JP2016079343A - Coating material composition thermally cured at low temperature, method for forming multilayer coating film and multilayer coating film - Google Patents

Coating material composition thermally cured at low temperature, method for forming multilayer coating film and multilayer coating film Download PDF

Info

Publication number
JP2016079343A
JP2016079343A JP2014214499A JP2014214499A JP2016079343A JP 2016079343 A JP2016079343 A JP 2016079343A JP 2014214499 A JP2014214499 A JP 2014214499A JP 2014214499 A JP2014214499 A JP 2014214499A JP 2016079343 A JP2016079343 A JP 2016079343A
Authority
JP
Japan
Prior art keywords
weight
coating composition
iii
coating film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014214499A
Other languages
Japanese (ja)
Other versions
JP6585341B2 (en
Inventor
小林 俊介
Shunsuke Kobayashi
俊介 小林
隆志 俵谷
Takashi Tawaraya
隆志 俵谷
朋子 有馬
Tomoko Arima
朋子 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kusumoto Chemicals Ltd
Original Assignee
Kusumoto Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kusumoto Chemicals Ltd filed Critical Kusumoto Chemicals Ltd
Priority to JP2014214499A priority Critical patent/JP6585341B2/en
Publication of JP2016079343A publication Critical patent/JP2016079343A/en
Application granted granted Critical
Publication of JP6585341B2 publication Critical patent/JP6585341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting coating material composition being a baking type coating material which is thermally cured at a low temperature and to provide a method for forming a multilayer coating film.SOLUTION: The thermosetting coating material composition includes at least components (I), (II) and (III) as given below: (I) a thermosetting acrylic resin having a number average molecular weight of 2,000 to 10,000 and having a hydroxyl value of 70 to 120 mgKOH/g; (II) an n-butyl etherified melamine resin having a number average molecular weight of 1,000 to 1,500 and having an imino group and a methylol group; and (III) an organophosphate represented by the following formula (Ris a 1-10C alkyl group; and Ris H or a 1-10C alkyl group)SELECTED DRAWING: None

Description

本発明は基材にコーティングするための低温焼付の反応性組成物、それを用いた2層以上の塗膜形成方法及び複層塗膜に関する。更に詳しくは、本発明は、耐溶剤性、硬化性および外観性に優れた塗膜を得るための塗料組成物、該塗料組成物を用いた塗装方法および該塗装方法により得られる硬化塗膜に関する。   The present invention relates to a low-temperature baking reactive composition for coating a substrate, a method for forming two or more layers using the same, and a multilayer coating. More specifically, the present invention relates to a coating composition for obtaining a coating film excellent in solvent resistance, curability and appearance, a coating method using the coating composition, and a cured coating film obtained by the coating method. .

自動車塗装など工業用塗装には主として焼き付け型塗料が用いられている。近年、地球温暖化の原因とされる二酸化炭素の排出量削減のために種々の取り組みがされているが、塗装工程において焼き付け温度を低温化することはその有効な手段の一つである。   Baking-type paints are mainly used for industrial paints such as automobile paints. In recent years, various efforts have been made to reduce the emission of carbon dioxide, which is a cause of global warming. Lowering the baking temperature in the painting process is one of the effective means.

低温硬化塗料としては、イソシアネート化合物あるいはブロックしたイソシアネート化合物を用いたものが検討されている。例えば、特許文献1には、アクリルポリオールおよびブロックイソシアネートを必須成分とし、これにブロック解離触媒およびメラミン樹脂を加えた組成物が提案されているが、その硬化温度は110℃以上である。また、特許文献2では、アクリルポリオール、活性メチレンでブロックしたイソシアネート、メラミン樹脂および強酸触媒を含む組成物が提案されているが、この塗料組成物は、強酸触媒が用いられていることにより塗料の安定性が劣る。加えて、上記2例ともにイソシアネート化合物が必須成分とされているが、イソシアネート化合物の使用は安全衛生面から好ましくない。   As low-temperature curing paints, those using isocyanate compounds or blocked isocyanate compounds have been studied. For example, Patent Document 1 proposes a composition in which an acrylic polyol and a blocked isocyanate are essential components, and a block dissociation catalyst and a melamine resin are added thereto, and the curing temperature thereof is 110 ° C. or higher. Further, Patent Document 2 proposes a composition containing an acrylic polyol, an isocyanate blocked with active methylene, a melamine resin, and a strong acid catalyst. Stability is inferior. In addition, although the isocyanate compound is an essential component in both of the above two examples, the use of the isocyanate compound is not preferable from the viewpoint of safety and hygiene.

そこで、硬化剤にイソシアネート化合物を用いず、メラミン樹脂のみを硬化剤として含む低温硬化塗料が検討され、例えば、特許文献3により、ガラス転移温度が0℃以下である熱硬化性アクリル樹脂とメラミン樹脂とを組み合わせた塗料が提供された。この塗料は、120℃の焼き付けで満足できる塗膜物性を与えるが、焼付温度の更なる低下が望まれる。   Therefore, a low-temperature curing paint containing only a melamine resin as a curing agent without using an isocyanate compound as a curing agent has been studied. For example, according to Patent Document 3, a thermosetting acrylic resin and a melamine resin having a glass transition temperature of 0 ° C. or less. A paint was combined. This paint gives satisfactory coating film properties by baking at 120 ° C., but further reduction in baking temperature is desired.

一方、自動車塗装などにおいては、金属の腐食防止や耐久性および塗膜の美観を合わせ持たせるために、例えば下塗り、中塗りおよび上塗りから成る複層塗膜を形成することが行われる。その際、できるだけ焼き付け回数を減らすことは工程短縮とともに二酸化炭素排出量削減にも有効であるので、複数の層を、各層ごとに焼き付けを行うことなく塗り重ね、塗り重ねたのちに該複層を同時に焼き付ける方法が実用化されてきている。この方法は他の工業塗装分野にも今後広まるものと予想されるが、複層に塗装された膜を低温で同時に硬化させ、満足する複層塗膜物性を得るために、その形成方法の更なる検討が必要である。   On the other hand, in automobile painting or the like, a multilayer coating film composed of, for example, an undercoat, an intermediate coat, and an overcoat is formed in order to prevent the corrosion of metal and have durability and the aesthetic appearance of the coat. At that time, reducing the number of times of baking as much as possible is effective not only for shortening the process but also for reducing carbon dioxide emissions, so that a plurality of layers are applied to each layer without baking, and the multiple layers are applied after being applied repeatedly. A method of baking at the same time has been put into practical use. Although this method is expected to spread to other industrial coating fields in the future, in order to simultaneously cure films coated in multiple layers at low temperatures and to obtain satisfactory multilayer coating film properties, the formation method is further changed. Need to be considered.

特開平10−101995号公報Japanese Patent Laid-Open No. 10-101995 WO2013/008879パンフレットWO2013 / 008879 brochure 特開昭61−143472号公報JP 61-143472 A

本発明は、特定のアクリル樹脂、特定のメラミン樹脂および特定の触媒を選択することにより、低温硬化性に優れ、塗膜物性に優れ、毒性が低い塗料組成物を提供し、更に、その塗料組成物を用いた塗膜形成方法および複層塗膜を提供することを目的とする。   The present invention provides a coating composition having excellent low-temperature curability, excellent coating film properties, and low toxicity by selecting a specific acrylic resin, a specific melamine resin, and a specific catalyst. It aims at providing the coating-film formation method using a thing, and a multilayer coating film.

本発明者は、上記目的を達成するため鋭意検討した結果、(I)数平均分子量が2,000から10,000で、水酸基価が70から120mgKOH/gである熱硬化性アクリル樹脂、(II)数平均分子量が1,000から1,500で、イミノ基およびメチロール基を有するn−ブチルエーテル化メラミン樹脂、および(III)(1)式   As a result of intensive studies to achieve the above object, the present inventor has (I) a thermosetting acrylic resin having a number average molecular weight of 2,000 to 10,000 and a hydroxyl value of 70 to 120 mgKOH / g, (II ) N-butyl etherified melamine resin having a number average molecular weight of 1,000 to 1,500 and having an imino group and a methylol group, and (III) (1)

Figure 2016079343
Figure 2016079343

(式中、R1は炭素数1〜10のアルキル基であり、R2は水素または炭素数1〜10のアルキル基である。)
で表わされる有機リン酸エステル、を含んでいる塗料組成物が優れた低温硬化性を提供することを見出し、本発明に至った。
(In the formula, R 1 is an alkyl group having 1 to 10 carbon atoms, and R 2 is hydrogen or an alkyl group having 1 to 10 carbon atoms.)
The present inventors have found that a coating composition containing an organic phosphate ester represented by the above provides excellent low-temperature curability, and has led to the present invention.

本発明はまた、2層以上の塗料を塗り重ねる積層方法において、下層部に上記成分(III)に示された有機リン酸エステル化合物を含有する塗料組成物を塗装し、該下層部が未硬化の状態で、その上に上記(I)および(II)を含有する塗料組成物か、あるいは上記(I)、(II)および(III)を含有する塗料組成物を塗り重ね、塗り重ねた複数層を同時に加熱し硬化させることを特徴とする複層塗膜形成方法を提供する。本発明はまた、前記方法により得られた多層塗膜を提供する。   The present invention also provides a method of laminating two or more layers of paint, in which a lower layer portion is coated with a coating composition containing the organophosphate compound shown in the component (III), and the lower layer portion is uncured. In this state, a coating composition containing the above (I) and (II) or a coating composition containing the above (I), (II) and (III) is applied over and over. Provided is a method for forming a multilayer coating film, wherein the layers are simultaneously heated and cured. The present invention also provides a multilayer coating film obtained by the above method.

本発明を以下詳細に説明する。   The present invention is described in detail below.

本発明に用いる熱硬化性アクリル樹脂(I)を構成する単量体成分としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル等のアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル等のメタクリル酸エステル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸4−ヒドロキシブチル等の活性水素を有するアクリル酸エステル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸2−ヒドロキシブチル等の活性水素を有するメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド等の不飽和アミド、およびスチレン、酢酸ビニル、アクリロニトリル、ビニルトルエングリシジルメタクリレート等のその他の重合性モノマーが挙げられ、それらを組み合わせて重合させて得られるアクリルポリオールを用いる。   Examples of the monomer component constituting the thermosetting acrylic resin (I) used in the present invention include acrylics such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate. Acid esters, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, methacrylate esters, acrylic acid 2- Actives such as hydroxyethyl, hydroxypropyl acrylate, 4-hydroxybutyl acrylate and other active hydrogen esters, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, etc. Methacrylic acid ester having hydrogen, unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, unsaturated amide such as acrylamide, N-methylol acrylamide and diacetone acrylamide, and styrene, vinyl acetate, acrylonitrile, vinyl Other polymerizable monomers such as toluene glycidyl methacrylate can be mentioned, and an acrylic polyol obtained by polymerizing them in combination is used.

熱硬化性アクリル樹脂は、数平均分子量が2,000から10,000で、水酸基価が70から120mgKOH/g(固形分換算)のものが好ましい。水酸基は、成分(II)のメラミン樹脂との反応点と考えられる。数平均分子量が2,000未満および/または水酸基価が70mgKOH/g未満であると、低温硬化した際、架橋が不足して十分な塗膜物性が得られず、また数平均分子量が10,000を越えると粘度が上がり、塗料の不揮発分が低下する、あるいは平滑性が低下して優れた外観が得られなくなる傾向がある。また、水酸基価が120mgKOH/gを超えると塗料の安定性が劣る。   The thermosetting acrylic resin preferably has a number average molecular weight of 2,000 to 10,000 and a hydroxyl value of 70 to 120 mgKOH / g (in terms of solid content). The hydroxyl group is considered to be a reaction point with the melamine resin of component (II). When the number average molecular weight is less than 2,000 and / or the hydroxyl value is less than 70 mgKOH / g, when cured at low temperature, crosslinking is insufficient and sufficient film properties cannot be obtained, and the number average molecular weight is 10,000. If it exceeds 1, the viscosity will increase and the non-volatile content of the paint will decrease, or the smoothness will tend to deteriorate and an excellent appearance will not be obtained. On the other hand, when the hydroxyl value exceeds 120 mgKOH / g, the stability of the paint is poor.

上記熱硬化性アクリル樹脂(I)を加熱硬化させるために、メラミン樹脂(II)を必要とする。本発明に用いるn−ブチルエーテル化メラミン樹脂(II)は、通常、メラミンにホルムアルデヒド、パラホルムアルデヒド等のホルムアルデヒドを付加反応あるいは付加縮合反応させて得られたものに、1価のアルコールで部分的にエーテル化して得られるものであって、官能基として、イミノ基およびメチロール基を有し、かつn−ブチルエーテル化されたものである。その数平均分子量は1,000から1,500のものが好ましい。更に好ましくは数平均分子量が1,300から1,500のものである。数平均分子量が1,000未満であると、低温硬化した塗膜の耐溶剤性および鉛筆硬度が劣る。また数平均分子量が1,500を超えると、塗料の不揮発分や安定性が低下し好ましくない。   In order to heat cure the thermosetting acrylic resin (I), the melamine resin (II) is required. The n-butyl etherified melamine resin (II) used in the present invention is usually obtained by subjecting melamine to an addition reaction or addition condensation reaction of formaldehyde such as formaldehyde or paraformaldehyde with a monohydric alcohol. The functional group has an imino group and a methylol group and is n-butyl etherified. The number average molecular weight is preferably 1,000 to 1,500. More preferably, the number average molecular weight is 1,300 to 1,500. When the number average molecular weight is less than 1,000, the low-temperature cured coating film has poor solvent resistance and pencil hardness. On the other hand, if the number average molecular weight exceeds 1,500, the non-volatile content and the stability of the coating are lowered, which is not preferable.

本発明に用いる有機リン酸エステル(III)は、(1)式においてR1が炭素数1〜10のアルキル基であるものである。好ましくは炭素数1〜8のアルキル基であるもの、更に好ましくは炭素数1〜4のアルキル基であるものである。R1のアルキル基の炭素数が10を超えると、耐溶剤性および鉛筆硬度が劣る。 The organophosphate (III) used in the present invention is one in which R 1 is an alkyl group having 1 to 10 carbon atoms in the formula (1). Preferably it is a C1-C8 alkyl group, More preferably, it is a C1-C4 alkyl group. When R number of carbon atoms in the alkyl group of 1 exceeds 10, solvent resistance and pencil hardness is inferior.

一般的に、メラミン樹脂を硬化剤とした塗料系においては、硬化触媒としてスルホン酸系化合物が用いられるが、本発明においては、強酸(pKaが1以下)であるスルホン酸系化合物は低温硬化性に劣るので適しておらず、むしろ弱酸(pKaが1以上)で、かつ(1)式のR1のアルキル基の炭素数が10以下のリン酸エステル化合物が適している。 In general, in a paint system using a melamine resin as a curing agent, a sulfonic acid compound is used as a curing catalyst. In the present invention, a sulfonic acid compound that is a strong acid (pKa is 1 or less) is low-temperature curable. It is not suitable because it is inferior to the above. Rather, a phosphoric acid ester compound having a weak acid (pKa of 1 or more) and the alkyl group of R 1 in the formula (1) having 10 or less carbon atoms is suitable.

具体的な有機リン酸エステルとしては、メチルアシッドホスフェイト、エチルアシッドホスフェイト、イソプロピルアシッドホスフェイト、ブチルアシッドホスフェイト、2−エチルヘキシルアシッドホスフェイト、イソデシルアシッドホスフェイト等のモノエステル、またそれらのジエステル、あるいはモノエステルとジエステルの混合物が挙げられる。   Specific examples of organic phosphates include monoesters such as methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, 2-ethylhexyl acid phosphate, isodecyl acid phosphate, and the like. A diester or a mixture of a monoester and a diester may be mentioned.

これらの有機リン酸エステルはアミン化合物と反応させて用いることもできる。アミン化合物としては、アンモニア、メチルアミン等の一級アミン、ジ−n−プロピルアミン、ジメチルアミン等の二級アミン、トリエチルアミン、ジメチルアミノエタノールやジエチルヒドロキシアミン等の三級アミン、n−ブチルアミン、ジエチルアミン等の脂肪族アミン、ピペリジン、モルホリン、N−エチルピペリジン、N−エチルモルホリン、ピリジン等のヘテロ環状アミン、ベンジルアミン、N−メチルアニリン、N,N−ジメチルアミン等の芳香族アミン等々を挙げることができ、これらのアミン化合物を1種または2種以上を混合して用いることができる。   These organophosphates can also be used by reacting with an amine compound. Examples of amine compounds include primary amines such as ammonia and methylamine, secondary amines such as di-n-propylamine and dimethylamine, tertiary amines such as triethylamine, dimethylaminoethanol and diethylhydroxyamine, n-butylamine and diethylamine. Aliphatic amines, piperidine, morpholine, N-ethylpiperidine, N-ethylmorpholine, heterocyclic amines such as pyridine, aromatic amines such as benzylamine, N-methylaniline, N, N-dimethylamine, etc. These amine compounds can be used alone or in combination of two or more.

熱硬化性アクリル樹脂とn−ブチルエーテル化メラミン樹脂との比率は、熱硬化性アクリル樹脂(I)を固形分で50〜70重量%、メラミン樹脂(II)を固形分で30〜50重量%が好ましい。メラミン樹脂が30重量%未満であると反応点が少なく、硬化塗膜の耐溶剤性、鉛筆硬度など塗膜物性が低下する。また、メラミン樹脂が50重量%を超えるとメラミン樹脂の自己縮合反応が進み、硬化塗膜は硬く脆くなり好ましくない。   The ratio of the thermosetting acrylic resin to the n-butyl etherified melamine resin is such that the thermosetting acrylic resin (I) is 50 to 70% by weight in solid content and the melamine resin (II) is 30 to 50% by weight in solid content. preferable. When the melamine resin is less than 30% by weight, the number of reaction points is small, and physical properties of the cured film such as solvent resistance and pencil hardness are deteriorated. On the other hand, if the melamine resin exceeds 50% by weight, the self-condensation reaction of the melamine resin proceeds and the cured coating becomes hard and brittle.

有機リン酸エステルの比率は、熱硬化性アクリル樹脂(I)とメラミン樹脂(II)との合計樹脂固形分に対して0.5〜10重量%(あるいはリン元素換算量0.1〜2.5重量%)が好ましい。0.5重量%未満の場合は、ゲル分率が低下するなど十分な塗膜物性が得られない。また、10重量%を超えると塗料の安定性が低下する。   The ratio of the organic phosphate ester is 0.5 to 10% by weight (or phosphorus element equivalent 0.1 to 2.2%) based on the total resin solid content of the thermosetting acrylic resin (I) and the melamine resin (II). 5% by weight) is preferred. If it is less than 0.5% by weight, sufficient physical properties of the coating film cannot be obtained, for example, the gel fraction is lowered. On the other hand, if it exceeds 10% by weight, the stability of the coating is lowered.

この他に、本発明の熱硬化性塗料組成物には、塗料として常用される原料を配合することができる。光輝性顔料として、アルミニウム、マイカ、ニッケル、亜鉛、ビスマス、グラファイト等が用いられ、着色顔料として酸化チタン、亜鉛華、カーボンブラック、モリブデンレッド、プルシアンブルー、コバルトブルー、アゾ顔料、フタロシアニン顔料、キ
ナクリドン顔料、イソインドリン顔料、スレン顔料、ペリレン顔料、ジオキサジン顔料、ジケトピロロピロール顔料等の無機あるいは有機系顔料を配合できる。更に、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、珪酸などの体質顔料も配合できる。また、ベンゾフェノン、ベンゾトリアゾール、トリアジン系等の紫外線吸収剤、ヒンダードアミン等の光安定剤や酸化防止剤が、特に屋外で使用される被塗物に塗装される塗料に配合される。また、シリコーンなどの表面調整剤、増粘剤なども使用できる。
In addition to this, the thermosetting coating composition of the present invention can be blended with raw materials commonly used as coatings. Aluminum, mica, nickel, zinc, bismuth, graphite, etc. are used as bright pigments, and titanium oxide, zinc white, carbon black, molybdenum red, Prussian blue, cobalt blue, azo pigments, phthalocyanine pigments, quinacridone pigments are used as colored pigments. Inorganic or organic pigments such as isoindoline pigments, selenium pigments, perylene pigments, dioxazine pigments and diketopyrrolopyrrole pigments can be blended. Furthermore, extender pigments such as calcium carbonate, barium sulfate, calcium sulfate, and silicic acid can be blended. In addition, UV stabilizers such as benzophenone, benzotriazole, and triazine, and light stabilizers and antioxidants such as hindered amines are blended in paints to be applied to objects to be used outdoors. Further, a surface conditioner such as silicone, a thickener, and the like can be used.

本発明の組成物は溶剤型塗料、水性塗料に用いることができる。溶剤型塗料であれば、希釈剤として有機溶剤が用いられる。水性塗料であれば、希釈剤としての水以外に、中和剤や乳化剤などを必要により配合できる。   The composition of the present invention can be used for solvent-based paints and water-based paints. In the case of a solvent-type paint, an organic solvent is used as a diluent. If it is a water-based paint, a neutralizing agent, an emulsifier, etc. can be mix | blended with water other than a diluent as needed.

本発明の塗料組成物を用いる複層塗膜形成方法においては、例えば、2層を積層する場合には、上層に本発明の塗料組成物を用い、下層に塗膜形成性樹脂および有機リン酸エステル(III)を含む塗料組成物を用いて、2層を同時に加熱硬化させる。一般に、触媒を有する塗料組成物の貯蔵安定性は、含有する触媒量に依存する傾向にある。本発明の塗料組成物においても、触媒量が多すぎると塗料の貯蔵安定性は低下することが予想される。一方、必要な触媒量が存在しなければ低温での硬化が進まない。   In the multilayer coating film forming method using the coating composition of the present invention, for example, when two layers are laminated, the coating composition of the present invention is used for the upper layer, and the film-forming resin and the organic phosphoric acid are used for the lower layer. Two layers are simultaneously heat-cured using a coating composition containing ester (III). In general, the storage stability of a coating composition having a catalyst tends to depend on the amount of catalyst contained. Also in the coating composition of the present invention, it is expected that the storage stability of the coating is lowered when the amount of the catalyst is too large. On the other hand, curing at low temperatures does not proceed unless the required amount of catalyst is present.

また、硬化させずに連続的に2層を塗り重ねた場合、硬化時にはその界面を中心に上層下層の成分が混ざることが発生する。そこで、上層の塗膜物性を確保する上で、下層の塗料中に上層の硬化触媒を潜在させ、加熱硬化時に下層から上層に触媒が移行することによって、上層の塗料組成物の低温硬化を促進させる方法が有効である。上層に本発明の(I)および(II)を含有する塗料組成物か、あるいは本発明の(I)、(II)および(III)を含有する塗料組成物を用いた場合に、その下層に塗膜形成性樹脂と触媒(III)を含有する塗料組成物を用いる。下層の組成物には必要により硬化剤を含んでもよいが、触媒(III)は下層の組成物の硬化反応には触媒効果がなくてよい。塗膜形成性樹脂としては特に限定されないが、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アルキド樹脂あるいはこれらの樹脂を2種類以上用いることができる。   Further, when two layers are continuously applied without being cured, the components of the upper and lower layers may be mixed around the interface at the time of curing. Therefore, in order to ensure the physical properties of the upper layer coating film, the upper layer curing catalyst is hidden in the lower layer coating, and the catalyst moves from the lower layer to the upper layer during heat curing, thereby promoting low temperature curing of the upper layer coating composition. This method is effective. When a coating composition containing (I) and (II) of the present invention is used for the upper layer or a coating composition containing (I), (II) and (III) of the present invention is used, A coating composition containing a film-forming resin and a catalyst (III) is used. Although the lower layer composition may contain a curing agent as necessary, the catalyst (III) may not have a catalytic effect on the curing reaction of the lower layer composition. The film-forming resin is not particularly limited, but two or more kinds of acrylic resin, polyester resin, urethane resin, epoxy resin, alkyd resin, or these resins can be used.

本発明を以下の具体的実施例により、更に詳細に説明する。   The invention is illustrated in more detail by the following specific examples.

実施例および比較例Examples and comparative examples

(製造例1)熱硬化性アクリル樹脂(I)−1の合成
撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気下にし、ソルベッソ150(協栄ケミカル(株)製)/n−ブタノール=8/2の混合溶液を80重量部加え、110℃に加温する。110℃に達したらスチレン20重量部、メタクリル酸2−エチルヘキシル32重量部、アクリル酸2−エチルヘキシル10重量部、メタクリル酸2−ヒドロキシエチル18重量部、アクリル酸4−ヒドロキシブチル8重量部、メタクリル酸3重量部、及びt−アミルパーオキシ−2−エチルヘキサノエート27重量部の混合物を2時間かけて加える。添加終了後、110℃で60分熟成し、t−アミルパーオキシ−2−エチルヘキサノエート2重量部を加えてさらに110℃で90分熟成した。得られた樹脂の数平均分子量は2,800、水酸基価は120mgKOH/g(固形分換算)、酸価は20mgKOH/g(固形分換算)、ガラス転移点は10℃、SP値は9.8、不揮発分は60重量%であった。
(Production Example 1) Synthesis of thermosetting acrylic resin (I) -1 A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a nitrogen blowing pipe and a dropping funnel was placed in a nitrogen atmosphere, and Solvesso 150 ( 80 parts by weight of a mixed solution of Kyoei Chemical Co., Ltd./n-butanol=8/2 is added and heated to 110 ° C. When it reaches 110 ° C., 20 parts by weight of styrene, 32 parts by weight of 2-ethylhexyl methacrylate, 10 parts by weight of 2-ethylhexyl acrylate, 18 parts by weight of 2-hydroxyethyl methacrylate, 8 parts by weight of 4-hydroxybutyl acrylate, methacrylic acid A mixture of 3 parts by weight and 27 parts by weight of t-amylperoxy-2-ethylhexanoate is added over 2 hours. After completion of the addition, the mixture was aged at 110 ° C. for 60 minutes, added with 2 parts by weight of t-amylperoxy-2-ethylhexanoate, and further aged at 110 ° C. for 90 minutes. The number average molecular weight of the obtained resin was 2,800, the hydroxyl value was 120 mgKOH / g (solid content conversion), the acid value was 20 mgKOH / g (solid content conversion), the glass transition point was 10 ° C., and the SP value was 9.8. The non-volatile content was 60% by weight.

(製造例2)熱硬化性アクリル樹脂(I)−2の合成
撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気下にし、ソルベッソ150(協栄ケミカル(株)製)/n−ブタノール=8/2の混合溶液を80重量部加え、110℃に加温する。110℃に達したらスチレン20重量部、メタクリル酸2−エチルヘキシル33重量部、アクリル酸2−エチルヘキ
シル10重量部、メタクリル酸2−ヒドロキシエチル18重量部、アクリル酸4−ヒドロキシブチル8重量部、メタクリル酸3重量部、及びt−アミルパーオキシ−2−エチルヘキサノエート26重量部の混合物を2時間かけて加える。添加終了後、110℃で60分熟成し、t−アミルパーオキシ−2−エチルヘキサノエート2重量部を加えてさらに110℃で90分熟成した。得られた樹脂の数平均分子量は3,200、水酸基価は120mgKOH/g(固形分換算)、酸価は20mgKOH/g(固形分換算)、ガラス転移点は10℃、SP値は9.8、不揮発分は60重量%であった。
(Production Example 2) Synthesis of thermosetting acrylic resin (I) -2 A four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a nitrogen blowing pipe and a dropping funnel was placed in a nitrogen atmosphere, and Solvesso 150 ( 80 parts by weight of a mixed solution of Kyoei Chemical Co., Ltd./n-butanol=8/2 is added and heated to 110 ° C. When it reaches 110 ° C., 20 parts by weight of styrene, 33 parts by weight of 2-ethylhexyl methacrylate, 10 parts by weight of 2-ethylhexyl acrylate, 18 parts by weight of 2-hydroxyethyl methacrylate, 8 parts by weight of 4-hydroxybutyl acrylate, methacrylic acid A mixture of 3 parts by weight and 26 parts by weight of t-amylperoxy-2-ethylhexanoate is added over 2 hours. After completion of the addition, the mixture was aged at 110 ° C. for 60 minutes, added with 2 parts by weight of t-amylperoxy-2-ethylhexanoate, and further aged at 110 ° C. for 90 minutes. The number average molecular weight of the obtained resin is 3,200, the hydroxyl value is 120 mgKOH / g (in terms of solid content), the acid value is 20 mgKOH / g (in terms of solid content), the glass transition point is 10 ° C., and the SP value is 9.8. The non-volatile content was 60% by weight.

(製造例3)熱硬化性アクリル樹脂(I)−3の合成
撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気下にし、ソルベッソ150(協栄ケミカル(株)製)/n−ブタノール=8/2の混合溶液を80重量部加え、110℃に加温する。110℃に達したらスチレン21重量部、メタクリル酸2−エチルヘキシル40重量部、アクリル酸2−エチルヘキシル11重量部、メタクリル酸2−ヒドロキシエチル17重量部、アクリル酸4−ヒドロキシブチル5重量部、メタクリル酸3重量部、及びt−アミルパーオキシ−2−エチルヘキサノエート21重量部の混合物を2時間かけて加える。添加終了後、110℃で60分熟成し、t−アミルパーオキシ−2−エチルヘキサノエート2重量部を加えてさらに110℃で90分熟成した。得られた樹脂の数平均分子量は4,000、水酸基価は95mgKOH/g(固形分換算)、酸価は20mgKOH/g(固形分換算)、ガラス転移点は10℃、SP値は9.5、不揮発分は60重量%であった。
(Production Example 3) Synthesis of Thermosetting Acrylic Resin (I) -3 A 4-necked flask equipped with a stirrer, thermometer, reflux condenser, nitrogen blowing tube, and dropping funnel was placed in a nitrogen atmosphere, and Solvesso 150 ( 80 parts by weight of a mixed solution of Kyoei Chemical Co., Ltd./n-butanol=8/2 is added and heated to 110 ° C. When it reaches 110 ° C., 21 parts by weight of styrene, 40 parts by weight of 2-ethylhexyl methacrylate, 11 parts by weight of 2-ethylhexyl acrylate, 17 parts by weight of 2-hydroxyethyl methacrylate, 5 parts by weight of 4-hydroxybutyl acrylate, methacrylic acid A mixture of 3 parts by weight and 21 parts by weight of t-amylperoxy-2-ethylhexanoate is added over 2 hours. After completion of the addition, the mixture was aged at 110 ° C. for 60 minutes, added with 2 parts by weight of t-amylperoxy-2-ethylhexanoate, and further aged at 110 ° C. for 90 minutes. The number average molecular weight of the obtained resin was 4,000, the hydroxyl value was 95 mgKOH / g (in terms of solid content), the acid value was 20 mgKOH / g (in terms of solid content), the glass transition point was 10 ° C., and the SP value was 9.5. The non-volatile content was 60% by weight.

(製造例4)熱硬化性アクリル樹脂(I)−4の合成
撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気下にし、ソルベッソ150(協栄ケミカル(株)製)/n−ブタノール=8/2の混合溶液を80重量部加え、110℃に加温する。110℃に達したらスチレン31重量部、メタクリル酸2−エチルヘキシル39重量部、アクリル酸2−エチルヘキシル13重量部、メタクリル酸2−ヒドロキシエチル10重量部、アクリル酸4−ヒドロキシブチル7重量部、メタクリル酸3重量部、及びt−アミルパーオキシ−2−エチルヘキサノエート15重量部の混合物を2時間かけて加える。添加終了後、110℃で60分熟成し、t−アミルパーオキシ−2−エチルヘキサノエート2重量部を加えてさらに110℃で90分熟成した。得られた樹脂の数平均分子量は5,600、水酸基価は70mgKOH/g(固形分換算)、酸価は20mgKOH/g(固形分換算)、ガラス転移点は10℃、SP値は9.3、不揮発分は60重量%であった。
(Production Example 4) Synthesis of Thermosetting Acrylic Resin (I) -4 A 4-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a nitrogen blowing tube and a dropping funnel was placed in a nitrogen atmosphere, and Solvesso 150 ( 80 parts by weight of a mixed solution of Kyoei Chemical Co., Ltd./n-butanol=8/2 is added and heated to 110 ° C. When the temperature reaches 110 ° C., 31 parts by weight of styrene, 39 parts by weight of 2-ethylhexyl methacrylate, 13 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of 2-hydroxyethyl methacrylate, 7 parts by weight of 4-hydroxybutyl acrylate, methacrylic acid A mixture of 3 parts by weight and 15 parts by weight of t-amylperoxy-2-ethylhexanoate is added over 2 hours. After completion of the addition, the mixture was aged at 110 ° C. for 60 minutes, added with 2 parts by weight of t-amylperoxy-2-ethylhexanoate, and further aged at 110 ° C. for 90 minutes. The number average molecular weight of the obtained resin was 5,600, the hydroxyl value was 70 mgKOH / g (in terms of solid content), the acid value was 20 mgKOH / g (in terms of solid content), the glass transition point was 10 ° C., and the SP value was 9.3. The non-volatile content was 60% by weight.

(製造例5)熱硬化性アクリル樹脂(I)−5の合成
撹拌機、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気下にし、ソルベッソ150(協栄ケミカル(株)製)/n−ブタノール=8/2の混合溶液を80重量部加え、105℃に加温する。110℃に達したらスチレン30重量部、メタクリル酸2−エチルヘキシル38重量部、アクリル酸2−エチルヘキシル12重量部、メタクリル酸2−ヒドロキシエチル10重量部、アクリル酸4−ヒドロキシブチル8重量部、メタクリル酸4重量部、及びt−アミルパーオキシ−2−エチルヘキサノエート10重量部の混合物を1時間半かけて加える。添加終了後、105℃で60分熟成し、t−アミルパーオキシ−2−エチルヘキサノエート8重量部を加えてさらに105℃で90分熟成した。得られた樹脂の数平均分子量は7700、水酸基価は70mgKOH/g(固形分換算)、酸価は20mgKOH/g(固形分換算)、ガラス転移点は11℃、SP値は9.3、不揮発分は60重量%であった。
(Production Example 5) Synthesis of thermosetting acrylic resin (I) -5 A 4-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a nitrogen blowing pipe and a dropping funnel was placed in a nitrogen atmosphere, and Solvesso 150 ( 80 parts by weight of a mixed solution of Kyoei Chemical Co., Ltd./n-butanol=8/2 is added and heated to 105 ° C. When it reaches 110 ° C., 30 parts by weight of styrene, 38 parts by weight of 2-ethylhexyl methacrylate, 12 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of 2-hydroxyethyl methacrylate, 8 parts by weight of 4-hydroxybutyl acrylate, methacrylic acid A mixture of 4 parts by weight and 10 parts by weight of t-amylperoxy-2-ethylhexanoate is added over one and a half hours. After completion of the addition, the mixture was aged at 105 ° C. for 60 minutes, added with 8 parts by weight of t-amylperoxy-2-ethylhexanoate, and further aged at 105 ° C. for 90 minutes. The number average molecular weight of the obtained resin is 7700, the hydroxyl value is 70 mg KOH / g (solid content conversion), the acid value is 20 mg KOH / g (solid content conversion), the glass transition point is 11 ° C., the SP value is 9.3, and non-volatile The minute was 60% by weight.

(実施例1〜23、比較例1〜10)
実施例及び比較例に用いた熱硬化性アクリル樹脂、メラミン樹脂および有機リン酸エステルを各表1、表2および表3に示した。
(Examples 1 to 23, Comparative Examples 1 to 10)
The thermosetting acrylic resin, melamine resin, and organic phosphate ester used in Examples and Comparative Examples are shown in Table 1, Table 2, and Table 3, respectively.

Figure 2016079343
Figure 2016079343

(数平均分子量)下記の装置を用いたゲルパーミエーションクロマトグラフ(GPC)測定によるポリスチレン基準の数平均分子量である。
装置 :東ソー(株)HLC−8120GPC
カラム :東ソー(株)TSKgel GMHXL ×2
TSKgel G2500HXL ×1
TSKgel G2000HXL ×1
キャリアー:テトラヒドロフラン
流速 :1.0mL/min
温度 :40℃
検出方法 :示差屈折率計
(Number average molecular weight) The number average molecular weight based on polystyrene as measured by gel permeation chromatography (GPC) using the following apparatus.
Apparatus: Tosoh Corporation HLC-8120GPC
Column: Tosoh Corporation TSKgel GMHXL × 2
TSKgel G2500HXL × 1
TSKgel G2000HXL × 1
Carrier: Tetrahydrofuran Flow rate: 1.0 mL / min
Temperature: 40 ° C
Detection method: Differential refractometer

(水酸基価)水酸基価は下式により算出した。 (Hydroxyl value) The hydroxyl value was calculated by the following formula.

Figure 2016079343
Figure 2016079343

(酸価)酸価は下式により算出した。 (Acid value) The acid value was calculated by the following formula.

Figure 2016079343
Figure 2016079343

(ガラス転移点)ガラス転移点(Tg)は次のFOX式を用いて計算されるものをいう。
1/Tg=W1/Tg1+W2/Tg2+…+Wi/Tgi+…+Wn/Tgn
上記FOX式においては、Tgは、n種類のモノマーからなるポリマーのガラス転移温度(K)であり、Tg(1、2、i、n)は、各モノマーのホモポリマーのガラス転移温度(K)であり、W(1、2、i、n)は、各モノマーの質量分率であり、W1+W2+…+Wi+…+Wn=1である。
(Glass transition point) The glass transition point (Tg) is calculated using the following FOX equation.
1 / Tg = W1 / Tg1 + W2 / Tg2 + ... + Wi / Tgi + ... + Wn / Tgn
In the FOX formula, Tg is a glass transition temperature (K) of a polymer composed of n types of monomers, and Tg (1, 2, i, n) is a glass transition temperature (K) of a homopolymer of each monomer. W (1, 2, i, n) is a mass fraction of each monomer, and W1 + W2 +... + Wi +.

(SP値)高分子溶液(熱硬化性アクリル樹脂1gを良溶媒(アセトン)20mlで希釈)に貧溶媒(水、ヘキサン)を滴下し、濁りを生じるまでに要した貧溶媒の量を求め、下式からSP値を算出した。 (SP value) A poor solvent (water, hexane) was dropped into a polymer solution (1 g of thermosetting acrylic resin was diluted with 20 ml of a good solvent (acetone)), and the amount of the poor solvent required to cause turbidity was determined. The SP value was calculated from the following formula.

Figure 2016079343
Figure 2016079343

φ1:貧溶媒(水)のSP値(=23.4)
δ1:濁りを生じるまでに要した水の体積分率
δg:良溶媒(アセトン)のSP値(=9.7)
φ2:貧溶媒(ヘキサン)のSP値(=7.3)
δ2:濁りを生じるまでに要したヘキサンの体積分率
水、アセトン、ヘキサンのSP値は、HSPiPのデータベース数値から引用した。
φ 1 : SP value of poor solvent (water) (= 23.4)
δ 1 : Volume fraction of water required to cause turbidity
δ g : SP value of good solvent (acetone) (= 9.7)
φ 2 : SP value of poor solvent (hexane) (= 7.3)
δ 2 : Volume fraction of hexane required to cause turbidity, SP values of water, acetone and hexane were quoted from database values of HSPiP.

(不揮発分)試料約1gを予め重さを量ってある金属製蒸発皿に採取し、精密化学天秤にて精秤する。それらの試料を120±2℃に保った熱風循環式乾燥機に入れ1時間加熱する。その後、取り出して室温まで放冷し、再び精密化学天秤にて重さを量り、残量を求め、不揮発分(=(加熱後の残量(g)/試料の質量(g))×100)を算出する。 (Non-volatile content) About 1 g of a sample is collected in a pre-weighed metal evaporating dish and precisely weighed with a precision chemical balance. These samples are placed in a hot air circulating drier maintained at 120 ± 2 ° C. and heated for 1 hour. Thereafter, the sample is taken out, allowed to cool to room temperature, weighed again with a precision chemical balance, the remaining amount is obtained, and the non-volatile content (= (remaining amount after heating (g) / sample mass (g)) × 100) Is calculated.

Figure 2016079343
Figure 2016079343

表2に示す各原料は、以下のものを用いた。
U−VAN20SE60、U−VAN125・・・・・三井化学(株)製
Resimene CE−7103・・・・・INEOS Melamines製
サイメル303・・・・・日本サイテックインダストリーズ(株)製
The following were used for each raw material shown in Table 2.
U-VAN20SE60, U-VAN125 ... Resimene CE-7103 made by Mitsui Chemicals, Inc.Simel 303 made by INEOS Melamines ... made by Nihon Cytec Industries, Ltd.

Figure 2016079343
Figure 2016079343

表3に示す各原料は、SC有機化学(株)製のものを用いた。
PhoslexA−12、18は、固体のため、ソルベッソ150(協栄ケミカル(株)製)/n−ブタノール=8/2の混合溶液で固形分25%に希釈して使用した。
Each raw material shown in Table 3 was manufactured by SC Organic Chemical Co., Ltd.
Since Phoslex A-12 and 18 were solids, they were used after being diluted to a solid content of 25% with a mixed solution of Solvesso 150 (manufactured by Kyoei Chemical Co., Ltd.) / N-butanol = 8/2.

容器に、表4、5および6に示すクリヤー塗料配合に記載の組成材料を秤量し、ホモデ
ィスパーで2分間撹拌して、クリヤー塗料を得た。
In the container, the composition materials described in the clear coating composition shown in Tables 4, 5 and 6 were weighed and stirred with a homodisper for 2 minutes to obtain a clear coating.

リン酸亜鉛処理を施した厚さ0.8mmの鋼板に、クリヤー塗料を乾燥塗膜の厚さが約25μmになるように塗装し、80〜100℃で30分間焼き付けた。表4、5および6に示す数字は固形分の重量部を表わす。また、有機リン酸エステルの( )内の数値は、リン元素換算量を示す。   A clear coating was applied to a 0.8 mm thick steel sheet treated with zinc phosphate so that the thickness of the dry coating film was about 25 μm, and baked at 80 to 100 ° C. for 30 minutes. The numbers shown in Tables 4, 5 and 6 represent parts by weight of solids. Moreover, the numerical value in () of organophosphate ester shows phosphorus element conversion amount.

(塗膜性能試験および評価方法)
塗膜硬度:JIS K5400 8.4.1試験機法により塗膜硬度を測定し、塗膜の破壊による評価を行った。
耐溶剤性:キシレン2mlを試験板上にスポット状に乗せ、25℃で30分間放置後、塗膜の外観を目視で判定した。評価は以下の基準で行った。
◎・・・・・良好
○・・・・・わずかな形跡
×・・・・・膨れ
××・・・・塗膜が溶解
ゲル分率:ゲル分率は、硬化塗膜をアセトン/エタノール=1/1混合液でソックスレー抽出器を用いて2時間還流抽出させたときの未溶解部分の重量の抽出前重量に対する値を算出し、以下の基準で評価を行った。
◎・・・・・91%以上
○・・・・・86〜90%
×・・・・・85%以下
(Coating performance test and evaluation method)
Coating film hardness: The coating film hardness was measured by JIS K5400 8.4.1 tester method, and evaluation by destruction of the coating film was performed.
Solvent resistance: 2 ml of xylene was placed on a test plate in a spot shape, allowed to stand at 25 ° C. for 30 minutes, and the appearance of the coating film was visually determined. Evaluation was performed according to the following criteria.
◎ …… Good ○ …… Slight traces × …… Swelling xx ・ ・ ・ Gel fraction dissolved gel fraction: Gel fraction is acetone / ethanol The value with respect to the weight before extraction of the weight of the undissolved portion when reflux extraction was performed with a 1/1 mixed solution using a Soxhlet extractor for 2 hours was evaluated according to the following criteria.
◎ ... 91% or more ○ ... 86-90%
× ・ ・ ・ ・ ・ 85% or less

Figure 2016079343
Figure 2016079343

Figure 2016079343
Figure 2016079343

(実施例24〜36、比較例11〜15)
容器に、表7および8に示す上層塗料配合に記載の組成材料を秤量し、ホモディスパーで2分間撹拌して、上層塗料を得た。同様に、容器に、表7および8に示す下層塗料配合に記載の組成材料を秤量し、ホモディスパーで2分間撹拌して、3種の下層塗料、下層−1、下層−2および下層−3を得た。
(Examples 24-36, Comparative Examples 11-15)
In the container, the composition materials described in the upper layer coating composition shown in Tables 7 and 8 were weighed and stirred with a homodisper for 2 minutes to obtain an upper layer coating material. Similarly, the composition materials described in the lower layer coating composition shown in Tables 7 and 8 are weighed in a container, and stirred with a homodisper for 2 minutes, so that the three lower layer coating materials, lower layer-1, lower layer-2, and lower layer-3 are mixed. Got.

リン酸亜鉛処理を施した厚さ0.8mmの鋼板に、下層塗料を乾燥塗膜の厚さが約25μmになるように塗装し、60℃で10分間予備乾燥させ、次に、上層塗料を乾燥塗膜の厚さが約25μmになるように塗装し、80℃で30分間焼き付けた。   The lower layer paint is applied to a 0.8 mm thick steel sheet treated with zinc phosphate so that the thickness of the dried coating film is about 25 μm, pre-dried at 60 ° C. for 10 minutes, and then the upper layer paint is applied. The coating was applied so that the thickness of the dried coating film was about 25 μm, and baked at 80 ° C. for 30 minutes.

表7および8に示す数字は固形分の重量部を表わす。また、有機リン酸エステルの( )内の数値は、リン元素換算量を示す。   The numbers shown in Tables 7 and 8 represent parts by weight of solids. Moreover, the numerical value in () of organophosphate ester shows phosphorus element conversion amount.

Figure 2016079343
Figure 2016079343

Claims (7)

少なくとも下記成分(I)、(II)および(III):
(I)数平均分子量が2,000〜10,000で、水酸基価が70〜120mgKOH
/gである熱硬化性アクリル樹脂
(II)数平均分子量が1,000〜1,500で、イミノ基およびメチロール基を有する
n−ブチルエーテル化メラミン樹脂
(III)下式
Figure 2016079343
(式中、R1は炭素数1〜10のアルキル基であり、R2は水素または炭素数1〜
10のアルキル基である。)
で表わされる有機リン酸エステル
を含んでいることを特徴とする熱硬化性塗料組成物。
At least the following components (I), (II) and (III):
(I) Number average molecular weight is 2,000 to 10,000, and hydroxyl value is 70 to 120 mgKOH.
N-butyl etherified melamine resin (III) having a number average molecular weight of 1,000 to 1,500 and having an imino group and a methylol group
Figure 2016079343
(In the formula, R 1 is an alkyl group having 1 to 10 carbon atoms, and R 2 is hydrogen or 1 to 1 carbon atoms.
10 alkyl groups. )
A thermosetting coating composition comprising an organophosphate represented by the formula:
請求項1に記載の熱硬化性アクリル樹脂(I)を固形分で50〜70重量%、メラミン樹脂(II)を固形分で30〜50重量%、有機リン酸エステル(III)を(I)と(II)との合計の樹脂分に対してリン元素換算量0.1〜2.5重量%含有することを特徴とする熱硬化性塗料組成物。   The thermosetting acrylic resin (I) according to claim 1 is 50 to 70% by weight in solid content, the melamine resin (II) is 30 to 50% by weight in solid content, and the organophosphate (III) is (I) A thermosetting coating composition containing 0.1 to 2.5% by weight in terms of phosphorus element with respect to the total resin content of (II) and (II). (1)式のR1が炭素数1〜8のアルキル基である有機リン酸エステル(III)を含む請求項1記載の熱硬化性塗料組成物。 (1) The thermosetting coating composition according to claim 1, comprising an organophosphate (III) wherein R 1 in the formula is an alkyl group having 1 to 8 carbon atoms. (1)式のR1が炭素数1〜4のアルキル基である有機リン酸エステル(III)を含む請求項1記載の熱硬化性塗料組成物。 (1) The thermosetting coating composition according to claim 1, comprising an organophosphate (III) wherein R 1 in the formula is an alkyl group having 1 to 4 carbon atoms. 2層以上に塗料を塗り重ねる積層方法において、下層部に有機リン酸エステル(III)を塗料の樹脂固形分に対してリン元素換算量で0.1〜2.5重量%含む塗料組成物を塗装し、硬化させずに、続いて請求項1に示された熱硬化性アクリル樹脂(I)およびn−ブチルエーテル化メラミン樹脂(II)を含む塗料組成物、あるいは請求項1に示された熱硬化性アクリル樹脂(I)、n−ブチルエーテル化メラミン樹脂(II)および有機リン酸エステル(III)を含む塗料組成物を塗り重ね、塗り重ねられた複層を同時に加熱し硬化させることを特徴とする複層塗膜形成方法。   In a laminating method in which two or more layers are coated with a paint, a coating composition containing 0.1 to 2.5% by weight of an organic phosphate (III) in terms of phosphorus element with respect to the resin solid content of the paint in the lower layer part A coating composition comprising the thermosetting acrylic resin (I) and n-butyl etherified melamine resin (II) as set forth in claim 1 without coating and curing, or the heat as set forth in claim 1. A coating composition containing a curable acrylic resin (I), an n-butyl etherified melamine resin (II), and an organic phosphate ester (III) is applied repeatedly, and the applied multiple layers are simultaneously heated and cured. A method for forming a multilayer coating film. 有機リン酸エステル(III)に加えて、光輝性顔料あるいは着色顔料を配合した塗料組成物を下層に用い、透明な塗料組成物を上層に用いる請求項5に記載の複層塗膜形成方法。   The method for forming a multilayer coating film according to claim 5, wherein a coating composition containing a luster pigment or a coloring pigment in addition to the organic phosphate ester (III) is used for the lower layer, and a transparent coating composition is used for the upper layer. 請求項5または6の何れかに記載の方法により得られた複層塗膜。   The multilayer coating film obtained by the method in any one of Claim 5 or 6.
JP2014214499A 2014-10-21 2014-10-21 Coating composition thermally cured at low temperature, multilayer coating film forming method and multilayer coating film Active JP6585341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214499A JP6585341B2 (en) 2014-10-21 2014-10-21 Coating composition thermally cured at low temperature, multilayer coating film forming method and multilayer coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214499A JP6585341B2 (en) 2014-10-21 2014-10-21 Coating composition thermally cured at low temperature, multilayer coating film forming method and multilayer coating film

Publications (2)

Publication Number Publication Date
JP2016079343A true JP2016079343A (en) 2016-05-16
JP6585341B2 JP6585341B2 (en) 2019-10-02

Family

ID=55955880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214499A Active JP6585341B2 (en) 2014-10-21 2014-10-21 Coating composition thermally cured at low temperature, multilayer coating film forming method and multilayer coating film

Country Status (1)

Country Link
JP (1) JP6585341B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495637A (en) * 1977-12-27 1979-07-28 Ford Motor Co High solid coating composition for use as automobile top coat
JPS63256168A (en) * 1987-04-13 1988-10-24 Kansai Paint Co Ltd Metallic finishing method
JPH0268179A (en) * 1988-08-31 1990-03-07 Kansai Paint Co Ltd Metallic finish method
JPH05263035A (en) * 1992-03-19 1993-10-12 Kansai Paint Co Ltd Coating composition
JPH0688056A (en) * 1992-05-26 1994-03-29 Nippon Paint Co Ltd Coating composition improved in interlayer adhesion, use thereof, and multilayer coating film
JPH08266995A (en) * 1995-03-31 1996-10-15 Mazda Motor Corp Wet-on-wet painting method and base coat paint used therein
JPH11267585A (en) * 1998-03-24 1999-10-05 Nof Corp Coating finishing method and coated article
JP2001205175A (en) * 2000-01-25 2001-07-31 Nippon Paint Co Ltd Coating film forming method
JP2001329227A (en) * 2000-05-19 2001-11-27 Kanegafuchi Chem Ind Co Ltd Resin composition for coating excellent in appearance and stain resistance, and method for prolonging stain resistance-imparting performance of resin composition for coating
JP2014125558A (en) * 2012-12-26 2014-07-07 Kansai Paint Co Ltd Coating composition and method of forming multilayer coating film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495637A (en) * 1977-12-27 1979-07-28 Ford Motor Co High solid coating composition for use as automobile top coat
JPS63256168A (en) * 1987-04-13 1988-10-24 Kansai Paint Co Ltd Metallic finishing method
JPH0268179A (en) * 1988-08-31 1990-03-07 Kansai Paint Co Ltd Metallic finish method
JPH05263035A (en) * 1992-03-19 1993-10-12 Kansai Paint Co Ltd Coating composition
JPH0688056A (en) * 1992-05-26 1994-03-29 Nippon Paint Co Ltd Coating composition improved in interlayer adhesion, use thereof, and multilayer coating film
JPH08266995A (en) * 1995-03-31 1996-10-15 Mazda Motor Corp Wet-on-wet painting method and base coat paint used therein
JPH11267585A (en) * 1998-03-24 1999-10-05 Nof Corp Coating finishing method and coated article
JP2001205175A (en) * 2000-01-25 2001-07-31 Nippon Paint Co Ltd Coating film forming method
JP2001329227A (en) * 2000-05-19 2001-11-27 Kanegafuchi Chem Ind Co Ltd Resin composition for coating excellent in appearance and stain resistance, and method for prolonging stain resistance-imparting performance of resin composition for coating
JP2014125558A (en) * 2012-12-26 2014-07-07 Kansai Paint Co Ltd Coating composition and method of forming multilayer coating film

Also Published As

Publication number Publication date
JP6585341B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5547415B2 (en) Rust preventive paint composition
US9630212B2 (en) Method for the formation of multi-layer paint films
JP5586799B2 (en) Paint composition
JP6869753B2 (en) High solid content paint composition
EP2809719A1 (en) Polymer, process and composition
JP5547376B2 (en) Rust preventive paint composition
JP5692482B1 (en) Coating composition and coated article
US20060047065A1 (en) Aqueous coating compositions based on acrylate copolymers
JP5689210B1 (en) Paint composition
WO2006028130A1 (en) Hydroxyl group-containing resin for coating material and coating composition
CN111093841A (en) Method for forming multilayer coating film
JP6188216B2 (en) Coating composition and coated article
JPWO2019168041A1 (en) Painting method and paint composition
JP6150293B2 (en) Clear coating composition and repair coating method using the same
JP6585341B2 (en) Coating composition thermally cured at low temperature, multilayer coating film forming method and multilayer coating film
WO2014196217A1 (en) Coating composition
JP2010058068A (en) Method for forming multilayer coating film
JP6080162B2 (en) Paint composition
JP2017509739A (en) Amphiphilic carbamate functional copolymer and coating agent containing the same
JP2024503628A (en) Method for producing carbamate-functional materials using t-butyl carbamate and a tin catalyst
JP6080161B2 (en) Paint composition
WO2020175065A1 (en) Heat-curable coating composition and coated article
JP5979766B2 (en) Multi-component organic solvent-based undercoating composition and repair coating method using the same
JP7246489B2 (en) Multi-layer coating film forming method
JP2012162636A (en) Water dispersion, and aqueous coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250