JP2016078800A - Storage battery charge/discharge management apparatus and storage battery charge/discharge management system - Google Patents

Storage battery charge/discharge management apparatus and storage battery charge/discharge management system Download PDF

Info

Publication number
JP2016078800A
JP2016078800A JP2014215423A JP2014215423A JP2016078800A JP 2016078800 A JP2016078800 A JP 2016078800A JP 2014215423 A JP2014215423 A JP 2014215423A JP 2014215423 A JP2014215423 A JP 2014215423A JP 2016078800 A JP2016078800 A JP 2016078800A
Authority
JP
Japan
Prior art keywords
storage battery
train
charge
discharge
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014215423A
Other languages
Japanese (ja)
Other versions
JP6282212B2 (en
Inventor
雅 萩原
Masashi Hagiwara
雅 萩原
祐作 長▲崎▼
Yusaku Nagasaki
祐作 長▲崎▼
剛生 吉本
Takeo Yoshimoto
剛生 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014215423A priority Critical patent/JP6282212B2/en
Publication of JP2016078800A publication Critical patent/JP2016078800A/en
Application granted granted Critical
Publication of JP6282212B2 publication Critical patent/JP6282212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery charge/discharge management system capable of reducing energy consumption while suppressing regeneration invalidation.SOLUTION: A storage battery charge/discharge management system 30 for managing the charging/discharging of a storage battery mounted on at least one side of a train 10 and ground power storage facility 20 includes: a data base 31 in which a route line shape and an operation diagram for the traveling of a train 10 are stored; an estimation part 34 which performs traveling estimation of the train 10 based on the route line shape and the operation diagram of the train 10; a communication part 32 which communicates with at least one side of the train 10 on which the storage battery is mounted and the ground power storage facility 20; and a control part 33 which prepares a charging/discharging plan of the storage battery based on information and traveling estimation of at least one side of the train 10 and the ground power storage facility 20 from the communication part 32. Therein, the control part 33 prepares a plurality of charging/discharging patterns corresponding to the number of times by which regeneration invalidation occurs and the number of times by which charging is performed, and determines the charging/discharging plan on the train 10 from among the plurality of charging/discharging patterns based on power consumption.SELECTED DRAWING: Figure 1

Description

本発明は、電車及び地上蓄電設備の蓄電池の充放電を管理する蓄電池充放電管理装置並びに蓄電池充放電管理システムに関するものである。   The present invention relates to a storage battery charge / discharge management device and a storage battery charge / discharge management system for managing charge / discharge of storage batteries of trains and ground storage equipment.

従来、蓄電池を電車及び地上設備の一方または双方に設置して電車の力行時には蓄電池を放電させて電圧降下を軽減し、電車の回生時には蓄電池を充電することで回生失効を抑制しつつエネルギの有効活用を行うシステムが検討されている。   Conventionally, a storage battery is installed on one or both of the train and ground facilities to discharge the storage battery when powering the train to reduce the voltage drop, and charging the storage battery when regenerating the train while suppressing regenerative invalidation A system to make use of it is being studied.

なお、電車の回生動作においては、電車に生じた駆動力が電気エネルギに変換され、該電気エネルギが架線に供給され、架線に供給された電気エネルギが、他の電車の駆動に用いられまたは蓄電池に充電される。回生失効とは、このような電車の回生動作ができない状態をいう。   In the regenerative operation of the train, the driving force generated in the train is converted into electrical energy, the electrical energy is supplied to the overhead line, and the electrical energy supplied to the overhead line is used for driving other trains or storage batteries. Is charged. Regeneration invalidity refers to a state in which such a train regeneration operation is not possible.

例えば、特許文献1には、「き電線・架線の電圧の安定化及び損失の低減を実現するとともに、設備費の低減も図り得る電気車の駆動システムを提供する」ことを課題とし「架線1から供給される直流電力をモータ駆動変換器3で変換してモータ4を駆動し、この駆動力で電気車を走行させる一方、上記架線1に対してモータ駆動変換器3に並列に大容量蓄電装置5を接続し、電気車Iの力行時の電力は、主に大容量蓄電装置5から供給する一方、回生制動時の回生電力は前記大電流蓄電装置5に蓄えることによって、電気車Iに架線1から供給する電力量及び電気車Iが架線1に回生する電力量を低減する」電気車の駆動システムが開示されている。特許文献1では、車上に大容量蓄電装置を搭載し、電車の運行ダイヤ、速度及び位置に応じて充放電パターンを制御することが開示されている。   For example, Patent Document 1 has an object of “providing an electric vehicle drive system that can stabilize the voltage of feeders and overhead lines and reduce loss, and can also reduce equipment costs”. The motor drive converter 3 converts the DC power supplied from the motor and drives the motor 4 to drive the electric vehicle. On the other hand, the electric power is run in parallel with the motor drive converter 3 with respect to the overhead line 1. The electric power when the electric vehicle I is powered is supplied mainly from the large-capacity power storage device 5 while the regenerative power during regenerative braking is stored in the large-current power storage device 5 to the electric vehicle I. An electric vehicle drive system that reduces the amount of power supplied from the overhead line 1 and the amount of power regenerated by the electric vehicle I on the overhead line 1 is disclosed. Patent Document 1 discloses that a large-capacity power storage device is mounted on a vehicle and a charge / discharge pattern is controlled according to a train schedule, speed, and position.

また、例えば、特許文献2には、「鉄道システム全体の中のミクロな列車単位のエネルギ状態や、他列車とのエネルギ授受の状態ならびに、変電所の電力供給状態をトータルで目にすることができ、シミュレーション解析においては、解析の深度化や効率改善が見込まれるシミュレーション装置を提供する」ことを課題とし、「列車運行に関わる列車制御システムと、車両システムと、エネルギ蓄積装置を模擬し、少なくとも運行ダイヤを入力として時々刻々の列車運行・電力供給を所望の演算式により計算し、少なくとも前記エネルギ蓄積装置の消費エネルギの特性値を算出する消費エネルギ算出装置と、この算出結果を報知する報知装置を具備した」シミュレーション装置が開示されている。特許文献2では、車上及び地上の双方に蓄電池を設置し、架線を通じて車上と地上との間で電力をやり取りし、電車の走行状況に基づいて電力のシミュレーションを行い、該シミュレーション結果は運転士に示され、運転士はシミュレーション結果に応じて出発タイミングを調整している。   Further, for example, Patent Document 2 states that “the energy state of each micro train in the entire railway system, the state of energy transfer with other trains, and the power supply state of the substation can be seen in total. In simulation analysis, the challenge is to provide a simulation device that is expected to improve the depth of analysis and improve efficiency, and simulates a train control system, a vehicle system, and an energy storage device related to train operation. An energy consumption calculation device that calculates a train operation / electric power supply from time to time by a desired arithmetic expression using an operation diagram as an input, and calculates at least a characteristic value of energy consumption of the energy storage device, and a notification device that notifies the calculation result A simulation apparatus having the above is disclosed. In Patent Document 2, storage batteries are installed both on the vehicle and on the ground, electric power is exchanged between the vehicle and the ground via an overhead line, and electric power is simulated based on the running state of the train. The driver adjusts the departure timing according to the simulation result.

特開2003−18702号公報JP 2003-18702 A 特開2006−254536号公報JP 2006-254536 A

しかしながら、上記従来の技術である特許文献1及び特許文献2では、蓄電池の充放電のタイミングが考慮されていない。そのため、蓄電池の充放電のタイミングに応じて回生失効の発生を抑制し、エネルギ消費量を低減することが困難であるという課題があった。   However, in Patent Document 1 and Patent Document 2 which are the conventional techniques described above, the charging / discharging timing of the storage battery is not considered. For this reason, there is a problem that it is difficult to suppress regeneration and to reduce energy consumption according to the charging / discharging timing of the storage battery.

本発明は、上記に鑑みてなされたものであって、従来よりも回生失効を抑制し、エネルギ消費量を低減することが可能な蓄電池充放電管理装置及び蓄電池充放電管理システムを得ることを目的とする。   The present invention has been made in view of the above, and it is an object of the present invention to obtain a storage battery charge / discharge management device and a storage battery charge / discharge management system that can suppress regenerative expiration and reduce the amount of energy consumption than in the past. And

上述した課題を解決し、目的を達成するために、本発明は、電車と地上蓄電設備のうち少なくとも一方に搭載された蓄電池の充放電タイミングを管理する蓄電池充放電管理装置において、前記電車が走行する路線線形及び運行ダイヤが記憶されたデータベースと、前記電車の前記路線線形及び前記運行ダイヤに基づいて前記電車の走行予測を行う予測部と、前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方と通信する通信部と、前記通信部で受信した前記電車と前記地上蓄電設備の情報のうち少なくとも一方の情報及び前記走行予測に基づいて前記蓄電池の充放電タイミングを含む充放電計画を作成する制御部と、を備え、前記制御部は、回生失効が発生する回数と充電する回数に対応した複数の充放電パターンを作成し、前記複数の充放電パターンの中から、前記電車における充放電計画を、消費電力に基づいて決定することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention relates to a storage battery charge / discharge management device that manages the charge / discharge timing of a storage battery mounted on at least one of a train and a ground power storage facility. A database storing route alignments and operation schedules, a prediction unit for predicting travel of the train based on the route alignments and the operation diagrams of the train, the train and the ground power storage facility equipped with the storage battery A charging / discharging plan including charging / discharging timing of the storage battery based on at least one information among the information of the train and the ground storage facility received by the communication unit and the travel prediction And a controller that creates a plurality of charge / discharge patterns corresponding to the number of times regenerative invalidation occurs and the number of times to charge. And, from the plurality of charging and discharging pattern, the charge planning in the train, and determines based on the power consumption.

なお、路線線形とは、電車が走行する線路の3次元的な形状をいう。路線線形には、路線の平面的な形状を示す平面線形、縦断勾配とも呼ばれる縦断線形の情報が含まれる。   The line alignment refers to a three-dimensional shape of a track on which a train runs. The line alignment includes information on a plane alignment indicating a planar shape of the route and a vertical alignment called a vertical gradient.

この発明によれば、従来よりも回生失効を抑制し、エネルギ消費量を低減することが可能な蓄電池充放電管理装置及び蓄電池充放電管理システムを得ることができる、という効果を奏する。   According to the present invention, there is an effect that it is possible to obtain a storage battery charge / discharge management device and a storage battery charge / discharge management system capable of suppressing regenerative expiration and reducing energy consumption as compared with the prior art.

図1は、実施の形態にかかる蓄電池充放電管理システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a storage battery charge / discharge management system according to an embodiment. 図2は、実施の形態にかかる蓄電池充放電管理システムの蓄電池充放電管理の予測部が行う走行予測を示す図である。FIG. 2 is a diagram illustrating travel prediction performed by a storage battery charge / discharge management prediction unit of the storage battery charge / discharge management system according to the embodiment. 図3は、比較例である蓄電池充放電管理システムの走行予測カーブにおける電車の位置に対する速度カーブ及び蓄電池残量を示す図である。FIG. 3 is a diagram showing a speed curve with respect to a train position and a remaining amount of storage battery in a travel prediction curve of a storage battery charge / discharge management system as a comparative example. 図4は、実施の形態にかかる蓄電池充放電管理システムの走行予測カーブにおける電車の位置に対する速度カーブ及び蓄電池残量を示す図である。FIG. 4 is a diagram illustrating a speed curve and a storage battery remaining amount with respect to a train position in a travel prediction curve of the storage battery charge / discharge management system according to the embodiment. 図5は、実施の形態にかかる蓄電池充放電管理システムにおける充電のタイミングの変更方法を説明する図である。FIG. 5 is a diagram for explaining a charging timing changing method in the storage battery charge / discharge management system according to the embodiment. 図6は、実施の形態にかかる蓄電池充放電管理システムにおける充電のタイミングの変更方法を説明する図である。FIG. 6 is a diagram for explaining a charging timing changing method in the storage battery charge / discharge management system according to the embodiment. 図7は、実施の形態にかかる蓄電池充放電管理システムにおける充放電計画を設定する手順を示すフローチャートである。FIG. 7: is a flowchart which shows the procedure which sets the charging / discharging plan in the storage battery charging / discharging management system concerning Embodiment. 図8は、実施の形態にかかる蓄電池充放電管理システムにおける充放電計画を変更する手順を示すフローチャートである。FIG. 8: is a flowchart which shows the procedure which changes the charging / discharging plan in the storage battery charging / discharging management system concerning Embodiment.

以下に、本発明にかかる蓄電池充放電管理装置及び蓄電池充放電管理システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   EMBODIMENT OF THE INVENTION Below, embodiment of the storage battery charge / discharge management apparatus and storage battery charge / discharge management system concerning this invention is described in detail based on drawing. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明にかかる蓄電池充放電管理システムの実施の形態の構成を示す図である。図1に示す蓄電池充放電管理システムは、電車10、地上蓄電設備20及び蓄電池充放電管理装置30を有し、電車10と地上蓄電設備20は、架線40により電気的に接続されている。
Embodiment.
FIG. 1 is a diagram showing a configuration of an embodiment of a storage battery charge / discharge management system according to the present invention. The storage battery charge / discharge management system shown in FIG. 1 includes a train 10, a ground storage device 20, and a storage battery charge / discharge management device 30, and the train 10 and the ground storage facility 20 are electrically connected by an overhead line 40.

電車10は、蓄電池11と、車上制御装置12と、通信部13と、主電動機14とを備える。蓄電池11は、電車10の走行状況に応じて、架線40を介して車上制御装置12によって充放電される蓄電池である。車上制御装置12は、主電動機14を制御し、蓄電池11の充放電を管理する。通信部13は、蓄電池充放電管理装置30の通信部32と情報の授受を行う。具体的には、通信部13からは電車情報である電車10の位置、速度、重量、消費電力、蓄電池11の残量及び架線40の電圧が送信される。主電動機14は車上制御装置12によって制御され、電車10を走行させる。   The train 10 includes a storage battery 11, an on-vehicle control device 12, a communication unit 13, and a main motor 14. The storage battery 11 is a storage battery that is charged and discharged by the on-board controller 12 via the overhead line 40 in accordance with the traveling state of the train 10. The on-board controller 12 controls the main motor 14 and manages charge / discharge of the storage battery 11. The communication unit 13 exchanges information with the communication unit 32 of the storage battery charge / discharge management device 30. Specifically, the position, speed, weight, power consumption, remaining amount of the storage battery 11, and voltage of the overhead line 40, which are train information, are transmitted from the communication unit 13. The main motor 14 is controlled by the on-board controller 12 and causes the train 10 to travel.

地上蓄電設備20は、蓄電池21と、地上蓄電設備制御装置22と、通信部23とを備える。蓄電池21は、架線40を介して地上蓄電設備制御装置22によって充放電される蓄電池である。地上蓄電設備制御装置22は、蓄電池21の充放電も管理する。通信部23は、蓄電池充放電管理装置30の通信部32と情報の授受を行う。具体的には、通信部23からは地上蓄電設備情報である蓄電池21の残量及び架線40の電圧が送信される。なお、本実施の形態では、蓄電池が電車10及び地上蓄電設備20の双方に搭載された場合について説明するが、本発明はこれに限定されず、蓄電池は電車10及び地上蓄電設備20のうち少なくともいずれか一方に搭載されていればよい。   The ground power storage facility 20 includes a storage battery 21, a ground power storage facility control device 22, and a communication unit 23. The storage battery 21 is a storage battery that is charged and discharged by the ground power storage facility control device 22 via the overhead line 40. The ground power storage facility control device 22 also manages charge / discharge of the storage battery 21. The communication unit 23 exchanges information with the communication unit 32 of the storage battery charge / discharge management device 30. Specifically, the communication unit 23 transmits the remaining amount of the storage battery 21 and the voltage of the overhead line 40 that are ground storage facility information. In the present embodiment, the case where the storage battery is mounted on both the train 10 and the ground storage facility 20 will be described. However, the present invention is not limited to this, and the storage battery is at least one of the train 10 and the ground storage facility 20. It only has to be mounted on either one.

蓄電池充放電管理装置30は、データベース31と、通信部32と、制御部33と、予測部34とを備える。データベース31には、路線線形及び電車の運行ダイヤが記憶されている。通信部32は、電車10の通信部13及び地上蓄電設備20の通信部23に蓄電池充放電指令を送信し、電車情報及び地上蓄電設備情報を受信する。制御部33は、通信部32からの電車情報及び地上蓄電設備情報を受信し、予測部34に電車情報及び地上蓄電設備情報並びに現在の蓄電池充放電計画を送信する。予測部34は、データベース31の路線線形及び電車の運行ダイヤに基づいて電車10の走行予測を行い、予測結果を制御部33に送信する。予測結果を受信した制御部33は、該予測結果に基づいて蓄電池充放電計画を変更し、変更した蓄電池充放電計画を通信部32に送信する。   The storage battery charge / discharge management device 30 includes a database 31, a communication unit 32, a control unit 33, and a prediction unit 34. The database 31 stores route alignment and train schedules. The communication unit 32 transmits a storage battery charge / discharge command to the communication unit 13 of the train 10 and the communication unit 23 of the ground power storage facility 20, and receives train information and ground power storage facility information. The control unit 33 receives the train information and the ground storage facility information from the communication unit 32, and transmits the train information, the ground storage facility information, and the current storage battery charge / discharge plan to the prediction unit 34. The prediction unit 34 performs the travel prediction of the train 10 based on the line alignment in the database 31 and the train schedule, and transmits the prediction result to the control unit 33. The control unit 33 that has received the prediction result changes the storage battery charge / discharge plan based on the prediction result, and transmits the changed storage battery charge / discharge plan to the communication unit 32.

なお、制御部33は、少なくとも最新の蓄電池充放電計画と、最新の蓄電池充放電計画を作成した際の走行予測とを記憶している。制御部33は、最新の蓄電池充放電計画を作成した際の走行予測と、通信部32を介して取得した電車情報とを比較し、許容可能な範囲を超えるずれが生じた場合には、予測部34に電車10の走行予測を再度行わせる。制御部33は、変更された走行予測に基づいて蓄電池充放電計画を変更し、変更した蓄電池充放電計画を通信部32に送信する。   In addition, the control part 33 has memorize | stored at least the newest storage battery charging / discharging plan and the driving | running | working prediction at the time of creating the newest storage battery charging / discharging plan. The control unit 33 compares the travel prediction when the latest storage battery charge / discharge plan is created with the train information acquired via the communication unit 32, and predicts if a deviation exceeding an allowable range occurs. The part 34 is made to perform the driving | running | working prediction of the train 10 again. The control unit 33 changes the storage battery charge / discharge plan based on the changed travel prediction, and transmits the changed storage battery charge / discharge plan to the communication unit 32.

なお、蓄電池充放電計画において電車10に回生失効が生じる場合には、電車10と電力の授受が可能な地上蓄電設備20または他の電車の放電を抑制し、地上蓄電設備20または他の電車に充電するように蓄電池の充放電を管理することが好ましい。   In the storage battery charging / discharging plan, when regenerative invalidation occurs in the train 10, the discharge of the ground storage facility 20 or other train that can exchange power with the train 10 is suppressed, and the ground storage facility 20 or other train is suppressed. It is preferable to manage charge / discharge of the storage battery so as to charge the battery.

図2は、予測部34の走行予測を示す図である。図2においては、横軸に時刻、縦軸に位置を示し、走行予測カーブ50,51,52が示されている。ここで、走行予測カーブ50は先行電車の走行予測を示し、走行予測カーブ51は第1の後続電車の走行予測を示し、走行予測カーブ52は第2の後続電車の走行予測を示す。また、図2の走行予測カーブ50,51,52において、太線は蓄電池11が満充電の状態を示し、点線は蓄電池11が空の状態を示す。図2に示すように、走行予測カーブ50,52では満充電の状態がしばらく続いた後に回生失効が生じる。   FIG. 2 is a diagram illustrating the travel prediction of the prediction unit 34. In FIG. 2, time is plotted on the horizontal axis and position is plotted on the vertical axis, and travel prediction curves 50, 51, 52 are shown. Here, the travel prediction curve 50 indicates the travel prediction of the preceding train, the travel prediction curve 51 indicates the travel prediction of the first subsequent train, and the travel prediction curve 52 indicates the travel prediction of the second subsequent train. Moreover, in the driving | running | working prediction curves 50, 51, and 52 of FIG. 2, a thick line shows the state in which the storage battery 11 is fully charged, and a dotted line shows the state in which the storage battery 11 is empty. As shown in FIG. 2, in the travel prediction curves 50 and 52, regeneration expires after a fully charged state continues for a while.

図3は、図2の走行予測カーブ52を描く電車10の位置に対する速度カーブ60及び蓄電池残量を表す充放電カーブ61を示す図である。図3において、蓄電池11が満充電の状態で駅Aを出発した電車10は、区間Aでは蓄電池11を放電させつつ加速していき、その後区間Bでは充放電を行わない定速運転に切り替わる。そして、区間Cでは、定速運転後に減速しつつ、発生した回生電力により蓄電池11を充電し、その後区間Dの短い放電期間を経て、区間Eの定速運転に切り替わる。しばらく定速運転を行った後の区間Fでは、駅Bに停車するために減速すると蓄電池11が充電されていき、区間Gでは蓄電池11の最大容量まで充電された後に回生失効が生じる。このように回生失効が生じると、回生ブレーキが効かなくなるため、他のブレーキ、例えば空気圧ブレーキを使用せざるを得ない。しかしながら、空気圧ブレーキを使用すると電車10のエネルギは熱消費されてしまうので、エネルギ消費量を増大させてしまう。   FIG. 3 is a diagram showing a speed curve 60 and a charge / discharge curve 61 representing the remaining battery level with respect to the position of the train 10 that draws the travel prediction curve 52 of FIG. In FIG. 3, the train 10 that departs from the station A with the storage battery 11 fully charged accelerates while discharging the storage battery 11 in the section A, and then switches to the constant speed operation in which charging / discharging is not performed in the section B. Then, in the section C, the storage battery 11 is charged with the generated regenerative power while decelerating after the constant speed operation, and thereafter, the operation is switched to the constant speed operation in the section E through a short discharge period in the section D. In the section F after performing constant speed operation for a while, the storage battery 11 is charged when decelerating to stop at the station B, and in the section G, regenerative invalidation occurs after the maximum capacity of the storage battery 11 is charged. When the regeneration invalidation occurs in this way, the regenerative brake becomes ineffective, and another brake, for example, a pneumatic brake, must be used. However, if the pneumatic brake is used, the energy of the train 10 is consumed by heat, which increases the energy consumption.

そこで、本実施の形態においては、回生失効が生じないように充放電タイミングを制御する。図4は、図2の走行予測カーブ52を描く電車に本発明を適用した際の位置に対する速度カーブ70及び蓄電池残量を表す充放電カーブ71を示す図である。図3の速度カーブ60と図4の速度カーブ70は同じ形状であり、走行パターンは同一である。図4においても図3と同様に、蓄電池11が満充電の状態で駅Aを出発した電車10は、区間aでは蓄電池11を放電させつつ加速していき、その後区間bでは充放電を行わない定速運転に切り替わる。そして、図3と同様に、定速運転後の区間cでは、減速しつつ、発生した回生電力により蓄電池11を充電し、その後、区間dでは短い放電期間を経て定速運転に切り替わる。区間eでは、その後しばらく定速運転を行った後に駅Bにて停車するために減速するが、減速開始時には蓄電池11の充電を開始せず、駅Bへの到着直前の区間fに入ると充電を開始する。このように、充電タイミングを遅らせると、回生失効を抑制することができる。   Therefore, in the present embodiment, the charge / discharge timing is controlled so that regenerative revocation does not occur. FIG. 4 is a diagram showing a speed curve 70 and a charge / discharge curve 71 representing the remaining amount of storage battery when the present invention is applied to the train that draws the travel prediction curve 52 of FIG. The speed curve 60 in FIG. 3 and the speed curve 70 in FIG. 4 have the same shape, and the traveling pattern is the same. In FIG. 4, as in FIG. 3, the train 10 that departs from the station A with the storage battery 11 fully charged accelerates while discharging the storage battery 11 in the section a, and does not charge or discharge in the section b thereafter. Switch to constant speed operation. Then, similarly to FIG. 3, in the section c after the constant speed operation, the storage battery 11 is charged with the generated regenerative power while decelerating, and thereafter, in the section d, the operation is switched to the constant speed operation through a short discharge period. In section e, the vehicle is decelerated to stop at station B after a constant speed operation for a while after that. However, charging does not start at the storage battery 11 at the start of deceleration, but enters section f just before arrival at station B. To start. In this way, when the charging timing is delayed, regeneration revocation can be suppressed.

ここで、本発明における充放電タイミングの設定方法について説明する。本発明においては、回生失効を極力抑制するため、近いうちに回生電力が生じることが判明している場合には蓄電池の残量はできるだけ少なくしておいた方が回生電力の受け入れ余地が大きくなるため好ましい。そこで、回生電力が生じることが判明している場合には、蓄電池を可能な限り放電しておくように設定する。具体的には、車上蓄電池である蓄電池11では電車10の力行時には蓄電池11の残量があれば放電するように設定し、地上蓄電池である蓄電池21では地上蓄電設備20との接続部分である架線40の電圧が予め定められたしきい値よりも低い時には蓄電池21の残量があれば放電するように設定する。なお、しきい値には、電車が力行中である場合の架線電圧に対応した電圧値を設定することができる。一方、回生失効を防止するために、蓄電池に充電しなければ回生失効が発生してしまう場面では蓄電池に空き容量がある限り充電する充電タイミングを初期設定とする。   Here, the setting method of the charging / discharging timing in this invention is demonstrated. In the present invention, in order to suppress regenerative invalidation as much as possible, if it has been found that regenerative power will be generated in the near future, it is better to keep the remaining amount of the storage battery as small as possible so that the regenerative power can be accepted. Therefore, it is preferable. Therefore, when it is known that regenerative power is generated, the storage battery is set to be discharged as much as possible. Specifically, the storage battery 11 that is an on-vehicle storage battery is set to discharge when there is a remaining amount of the storage battery 11 when the train 10 is powered, and the storage battery 21 that is a ground storage battery is a connection portion with the ground storage facility 20. When the voltage of the overhead line 40 is lower than a predetermined threshold value, it is set to discharge if there is a remaining amount of the storage battery 21. As the threshold value, a voltage value corresponding to the overhead line voltage when the train is in powering can be set. On the other hand, in order to prevent regenerative revocation, in a scene where regenerative revocation occurs unless the storage battery is charged, the charging timing for charging as long as the storage battery has free capacity is set as an initial setting.

図5は、充電のタイミングを変更するときの問題の区切り方を説明する図である。充放電タイミングの初期設定によって図5に示す充放電カーブ80が得られたとき、電池残量が0になる点から次に電池残量が0となる点までの間を1つの区間として分割する。このとき、充放電タイミングの初期設定の方針により、充電しなければ回生失効する場面で蓄電池の空き容量があればできる限り充電し、一方で放電が可能な場面ではできる限り放電しているので、ある区間における充電タイミングを任意に変更したとしても、電池残量が0となる地点は変わらず、前後の区間に影響を与えることはない。すなわち、区間ごとに充電タイミングを調整し、その区間内においてできる限り回生失効が生じないような充放電カーブに修正すると、全体としても回生失効を減らすことができる。   FIG. 5 is a diagram for explaining how to divide a problem when changing the timing of charging. When the charge / discharge curve 80 shown in FIG. 5 is obtained by the initial setting of the charge / discharge timing, the interval from the point where the remaining battery level becomes 0 to the next point where the remaining battery level becomes 0 is divided as one section. . At this time, according to the policy of initial setting of the charge / discharge timing, if there is free capacity of the storage battery in the scene where regeneration expires unless it is charged, it is discharged as much as possible in the scene where discharge is possible, on the other hand, Even if the charging timing in a certain section is arbitrarily changed, the point at which the remaining battery level becomes zero does not change and does not affect the preceding and following sections. That is, if the charging timing is adjusted for each section and the charge / discharge curve is corrected so that regenerative revocation does not occur as much as possible in the section, regenerative revocation can be reduced as a whole.

図6は、横軸に位置をとり、縦軸に電池残量をとった、充電のタイミングの変更方法を説明する図である。図6に示す充放電カーブ90は、変更前におけるもとの充放電カーブである。充放電カーブ90では、蓄電池が満充電となった後も回生電力が供給されて、回生失効が生じている。そこで、回生失効が起きている地点で充電するように、充放電カーブの形状を調整する。図6では、2か所で回生失効が発生しているので、1か所目の回生失効地点で充電となる充放電カーブ91及び2か所目の回生失効地点で充電となる充放電カーブ92を作成する。こうした場所で充電を可能にするためには、蓄電池の空き容量を生み出すために、代わりに充電を止める場所を決定する必要がある。そこで、充放電カーブ91,92では、新たに充電となる場所より前にあった充電箇所を充電しないように変更している。ここで、充電カーブ90において回生失効が生じる回数をmとし、充電する回数をnとすると、回生失効場所を充電に変更し、充電していた場所を充電なしに変更する、最大でm×n通りの充電計画を作成する。電車における回生失効の回数と充電する回数に対応した最大でm×n通りの充放電カーブのうち消費電力が最小のものを選択することによって、従来よりもエネルギ消費量を自動で低減することができる。すなわち、複数の充放電パターンの中から、充放電計画を、電車の消費電力に基づいて決定する。選択された充放電カーブにおいてもなお回生失効が発生している場合、再度同じ手順で探索して、消費電力をさらに改善する充放電カーブが見つからなくなるまで繰り返してもよい。なお、探索回数を減らすために、制限が設けられていてもよい。   FIG. 6 is a diagram for explaining a method for changing the charging timing, with the position on the horizontal axis and the remaining battery level on the vertical axis. The charge / discharge curve 90 shown in FIG. 6 is the original charge / discharge curve before the change. In the charge / discharge curve 90, regenerative power is supplied even after the storage battery is fully charged, and regenerative revocation occurs. Therefore, the shape of the charge / discharge curve is adjusted so that charging is performed at a point where regenerative revocation occurs. In FIG. 6, since regenerative revocation occurs at two locations, a charge / discharge curve 91 that is charged at the first regenerative expiration point and a charge / discharge curve 92 that is charged at the second regenerative expiration point. Create In order to allow charging at such a location, it is necessary to determine where to stop charging instead in order to create free storage battery capacity. Therefore, the charging / discharging curves 91 and 92 are changed so as not to charge the charging portion that was before the new charging location. Here, assuming that the number of times regenerative invalidation occurs in the charging curve 90 is m and the number of times charging is n, the regenerative invalidation place is changed to charging, and the charging place is changed to no charging. Create a street charging plan. Energy consumption can be automatically reduced by selecting the least m × n charge / discharge curves corresponding to the number of regenerative invalidations and the number of times of charging on the train. it can. That is, a charging / discharging plan is determined from a plurality of charging / discharging patterns based on the power consumption of the train. If regenerative revocation is still occurring in the selected charge / discharge curve, the same procedure may be used again to repeat the search until no charge / discharge curve that further improves power consumption is found. In order to reduce the number of searches, a restriction may be provided.

このように、制御部33は回生失効が生じる回数と充電する回数に対応した複数の充放電パターン、すなわち充放電カーブを作成し、充放電計画は、これら複数の充放電パターンのうち、電車10における回生失効がなるべく生じず、且つ充放電タイミングの調整を行わなかった場合よりも消費電力が小さい充放電パターンに基づいて作成される。なお、電車において回生失効が発生する回数に対応した充放電パターンのうち、回生失効の回数が最小であるものを選択して充放電計画を作成することもできる。   In this way, the control unit 33 creates a plurality of charge / discharge patterns corresponding to the number of times regenerative invalidation occurs and the number of times of charging, that is, a charge / discharge curve. Is generated based on a charge / discharge pattern in which power consumption is smaller than that in the case where the regenerative invalidation is not generated as much as possible and the charge / discharge timing is not adjusted. It is also possible to create a charge / discharge plan by selecting a charge / discharge pattern corresponding to the number of times regenerative invalidation occurs in a train and having the smallest number of regenerative invalidations.

以上説明したように、充放電カーブを任意に設定することが可能であり、回生失効を抑制し、消費電力を低減することができる。   As described above, the charge / discharge curve can be arbitrarily set, regenerative expiration can be suppressed, and power consumption can be reduced.

次に、本実施の形態における充放電計画を設定する手順を説明する。図7は、充放電計画を設定する手順を示すフローチャートである。まず、処理を開始し(S11)、予測部34がデータベース31の路線線形及び電車の運行ダイヤを参照しつつ、路線全電車の運行シミュレーション及び電力シミュレーションを行う(S12)。そして、前記運行シミュレーション及び前記電力シミュレーションの結果から、初期設定方針に基づいて、制御部33が充放電計画を作成する(S13)。ここで、初期設定方針として、なるべく回生失効を回避するために蓄電池の残量を空ける目的で、充電しなければ回生失効するような場合のみ充電し、放電が可能な時はいつでも放電するようにする。その後、予測部34が、前記充放電計画に回生失効があるか否かを判定する(S14)。回生失効が生じている場合、すなわちS14の判定においてYesに分岐する場合には、消費電力量をさらに削減可能であるか否かを判定する(S15)。消費電力量をさらに削減可能である場合、すなわちS15の判定においてYesに分岐する場合には、充放電計画を変更し(S16)、S14の判定に戻る。回生失効が生じていない場合、すなわちS14の判定においてNoに分岐する場合、または、消費電力量をさらに削減可能でない場合、すなわちS15の判定においてNoに分岐する場合には、最新の充放電計画を通信部32を介して電車10及び地上蓄電設備20に送信して(S17)処理を終了する(S18)。   Next, a procedure for setting a charge / discharge plan in the present embodiment will be described. FIG. 7 is a flowchart showing a procedure for setting a charge / discharge plan. First, the process is started (S11), and the prediction unit 34 performs the operation simulation and power simulation of all the trains while referring to the route alignment and the train schedule in the database 31 (S12). And from the result of the said operation simulation and the said electric power simulation, the control part 33 produces a charging / discharging plan based on an initial setting policy (S13). Here, as an initial setting policy, in order to avoid regenerative expiration as much as possible, it is charged only when regenerative expiration expires if it is not charged, so that it is discharged whenever discharge is possible. To do. Thereafter, the prediction unit 34 determines whether or not the charge / discharge plan has regenerative invalidation (S14). When regeneration invalidation has occurred, that is, when branching to Yes in the determination of S14, it is determined whether the power consumption can be further reduced (S15). If the power consumption can be further reduced, that is, if the determination in S15 branches to Yes, the charge / discharge plan is changed (S16), and the process returns to S14. If regenerative revocation has not occurred, i.e., branching to No in the determination of S14, or if the power consumption cannot be further reduced, i.e., branching to No in the determination of S15, the latest charge / discharge plan is set. It transmits to the train 10 and the ground power storage facility 20 via the communication unit 32 (S17), and the process is terminated (S18).

図8は、充放電計画を変更する手順を示すフローチャートである。まず、処理を開始し(S21)、回生失効が生じる箇所を抽出し(S22)、回生失効があるか否かを判定する(S23)。回生失効が生じない場合(S23においてNoに分岐する場合)には、充放電計画を変更する必要がないため処理を終了する(S28)。回生失効が生じる場合(S23においてYesに分岐する場合)には、充電箇所を抽出し(S24)、充放電計算を行う(S25)。ここで、充放電計算は、回生失効が生じる箇所ごと及び充電箇所ごとに、充電タイミングを回生失効が生じる場所に変更させる形で行い、回生失効が生じる箇所のすべてと充電箇所のすべての組み合わせについて行う。その後、回生失効が生じる箇所のすべてと充電箇所のすべての組み合わせについて行った充放電計算結果から電力消費量が最小である組み合わせを選択し(S26)、計画変更があるか否か、すなわち、充放電計画を変更すべきか否かを判定する(S27)。充放電計画を変更すべきでない場合、すなわち、もとの計画のままでよい場合(S27においてNoに分岐する場合)には、処理を終了する(S28)。充放電計画を変更すべきである場合(S27においてYesに分岐する場合)には、選択された電力消費量が最小である組み合わせにおいて回生失効が生じる箇所の抽出(S22)に戻り、再度処理を繰り返す。   FIG. 8 is a flowchart showing a procedure for changing the charge / discharge plan. First, a process is started (S21), the location where regeneration invalidation occurs is extracted (S22), and it is determined whether there exists regeneration invalidation (S23). If regenerative revocation does not occur (when branching to No in S23), it is not necessary to change the charge / discharge plan, and the process ends (S28). When regenerative expiration occurs (when branching to Yes in S23), the charging location is extracted (S24), and charge / discharge calculation is performed (S25). Here, the charge / discharge calculation is performed by changing the charging timing to the place where regenerative invalidation occurs for each place where regenerative invalidation occurs and for each charging place, and for all combinations of places where regenerative invalidation occurs and all charging places Do. Thereafter, the combination with the minimum power consumption is selected from the charge / discharge calculation results for all the combinations where the regenerative invalidation occurs and all the combinations of the charging points (S26). It is determined whether or not the discharge plan should be changed (S27). When the charging / discharging plan should not be changed, that is, when the original plan may be left as it is (when branching to No in S27), the process ends (S28). When the charging / discharging plan should be changed (when branching to Yes in S27), the process returns to the extraction (S22) of the portion where the regenerative invalidation occurs in the combination with the selected power consumption being minimum, and the process is performed again. repeat.

以上説明したように、従来よりも回生失効を抑制し、エネルギ消費量を低減することが可能な蓄電池充放電管理装置を得ることができる。本発明によれば回生失効を抑制することができるため、消費電力を低減し、電車の走行を効率的なものとすることができる。   As described above, it is possible to obtain a storage battery charge / discharge management device capable of suppressing regeneration and revocation and reducing energy consumption more than before. According to the present invention, regeneration expiration can be suppressed, so that power consumption can be reduced and train travel can be made efficient.

なお、本発明は上記説明した蓄電池充放電管理装置に限定されるものではなく、上記蓄電池充放電管理装置を適用した蓄電池充放電管理システムも本発明に含まれる。すなわち、蓄電池を搭載した電車と、該蓄電池を設置した地上蓄電設備と、前記電車又は前記地上蓄電設備のうち少なくとも一方に搭載された蓄電池の充放電タイミングを管理する蓄電池充放電管理装置と、が互いに通信可能に接続された蓄電池充放電管理システムにおいて、前記電車は、該電車に搭載された蓄電池を、該電車の力行時に放電し、前記地上蓄電設備は、当該地上蓄電設備に設置された前記蓄電池を、当該地上蓄電設備に接続された架線の電圧が予め定められた値よりも低い時に放電し、前記蓄電池充放電管理装置は、前記電車が走行する路線線形及び運行ダイヤが記憶されたデータベースと、前記電車の前記路線線形及び前記運行ダイヤに基づいて前記電車の走行予測を行う予測部と、前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方と通信する通信部と、前記通信部で受信した前記電車と前記地上蓄電設備の情報のうち少なくとも一方の情報及び前記走行予測に基づいて前記蓄電池の充放電タイミングを含む充放電計画を作成する制御部と、を備え、前記制御部は、回生失効が発生する回数と充電する回数に対応した複数の充放電パターンを作成し、前記複数の充放電パターンの中から、前記電車における充放電計画を、消費電力に基づいて決定する蓄電池充放電管理システムも本発明に含まれる。   In addition, this invention is not limited to the storage battery charging / discharging management apparatus demonstrated above, The storage battery charging / discharging management system to which the said storage battery charging / discharging management apparatus is applied is also contained in this invention. That is, a train on which a storage battery is mounted, a ground storage facility on which the storage battery is installed, and a storage battery charge / discharge management device that manages charge / discharge timing of the storage battery mounted on at least one of the train or the ground storage facility, In the storage battery charge / discharge management system communicatively connected to each other, the train discharges the storage battery mounted on the train during powering of the train, and the ground storage facility is installed in the ground storage facility. The storage battery is discharged when the voltage of the overhead line connected to the ground power storage facility is lower than a predetermined value, and the storage battery charge / discharge management device is a database in which the train line travels and the operation schedule is stored. A prediction unit that predicts travel of the train based on the route alignment of the train and the operation schedule, the train equipped with the storage battery, and the train Including a communication unit communicating with at least one of the upper power storage facilities, and at least one of the information of the train and the ground power storage facility received by the communication unit and the charge / discharge timing of the storage battery based on the travel prediction A control unit for creating a charge / discharge plan, and the control unit creates a plurality of charge / discharge patterns corresponding to the number of times regenerative invalidation occurs and the number of times of charging, and from among the plurality of charge / discharge patterns, A storage battery charge / discharge management system that determines a charge / discharge plan in the train based on power consumption is also included in the present invention.

また、上記蓄電池充放電管理装置及び上記蓄電池充放電管理システムにおいて、前記制御部は、最新の蓄電池充放電計画と、前記最新の蓄電池充放電計画を作成した際の走行予測とを記憶しており、前記最新の蓄電池充放電計画を作成した際の走行予測及び蓄電池の残量と、前記電車の位置情報及び蓄電池の残量とを比較して許容可能な範囲を超えるずれが生じると、前記予測部に再度走行予測を行わせることを特徴とする蓄電池充放電管理装置及び蓄電池充放電管理システムも本発明に含まれる。また、上記蓄電池充放電管理装置及び上記蓄電池充放電管理システムの前記充放電計画において、前記電車に回生失効が生じる場合には、前記電車と電力の授受が可能な前記地上蓄電設備若しくは他の電車の放電を抑制し、または前記地上蓄電設備若しくは他の電車に充電することを特徴とする蓄電池充放電管理装置及び蓄電池充放電管理システムも本発明に含まれる。また、上記蓄電池充放電管理装置及び上記蓄電池充放電管理システムの前記充放電計画は、前記予測部が前記データベースの前記路線線形及び前記運行ダイヤを参照して、路線全電車の運行シミュレーション及び電力シミュレーションを行い、前記制御部が前記運行シミュレーション及び前記電力シミュレーションの結果から、予め設定した初期設定方針に基づいて作成され、回生失効が生じなくなるまで、または消費電力量をさらに削減することができなくなるまで変更され、回生失効が生じなくなり、または消費電力量をさらに削減することができなくなると、最新の前記充放電計画が、前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方に送信されることを特徴とする蓄電池充放電管理装置及び蓄電池充放電管理システムも本発明に含まれるものである。   Moreover, in the storage battery charge / discharge management device and the storage battery charge / discharge management system, the control unit stores the latest storage battery charge / discharge plan and the travel prediction when the latest storage battery charge / discharge plan is created. In addition, when the latest storage battery charging / discharging plan is created, a prediction exceeding the allowable range is generated by comparing the travel prediction and the remaining amount of the storage battery with the train position information and the remaining amount of the storage battery. The present invention also includes a storage battery charge / discharge management device and a storage battery charge / discharge management system characterized in that the driving prediction is performed again by the unit. In addition, in the charge / discharge plan of the storage battery charge / discharge management device and the storage battery charge / discharge management system, when regeneration invalidation occurs in the train, the ground power storage facility or other train that can exchange power with the train The present invention also includes a storage battery charge / discharge management device and a storage battery charge / discharge management system that suppress the discharge of the battery or charge the ground power storage facility or another train. In addition, the charge / discharge plan of the storage battery charge / discharge management device and the storage battery charge / discharge management system is such that the prediction unit refers to the route alignment and the schedule of the database, and the operation simulation and power simulation of all trains on the route. The control unit is created based on the preset initial setting policy from the results of the operation simulation and the power simulation, and until the regeneration invalidation does not occur or until the power consumption cannot be further reduced When it is changed and no regeneration expires or the power consumption cannot be further reduced, the latest charge / discharge plan is transmitted to at least one of the train on which the storage battery is mounted and the ground storage facility. Storage battery charge / discharge management device and storage battery charge / discharge management The stem is also included in the present invention.

以上のように、本発明にかかる蓄電池充放電管理装置及び蓄電池充放電管理システムは、回生失効が生じうる路線に有用であり、特に、蓄電池を搭載した電車及び地上蓄電設備が多数存在して密集する場合に適している。   As described above, the storage battery charge / discharge management device and the storage battery charge / discharge management system according to the present invention are useful for routes in which regeneration and revocation may occur, and in particular, there are a large number of trains and ground storage facilities equipped with storage batteries. Suitable for you.

10 電車、11 蓄電池、12 車上制御装置、13 通信部、14 主電動機、20 地上蓄電設備、21 蓄電池、22 地上蓄電設備制御装置、23 通信部、30 蓄電池充放電管理装置、31 データベース、32 通信部、33 制御部、34 予測部、40 架線、50,51,52 走行予測カーブ、60,70 速度カーブ、61,71,80,90,91,92 充放電カーブ。   DESCRIPTION OF SYMBOLS 10 Train, 11 Storage battery, 12 Vehicle control device, 13 Communication part, 14 Main motor, 20 Ground storage equipment, 21 Storage battery, 22 Ground storage equipment control apparatus, 23 Communication part, 30 Storage battery charge / discharge management apparatus, 31 Database, 32 Communication unit, 33 control unit, 34 prediction unit, 40 overhead line, 50, 51, 52 travel prediction curve, 60, 70 speed curve, 61, 71, 80, 90, 91, 92 charge / discharge curve.

Claims (8)

電車と地上蓄電設備のうち少なくとも一方に搭載された蓄電池の充放電タイミングを管理する蓄電池充放電管理装置において、
前記電車が走行する路線線形及び運行ダイヤが記憶されたデータベースと、
前記電車の前記路線線形及び前記運行ダイヤに基づいて前記電車の走行予測を行う予測部と、
前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方と通信する通信部と、
前記通信部で受信した前記電車と前記地上蓄電設備の情報のうち少なくとも一方の情報及び前記走行予測に基づいて前記蓄電池の充放電タイミングを含む充放電計画を作成する制御部と、を備え、
前記制御部は、回生失効が発生する回数と充電する回数に対応した複数の充放電パターンを作成し、
前記複数の充放電パターンの中から、前記電車における充放電計画を、消費電力に基づいて決定することを特徴とする蓄電池充放電管理装置。
In the storage battery charge / discharge management device that manages the charge / discharge timing of the storage battery mounted on at least one of the train and the ground storage facility,
A database storing route alignments and schedules on which the train runs;
A prediction unit that predicts travel of the train based on the route alignment of the train and the operation schedule;
A communication unit that communicates with at least one of the train and the ground storage facility equipped with the storage battery,
A controller that creates a charge / discharge plan including the charge / discharge timing of the storage battery based on at least one of the information on the train and the ground storage facility received by the communication unit and the travel prediction, and
The control unit creates a plurality of charge / discharge patterns corresponding to the number of times regenerative invalidation occurs and the number of times to charge,
A storage battery charge / discharge management apparatus that determines a charge / discharge plan for the train based on power consumption from the plurality of charge / discharge patterns.
請求項1において、
前記制御部は、最新の蓄電池充放電計画と、前記最新の蓄電池充放電計画を作成した際の走行予測とを記憶しており、前記最新の蓄電池充放電計画を作成した際の走行予測及び蓄電池の残量と、前記電車の位置情報及び蓄電池の残量とを比較して許容可能な範囲を超えるずれが生じると、前記予測部に再度走行予測を行わせることを特徴とする蓄電池充放電管理装置。
In claim 1,
The control unit stores the latest storage battery charge / discharge plan and the travel prediction when the latest storage battery charge / discharge plan is created, and the travel prediction and storage battery when the latest storage battery charge / discharge plan is created. The battery charge / discharge management is characterized in that when the difference between the remaining amount of the train, the position information of the train, and the remaining amount of the storage battery exceeds a permissible range, the prediction unit performs the driving prediction again. apparatus.
請求項1において、
前記充放電計画において、前記電車に回生失効が生じる場合には、前記電車と電力の授受が可能な前記地上蓄電設備または他の電車の放電を抑制し、または前記地上蓄電設備若しくは他の電車に充電することを特徴とする蓄電池充放電管理装置。
In claim 1,
In the charging / discharging plan, when regeneration invalidation occurs in the train, it is possible to suppress discharge of the ground power storage facility or other train that can exchange power with the train, or to the ground power storage facility or other train. A storage battery charge / discharge management device characterized by charging.
請求項1において、
前記充放電計画は、前記予測部が前記データベースの前記路線線形及び前記運行ダイヤを参照して、路線全電車の運行シミュレーション及び電力シミュレーションを行い、
前記制御部が前記運行シミュレーション及び前記電力シミュレーションの結果から、予め設定した初期設定方針に基づいて作成され、回生失効が生じなくなるまで、または消費電力量をさらに削減することができなくなるまで変更され、
回生失効が生じなくなり、または消費電力量をさらに削減することができなくなると、最新の前記充放電計画が、前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方に送信されることを特徴とする蓄電池充放電管理装置。
In claim 1,
The charging / discharging plan refers to the route alignment of the database and the operation schedule of the database, the operation simulation and power simulation of all trains on the route,
From the results of the operation simulation and the power simulation, the control unit is created based on a preset initial setting policy, and is changed until no regeneration expires or the power consumption cannot be further reduced.
When regenerative expiry does not occur or the power consumption cannot be further reduced, the latest charge / discharge plan is transmitted to at least one of the train on which the storage battery is mounted and the ground storage facility. A storage battery charge / discharge management device.
蓄電池を搭載した電車と、該蓄電池を設置した地上蓄電設備と、前記電車又は前記地上蓄電設備のうち少なくとも一方に搭載された蓄電池の充放電タイミングを管理する蓄電池充放電管理装置と、が互いに通信可能に接続された蓄電池充放電管理システムにおいて、
前記電車は、該電車に搭載された蓄電池を、該電車の力行時に放電し、
前記地上蓄電設備は、当該地上蓄電設備に設置された前記蓄電池を、当該地上蓄電設備に接続された架線の電圧が予め定められた値よりも低い時に放電し、
前記蓄電池充放電管理装置は、
前記電車が走行する路線線形及び運行ダイヤが記憶されたデータベースと、
前記電車の前記路線線形及び前記運行ダイヤに基づいて前記電車の走行予測を行う予測部と、
前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方と通信する通信部と、
前記通信部で受信した前記電車と前記地上蓄電設備の情報のうち少なくとも一方の情報及び前記走行予測に基づいて前記蓄電池の充放電タイミングを含む充放電計画を作成する制御部と、を備え、
前記制御部は、回生失効が発生する回数と充電する回数に対応した複数の充放電パターンを作成し、
前記複数の充放電パターンの中から、前記電車における充放電計画を、消費電力に基づいて決定することを特徴とする蓄電池充放電管理システム。
A train on which a storage battery is mounted, a ground storage device on which the storage battery is installed, and a storage battery charge / discharge management device that manages charge / discharge timing of the storage battery mounted on at least one of the train or the ground storage facility communicate with each other. In the storage battery charge / discharge management system that can be connected,
The train discharges a storage battery mounted on the train when the train is powered,
The ground power storage facility discharges the storage battery installed in the ground power storage facility when the voltage of the overhead line connected to the ground power storage facility is lower than a predetermined value,
The storage battery charge / discharge management device comprises:
A database storing route alignments and schedules on which the train runs;
A prediction unit that predicts travel of the train based on the route alignment of the train and the operation schedule;
A communication unit that communicates with at least one of the train and the ground storage facility equipped with the storage battery,
A controller that creates a charge / discharge plan including the charge / discharge timing of the storage battery based on at least one of the information on the train and the ground storage facility received by the communication unit and the travel prediction, and
The control unit creates a plurality of charge / discharge patterns corresponding to the number of times regenerative invalidation occurs and the number of times to charge,
A storage battery charge / discharge management system, wherein a charge / discharge plan for the train is determined based on power consumption from the plurality of charge / discharge patterns.
請求項5において、
前記制御部は、最新の蓄電池充放電計画と、前記最新の蓄電池充放電計画を作成した際の走行予測とを記憶しており、前記最新の蓄電池充放電計画を作成した際の走行予測及び蓄電池の残量と、前記電車の位置情報及び蓄電池の残量とを比較して許容可能な範囲を超えるずれが生じると、前記予測部に再度走行予測を行わせることを特徴とする蓄電池充放電管理システム。
In claim 5,
The control unit stores the latest storage battery charge / discharge plan and the travel prediction when the latest storage battery charge / discharge plan is created, and the travel prediction and storage battery when the latest storage battery charge / discharge plan is created. The battery charge / discharge management is characterized in that when the difference between the remaining amount of the train, the position information of the train, and the remaining amount of the storage battery exceeds a permissible range, the prediction unit performs the driving prediction again. system.
請求項5において、
前記充放電計画において、前記電車に回生失効が生じる場合には、前記電車と電力の授受が可能な前記地上蓄電設備若しくは他の電車の放電を抑制し、または前記地上蓄電設備若しくは他の電車に充電することを特徴とする蓄電池充放電管理システム。
In claim 5,
In the charging / discharging plan, when regeneration invalidation occurs in the train, it is possible to suppress discharge of the ground storage facility or other train that can exchange power with the train, or to the ground storage facility or other train. A storage battery charge / discharge management system characterized by charging.
請求項5において、
前記充放電計画は、前記予測部が前記データベースの前記路線線形及び前記運行ダイヤを参照して、路線全電車の運行シミュレーション及び電力シミュレーションを行い、
前記制御部が前記運行シミュレーション及び前記電力シミュレーションの結果から、予め設定した初期設定方針に基づいて作成され、回生失効が生じなくなるまで、または消費電力量をさらに削減することができなくなるまで変更され、
回生失効が生じなくなり、または消費電力量をさらに削減することができなくなると、最新の前記充放電計画が、前記蓄電池を搭載した前記電車と前記地上蓄電設備のうち少なくとも一方に送信されることを特徴とする蓄電池充放電管理システム。
In claim 5,
The charging / discharging plan refers to the route alignment of the database and the operation schedule of the database, the operation simulation and power simulation of all trains on the route,
From the results of the operation simulation and the power simulation, the control unit is created based on a preset initial setting policy, and is changed until no regeneration expires or the power consumption cannot be further reduced.
When regenerative expiry does not occur or the power consumption cannot be further reduced, the latest charge / discharge plan is transmitted to at least one of the train on which the storage battery is mounted and the ground storage facility. A storage battery charge / discharge management system.
JP2014215423A 2014-10-22 2014-10-22 Storage battery charge / discharge management device and storage battery charge / discharge management system Active JP6282212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215423A JP6282212B2 (en) 2014-10-22 2014-10-22 Storage battery charge / discharge management device and storage battery charge / discharge management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215423A JP6282212B2 (en) 2014-10-22 2014-10-22 Storage battery charge / discharge management device and storage battery charge / discharge management system

Publications (2)

Publication Number Publication Date
JP2016078800A true JP2016078800A (en) 2016-05-16
JP6282212B2 JP6282212B2 (en) 2018-02-21

Family

ID=55957503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215423A Active JP6282212B2 (en) 2014-10-22 2014-10-22 Storage battery charge / discharge management device and storage battery charge / discharge management system

Country Status (1)

Country Link
JP (1) JP6282212B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038327A (en) * 2017-08-23 2019-03-14 株式会社東芝 Storage battery management device and hybrid vehicle
CN112124359A (en) * 2019-06-25 2020-12-25 比亚迪股份有限公司 Train control method and device and automatic train monitoring system
JP2021002999A (en) * 2020-09-25 2021-01-07 株式会社明電舎 Power conversion device and electric railway system
JP2021019479A (en) * 2019-07-23 2021-02-15 株式会社Gsユアサ Railway vehicle power storage facility and railway vehicle power storage element monitoring system
JP2021035782A (en) * 2019-08-30 2021-03-04 東日本旅客鉄道株式会社 Power supply system for electric railroad

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013766B1 (en) * 2019-03-26 2019-08-26 유석재 Wireless charging method and system of operating device
KR102044127B1 (en) * 2019-08-16 2019-11-12 유석재 Battery charging support system for running trains

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154355A (en) * 2006-12-18 2008-07-03 Hitachi Ltd Accumulation equipment
JP2011168152A (en) * 2010-02-18 2011-09-01 Railway Technical Research Institute Power storage system for electric railway
JP2012105407A (en) * 2010-11-08 2012-05-31 Toshiba Corp Power storage system
JP2013141374A (en) * 2012-01-06 2013-07-18 Toshiba Corp Electric power supply system for electric railroad
JP2014104935A (en) * 2012-11-29 2014-06-09 Toshiba Corp Power management system and power management device
JP2014129069A (en) * 2012-12-28 2014-07-10 Toshiba Corp Electric power storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154355A (en) * 2006-12-18 2008-07-03 Hitachi Ltd Accumulation equipment
JP2011168152A (en) * 2010-02-18 2011-09-01 Railway Technical Research Institute Power storage system for electric railway
JP2012105407A (en) * 2010-11-08 2012-05-31 Toshiba Corp Power storage system
JP2013141374A (en) * 2012-01-06 2013-07-18 Toshiba Corp Electric power supply system for electric railroad
JP2014104935A (en) * 2012-11-29 2014-06-09 Toshiba Corp Power management system and power management device
JP2014129069A (en) * 2012-12-28 2014-07-10 Toshiba Corp Electric power storage system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038327A (en) * 2017-08-23 2019-03-14 株式会社東芝 Storage battery management device and hybrid vehicle
CN112124359A (en) * 2019-06-25 2020-12-25 比亚迪股份有限公司 Train control method and device and automatic train monitoring system
CN112124359B (en) * 2019-06-25 2022-03-18 比亚迪股份有限公司 Train control method and device and automatic train monitoring system
JP2021019479A (en) * 2019-07-23 2021-02-15 株式会社Gsユアサ Railway vehicle power storage facility and railway vehicle power storage element monitoring system
JP7306133B2 (en) 2019-07-23 2023-07-11 株式会社Gsユアサ Power storage equipment for railway vehicles and power storage element monitoring system for railway vehicles
JP2021035782A (en) * 2019-08-30 2021-03-04 東日本旅客鉄道株式会社 Power supply system for electric railroad
JP7336917B2 (en) 2019-08-30 2023-09-01 東日本旅客鉄道株式会社 Electric railway power supply system
JP2021002999A (en) * 2020-09-25 2021-01-07 株式会社明電舎 Power conversion device and electric railway system
JP7001134B2 (en) 2020-09-25 2022-01-19 株式会社明電舎 Power converter, electric railway system

Also Published As

Publication number Publication date
JP6282212B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6282212B2 (en) Storage battery charge / discharge management device and storage battery charge / discharge management system
Liu et al. Energy-efficient train timetable optimization in the subway system with energy storage devices
KR101635331B1 (en) Train-information management device and device control method
EP2857255A1 (en) Train control device
JP2017165237A (en) Train operation support system
JPWO2014027400A1 (en) Train information management apparatus and device control method
JP6047827B2 (en) Operation control device, operation control method, and control program
WO2013099171A1 (en) Transportation management device, transportation management system, and control program
Li et al. Dynamic trajectory optimization design for railway driver advisory system
Malavasi et al. Driving and operation strategies for traction-energy saving in mass rapid transit systems
Tuyttens et al. Simulation-based genetic algorithm towards an energy-efficient railway traffic control
US10766367B2 (en) Train control device
JP2017063556A (en) Travel pattern generation device, automatic train operation system equipped with travel pattern generation device and automatic train operation device, and operation assisting system equipped with travel pattern generation device and operation assisting device
Al-Ezee et al. Aspects of catenary free operation of DC traction systems
JP2008054387A (en) Controller of electric vehicle
CN110877616A (en) Electric energy consumption optimization method, storage medium and automatic driving and monitoring system
JP6599775B2 (en) Train storage battery control device, method and program
Wang et al. Optimal trajectory planning for trains under a moving block signaling system
Fernández-Rodríguez et al. Energy efficiency in high speed railway traffic operation: A real-time ecodriving algorithm
CN104379397B (en) Railway system
CN115285173B (en) Method, equipment and medium for realizing automatic passing neutral section of train based on CBTC
JP2014156203A (en) Target speed determination device, target speed determination method and program, and vehicle control device and vehicle
Gu et al. A survey on energy-saving operation of railway transportation systems
CN110395299A (en) Train braking energy utilization method in urban track traffic
JP5897452B2 (en) Power management system and power management apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6282212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250