex)に配置され、排気中のNOxを浄化するNOx浄化装置(12、12A)を備えた燃焼システムに設けられ、前記排気通路のうち前記NOx浄化装置の上流側へオゾンを供給することで、排気中のNOをNOに酸化させるオゾン供給装置において、
放電によりオゾンを生成するオゾナイザ(30)と、
前記排気通路のうち前記NOx浄化装置よりも上流側の部分または前記NOx浄化装置の内部でNOをNOに還元させる要因と相関のある物理量を、NO還元相関値として取得する取得手段(41a)と、
前記取得手段により取得された前記NO還元相関値に応じて、前記オゾナイザによるオゾン生成量を制御する制御手段(41b)と、
を備えることを特徴とするオゾン供給装置。
An exhaust passage (10ex) of the internal combustion engine (10) is provided in a combustion system provided with a NOx purification device (12, 12A) for purifying NOx in the exhaust, and upstream of the NOx purification device in the exhaust passage. In the ozone supply device that oxidizes NO in the exhaust to NO 2 by supplying ozone to the side,
An ozonizer (30) for generating ozone by electric discharge;
Acquisition means (41a) for acquiring, as a NO reduction correlation value, a physical quantity correlated with a factor that reduces NO 2 to NO in a portion of the exhaust passage upstream of the NOx purification device or inside the NOx purification device. When,
Control means (41b) for controlling the amount of ozone generated by the ozonizer according to the NO reduction correlation value obtained by the obtaining means;
An ozone supply device comprising:
前記取得手段により取得される前記NO還元相関値には、排気中のHC濃度およびCO濃度の少なくとも一方が含まれており、
前記制御手段は、前記取得手段により取得されたHC濃度またはCO濃度が高濃度であるほど、前記オゾン生成量を増大させることを特徴とする請求項1に記載のオゾン供給装置。
The NO reduction correlation value acquired by the acquisition means includes at least one of HC concentration and CO concentration in exhaust gas,
2. The ozone supply device according to claim 1, wherein the control unit increases the ozone generation amount as the HC concentration or the CO concentration acquired by the acquisition unit is higher.
前記制御手段は、前記取得手段により取得されたHC濃度またはCO濃度が所定濃度以上の領域であれば、HC濃度またはCO濃度の違いに拘らずに前記オゾン生成量を設定することを特徴とする請求項2に記載のオゾン供給装置。   The control means sets the ozone generation amount regardless of the difference in the HC concentration or the CO concentration if the HC concentration or the CO concentration obtained by the obtaining means is in a region of a predetermined concentration or more. The ozone supply device according to claim 2. 前記取得手段により取得される前記NO還元相関値には、排気温度が含まれていることを特徴とする請求項1〜3のいずれか1つに記載のオゾン供給装置。   The ozone supply device according to any one of claims 1 to 3, wherein the NO reduction correlation value acquired by the acquisition means includes an exhaust gas temperature. 前記NOx浄化装置は、排気中のNOを捕捉する機能を有しており、
前記取得手段により取得される前記NO還元相関値には、前記NOx浄化装置の温度が含まれていることを特徴とする請求項1〜4のいずれか1つに記載のオゾン供給装置。
The NOx purification device has a function of capturing NO 2 in the exhaust,
The ozone supply device according to any one of claims 1 to 4, wherein the NO reduction correlation value acquired by the acquisition means includes a temperature of the NOx purification device.
JP2014211161A 2014-10-15 2014-10-15 Ozone supply device Active JP6515481B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014211161A JP6515481B2 (en) 2014-10-15 2014-10-15 Ozone supply device
DE102015116257.1A DE102015116257B4 (en) 2014-10-15 2015-09-25 Ozone supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211161A JP6515481B2 (en) 2014-10-15 2014-10-15 Ozone supply device

Publications (2)

Publication Number Publication Date
JP2016079872A true JP2016079872A (en) 2016-05-16
JP6515481B2 JP6515481B2 (en) 2019-05-22

Family

ID=55638066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211161A Active JP6515481B2 (en) 2014-10-15 2014-10-15 Ozone supply device

Country Status (2)

Country Link
JP (1) JP6515481B2 (en)
DE (1) DE102015116257B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039481A1 (en) * 2017-08-23 2019-02-28 株式会社デンソー Control device for exhaust-air purification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505938A (en) * 2018-10-22 2022-01-14 上海必修福企業管理有限公司 Ozone purification system and method for engine exhaust gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031928A (en) * 2006-07-28 2008-02-14 Mazda Motor Corp Exhaust emission control device
JP2009047117A (en) * 2007-08-22 2009-03-05 Mazda Motor Corp Exhaust emission control method and exhaust emission control device
JP2009264320A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009264285A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009264284A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009293572A (en) * 2008-06-06 2009-12-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859201A1 (en) 1998-12-21 2000-06-29 Siemens Ag Method and device for the selective catalytic reduction of nitrogen oxides in oxygen-containing exhaust gases
US7954313B2 (en) * 2005-10-18 2011-06-07 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
JP2008163887A (en) 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031928A (en) * 2006-07-28 2008-02-14 Mazda Motor Corp Exhaust emission control device
JP2009047117A (en) * 2007-08-22 2009-03-05 Mazda Motor Corp Exhaust emission control method and exhaust emission control device
JP2009264285A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009264284A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009264320A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009293572A (en) * 2008-06-06 2009-12-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039481A1 (en) * 2017-08-23 2019-02-28 株式会社デンソー Control device for exhaust-air purification system
JP2019039322A (en) * 2017-08-23 2019-03-14 株式会社デンソー Control device for exhaust emission control system
DE112018004733T5 (en) 2017-08-23 2020-06-04 Denso Corporation Control device for an exhaust gas purification system

Also Published As

Publication number Publication date
DE102015116257B4 (en) 2020-06-18
DE102015116257A1 (en) 2016-04-21
JP6515481B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6451200B2 (en) Ozone addition control device
JP6052247B2 (en) Reducing agent addition device
US9605575B2 (en) Reducing agent supplying device
US9556775B2 (en) Reducing agent supplying device
JP6052257B2 (en) Reducing agent addition device
JP6515481B2 (en) Ozone supply device
US9528410B2 (en) Reducing agent supplying device
JP2016065512A (en) Ozone supply device
JP6358116B2 (en) Ozone supply device
JP6455377B2 (en) Reducing agent addition device
JP6610318B2 (en) Ozone supply control device and ozone supply system
JP6090136B2 (en) Reducing agent addition device
JP6323239B2 (en) Reducing agent addition device
JP6390492B2 (en) NOx purification system controller and reducing agent addition system
JP6369455B2 (en) Ozone supply control device
JP6083373B2 (en) Highly active substance addition equipment
JP6459535B2 (en) Ozone supply device
JP2015200228A (en) reducing agent addition device
JP6090135B2 (en) Highly active substance addition equipment
JP2009191652A (en) Exhaust emission control device and exhaust emission control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6515481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250