JP2016078223A - Control device and control method for controlling machine tool for controlling synchronous operation of main spindle and feed shaft - Google Patents

Control device and control method for controlling machine tool for controlling synchronous operation of main spindle and feed shaft Download PDF

Info

Publication number
JP2016078223A
JP2016078223A JP2014266636A JP2014266636A JP2016078223A JP 2016078223 A JP2016078223 A JP 2016078223A JP 2014266636 A JP2014266636 A JP 2014266636A JP 2014266636 A JP2014266636 A JP 2014266636A JP 2016078223 A JP2016078223 A JP 2016078223A
Authority
JP
Japan
Prior art keywords
spindle
rotation
control unit
feed
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266636A
Other languages
Japanese (ja)
Other versions
JP6001633B2 (en
Inventor
有紀 森田
Yuki Morita
有紀 森田
肇 置田
Hajime Okita
肇 置田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to DE102015013283.0A priority Critical patent/DE102015013283B4/en
Priority to US14/885,416 priority patent/US9753452B2/en
Priority to CN201510671742.1A priority patent/CN105527928B/en
Publication of JP2016078223A publication Critical patent/JP2016078223A/en
Application granted granted Critical
Publication of JP6001633B2 publication Critical patent/JP6001633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten cycle time by carrying out control for exhibiting the acceleration performance of a main spindle to a maximum limit with a simple configuration in a machine tool for executing tap processing by the synchronous operation of the main spindle and a feed shaft.SOLUTION: A main spindle control unit 18 includes an initial operation control unit 30 for accelerating and rotating a main spindle 12 from a processing start position to a target screw depth with a highest rotational speed V0 fed from a numerical value control unit 16 set as a target value at maximum performance, a maximum acceleration detection part 32 for detecting maximum acceleration A0 based on a rotation position FBS during accelerated rotation, a residual rotation amount detection part 34 for detecting the residual rotation amount Sr of the main spindle 12 from a current position to the target depth based on a total rotation amount S0 fed from the numerical value control unit 16 and the rotation position FBS, a current speed detection part 36 for detecting the current speed Vc of the main spindle 12 based on the rotation position FBS, and a positioning operation control unit 38 for decelerating and rotating the main spindle 12 at maximum performance to reach the target depth based on the maximum acceleration A0, the residual rotation amount Sr, and the current speed Vc after the accelerated rotation.SELECTED DRAWING: Figure 1

Description

本発明は、主軸と送り軸との同期運転を制御する工作機械の制御装置に関する。本発明はまた、主軸と送り軸との同期運転を制御する工作機械の制御方法に関する。   The present invention relates to a machine tool control device that controls synchronous operation of a main shaft and a feed shaft. The present invention also relates to a machine tool control method for controlling synchronous operation of a main shaft and a feed shaft.

主軸と送り軸との同期運転によりタップ加工を行う工作機械においては、加工精度を向上させたりサイクルタイムを短縮したりするための構成が種々提案されている。例えば特許文献1は、主軸の回転に送り軸が追従して動作しながらタップ加工を行うねじ加工装置であって、主軸の回転速度及び回転加速度とねじピッチとから送り軸に対する送り指令値を演算するとともに、主軸の実際の回転位置に従って送り指令値を補正することで、タップ加工の精度を向上させるようにしたねじ加工装置を開示する。また特許文献2は、タップ加工のために主軸と送り軸との同期制御を行う数値制御装置の主軸モータ加減速制御方法であって、数値制御装置が、主軸の出力特性に対応する加減速指令を作成して、この加減速指令により主軸を制御することで主軸の応答性を向上させ、結果としてサイクルタイムを短縮できるようにした主軸モータ加減速制御方法を開示する。   In a machine tool that performs tapping by synchronous operation of a main shaft and a feed shaft, various configurations for improving machining accuracy and shortening cycle time have been proposed. For example, Patent Document 1 is a screw machining device that performs tapping while the feed shaft follows the rotation of the main shaft, and calculates a feed command value for the feed shaft from the rotation speed and rotational acceleration of the main shaft and the screw pitch. In addition, a screw machining apparatus is disclosed in which the feed command value is corrected in accordance with the actual rotational position of the spindle, thereby improving the accuracy of tapping. Patent Document 2 discloses a spindle motor acceleration / deceleration control method for a numerical controller that performs synchronous control of a spindle and a feed axis for tapping, where the numerical controller is an acceleration / deceleration command corresponding to the output characteristics of the spindle. A spindle motor acceleration / deceleration control method is disclosed in which the response of the spindle is improved by controlling the spindle in accordance with this acceleration / deceleration command, and as a result, the cycle time can be shortened.

特許第2629729号公報Japanese Patent No. 2629729 特許第3553741号公報Japanese Patent No. 3553741

主軸と送り軸との同期運転によりタップ加工を行う工作機械では、一般に、主軸が有する加速能力に依存してサイクルタイムが決まる。数値制御装置が主軸の出力特性に対応する加減速指令を作成するために要するパラメータの設定や調整等の、高度な技術が要求される予備作業を行うことなく、より簡単な構成で、主軸の加速能力を最大限に発揮させる制御を行ってサイクルタイムを短縮できるようにすることが望まれている。   In a machine tool that performs tapping by synchronous operation of the main shaft and the feed shaft, the cycle time is generally determined depending on the acceleration capability of the main shaft. With a simpler configuration, the numerical control device can perform the spindle operation without performing preliminary work that requires advanced technology, such as parameter settings and adjustments required for creating acceleration / deceleration commands corresponding to the output characteristics of the spindle. It is desired that the cycle time can be shortened by performing control to maximize the acceleration capability.

本発明の一態様は、主軸と送り軸との同期運転を制御する工作機械の制御装置であって、タップ加工プログラムに基づき主軸指令及び送り軸指令を作成する数値制御部と、主軸指令に従って主軸の回転動作を制御する主軸制御部と、主軸の回転位置を検出する回転検出部と、送り軸指令に従って、主軸の回転位置に基づき送り軸の送り動作を制御する送り軸制御部とを具備し、数値制御部は、加工開始位置から目標ねじ深さに至る間の主軸の総回転量と最高回転速度とをタップ加工プログラムから取得して、総回転量と最高回転速度とを主軸指令として主軸制御部に送る主軸指令出力部を備え、主軸制御部は、最高回転速度を目標値として加工開始位置から目標ねじ深さに向かって主軸を最大能力で加速回転させる初期動作制御部と、最大能力での加速回転中に主軸の回転位置に基づき最大加速度を検出する最大加速度検出部と、総回転量と主軸の回転位置とに基づき、現在位置から目標ねじ深さに至るまでの主軸の残回転量を検出する残回転量検出部と、主軸の回転位置に基づき主軸の現在速度を検出する現在速度検出部と、最大能力での加速回転の後に、最大加速度と残回転量と現在速度とに基づき、主軸を最大能力で減速回転させて目標ねじ深さに到達させる位置決め動作制御部と、を備える、制御装置である。   One aspect of the present invention is a machine tool control device that controls synchronous operation of a spindle and a feed axis, a numerical control unit that creates a spindle command and a feed axis command based on a tap machining program, and a spindle according to the spindle command A spindle control unit that controls the rotation operation of the spindle, a rotation detection unit that detects the rotation position of the spindle, and a feed axis control unit that controls the feed operation of the feed axis based on the rotation position of the spindle according to the feed axis command. The numerical control unit obtains the total spindle rotation speed and maximum rotation speed from the machining start position to the target screw depth from the tapping program, and uses the total rotation speed and maximum rotation speed as the spindle command. A spindle command output unit to be sent to the control unit. The spindle control unit has an initial operation control unit for accelerating and rotating the spindle at the maximum capacity from the machining start position to the target screw depth with the maximum rotation speed as a target value. The maximum acceleration detection unit that detects the maximum acceleration based on the rotation position of the spindle during acceleration rotation at the shaft, and the remaining rotation of the spindle from the current position to the target screw depth based on the total rotation amount and the rotation position of the spindle A remaining rotation amount detection unit for detecting the amount, a current speed detection unit for detecting the current speed of the main spindle based on the rotation position of the main shaft, and a maximum acceleration, a remaining rotation amount, and a current speed after the acceleration rotation at the maximum capacity. And a positioning operation control unit that rotates the main shaft at a reduced speed to reach the target screw depth.

本発明の他の態様は、主軸と送り軸との同期運転を制御する工作機械の制御方法であって、制御装置が、加工開始位置から目標ねじ深さに至る間の主軸の総回転量と最高回転速度とをタップ加工プログラムから取得し、最高回転速度を目標値として加工開始位置から目標ねじ深さに向かって主軸を最大能力で加速回転させ、最大能力での加速回転中に主軸の回転位置フィードバック値に基づき最大加速度を検出し、総回転量と回転位置フィードバック値とに基づき、現在位置から目標ねじ深さに至るまでの主軸の残回転量を検出し、回転位置フィードバック値に基づき主軸の現在速度を検出し、最大能力での加速回転の後に、最大加速度と残回転量と現在速度とに基づき、主軸を最大能力で減速回転させて目標ねじ深さに到達させる、制御方法である。   Another aspect of the present invention is a method for controlling a machine tool that controls synchronous operation of a main shaft and a feed shaft, wherein the control device includes a total amount of rotation of the main shaft from a machining start position to a target screw depth. The maximum rotation speed is acquired from the tap machining program, the maximum rotation speed is set as the target value, the spindle is accelerated from the machining start position to the target screw depth at the maximum capacity, and the spindle rotates during the acceleration rotation at the maximum capacity. The maximum acceleration is detected based on the position feedback value, the remaining amount of rotation of the main spindle from the current position to the target screw depth is detected based on the total rotation amount and the rotation position feedback value, and the main spindle is detected based on the rotation position feedback value. A control method that detects the current speed of the spindle and, after accelerating rotation at the maximum capacity, rotates the spindle at the maximum capacity to reach the target screw depth based on the maximum acceleration, the remaining rotation amount, and the current speed. It is.

一態様に係る制御装置によれば、主軸に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部が主軸制御部に対して、主軸の総回転量と最高回転速度のみを主軸指令として通知し、主軸制御部がこの主軸指令に従い、最高回転速度を目標に許容電流を最大限に使用した最大出力で主軸を加速させて切削動作を実行するとともに、その間の最大加速度と逐次検出する主軸の残回転量及び現在速度とに基づき、主軸を最大減速度で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させる構成としたから、数値制御部に対し主軸の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。   According to the control device according to one aspect, when the spindle performs a cutting operation from the machining start position to the target screw depth, the numerical controller controls only the total rotation amount and the maximum rotation speed of the spindle relative to the spindle control unit. As the spindle command, and the spindle control unit executes the cutting operation by accelerating the spindle with the maximum output that uses the maximum allowable current for the maximum rotation speed according to the spindle command, and the maximum acceleration Based on the remaining amount of spindle rotation and the current speed that are detected sequentially, the cutting operation to the target screw depth is continuously executed in the shortest time while the spindle is decelerated at the maximum deceleration to reach the target screw depth. This eliminates the need to set and adjust parameters for creating acceleration / deceleration commands corresponding to the output characteristics of the spindle for the numerical control unit, and maximizes the spindle's acceleration capability with a simpler configuration. Performing deceleration control, it is possible to shorten the cycle time of tapping.

他の態様に係る制御方法によれば、上記した制御装置の効果と同等の効果が奏される。   According to the control method according to another aspect, an effect equivalent to the effect of the control device described above is exhibited.

工作機械制御装置の一実施形態の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of one Embodiment of a machine tool control apparatus. 工作機械制御方法の一実施形態としてのタップ加工の切削動作制御方法を示すフローチャートである。It is a flowchart which shows the cutting operation control method of the tap process as one Embodiment of the machine tool control method. 図2の実施形態における主軸の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the main axis | shaft in embodiment of FIG. 図2の実施形態における主軸の動作の他の例を示す図である。It is a figure which shows the other example of operation | movement of the main axis | shaft in embodiment of FIG. 図2の実施形態における主軸の動作のさらに他の例を示す図である。It is a figure which shows the further another example of operation | movement of the main axis | shaft in embodiment of FIG. 図2の実施形態における主軸の動作のさらに他の例を示す図である。It is a figure which shows the further another example of operation | movement of the main axis | shaft in embodiment of FIG. 工作機械制御方法の一実施形態としてのタップ加工の戻り動作制御方法を示すフローチャートである。It is a flowchart which shows the return operation control method of the tap process as one Embodiment of the machine tool control method. 図1の制御装置の変形例の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the modification of the control apparatus of FIG. 図1の制御装置の他の変形例の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the other modification of the control apparatus of FIG. 工作機械制御方法の他の実施形態としてのタップ加工の切削及び戻り動作制御方法を示すフローチャートである。It is a flowchart which shows the cutting and return operation | movement control method of the tap process as other embodiment of the machine tool control method. 図10の実施形態における主軸の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the main axis | shaft in embodiment of FIG. 図10の実施形態における主軸の動作の他の例を示す図である。It is a figure which shows the other example of operation | movement of the main axis | shaft in embodiment of FIG.

以下、添付図面を参照して本発明の実施の形態を説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Corresponding components are denoted by common reference symbols throughout the drawings.

図1は、一実施形態による工作機械の制御装置10の構成を機能ブロックで示す。制御装置10は、主軸12と送り軸14との同期運転によりタップ加工を行う工作機械(例えば旋盤、ボール盤、マシニングセンタ等)において、送り軸14が、タップ加工プログラムPで指定されるねじピッチを考慮しながら、主軸12の回転動作に追従するように動作する同期運転を制御するものである。図示しないが、主軸12は、ワークや工具を把持する把持部を加工に必要な速度で回転運動させるサーボモータ等の駆動装置に設定される制御軸である。図示しないが、送り軸14は、ワークや工具を支持する支持部を加工に必要な速度で送り運動させるサーボモータ等の駆動装置に設定される制御軸である。例えば旋盤では、主軸12で回転するワークに対して工具を送り軸14で直線送りしたり、主軸12で回転するワークを工具に対して送り軸14で直線送りしたりすることができる。またボール盤では、主軸12で回転する工具をワークに対して送り軸14で直線送りしたり、主軸12で回転する工具に対してワークを送り軸14で直線送りしたりすることができる。いずれの場合も、動作中の加減速トルクに比較的余裕の有る送り軸14が、動作中の加減速トルクに比較的余裕の無い主軸12に追従するように動作することで、同期誤差を低減して加工精度を向上させることができる。なお本発明において、工作機械の構成は特に限定されない。   FIG. 1 is a functional block diagram showing the configuration of a machine tool control apparatus 10 according to an embodiment. In a machine tool (for example, a lathe, a drilling machine, a machining center, etc.) that performs tapping by synchronous operation of the main shaft 12 and the feeding shaft 14, the control device 10 considers the screw pitch specified by the tapping program P. On the other hand, the synchronous operation that operates so as to follow the rotational operation of the main shaft 12 is controlled. Although not shown, the main shaft 12 is a control shaft that is set in a drive device such as a servo motor that rotates a gripping portion that grips a workpiece or a tool at a speed necessary for processing. Although not shown, the feed shaft 14 is a control shaft set in a drive device such as a servo motor that feeds and moves a support portion that supports a workpiece or a tool at a speed necessary for machining. For example, in a lathe, a tool can be linearly fed with a feed shaft 14 to a workpiece rotating on the main shaft 12, or a work rotated with the main shaft 12 can be linearly fed to the tool with a feed shaft 14. In the drilling machine, the tool rotating on the main shaft 12 can be linearly fed to the workpiece by the feed shaft 14, or the workpiece can be linearly fed by the feed shaft 14 to the tool rotating on the main shaft 12. In either case, the feed shaft 14 having a relatively large margin for operating acceleration / deceleration torque operates so as to follow the spindle 12 having a relatively small margin for operating acceleration / deceleration torque, thereby reducing synchronization errors. Thus, processing accuracy can be improved. In the present invention, the configuration of the machine tool is not particularly limited.

制御装置10は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22とを備える。数値制御部16は、タップ加工プログラムPを解釈するプログラム解釈部24と、プログラム解釈部24の解釈に従い主軸指令CSを作成して、主軸制御部18に主軸指令CSを送る主軸指令出力部26と、プログラム解釈部24の解釈に従い送り軸指令CFを作成して、送り軸制御部22に送り軸指令CFを送る送り軸指令出力部28とを備える。数値制御部16は、公知のCNC装置のハードウェア構成を有することができる。   The control device 10 includes a numerical control unit 16 that generates a spindle command CS and a feed axis command CF based on the tap machining program P, a spindle control unit 18 that controls the rotation operation of the spindle 12 according to the spindle command CS, and the rotation of the spindle 12. A rotation detection unit 20 that detects the position, and a feed axis control unit 22 that controls the feed operation of the feed shaft 14 based on the rotation position detected by the rotation detection unit 20 in accordance with the feed axis command CF. The numerical control unit 16 includes a program interpretation unit 24 that interprets the tap machining program P, a spindle command CS that generates a spindle command CS according to the interpretation of the program interpretation unit 24, and a spindle command output unit 26 that sends the spindle command CS to the spindle control unit 18. And a feed axis command output unit 28 that generates a feed axis command CF according to the interpretation of the program interpretation unit 24 and sends the feed axis command CF to the feed axis control unit 22. The numerical control unit 16 can have a hardware configuration of a known CNC device.

主軸指令出力部26は、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、加工開始位置(回転位置)から目標ねじ深さ(回転位置)に至る間の主軸12の総回転量S0と最高回転速度V0とを取得して、これら総回転量S0と最高回転速度V0とを主軸指令CSとして主軸制御部18に送る。例えばタップ加工プログラムPが、主軸12の最高回転速度V0を3000/minとして、ねじピッチ1.25mm、ねじ深さ30mmの雌ねじを加工する指令を含む場合、加工開始位置から目標ねじ深さに至る間の主軸12の総回転量S0は、30÷1.25=24(rev)となるから、主軸指令出力部26は、V0=3000(min−1)とS0=24(rev)とを主軸制御部18に通知する。このように主軸指令CSは、主軸12を目標ねじ深さまで回転運動させるための位置指令や加減速指令を含まないものとなっている。 Prior to the start of tap machining, the spindle command output unit 26 determines from the command value of the tap machining program P interpreted by the program interpretation unit 24 to the target screw depth (rotation position) from the machining start position (rotation position). The total rotation amount S0 and the maximum rotation speed V0 of the spindle 12 are acquired, and the total rotation amount S0 and the maximum rotation speed V0 are sent to the spindle control unit 18 as a spindle command CS. For example, when the tapping program P includes a command to machine a female screw having a screw pitch of 1.25 mm and a screw depth of 30 mm with a maximum rotational speed V0 of the spindle 12 of 3000 / min, the processing reaches the target screw depth from the machining start position. Since the total rotation amount S0 of the main shaft 12 in the interval is 30 ÷ 1.25 = 24 (rev), the main shaft command output unit 26 sets V0 = 3000 (min −1 ) and S0 = 24 (rev) to the main shaft. Notify the control unit 18. Thus, the spindle command CS does not include a position command or an acceleration / deceleration command for rotating the spindle 12 to the target screw depth.

主軸制御部18は、回転検出部20が検出した主軸12の回転位置(フィードバック値。以下、回転位置FBS。)を用いて、一般的なフィードバック制御により主軸12の回転動作を制御する。送り軸制御部22は、送り軸14の送り位置のフィードバック値に加えて、主軸12の回転位置FBSを用いて、フィードバック制御により主軸12の動作に追従する送り軸14の送り動作を制御する。なお回転検出部20は、主軸12の駆動装置の動作位置を検出するエンコーダ等の位置検出器(図示せず)の出力から、回転位置FBSを取得することができる。   The main shaft control unit 18 controls the rotation operation of the main shaft 12 by general feedback control using the rotation position (feedback value, hereinafter referred to as the rotation position FBS) of the main shaft 12 detected by the rotation detection unit 20. In addition to the feedback value of the feed position of the feed shaft 14, the feed shaft control unit 22 uses the rotational position FBS of the main shaft 12 to control the feed operation of the feed shaft 14 that follows the operation of the main shaft 12 by feedback control. The rotation detection unit 20 can acquire the rotation position FBS from the output of a position detector (not shown) such as an encoder that detects the operating position of the drive device of the main shaft 12.

主軸制御部18は、主軸指令出力部26から送られた最高回転速度V0(min−1)を目標値として、加工開始位置から目標ねじ深さに向かって主軸12を最大能力で加速回転させる初期動作制御部30と、最大能力での加速回転中に回転位置FBSに基づき最大加速度A0(min−1/s)を検出する最大加速度検出部32と、主軸指令出力部26から送られた総回転量S0(rev)と回転位置FBSとに基づき、現在位置(回転位置)から目標ねじ深さに至るまでの主軸12の残回転量Sr(rev)を検出する残回転量検出部34と、回転位置FBSに基づき主軸12の現在速度Vc(min−1)を検出する現在速度検出部36と、最大能力での加速回転の後に、最大加速度A0と残回転量Srと現在速度Vcとに基づき、主軸12を最大能力で減速回転させて目標ねじ深さに到達させる位置決め動作制御部38とを備える。一実施形態では、位置決め動作制御部38は、主軸12を最大能力で減速回転させるとともに目標ねじ深さで停止させるように構成できる。 The spindle control unit 18 uses the maximum rotational speed V0 (min −1 ) sent from the spindle command output unit 26 as a target value, and initially rotates the spindle 12 at maximum capacity from the machining start position to the target screw depth. The operation controller 30, the maximum acceleration detector 32 that detects the maximum acceleration A 0 (min −1 / s) based on the rotational position FBS during acceleration rotation at the maximum capacity, and the total rotation sent from the spindle command output unit 26 Based on the amount S0 (rev) and the rotational position FBS, a residual rotational amount detector 34 that detects the residual rotational amount Sr (rev) of the main shaft 12 from the current position (rotational position) to the target screw depth, the current speed detecting section 36 for detecting the current speed Vc (min -1) of the spindle 12 based on the position FBS, after acceleration rotation at maximum capacity, maximum acceleration A0 and the remaining amount of rotation Sr current based on the speed Vc The spindle 12 and rotated at a speed at maximum capacity to reach the target thread depth and a positioning operation control unit 38. In one embodiment, the positioning operation control unit 38 can be configured to cause the spindle 12 to rotate at a reduced speed with the maximum capacity and to stop at the target screw depth.

図2は、制御装置10が実行する工作機械制御方法の一実施形態としての、タップ加工における主軸12の切削動作制御方法を示す。以下、図2に例示するタップ加工制御フローを合わせて参照して、制御装置10の構成の詳細を説明する。まずステップS1で、数値制御部16(主軸指令出力部26)は主軸制御部18に、主軸12の総回転量S0と最高回転速度V0とを指令する。ステップS2で、主軸制御部18(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は、加工開始位置から、最高回転速度V0を目標速度として主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速回転させてタップ加工を実行し、その間の最大加速度A0を検出するとともに、現在位置からの残回転量Srを逐次検出する。検出した残回転量Srは、検出の都度、主軸制御部18が数値制御部16に通知する。   FIG. 2 shows a cutting operation control method of the spindle 12 in tapping as an embodiment of a machine tool control method executed by the control device 10. Hereinafter, the detailed configuration of the control device 10 will be described with reference to the tapping process control flow illustrated in FIG. First, in step S1, the numerical control unit 16 (spindle command output unit 26) instructs the main shaft control unit 18 of the total rotation amount S0 and the maximum rotation speed V0 of the main shaft 12. In step S2, the spindle control unit 18 (the initial motion control unit 30, the maximum acceleration detection unit 32, and the remaining rotation amount detection unit 34) uses the spindle 12 as a drive source with the maximum rotation speed V0 as the target speed from the machining start position. Tap processing is executed by accelerating rotation with the maximum capacity utilizing the allowable current to the maximum, and the maximum acceleration A0 during that time is detected, and the remaining rotation amount Sr from the current position is sequentially detected. The spindle control unit 18 notifies the numerical control unit 16 of the detected remaining rotation amount Sr each time it is detected.

次にステップS3で、主軸制御部18(現在速度検出部36)は、最大能力での加速回転中に現在速度Vcを逐次検出し、検出の都度、現在速度Vcが最高回転速度V0に到達していないか否かを判断する。VcがV0に到達していない場合、ステップS4で、主軸制御部18は、残回転量Srが総回転量S0の1/2以下になっているか否かを判断する。SrがS0の1/2以下になっている場合、ステップS5で、主軸制御部18は、主軸12を、駆動源の許容電流を最大限に利用した最大能力で減速回転させてタップ加工を継続実行する。SrがS0の1/2以下になっていない場合はステップS3に戻る。   Next, in step S3, the spindle control unit 18 (current speed detection unit 36) sequentially detects the current speed Vc during acceleration rotation at the maximum capacity, and the current speed Vc reaches the maximum rotation speed V0 each time it is detected. Judge whether or not. If Vc has not reached V0, in step S4, the spindle control unit 18 determines whether or not the remaining rotation amount Sr is less than or equal to ½ of the total rotation amount S0. If Sr is less than or equal to 1/2 of S0, in step S5, the spindle control unit 18 continues the tapping process by rotating the spindle 12 at a reduced speed with the maximum capacity using the allowable current of the drive source to the maximum. Run. If Sr is not less than 1/2 of S0, the process returns to step S3.

ここで図3を参照すると、現在速度Vcが最高回転速度V0に到達する前に残回転量Srが総回転量S0の1/2になった場合(ステップS3及びS4の判断がいずれもYESの場合)の、主軸12の動作が、速度−時間曲線で示されている。図3において、Vbは、始動から速度Vbまでは一定トルクでの加速(つまり一定加速度)が可能な回転速度(例えばサーボモータの基底速度)として、主軸12に予め設定されたものであって、例えば制御装置10のメモリ(図示せず)に制御用パラメータの1つとして格納できるものである。なお実用上、速度Vbは、サーボモータの基底速度(サーボモータと主軸12との間に減速比が存在する場合は減速比を考慮した速度)以下であればよい。   Referring now to FIG. 3, when the remaining rotational speed Sr becomes ½ of the total rotational speed S0 before the current speed Vc reaches the maximum rotational speed V0 (the determinations in steps S3 and S4 are both YES) The movement of the spindle 12 in the case) is represented by a speed-time curve. In FIG. 3, Vb is set in advance on the main shaft 12 as a rotational speed (for example, a base speed of a servo motor) that can be accelerated with a constant torque (that is, a constant acceleration) from the start to the speed Vb. For example, it can be stored as one of the control parameters in a memory (not shown) of the control device 10. In practice, the speed Vb may be equal to or lower than the base speed of the servo motor (a speed in consideration of the speed reduction ratio when a speed reduction ratio exists between the servo motor and the main shaft 12).

ステップS2における主軸12の最大能力の加速回転は、図3の時間T1及びT2で実行され、時間T1の一定加速度の間に最大加速度A0が検出される。主軸12の回転速度がVbを超えると、例えばサーボモータの特性により、主軸12の加速度は最大加速度A0から漸減する。残回転量Srが総回転量S0の1/2になった(つまり加工開始からの回転量が総回転量S0の1/2になった)時点A(ステップS4の判断がYESとなった時点)で、主軸12の動作は加速回転から減速回転に変わり、時間T3で、ステップS5における主軸12の最大能力での減速回転が実行される。時間T3では、点Aから速度Vbを目標値として主軸12を減速回転させるが、この間、例えばサーボモータの特性により、主軸12の減速度は漸増する。最大能力での減速回転中も、主軸制御部18(残回転量検出部34、現在速度検出部36)は、主軸12の現在位置からの残回転量Sr及び現在速度Vcを逐次検出する。このように、時間T1〜T3では、主軸制御部18は主軸12を速度制御する(ステップ状の速度指令を破線で例示する)。   The acceleration rotation with the maximum capacity of the main shaft 12 in step S2 is executed at times T1 and T2 in FIG. 3, and the maximum acceleration A0 is detected during the constant acceleration at time T1. When the rotational speed of the main shaft 12 exceeds Vb, the acceleration of the main shaft 12 gradually decreases from the maximum acceleration A0 due to, for example, the characteristics of the servo motor. Time point A when the remaining rotation amount Sr becomes 1/2 of the total rotation amount S0 (that is, the rotation amount from the start of machining becomes 1/2 of the total rotation amount S0) (when the determination in step S4 becomes YES) ), The operation of the main shaft 12 is changed from the acceleration rotation to the deceleration rotation, and at time T3, the decelerating rotation with the maximum capacity of the main shaft 12 in step S5 is executed. At time T3, the spindle 12 is decelerated and rotated from the point A using the speed Vb as a target value. During this time, the deceleration of the spindle 12 gradually increases due to, for example, the characteristics of the servo motor. Even during decelerating rotation at the maximum capacity, the spindle control unit 18 (remaining rotation amount detection unit 34, current speed detection unit 36) sequentially detects the remaining rotation amount Sr and the current speed Vc from the current position of the spindle 12. Thus, at time T1 to T3, the spindle control unit 18 controls the speed of the spindle 12 (a stepped speed command is illustrated by a broken line).

ステップS5の後に、主軸制御部18(位置決め動作制御部38)は、逐次検出されている残回転量Sr(rev)と現在速度Vc(min−1)とを監視して、現在速度Vc(min−1)から最大加速度A0(min−1/s)に対応する最大減速度A0(負の値)で減速したときにSr=0となる(つまり目標ねじ深さに到達する)ことが予測される時点B(図3)の位置を、Sr=0の点から見た残回転量Sr(負の値)の絶対値として、下記の式により求める。
公式:(Vc/60)=2×|A0|/60×|Sr|から、
|Sr|=Vc/|A0|/120
After step S5, the spindle control unit 18 (positioning operation control unit 38) monitors the remaining rotation amount Sr (rev) and the current speed Vc (min −1 ) that are sequentially detected, and the current speed Vc (min −1 ) to Sr = 0 (that is, the target screw depth is reached) when the vehicle is decelerated at the maximum deceleration A0 (negative value) corresponding to the maximum acceleration A0 (min −1 / s). 3 is obtained as the absolute value of the remaining rotation amount Sr (negative value) as seen from the point of Sr = 0.
Formula: (Vc / 60) 2 = 2 × | A0 | / 60 × | Sr |
| Sr | = Vc 2 / | A0 | / 120

ここで、この実施形態では、点Bから主軸12を一定の最大減速度A0で減速することを前提とする。したがって点Bでは、主軸12の現在速度VcはVbに達しているものとする。つまり点Bの位置|Sr|は、
|Sr|=Vb/|A0|/120
として求めることができる。
Here, in this embodiment, it is assumed that the spindle 12 is decelerated from the point B at a constant maximum deceleration A0. Therefore, at the point B, it is assumed that the current speed Vc of the main shaft 12 has reached Vb. That is, the position | Sr |
| Sr | = Vb 2 / | A0 | / 120
Can be obtained as

また、この実施形態では、主軸12の加速に必要なトルク(以下、加速トルク)と減速に必要なトルク(以下、減速トルク)とは互いに等しいものとする。一般に、主軸12の回転中は機械構造上の負荷(抵抗)が発生し、加速トルクは減速トルクよりも大きくなるので、加速トルクと減速トルクとが等しい場合には、同じ速度変化で比較すると最大能力での加速時間が最大能力での減速時間よりも長くなる。したがって実際には、主軸12は、点Aから減速した後に時間T2よりも短い時間で速度Vbに到達し、このときの位置|Sr|は
|Sr|>Vc/|A0|/120
であって、その後に一定速度Vbで極少時間だけ回転することにより、
|Sr|=Vb/|A0|/120
の点Bに到達することになる(図3)。
In this embodiment, it is assumed that torque required for acceleration of the main shaft 12 (hereinafter referred to as acceleration torque) and torque required for deceleration (hereinafter referred to as deceleration torque) are equal to each other. In general, a load (resistance) on the mechanical structure is generated during the rotation of the main shaft 12, and the acceleration torque becomes larger than the deceleration torque. Therefore, when the acceleration torque and the deceleration torque are equal, the maximum speed is compared when compared with the same speed change. The acceleration time at the ability is longer than the deceleration time at the maximum ability. Therefore, in practice, the main shaft 12 reaches the speed Vb in a time shorter than the time T2 after decelerating from the point A, and the position | Sr | at this time is | Sr |> Vc 2 / | A0 | / 120.
After that, by rotating at a constant speed Vb for a minimum time,
| Sr | = Vb 2 / | A0 | / 120
The point B is reached (FIG. 3).

再び図2を参照すると、ステップS6で、主軸制御部18(位置決め動作制御部38)は、主軸12の現在位置における残回転量の絶対値|Sr|が、|Sr|=Vb/|A0|/120を満たしているか否か(つまり主軸12の回転位置が点Bに到達したか否か)を判断する。|Sr|=Vb/|A0|/120を満たしている場合、ステップS7で、主軸制御部18(位置決め動作制御部38)は、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させるための指令(一実施形態では、目標ねじ深さで停止させるための指令)を作成し、この指令により主軸12を位置制御する。|Sr|=Vb/|A0|/120を満たしていない場合は、この等式が満たされるまで判断を繰り返す。主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転してタップ加工を実行し、Sr=0になった時点で目標ねじ深さに到達する(一実施形態では、目標ねじ深さで停止する)。このように、点Bから目標ねじ深さに到達するまでの時間T4(図3)では、主軸制御部18は主軸12を位置制御することになる(定加速度状の速度指令を破線で例示する)。 Referring to FIG. 2 again, in step S6, the spindle control unit 18 (positioning operation control unit 38) determines that the absolute value | Sr | of the remaining rotation amount at the current position of the spindle 12 is | Sr | = Vb 2 / | A0. It is determined whether or not | / 120 is satisfied (that is, whether or not the rotational position of the spindle 12 has reached point B). When | Sr | = Vb 2 / | A0 | / 120 is satisfied, in step S7, the spindle control unit 18 (positioning operation control unit 38) decelerates and rotates the spindle 12 at the maximum deceleration A0, and Sr = 0. A command (in one embodiment, a command to stop at the target screw depth) for reaching the point (namely, the target screw depth) is created, and the position of the spindle 12 is controlled by this command. If | Sr | = Vb 2 / | A0 | / 120 is not satisfied, the determination is repeated until this equation is satisfied. The spindle 12 rotates at a maximum deceleration A0 from the point B toward the target screw depth in accordance with a command from the spindle control unit 18 (positioning operation control unit 38), executes tapping, and Sr = 0. The target screw depth is reached (in one embodiment, it stops at the target screw depth). As described above, at the time T4 (FIG. 3) from the point B to the target screw depth, the spindle control unit 18 controls the position of the spindle 12 (constant acceleration speed command is illustrated by a broken line. ).

ステップS3で、現在速度Vcが最高回転速度V0に到達していると判断した場合、ステップS8で、主軸制御部18は、最高回転速度V0に到達したときの主軸12の、加工開始位置からの回転量(つまり回転位置FBS)を、加速時回転量Saとして保存する。そしてステップS9で、主軸制御部18は、残回転量Srが加速時回転量Sa以下になっているか否かを判断する。SrがSa以下になっている場合、ステップS5に進み、次いでステップS6及びステップS7を実行して、目標ねじ深さまでの加工を行う。SrがSa以下になっていない場合は、SrがSa以下になるまで判断を繰り返す。   If it is determined in step S3 that the current speed Vc has reached the maximum rotational speed V0, in step S8, the spindle control unit 18 determines that the spindle 12 from the machining start position when the maximum rotational speed V0 has been reached. The rotation amount (that is, the rotation position FBS) is stored as the acceleration rotation amount Sa. In step S9, the spindle control unit 18 determines whether or not the remaining rotation amount Sr is equal to or less than the acceleration rotation amount Sa. If Sr is equal to or less than Sa, the process proceeds to step S5, and then steps S6 and S7 are executed to perform processing up to the target screw depth. If Sr is not less than or equal to Sa, the determination is repeated until Sr becomes less than or equal to Sa.

主軸制御部18が主軸12の加工開始位置から目標ねじ深さまでの回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。数値制御部16は、主軸制御部18がステップS1〜ステップS9の処理を実行する間、主軸制御部18から通知される残回転量Srを監視して、残回転量Srが第1の所定値(零に近い極小値)以下になったときに、タップ加工が目標ねじ深さに達したと判断する。   While the main shaft control unit 18 controls the rotation operation from the machining start position of the main shaft 12 to the target screw depth, the feed shaft control unit 22 uses the rotation position FBS of the main shaft 12 to change the feed shaft 14 to the operation of the main shaft 12. The feed operation is performed under control to follow. The numerical control unit 16 monitors the remaining rotation amount Sr notified from the spindle control unit 18 while the main shaft control unit 18 executes the processes of Steps S1 to S9, and the remaining rotation amount Sr is a first predetermined value. When the value becomes (minimum value close to zero) or less, it is determined that tapping has reached the target thread depth.

図4は、残回転量Srが総回転量S0の1/2になる前に現在速度Vcが最高回転速度V0に到達した場合(ステップS3の判断がNOの場合)の、主軸12の動作を、速度−時間曲線で示す。図4に示すように、ステップS2における主軸12の最大能力の加速回転が時間T1及びT2で実行されて、主軸12の現在速度Vcが最高回転速度V0に到達し、その後、時間T5に渡り一定速度V0で主軸12が回転してタップ加工を継続し、残回転量Srが加速時回転量Saに等しくなった時点A(ステップS9の判断がYESとなった時点)で、主軸12の動作が加速回転から減速回転に変わり、時間T3で、ステップS5における主軸12の最大能力での減速回転が実行され、時間T4で、ステップS7における主軸12の位置制御が実行される。時間T1、T2、T3及びT4では、主軸12は図3に示す動作と同様に動作する。   FIG. 4 shows the operation of the spindle 12 when the current speed Vc reaches the maximum rotational speed V0 before the remaining rotational amount Sr becomes 1/2 of the total rotational amount S0 (when the determination in step S3 is NO). It is shown by a speed-time curve. As shown in FIG. 4, the maximum speed acceleration rotation of the main shaft 12 in step S2 is executed at time T1 and T2, and the current speed Vc of the main shaft 12 reaches the maximum rotation speed V0, and then is constant over time T5. The main shaft 12 rotates at the speed V0 and the tapping is continued, and the operation of the main shaft 12 is performed at a time A (when the determination in step S9 is YES) when the remaining rotation amount Sr becomes equal to the acceleration rotation amount Sa. The acceleration rotation is changed to the deceleration rotation, and at time T3, the decelerating rotation with the maximum capacity of the main shaft 12 at step S5 is executed, and at time T4, the position control of the main shaft 12 at step S7 is executed. At times T1, T2, T3, and T4, the main shaft 12 operates in the same manner as the operation shown in FIG.

図3及び図4に示す構成は、主軸12の最高回転速度V0が、予め定めた速度Vb(例えばサーボモータの基底速度)よりも大きいことを前提としたものである。これに対し、工作機械の構成によっては、主軸12の最高回転速度V0が速度Vbよりも小さくなる場合がある。この場合は、図3及び図4における時間T2及びT3が無くなり、主軸12は、加工開始位置から目標ねじ深さに至るまでの間、一定の加速度及び減速度で動作する。   The configuration shown in FIGS. 3 and 4 is based on the premise that the maximum rotational speed V0 of the main shaft 12 is higher than a predetermined speed Vb (for example, the base speed of the servo motor). On the other hand, depending on the configuration of the machine tool, the maximum rotation speed V0 of the spindle 12 may be smaller than the speed Vb. In this case, the times T2 and T3 in FIGS. 3 and 4 are eliminated, and the main shaft 12 operates at a constant acceleration and deceleration from the machining start position to the target screw depth.

図5は、現在速度Vcが最高回転速度V0(<Vb)に到達する前に残回転量Srが総回転量S0の1/2になった場合(ステップS3及びS4の判断がいずれもYESの場合)の、主軸12の動作を、速度−時間曲線で示す。図示のように、主軸12は、図3における時間T1及びT4の動作のみを実行する。すなわち主軸12は、時間T1において最高回転速度V0を目標値として最大加速度A0により加速回転し、SrがS0の1/2になった時点Aで加速から減速に転じ、時間T4において点Aから残回転量Sr=0となる位置まで最大減速度A0により減速回転する。主軸12が減速回転する間、主軸制御部18(位置決め動作制御部38)は主軸12の位置制御のみを実行する。   FIG. 5 shows a case where the remaining rotational speed Sr becomes ½ of the total rotational speed S0 before the current speed Vc reaches the maximum rotational speed V0 (<Vb) (the determinations in steps S3 and S4 are both YES). The movement of the main shaft 12 in the case of (case) is shown by a speed-time curve. As shown in the figure, the main shaft 12 performs only the operations at times T1 and T4 in FIG. That is, the spindle 12 rotates at a maximum acceleration A0 with a maximum rotational speed V0 as a target value at a time T1, and changes from acceleration to deceleration at a time A when Sr becomes 1/2 of S0, and remains from a point A at a time T4. The vehicle is decelerated and rotated at the maximum deceleration A0 to the position where the rotation amount Sr = 0. While the main shaft 12 rotates at a reduced speed, the main shaft control unit 18 (positioning operation control unit 38) executes only the position control of the main shaft 12.

図6は、残回転量Srが総回転量S0の1/2になる前に現在速度Vcが最高回転速度V0(<Vb)に到達した場合(ステップS3の判断がNOになった場合)の、主軸12の動作を、速度−時間曲線で示す。図示のように、主軸12は、図4における時間T1及びT4の動作と、図4における時間T5に対応する動作とを実行する。すなわち主軸12は、時間T1において最高回転速度V0を目標値として最大加速度A0により加速回転し、最高回転速度V0に到達した後に、時間T6において残回転量Srが加速時回転量Saに等しくなる点Aまで一定速度V0で回転し、時間T4において点Aから残回転量Sr=0となる位置まで最大減速度A0により減速回転する。主軸12が定速及び減速回転する間、主軸制御部18(位置決め動作制御部38)は主軸12の位置制御のみを実行する。   FIG. 6 shows the case where the current speed Vc reaches the maximum rotational speed V0 (<Vb) before the remaining rotational speed Sr becomes 1/2 of the total rotational speed S0 (when the determination in step S3 is NO). The operation of the spindle 12 is shown by a speed-time curve. As shown in the figure, the main shaft 12 performs the operations at times T1 and T4 in FIG. 4 and the operation corresponding to the time T5 in FIG. That is, the spindle 12 rotates at a maximum acceleration A0 with the maximum rotation speed V0 as a target value at time T1, and after reaching the maximum rotation speed V0, the remaining rotation amount Sr becomes equal to the acceleration rotation amount Sa at time T6. The motor rotates at a constant speed V0 until A, and decelerates and rotates at a maximum deceleration A0 from point A to a position where the remaining rotation amount Sr = 0 at time T4. While the main shaft 12 rotates at a constant speed and a reduced speed, the main shaft control unit 18 (positioning operation control unit 38) executes only the position control of the main shaft 12.

工作機械を用いたタップ加工においては、ワークの下穴を目標ねじ深さまで切削加工した後、工具をワークから引き抜くための戻り動作を実行する必要がある。上記実施形態において、位置決め動作制御部38が主軸12を最大能力で減速回転させるとともに目標ねじ深さで停止させるように構成される場合、制御装置10は、この戻り動作に際し、上記した目標ねじ深さまでの切削動作制御と同様の制御を行うことができる。図7は、制御装置10が実行する工作機械制御方法の一実施形態としての、タップ加工における主軸12の戻り動作制御方法を示す。以下、図7を参照して、制御装置10による戻り動作の制御フローの一例を説明する。   In tapping using a machine tool, it is necessary to perform a return operation for extracting a tool from a work after cutting the prepared hole of the work to a target screw depth. In the above embodiment, when the positioning operation control unit 38 is configured to decelerate and rotate the spindle 12 with the maximum capacity and stop at the target screw depth, the control device 10 performs the above-described target screw depth in the return operation. The same control as the previous cutting operation control can be performed. FIG. 7 shows a return motion control method of the spindle 12 in tapping as an embodiment of a machine tool control method executed by the control device 10. Hereinafter, an example of the control flow of the return operation by the control device 10 will be described with reference to FIG.

数値制御部16(主軸指令出力部26)は、図2の処理フローでタップ加工が目標ねじ深さに達したと判断した後に、ステップS10で、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とを取得して、これら総戻り回転量S0′と最高戻り回転速度V0′とを主軸指令CSとして主軸制御部18に送る。戻り動作の主軸指令CSも、主軸12を戻り完了位置まで回転運動させるための位置指令や加減速指令を含まないものとなっている。なお戻り完了位置は、加工開始位置と同一であってもよいし、加工開始位置と異なっていてもよい。戻り完了位置が加工開始位置と同一の場合、総戻り回転量S0′は切削時の総回転量S0と等しくなるが、最高戻り回転速度V0′は切削時の最高回転速度V0に必ずしも一致しない。   The numerical control unit 16 (spindle command output unit 26) determines that the tap machining has reached the target thread depth in the processing flow of FIG. 2, and then the tap machining program P interpreted by the program interpretation unit 24 in step S10. From the command value, the total return rotation amount S0 ′ and maximum return rotation speed V0 ′ of the spindle 12 from the target screw depth to the return completion position are acquired, and these total return rotation amount S0 ′ and maximum return rotation speed are obtained. V0 'is sent to the spindle control unit 18 as a spindle command CS. The spindle command CS for the return operation also does not include a position command or an acceleration / deceleration command for rotating the spindle 12 to the return completion position. The return completion position may be the same as the machining start position or may be different from the machining start position. When the return completion position is the same as the machining start position, the total return rotation amount S0 ′ is equal to the total rotation amount S0 at the time of cutting, but the maximum return rotation speed V0 ′ does not necessarily coincide with the maximum rotation speed V0 at the time of cutting.

ステップS11で、主軸制御部18(初期動作制御部30、最大加速度検出部32、残回転量検出部34)は以下の処理を行う。初期動作制御部30は、最高戻り回転速度V0′を目標速度として目標ねじ深さから戻り完了位置に向かって主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速逆回転させて戻り動作を実行する。最大加速度検出部32は、最大能力での加速逆回転中に回転位置FBSに基づき逆回転の最大加速度A0′を検出する。残回転量検出部34は、総戻り回転量S0′と回転位置FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を逐次検出する。検出した残戻り回転量Sr′は、検出の都度、主軸制御部18が数値制御部16に通知する。   In step S11, the spindle control unit 18 (initial motion control unit 30, maximum acceleration detection unit 32, remaining rotation amount detection unit 34) performs the following processing. The initial operation control unit 30 accelerates and reversely rotates the spindle 12 from the target screw depth toward the return completion position with the maximum return rotational speed V0 ′ as the target speed, with the maximum capacity utilizing the allowable current of the drive source to the maximum. To return. The maximum acceleration detection unit 32 detects the maximum acceleration A0 ′ of reverse rotation based on the rotation position FBS during acceleration reverse rotation with the maximum capacity. Based on the total return rotation amount S0 ′ and the rotation position FBS, the remaining rotation amount detection unit 34 sequentially detects the remaining return rotation amount Sr ′ of the main shaft 12 from the current position to the return completion position. The main spindle control unit 18 notifies the numerical control unit 16 of the detected return rotation amount Sr ′ each time it is detected.

次にステップS12で、主軸制御部18(現在速度検出部36)は、最大能力での加速逆回転中に回転位置FBSに基づき逆回転の現在速度Vc′を逐次検出し、検出の都度、現在速度Vc′が最高戻り回転速度V0′に到達していないか否かを判断する。Vc′がV0′に到達していない場合、ステップS13で、主軸制御部18は、残戻り回転量Sr′が総戻り回転量S0′の1/2以下になっているか否かを判断する。Sr′がS0′の1/2以下になっている場合、ステップS14で、主軸制御部18は、主軸12を、駆動源の許容電流を最大限に利用した最大能力で減速逆回転させて戻り動作を継続実行する。Sr′がS0′の1/2以下になっていない場合はステップS12に戻る。   Next, in step S12, the spindle control unit 18 (current speed detection unit 36) sequentially detects the current speed Vc ′ of reverse rotation based on the rotation position FBS during acceleration reverse rotation at the maximum capacity, and each time it is detected, It is determined whether or not the speed Vc ′ has reached the maximum return rotational speed V0 ′. If Vc ′ has not reached V0 ′, in step S13, the spindle control unit 18 determines whether or not the remaining return rotation amount Sr ′ is less than or equal to ½ of the total return rotation amount S0 ′. If Sr ′ is equal to or less than ½ of S0 ′, in step S14, the spindle control unit 18 returns the spindle 12 by decelerating and reversely rotating the spindle 12 with the maximum capacity using the allowable current of the drive source to the maximum. Continue operation. If Sr ′ is not less than 1/2 of S0 ′, the process returns to step S12.

次にステップS15で、主軸制御部18(位置決め動作制御部38)は、主軸12の現在位置における残戻り回転量Sr′の絶対値|Sr′|が、|Sr′|=Vb/|A0′|/120を満たしているか否かを判断する。|Sr′|=Vb/|A0′|/120を満たしている場合、ステップS16で、主軸制御部18(位置決め動作制御部38)は、主軸12を最大減速度A0′で減速逆回転してSr′=0の点(つまり戻り完了位置)で停止させるための指令を作成し、この指令により主軸12を位置制御する。|Sr′|=Vb/|A0′|/120を満たしていない場合は、この等式が満たされるまで判断を繰り返す。主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、戻り完了位置に向かって最大減速度A0′で減速逆回転して戻り動作を実行し、Sr′=0になった時点で停止する。 Next, in step S15, the spindle control unit 18 (positioning operation control unit 38) determines that the absolute value | Sr ′ | of the remaining return rotation amount Sr ′ at the current position of the spindle 12 is | Sr ′ | = Vb 2 / | A0. It is determined whether or not ′ | / 120 is satisfied. When | Sr ′ | = Vb 2 / | A0 ′ | / 120 is satisfied, the spindle control unit 18 (positioning operation control unit 38) decelerates and rotates the spindle 12 at the maximum deceleration A0 ′ in step S16. Then, a command for stopping at the point of Sr ′ = 0 (that is, the return completion position) is created, and the position of the spindle 12 is controlled by this command. If | Sr ′ | = Vb 2 / | A0 ′ | / 120 is not satisfied, the determination is repeated until this equation is satisfied. In accordance with a command from the main spindle control unit 18 (positioning operation control unit 38), the main spindle 12 decelerates and reversely rotates at the maximum deceleration A0 'toward the return completion position, and returns to Sr' = 0. Stop at the moment.

ステップS12で、現在速度Vc′が最高戻り回転速度V0′に到達していると判断した場合、ステップS17で、主軸制御部18は、最高戻り回転速度V0′に到達したときの主軸12の、目標ねじ深さからの回転量(つまり回転位置FBS)を、戻り動作の加速時回転量Sa′として保存する。そしてステップS18で、主軸制御部18は、残戻り回転量Sr′が加速時回転量Sa′以下になっているか否かを判断する。Sr′がSa′以下になっている場合、ステップS14に進み、次いでステップS15及びステップS16を実行して、戻り完了位置までの戻り動作を行う。Sr′がSa′以下になっていない場合は、Sr′がSa′以下になるまで判断を繰り返す。   If it is determined in step S12 that the current speed Vc ′ has reached the maximum return rotational speed V0 ′, the spindle control unit 18 in step S17 determines the main spindle 12 when the maximum return rotational speed V0 ′ has been reached. The rotation amount from the target screw depth (that is, the rotation position FBS) is stored as the rotation amount Sa ′ during acceleration of the return operation. In step S18, the spindle control unit 18 determines whether or not the remaining return rotation amount Sr ′ is equal to or less than the acceleration rotation amount Sa ′. If Sr ′ is equal to or lower than Sa ′, the process proceeds to step S14, and then step S15 and step S16 are executed to perform the return operation to the return completion position. If Sr ′ is not less than or equal to Sa ′, the determination is repeated until Sr ′ becomes less than or equal to Sa ′.

上記した主軸12の戻り動作は、図3又は図4に示す切削動作と同様の速度−時間曲線で表すことができる。総戻り回転量S0′及び最高戻り回転速度V0′が切削時の総回転量S0及び最高回転速度V0と同一である場合には、切削動作と戻り動作とは実質的に同じ速度−時間曲線を示す。他方、総戻り回転量S0′及び最高戻り回転速度V0′が切削時の総回転量S0及び最高回転速度V0と異なる場合、切削動作と戻り動作とは必ずしも同じ速度−時間曲線を示さない。   The return operation of the main shaft 12 described above can be represented by a speed-time curve similar to the cutting operation shown in FIG. 3 or FIG. When the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′ are the same as the total rotation amount S0 and the maximum rotation speed V0 at the time of cutting, the cutting operation and the return operation have substantially the same speed-time curve. Show. On the other hand, when the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′ are different from the total rotation amount S0 and the maximum rotation speed V0 at the time of cutting, the cutting operation and the return operation do not necessarily show the same speed-time curve.

主軸制御部18が主軸12の目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して逆送り動作を行わせる。数値制御部16は、主軸制御部18がステップS10〜ステップS18の処理を実行する間、主軸制御部18から通知される残戻り回転量Sr′を監視して、残戻り回転量Sr′が第2の所定値(零に近い極小値)以下になったときに、戻り動作が完了して工具がワークから引き抜かれたと判断する。   While the main shaft control unit 18 controls the reverse rotation operation from the target screw depth of the main shaft 12 to the return completion position, the feed shaft control unit 22 uses the rotation position FBS of the main shaft 12 to move the feed shaft 14 to the main shaft 12. A reverse feed operation is performed by controlling to follow the operation. The numerical controller 16 monitors the return rotation amount Sr ′ notified from the spindle control unit 18 while the spindle control unit 18 executes the processes of Steps S10 to S18. When the value is equal to or smaller than a predetermined value of 2 (minimum value close to zero), it is determined that the return operation is completed and the tool is pulled out from the workpiece.

上記実施形態による制御装置10は、主軸12に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総回転量S0と最高回転速度V0のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高回転速度V0を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて切削動作を実行するとともに、その間の最大加速度A0と逐次検出する主軸12の残回転量Sr及び現在速度Vcとに基づき、主軸12を最大減速度A0で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させるように構成されている。したがって制御装置10によれば、数値制御部12に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。   When the control device 10 according to the above embodiment causes the spindle 12 to perform a cutting operation from the machining start position to the target screw depth, the numerical control unit 16 controls the spindle control unit 18 with the total rotation amount S0 of the spindle 12. Only the maximum rotation speed V0 is notified as the spindle command CS, and the spindle control unit 18 accelerates the spindle 12 with the maximum output using the maximum allowable current for the maximum rotation speed V0 in accordance with the spindle command CS. , And based on the maximum acceleration A0 and the remaining rotation amount Sr of the main shaft 12 and the current speed Vc that are sequentially detected, the cutting operation to the target screw depth is performed in the shortest time while the main shaft 12 is decelerated at the maximum deceleration A0. It is constituted so that the target screw depth can be reached by continuously executing. Therefore, according to the control device 10, it is not necessary to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 with respect to the numerical controller 12, and the spindle 12 can be configured with a simpler configuration. Acceleration / deceleration control that maximizes the acceleration capability of the tapping process can be performed to shorten the tapping cycle time.

また、上記実施形態による制御装置10は、主軸12に目標ねじ深さから戻り完了位置までの戻り動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総戻り回転量S0′と最高戻り回転速度V0′のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高戻り回転速度V0′を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて戻り動作を実行するとともに、その間の最大加速度A0′と逐次検出する主軸12の残戻り回転量Sr′及び現在速度Vc′とに基づき、主軸12を最大減速度A0′で減速させながら戻り完了位置までの戻り動作を最短時間で継続実行して戻り完了位置で停止させるように構成されている。したがって制御装置10によれば、数値制御部12に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。   Further, in the control device 10 according to the above embodiment, when the spindle 12 performs the return operation from the target screw depth to the return completion position, the numerical controller 16 makes the total return of the spindle 12 to the spindle controller 18. Only the rotation amount S0 ′ and the maximum return rotation speed V0 ′ are notified as the spindle command CS, and the spindle control unit 18 follows the spindle command CS and outputs the maximum output using the maximum allowable current with the maximum return rotation speed V0 ′ as a target. The main shaft 12 is accelerated to perform a return operation, and the main shaft 12 is moved to the maximum deceleration A0 'based on the maximum acceleration A0' during this time and the remaining rotational speed Sr 'of the main shaft 12 and the current speed Vc' which are sequentially detected. The return operation until the return completion position is continuously executed in the shortest time while decelerating at, and stopped at the return completion position. Therefore, according to the control device 10, it is not necessary to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 with respect to the numerical controller 12, and the spindle 12 can be configured with a simpler configuration. Acceleration / deceleration control that maximizes the acceleration capability of the tapping process can be performed to shorten the tapping cycle time.

上記実施形態による制御装置10の構成は、主軸12と送り軸14との同期運転を制御する工作機械の制御方法として記述できる。この制御方法は、制御装置10が、加工開始位置から目標ねじ深さに至る間の主軸12の総回転量S0と最高回転速度V0とをタップ加工プログラムPから取得し、最高回転速度V0を目標値として加工開始位置から目標ねじ深さに向かって主軸12を最大能力で加速回転させ、最大能力での加速回転中に主軸12の回転位置フィードバック値FBSに基づき最大加速度A0を検出し、総回転量S0と回転位置フィードバック値FBSとに基づき、現在位置から目標ねじ深さに至るまでの主軸12の残回転量Srを検出し、回転位置フィードバック値FBSに基づき主軸12の現在速度Vcを検出し、最大能力での加速回転の後に、最大加速度A0と残回転量Srと現在速度Vcとに基づき、主軸12を最大能力で減速回転させて目標ねじ深さに到達させるものである。このとき、主軸12を最大能力で減速回転させるとともに目標ねじ深さで停止させるように構成できる。   The configuration of the control device 10 according to the above embodiment can be described as a machine tool control method for controlling the synchronous operation of the main shaft 12 and the feed shaft 14. In this control method, the control device 10 acquires the total rotation amount S0 and the maximum rotation speed V0 of the spindle 12 from the machining start position to the target screw depth from the tapping program P, and sets the maximum rotation speed V0 to the target. As a value, the spindle 12 is accelerated and rotated at the maximum capacity from the machining start position toward the target screw depth, and the maximum acceleration A0 is detected based on the rotational position feedback value FBS of the spindle 12 during the acceleration rotation at the maximum capacity, and the total rotation Based on the amount S0 and the rotational position feedback value FBS, the remaining rotational amount Sr of the main shaft 12 from the current position to the target screw depth is detected, and based on the rotational position feedback value FBS, the current speed Vc of the main shaft 12 is detected. After the acceleration rotation at the maximum capacity, the spindle 12 is decelerated and rotated at the maximum capacity based on the maximum acceleration A0, the remaining rotation amount Sr, and the current speed Vc, and the target screw depth It is intended to reach the. At this time, the spindle 12 can be configured to rotate at a reduced speed with the maximum capacity and to stop at the target screw depth.

また上記制御方法は、制御装置10が、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とをタップ加工プログラムPから取得し、最高戻り回転速度V0′を目標値として目標ねじ深さから戻り完了位置に向かって主軸12を最大能力で加速逆回転させ、最大能力での加速逆回転中に主軸12の回転位置フィードバック値FBSに基づき逆回転の最大加速度A0′を検出し、総戻り回転量S0′と回転位置フィードバック値FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を検出し、回転位置フィードバック値FBSに基づき主軸12の逆回転の現在速度Vc′を検出し、最大能力での加速逆回転の後に、逆回転の最大加速度A0′と残戻り回転量Sr′と逆回転の現在速度Vc′とに基づき、主軸12を最大能力で減速逆回転させるとともに戻り完了位置で停止させるものである。   In the above control method, the control device 10 acquires the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′ of the main shaft 12 from the target screw depth to the return completion position from the tapping program P, and the maximum Based on the rotational position feedback value FBS of the main shaft 12 during the reverse rotation at the maximum capacity, the main shaft 12 is accelerated and reverse rotated at the maximum capacity from the target screw depth toward the return completion position with the return rotational speed V0 ′ as the target value. Maximum reverse rotation acceleration A0 ′ is detected, and based on total return rotation amount S0 ′ and rotational position feedback value FBS, residual rotation amount Sr ′ of spindle 12 from the current position to the return completion position is detected, Based on the rotational position feedback value FBS, the current speed Vc ′ of the reverse rotation of the main shaft 12 is detected. After the acceleration reverse rotation at the maximum capacity, the maximum acceleration A0 ′ of the reverse rotation and the remaining rotation amount Based on the r 'and the reverse rotation of the current speed Vc', it is intended to stop the main shaft 12 at the end position return together to decelerate reverse rotation at full capacity.

工作機械を用いたタップ加工においては、制御装置がタップ加工の間に主軸の回転位置や送り軸の送り位置を継続して認識することが望ましい。図8は、主軸及び送り軸の位置認識機能を付加した変形例による制御装置40の構成を機能ブロックで示す。制御装置40は、位置認識機能を付加した点以外は、図1の制御装置10と同様の構成を有する。対応する構成要素には共通する参照符号を付して、その詳細な説明を省略する。   In tapping using a machine tool, it is desirable that the control device continuously recognizes the rotational position of the main shaft and the feed position of the feed shaft during tapping. FIG. 8 is a functional block diagram showing the configuration of the control device 40 according to a modified example to which the position recognition function of the main shaft and the feed shaft is added. The control device 40 has the same configuration as the control device 10 of FIG. 1 except that a position recognition function is added. Corresponding components are denoted by common reference numerals, and detailed description thereof is omitted.

制御装置40は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22と、送り軸14の送り位置を検出する送り検出部42とを備える。数値制御部16の送り軸指令出力部28は、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総送り量D0(mm)とねじピッチP(mm/rev)とを取得して、これら総送り量D0とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。このように送り軸指令CFは、送り軸14を目標ねじ深さまで送り運動させるための位置指令や加減速指令を含まないものとなっている。   The control device 40 includes a numerical control unit 16 that generates a spindle command CS and a feed axis command CF based on the tap machining program P, a spindle control unit 18 that controls the rotation operation of the spindle 12 according to the spindle command CS, and the rotation of the spindle 12. The rotation detection unit 20 that detects the position, the feed axis control unit 22 that controls the feed operation of the feed shaft 14 based on the rotation position detected by the rotation detection unit 20 according to the feed axis command CF, and the feed position of the feed shaft 14 And a feed detection unit 42 for detecting. The feed axis command output unit 28 of the numerical control unit 16 determines the total feed amount of the feed shaft 14 corresponding to the target screw depth from the command value of the tap machining program P interpreted by the program interpretation unit 24 prior to the start of tapping. D0 (mm) and screw pitch P (mm / rev) are acquired, and the total feed amount D0 and screw pitch P are sent to the feed axis control unit 22 as a feed axis command CF. Thus, the feed axis command CF does not include a position command or acceleration / deceleration command for feeding the feed shaft 14 to the target screw depth.

送り軸制御部22は、回転検出部20が検出した主軸12の回転位置FBSと、ねじピッチPと、送り検出部42が検出した送り軸14の送り位置(フィードバック値。以下、送り位置FBF。)とに基づき、送り軸14の送り動作を制御する送り動作制御部44と、総送り量D0と送り位置FBFとに基づき、現在位置から目標ねじ深さに至るまでの送り軸14の残送り量Drを検出する残送り量検出部46とを備える。なお送り検出部42は、送り軸14の駆動装置の動作位置を検出するエンコーダ等の位置検出器(図示せず)の出力から、送り位置FBFを取得することができる。   The feed axis control unit 22 includes a rotation position FBS of the main shaft 12 detected by the rotation detection unit 20, a screw pitch P, and a feed position of the feed shaft 14 detected by the feed detection unit 42 (feedback value; hereinafter referred to as a feed position FBF). ) Based on the feed operation control unit 44 for controlling the feed operation of the feed shaft 14, and the remaining feed of the feed shaft 14 from the current position to the target screw depth based on the total feed amount D0 and the feed position FBF. A remaining feed amount detection unit 46 for detecting the amount Dr. The feed detector 42 can acquire the feed position FBF from the output of a position detector (not shown) such as an encoder that detects the operating position of the drive device of the feed shaft 14.

主軸制御部18の残回転量検出部34は、主軸12を加工開始位置から目標ねじ深さまで切削動作させる間、主軸12の現在位置からの残回転量Srを逐次検出し、検出の都度、残回転量Srを数値制御部16に通知する。送り軸制御部22の残送り量検出部46は、送り軸14を加工開始位置から目標ねじ深さまで送り動作させる間、送り軸14の現在位置からの残送り量Drを逐次検出し、検出の都度、残送り量Drを数値制御部16に通知する。さらに送り軸制御部22は、加工開始時の送り軸14の初期位置Di(送り位置FBF)を数値制御部16に通知する。   The remaining rotation amount detection unit 34 of the spindle control unit 18 sequentially detects the remaining rotation amount Sr from the current position of the spindle 12 while the spindle 12 is being cut from the machining start position to the target screw depth. The numerical value control unit 16 is notified of the rotation amount Sr. The remaining feed amount detection unit 46 of the feed shaft control unit 22 sequentially detects the remaining feed amount Dr from the current position of the feed shaft 14 while the feed shaft 14 is fed from the machining start position to the target screw depth. Each time the remaining feed amount Dr is notified to the numerical control unit 16. Further, the feed axis control unit 22 notifies the numerical control unit 16 of the initial position Di (feed position FBF) of the feed shaft 14 at the start of machining.

数値制御部16は、残回転量Srに基づき主軸12の現在位置を認識するとともに残送り量Drに基づき送り軸14の現在位置を認識する位置認識部48を備える。位置認識部48は、タップ加工プログラムPから取得した主軸12の総回転量S0と、主軸制御部18から通知された主軸12の残回転量Srとを用いて、主軸12の現在位置を(S0−Sr)として認識する。また位置認識部48は、タップ加工プログラムPから取得した送り軸14の総送り量D0と、送り軸制御部22から通知された送り軸14の残送り量Dr及び初期位置Diとを用いて、送り軸14の現在位置を(D0−Dr+Di)として認識する。   The numerical control unit 16 includes a position recognition unit 48 that recognizes the current position of the main shaft 12 based on the remaining rotation amount Sr and recognizes the current position of the feed shaft 14 based on the remaining feed amount Dr. The position recognition unit 48 uses the total rotation amount S0 of the spindle 12 acquired from the tap machining program P and the remaining rotation amount Sr of the spindle 12 notified from the spindle control unit 18 to determine the current position of the spindle 12 (S0). -Sr). The position recognition unit 48 uses the total feed amount D0 of the feed shaft 14 acquired from the tap machining program P, the remaining feed amount Dr of the feed shaft 14 and the initial position Di notified from the feed shaft control unit 22, and The current position of the feed shaft 14 is recognized as (D0−Dr + Di).

上記構成を有する制御装置40では、数値制御部16が生成する主軸指令CSに主軸12の位置指令や加減速指令が含まれず、また数値制御部16が生成する送り軸指令CFに送り軸14の位置指令や加減速指令が含まれない構成であっても、数値制御部16の位置認識部48は、主軸12及び送り軸14の現在位置を認識することができる。したがって制御装置40によれば、フィードバック制御を実行する主軸制御部18及び送り軸制御部22の上位コントローラである数値制御部16が、主軸12及び送り軸14の動作状態を、タップ加工の実行中に常に把握ないし管理でき、以て、タップ加工制御の信頼性を向上させることができる。   In the control device 40 having the above configuration, the spindle command CS generated by the numerical control unit 16 does not include the position command or acceleration / deceleration command of the spindle 12, and the feed axis command CF generated by the numerical control unit 16 includes the feed axis 14 Even in a configuration that does not include a position command or an acceleration / deceleration command, the position recognition unit 48 of the numerical control unit 16 can recognize the current positions of the spindle 12 and the feed shaft 14. Therefore, according to the control device 40, the numerical control unit 16 which is a higher-order controller of the main shaft control unit 18 and the feed shaft control unit 22 that performs feedback control is configured to change the operation states of the main shaft 12 and the feed shaft 14 while tapping is being performed. Therefore, the reliability of tapping control can be improved.

制御装置40においては、タップ加工の戻り動作を制御する間も同様に、数値制御部16の位置認識部48が、主軸12及び送り軸14の現在位置を認識することができる。この場合、前述したように数値制御部16が、タップ加工が目標ねじ深さに達したと判断したときに、送り軸指令出力部28は、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総戻り送り量D0′(mm)とねじピッチP(mm/rev)とを取得して、これら総戻り送り量D0′とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。通常、総戻り送り量D0′は総送り量D0に一致する。   In the control device 40, the position recognition unit 48 of the numerical control unit 16 can similarly recognize the current positions of the main shaft 12 and the feed shaft 14 while controlling the return operation of the tapping process. In this case, as described above, when the numerical control unit 16 determines that the tapping has reached the target thread depth, the feed axis command output unit 28 instructs the tapping program P interpreted by the program interpretation unit 24. From the value, the total return feed amount D0 '(mm) and the screw pitch P (mm / rev) of the feed shaft 14 corresponding to the target screw depth are obtained, and the total return feed amount D0' and the screw pitch P are obtained. Is sent to the feed axis control unit 22 as a feed axis command CF. Usually, the total return feed amount D0 ′ coincides with the total feed amount D0.

送り軸制御部22の送り動作制御部44は、主軸12の戻り動作の回転位置FBSと、ねじピッチPと、送り軸14の戻り動作の送り位置FBFとに基づき、送り軸14の戻り送り動作を制御する。送り軸制御部22の残送り量検出部46は、総戻り送り量D0′と送り位置FBFとに基づき、現在位置から戻り完了位置に至るまでの送り軸14の残戻り送り量Dr′を検出する。主軸制御部18の残回転量検出部34は、主軸12を目標ねじ深さから戻り完了位置まで戻り動作させる間、主軸12の現在位置からの残戻り回転量Sr′を逐次検出し、検出の都度、残戻り回転量Sr′を数値制御部16に通知する。送り軸制御部22の残送り量検出部46は、送り軸14を目標ねじ深さから戻り完了位置まで戻り送り動作させる間、送り軸14の現在位置からの残戻り送り量Dr′を逐次検出し、検出の都度、残戻り送り量Dr′を数値制御部16に通知する。さらに送り軸制御部22は、戻り動作開始時の送り軸14の初期位置Di′(送り位置FBF)を数値制御部16に通知する。数値制御部16の位置認識部48は、主軸12の総戻り回転量S0′と残戻り回転量Sr′とを用いて主軸12の現在位置(S0′−Sr′)を認識するとともに、送り軸14の総戻り送り量D0′と残戻り送り量Dr′と初期位置Di′とを用いて送り軸14の現在位置(D0′−Dr′+Di′)を認識する。   The feed operation control unit 44 of the feed shaft control unit 22 performs a return feed operation of the feed shaft 14 based on the rotational position FBS of the return operation of the main shaft 12, the screw pitch P, and the feed position FBF of the return operation of the feed shaft 14. To control. The remaining feed amount detection unit 46 of the feed shaft control unit 22 detects the remaining return feed amount Dr ′ of the feed shaft 14 from the current position to the return completion position based on the total return feed amount D0 ′ and the feed position FBF. To do. The remaining rotation amount detection unit 34 of the main shaft control unit 18 sequentially detects the remaining return rotation amount Sr ′ from the current position of the main shaft 12 while the main shaft 12 is returned from the target screw depth to the return completion position. Each time, the numerical control unit 16 is notified of the remaining return rotation amount Sr ′. The remaining feed amount detection unit 46 of the feed shaft control unit 22 sequentially detects the remaining return feed amount Dr ′ from the current position of the feed shaft 14 while the feed shaft 14 is being fed back from the target screw depth to the return completion position. Then, each time the detection is made, the numerical controller 16 is notified of the remaining return feed amount Dr ′. Further, the feed axis control unit 22 notifies the numerical control unit 16 of the initial position Di ′ (feed position FBF) of the feed shaft 14 at the start of the return operation. The position recognition unit 48 of the numerical control unit 16 recognizes the current position (S0′-Sr ′) of the main shaft 12 by using the total return rotation amount S0 ′ and the remaining return rotation amount Sr ′ of the main shaft 12, and feed axis. The current position (D0′−Dr ′ + Di ′) of the feed shaft 14 is recognized using the total return feed amount D0 ′, the remaining return feed amount Dr ′, and the initial position Di ′.

工作機械を用いたタップ加工においては、制御装置がタップ加工の間に主軸と送り軸との同期誤差を継続して認識することが望ましい。図9は、主軸と送り軸との同期誤差認識機能を付加した変形例による制御装置50の構成を機能ブロックで示す。制御装置50は、同期誤差認識機能を付加した点以外は、図1の制御装置10と同様の構成を有する。対応する構成要素には共通する参照符号を付して、その詳細な説明を省略する。   In tapping using a machine tool, it is desirable for the control device to continuously recognize the synchronization error between the spindle and the feed axis during tapping. FIG. 9 is a functional block diagram showing the configuration of a control device 50 according to a modification in which a function of recognizing the synchronization error between the main shaft and the feed shaft is added. The control device 50 has the same configuration as the control device 10 of FIG. 1 except that a synchronization error recognition function is added. Corresponding components are denoted by common reference numerals, and detailed description thereof is omitted.

制御装置50は、タップ加工プログラムPに基づき主軸指令CS及び送り軸指令CFを作成する数値制御部16と、主軸指令CSに従って主軸12の回転動作を制御する主軸制御部18と、主軸12の回転位置を検出する回転検出部20と、送り軸指令CFに従って、回転検出部20が検出した回転位置に基づき送り軸14の送り動作を制御する送り軸制御部22と、送り軸14の送り位置を検出する送り検出部42とを備える。数値制御部16の送り軸指令出力部28は、タップ加工の開始に先立ち、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総送り量D0(mm)とねじピッチP(mm/rev)とを取得して、これら総送り量D0とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。このように送り軸指令CFは、送り軸14を目標ねじ深さまで送り運動させるための位置指令や加減速指令を含まないものとなっている。   The control device 50 includes a numerical control unit 16 that generates a spindle command CS and a feed axis command CF based on the tap machining program P, a spindle control unit 18 that controls the rotation operation of the spindle 12 according to the spindle command CS, and the rotation of the spindle 12. The rotation detection unit 20 that detects the position, the feed axis control unit 22 that controls the feed operation of the feed shaft 14 based on the rotation position detected by the rotation detection unit 20 according to the feed axis command CF, and the feed position of the feed shaft 14 And a feed detection unit 42 for detecting. The feed axis command output unit 28 of the numerical control unit 16 determines the total feed amount of the feed shaft 14 corresponding to the target screw depth from the command value of the tap machining program P interpreted by the program interpretation unit 24 prior to the start of tapping. D0 (mm) and screw pitch P (mm / rev) are acquired, and the total feed amount D0 and screw pitch P are sent to the feed axis control unit 22 as a feed axis command CF. Thus, the feed axis command CF does not include a position command or acceleration / deceleration command for feeding the feed shaft 14 to the target screw depth.

送り軸制御部22は、回転検出部20が検出した主軸12の回転位置FBSと、ねじピッチPと、送り検出部42が検出した送り軸14の送り位置(フィードバック値。以下、送り位置FBF。)とに基づき、送り軸14の送り動作を制御する送り動作制御部44と、総送り量D0と送り位置FBFとに基づき、現在位置から目標ねじ深さに至るまでの送り軸14の残送り量Drを検出する残送り量検出部46とを備える。主軸制御部18の残回転量検出部34は、主軸12を加工開始位置から目標ねじ深さまで切削動作させる間、主軸12の現在位置からの残回転量Srを逐次検出し、検出の都度、残回転量Srを数値制御部16に通知する。送り軸制御部22の残送り量検出部46は、送り軸14を加工開始位置から目標ねじ深さまで送り動作させる間、送り軸14の現在位置からの残送り量Drを逐次検出し、検出の都度、残送り量Drを数値制御部16に通知する。   The feed axis control unit 22 includes a rotation position FBS of the main shaft 12 detected by the rotation detection unit 20, a screw pitch P, and a feed position of the feed shaft 14 detected by the feed detection unit 42 (feedback value; hereinafter referred to as a feed position FBF). ) Based on the feed operation control unit 44 for controlling the feed operation of the feed shaft 14, and the remaining feed of the feed shaft 14 from the current position to the target screw depth based on the total feed amount D0 and the feed position FBF. A remaining feed amount detection unit 46 for detecting the amount Dr. The remaining rotation amount detection unit 34 of the spindle control unit 18 sequentially detects the remaining rotation amount Sr from the current position of the spindle 12 while the spindle 12 is being cut from the machining start position to the target screw depth. The numerical value control unit 16 is notified of the rotation amount Sr. The remaining feed amount detection unit 46 of the feed shaft control unit 22 sequentially detects the remaining feed amount Dr from the current position of the feed shaft 14 while the feed shaft 14 is fed from the machining start position to the target screw depth. Each time the remaining feed amount Dr is notified to the numerical control unit 16.

数値制御部16は、残回転量Srと残送り量DrとねじピッチPとに基づき、主軸12と送り軸14との同期運転の同期誤差を計算する同期誤差計算部52を備える。同期誤差計算部52は、主軸制御部18から通知された主軸12の残回転量Sr(rev)と、送り軸制御部22から通知された送り軸14の残送り量Dr(mm)と、ねじピッチP(mm/rev)とを用いて、主軸12と送り軸14との同期誤差Eを下記の式により計算する。
同期誤差Eを主軸12の回転量に換算して計算する場合:
E(rev)=Sr−Dr/P
同期誤差Eを送り軸14の送り量に換算して計算する場合:
E(mm)=Sr×P−Dr
The numerical control unit 16 includes a synchronization error calculation unit 52 that calculates the synchronization error of the synchronous operation of the main shaft 12 and the feed shaft 14 based on the remaining rotation amount Sr, the remaining feed amount Dr, and the screw pitch P. The synchronization error calculation unit 52 includes a remaining rotation amount Sr (rev) of the main shaft 12 notified from the main shaft control unit 18, a remaining feed amount Dr (mm) of the feed shaft 14 notified from the feed shaft control unit 22, and a screw. Using the pitch P (mm / rev), the synchronization error E between the main shaft 12 and the feed shaft 14 is calculated by the following equation.
When calculating the synchronization error E by converting it into the amount of rotation of the spindle 12:
E (rev) = Sr−Dr / P
When calculating the synchronization error E by converting it into the feed amount of the feed shaft 14:
E (mm) = Sr × P-Dr

上記構成を有する制御装置50では、数値制御部16が主軸12及び送り軸14のフィードバック制御を行わない構成であっても、数値制御部16の同期誤差計算部52は、主軸12と送り軸14との同期誤差Eを求めることができる。したがって制御装置50によれば、フィードバック制御を実行する主軸制御部18及び送り軸制御部22の上位コントローラである数値制御部16が、主軸12と送り軸14との同期誤差Eを、タップ加工の実行中に常に把握ないし管理でき、以て、タップ加工制御の信頼性を向上させることができる。   In the control device 50 having the above configuration, even if the numerical control unit 16 does not perform feedback control of the main shaft 12 and the feed shaft 14, the synchronization error calculation unit 52 of the numerical control unit 16 includes the main shaft 12 and the feed shaft 14. And the synchronization error E can be obtained. Therefore, according to the control device 50, the numerical control unit 16 which is a higher-order controller of the main spindle control unit 18 and the feed axis control unit 22 that performs feedback control, detects the synchronization error E between the main shaft 12 and the feed axis 14 by tapping. It is possible to always grasp or manage during execution, thereby improving the reliability of tapping control.

制御装置50の数値制御部16は、同期誤差計算部52が求めた同期誤差Eを表示装置54に表示させる表示制御部56を備えることができる。この構成によれば、工作機械がタップ加工を実行している最中に、オペレータが同期誤差Eを逐次確認でき、以て、同期誤差Eに応じた対策を迅速に遂行することが可能になる。   The numerical control unit 16 of the control device 50 can include a display control unit 56 that causes the display device 54 to display the synchronization error E obtained by the synchronization error calculation unit 52. According to this configuration, the operator can sequentially check the synchronization error E while the machine tool is performing the tap machining, and thus, it is possible to quickly execute a countermeasure according to the synchronization error E. .

制御装置50においては、タップ加工の戻り動作を制御する間も同様に、数値制御部16の同期誤差計算部52が、主軸12と送り軸14との同期誤差Eを計算することができる。この場合、前述したように数値制御部16が、タップ加工が目標ねじ深さに達したと判断したときに、送り軸指令出力部28は、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さに相当する送り軸14の総戻り送り量D0′(mm)とねじピッチP(mm/rev)とを取得して、これら総戻り送り量D0′とねじピッチPとを送り軸指令CFとして送り軸制御部22に送る。通常、総戻り送り量D0′は総送り量D0に一致する。   In the control device 50, the synchronization error calculation unit 52 of the numerical control unit 16 can similarly calculate the synchronization error E between the main shaft 12 and the feed shaft 14 while controlling the return operation of the tapping process. In this case, as described above, when the numerical control unit 16 determines that the tapping has reached the target thread depth, the feed axis command output unit 28 instructs the tapping program P interpreted by the program interpretation unit 24. From the value, the total return feed amount D0 '(mm) and the screw pitch P (mm / rev) of the feed shaft 14 corresponding to the target screw depth are obtained, and the total return feed amount D0' and the screw pitch P are obtained. Is sent to the feed axis control unit 22 as a feed axis command CF. Usually, the total return feed amount D0 ′ coincides with the total feed amount D0.

送り軸制御部22の送り動作制御部44は、主軸12の戻り動作の回転位置FBSと、ねじピッチPと、送り軸14の戻り動作の送り位置FBFとに基づき、送り軸14の戻り送り動作を制御する。送り軸制御部22の残送り量検出部46は、総戻り送り量D0′と送り位置FBFとに基づき、現在位置から戻り完了位置に至るまでの送り軸14の残戻り送り量Dr′を検出する。主軸制御部18の残回転量検出部34は、主軸12を目標ねじ深さから戻り完了位置まで戻り動作させる間、主軸12の現在位置からの残戻り回転量Sr′を逐次検出し、検出の都度、残戻り回転量Sr′を数値制御部16に通知する。送り軸制御部22の残送り量検出部46は、送り軸14を目標ねじ深さから戻り完了位置まで戻り送り動作させる間、送り軸14の現在位置からの残戻り送り量Dr′を逐次検出し、検出の都度、残戻り送り量Dr′を数値制御部16に通知する。数値制御部16の同期誤差計算部52は、主軸12の残戻り回転量Sr′と送り軸14の残戻り送り量Dr′とねじピッチPとを用いて、主軸12と送り軸14との同期誤差E(E=Sr′−Dr′/P又はE=Sr′×P−Dr′)を計算する。   The feed operation control unit 44 of the feed shaft control unit 22 performs a return feed operation of the feed shaft 14 based on the rotational position FBS of the return operation of the main shaft 12, the screw pitch P, and the feed position FBF of the return operation of the feed shaft 14. To control. The remaining feed amount detection unit 46 of the feed shaft control unit 22 detects the remaining return feed amount Dr ′ of the feed shaft 14 from the current position to the return completion position based on the total return feed amount D0 ′ and the feed position FBF. To do. The remaining rotation amount detection unit 34 of the main shaft control unit 18 sequentially detects the remaining return rotation amount Sr ′ from the current position of the main shaft 12 while the main shaft 12 is returned from the target screw depth to the return completion position. Each time, the numerical control unit 16 is notified of the remaining return rotation amount Sr ′. The remaining feed amount detection unit 46 of the feed shaft control unit 22 sequentially detects the remaining return feed amount Dr ′ from the current position of the feed shaft 14 while the feed shaft 14 is being fed back from the target screw depth to the return completion position. Then, each time the detection is made, the numerical controller 16 is notified of the remaining return feed amount Dr ′. The synchronization error calculation unit 52 of the numerical control unit 16 synchronizes the main shaft 12 and the feed shaft 14 by using the residual return rotation amount Sr ′ of the main shaft 12, the residual return feed amount Dr ′ of the feed shaft 14, and the screw pitch P. The error E (E = Sr′−Dr ′ / P or E = Sr ′ × P−Dr ′) is calculated.

図10は、図1の制御装置10が実行できる工作機械制御方法の他の実施形態としての、タップ加工における主軸12の切削及び戻り動作制御方法を示す。図11及び図12は、図10の実施形態における主軸12の動作の2つの例を示す。以下、図1、図2、図7及び図10〜図12を参照して、他の実施形態による工作機械制御方法(タップ加工の切削及び戻り動作制御方法)、並びに当該方法を実行する他の実施形態による制御装置10の構成を説明する。なお、前述した変形例による制御装置40(図8)及び制御装置50(図9)も、以下に説明するタップ加工の切削及び戻り動作制御方法を実行できる。   FIG. 10 shows a cutting and return motion control method of the spindle 12 in tapping as another embodiment of the machine tool control method that can be executed by the control device 10 of FIG. 11 and 12 show two examples of the operation of the main shaft 12 in the embodiment of FIG. Hereinafter, with reference to FIG. 1, FIG. 2, FIG. 7 and FIG. 10 to FIG. 12, a machine tool control method (tapping cutting and return operation control method) according to another embodiment, and other methods for executing the method A configuration of the control device 10 according to the embodiment will be described. Note that the control device 40 (FIG. 8) and the control device 50 (FIG. 9) according to the above-described modification can also execute the tap cutting and return operation control method described below.

概説すると、図10〜図12の実施形態において、制御装置10は、主軸12を加工開始位置(回転位置)から目標ねじ深さ(回転位置)に到達させるまでの間は、図2に示すタップ加工の切削動作制御方法と同様のステップを実行して、主軸12の切削動作を制御する。そして制御装置10の主軸制御部18(位置決め動作制御部38)は、主軸12を目標ねじ深さに到達させたときに、主軸12を目標ねじ深さで停止させることなく(つまり加速度を零にすることなく)、最大能力での減速回転における最大減速度A0(負の値)と同じ逆回転の加速度A0(負の値)で、主軸12を予め定めた回転位置まで加速逆回転させるように構成される。主軸12を予め定めた回転位置まで加速逆回転させた後は、制御装置10は、図7に示すタップ加工の戻り動作制御方法と同様のステップを実行して、主軸12の戻り動作を制御する。この実施形態の構成を以下に詳述するが、図2及び図7の構成要素に対応する構成要素の説明は適宜省略する。   In general, in the embodiment shown in FIGS. 10 to 12, the control device 10 taps shown in FIG. 2 until the spindle 12 reaches the target screw depth (rotation position) from the machining start position (rotation position). Steps similar to the cutting operation control method for machining are executed to control the cutting operation of the spindle 12. The spindle control unit 18 (positioning operation control unit 38) of the control device 10 does not stop the spindle 12 at the target screw depth when the spindle 12 reaches the target screw depth (that is, zero acceleration). The main shaft 12 is accelerated and reversely rotated to a predetermined rotational position with the same reverse acceleration A0 (negative value) as the maximum deceleration A0 (negative value) in the deceleration rotation with the maximum capacity. Composed. After the spindle 12 is accelerated and reversely rotated to a predetermined rotational position, the control device 10 executes the same steps as the tap machining return operation control method shown in FIG. 7 to control the return operation of the spindle 12. . The configuration of this embodiment will be described in detail below, but the description of the components corresponding to the components of FIGS. 2 and 7 will be omitted as appropriate.

図10に示すように、制御装置10はまず、図2に示すステップS1〜S6、S8、S9を実行する(ステップU1)。ここで図11を参照すると、切削動作中に現在速度Vcが最高回転速度V0に到達する前に残回転量Srが総回転量S0の1/2になった場合(図2のステップS3及びS4の判断がいずれもYESの場合)の、主軸12の動作が、速度−時間曲線で示されている。図11の速度−時間曲線における時間T1、T2、T3及びT4の主軸12の動作は、前述した図3の速度−時間曲線における時間T1、T2、T3及びT4の主軸12の動作に対応する。すなわち図11に示すように、時間T1及びT2で、主軸12の最大能力の加速回転が実行され、残回転量Srが総回転量S0の1/2になった時点Aで、主軸12の動作が加速回転から減速回転に変わり、時間T3で、主軸12の最大能力の減速回転が実行され、時間T4で、主軸12の位置制御が実行される。   As shown in FIG. 10, the control device 10 first executes steps S1 to S6, S8, and S9 shown in FIG. 2 (step U1). Referring now to FIG. 11, when the remaining speed Sr becomes 1/2 of the total speed S0 before the current speed Vc reaches the maximum speed V0 during the cutting operation (steps S3 and S4 in FIG. 2). The operation of the main shaft 12 is shown by a speed-time curve. The operation of the main shaft 12 at times T1, T2, T3 and T4 in the speed-time curve of FIG. 11 corresponds to the operation of the main shaft 12 at times T1, T2, T3 and T4 in the speed-time curve of FIG. In other words, as shown in FIG. 11, at the time T1 and T2, the maximum capacity acceleration rotation of the main shaft 12 is executed, and the operation of the main shaft 12 is performed at the time A when the remaining rotation amount Sr becomes 1/2 of the total rotation amount S0. Changes from accelerated rotation to decelerated rotation, and at time T3, the decelerated rotation with the maximum capacity of the main shaft 12 is executed, and at time T4, position control of the main shaft 12 is executed.

制御装置10がステップU1(図2のステップS1→S2→S3→S4→S5→S6)を実行することにより、主軸12は、図11に示す時間T1、T2、T3及びT4において、図3に示す時間T1、T2、T3及びT4の動作と同様に動作する。但し主軸制御部18(位置決め動作制御部38)は、図2のステップS6で、主軸12の現在位置における残回転量の絶対値|Sr|が、|Sr|=Vb/|A0|/120を満たしている(つまり主軸12の回転位置が点Bに到達した)と判断したときに、ステップU2(図10)で、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させた後も引き続き最大減速度A0と同じ逆回転の加速度A0で主軸12を予め定めた回転位置(図11の点Cに相当)まで加速逆回転させるための指令を作成し、この指令により主軸12を位置制御する。 When the control device 10 executes Step U1 (Steps S1, S2, S3, S4, S5, and S6 in FIG. 2), the spindle 12 is changed to the time shown in FIG. 3 at times T1, T2, T3, and T4 shown in FIG. The operation is similar to the operation at the times T1, T2, T3, and T4 shown. However, the main shaft control unit 18 (positioning operation control unit 38) determines that the absolute value | Sr | of the remaining rotation amount at the current position of the main shaft 12 is | Sr | = Vb 2 / | A0 | / 120 in step S6 of FIG. Is satisfied (that is, the rotational position of the main shaft 12 has reached the point B), the main shaft 12 is decelerated and rotated at the maximum deceleration A0 in step U2 (FIG. 10). That is, after reaching the target screw depth), a command for accelerating and reversely rotating the spindle 12 to a predetermined rotational position (corresponding to the point C in FIG. 11) with the same reverse rotational acceleration A0 as the maximum deceleration A0. And the position of the spindle 12 is controlled by this command.

図11に示すように、主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転しながら切削動作を遂行し、Sr=0になった時点で目標ねじ深さに到達する(時間T4)。目標ねじ深さに到達した瞬間、主軸12の現在速度Vcは零になるが、さらに主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、最大減速度A0を維持して逆回転の加速度A0を生じ、現在速度Vc(負の値)を徐々に増加させる加速逆回転により、時間T7に渡って、目標ねじ深さから点Cに向かう戻り動作を遂行する。このように、点Bから目標ねじ深さに到達するまでの時間T4及び目標ねじ深さから点Cに到達するまでの時間T7において、主軸制御部18は主軸12を位置制御し(ステップU2)、一定の加速度A0で連続的に動作させる(定加速度状の速度指令を破線で例示する)。なお主軸12は、目標ねじ深さで現在速度Vcが零になるが、これは瞬時的なものであって、目標ねじ深さで停止するものではない。   As shown in FIG. 11, the spindle 12 performs a cutting operation while rotating at a reduced speed with a maximum deceleration A0 from the point B toward the target screw depth in accordance with a command from the spindle control unit 18 (positioning operation control unit 38). Then, when Sr = 0, the target screw depth is reached (time T4). At the moment when the target screw depth is reached, the current speed Vc of the spindle 12 becomes zero, but the spindle 12 maintains the maximum deceleration A0 according to a command from the spindle control unit 18 (positioning operation control unit 38). A reverse operation from the target screw depth toward the point C is performed over time T7 by acceleration reverse rotation that generates reverse rotation acceleration A0 and gradually increases the current speed Vc (negative value). As described above, at the time T4 from the point B to reach the target screw depth and the time T7 from the target screw depth to the point C, the spindle control unit 18 controls the position of the spindle 12 (step U2). And continuously operating at a constant acceleration A0 (constant acceleration speed command is illustrated by a broken line). The spindle 12 has a current speed Vc of zero at the target screw depth, but this is instantaneous and does not stop at the target screw depth.

主軸12の点Cの位置は任意に設定できる。例えば図11に示すように、切削動作中に最大減速度A0での減速回転を開始した点Bと同じ位置を、点Cとすることができる。この場合の点Cは、目標ねじ深さから|Sr|=Vb/|A0|/120に相当する回転量だけ逆回転した位置となる。この構成によれば、図11に示すように、加工開始から点Bを経て目標ねじ深さに到達するまでの主軸12の切削動作(時間T1〜T4)と、目標ねじ深さから点Cを経て戻り完了位置に到達するまでの主軸12の戻り動作(時間T7〜T10)とを、速度の符号が逆になる以外は実質的に同じ速度−時間曲線で表すことができる。つまり、主軸12は、時間T7において、時間T1の一定の最大加速度A0での加速回転と同様に、一定の加速度A0で加速逆回転する。但し厳密に言えば、制御の特性として、速度制御による最大能力の加速回転時の最大加速度A0(時間T1)に比べて、位置制御による最大能力の減速回転時の最大減速度A0(時間T4)は若干低く抑えられ、その結果、時間T7における逆回転の加速度A0も、時間T1の最大加速度A0より若干低くなる傾向がある。 The position of the point C of the main shaft 12 can be arbitrarily set. For example, as shown in FIG. 11, the same position as the point B where the deceleration rotation at the maximum deceleration A0 is started during the cutting operation can be set as the point C. In this case, the point C is a position reversely rotated by a rotation amount corresponding to | Sr | = Vb 2 / | A0 | / 120 from the target screw depth. According to this configuration, as shown in FIG. 11, the cutting operation (time T1 to T4) of the main shaft 12 from the start of machining through the point B to the target screw depth and the point C from the target screw depth. The return operation (time T7 to T10) of the main shaft 12 until reaching the return completion position can be represented by substantially the same speed-time curve except that the sign of the speed is reversed. That is, the main shaft 12 rotates at the constant acceleration A0 at the same time as the acceleration rotation at the constant maximum acceleration A0 at the time T1, at the time T7. Strictly speaking, however, as a control characteristic, the maximum deceleration A0 (time T4) at the time of decelerating rotation of the maximum capacity by the position control is compared with the maximum acceleration A0 (time T1) of the maximum capacity by the speed control. As a result, the reverse rotation acceleration A0 at time T7 tends to be slightly lower than the maximum acceleration A0 at time T1.

主軸制御部18が主軸12の加工開始位置から目標ねじ深さまでの回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して送り動作を行わせる。数値制御部16は、主軸制御部18がステップU1及びステップU2の処理を実行する間、主軸制御部18から通知される残回転量Srを監視して、残回転量Srが第1の所定値(零に近い極小値)以下になったときに、タップ加工が目標ねじ深さに達したと判断する。そして数値制御部16(主軸指令出力部26)は、タップ加工が目標ねじ深さに達したと判断した後に、ステップU2と並行して、ステップU3で、プログラム解釈部24が解釈したタップ加工プログラムPの指令値から、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とを取得して、これら総戻り回転量S0′と最高戻り回転速度V0′とを主軸指令CSとして主軸制御部18に送る。   While the main shaft control unit 18 controls the rotation operation from the machining start position of the main shaft 12 to the target screw depth, the feed shaft control unit 22 uses the rotation position FBS of the main shaft 12 to change the feed shaft 14 to the operation of the main shaft 12. The feed operation is performed under control to follow. The numerical control unit 16 monitors the remaining rotation amount Sr notified from the spindle control unit 18 while the spindle control unit 18 executes the processes of Step U1 and Step U2, and the remaining rotation amount Sr is a first predetermined value. When the value becomes (minimum value close to zero) or less, it is determined that tapping has reached the target thread depth. Then, the numerical control unit 16 (spindle command output unit 26) determines that the tap machining has reached the target thread depth, and then in parallel with step U2, the tap machining program interpreted by the program interpretation unit 24 in step U3. From the command value of P, the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′ of the spindle 12 from the target screw depth to the return completion position are obtained, and these total return rotation amount S0 ′ and the maximum return The rotation speed V0 ′ is sent to the spindle control unit 18 as a spindle command CS.

主軸12が所定の回転位置(点C)に到達した後、ステップU4で、主軸制御部18(初期動作制御部30)は、最高戻り回転速度V0′を目標速度として所定の回転位置(点C)から戻り完了位置に向かって主軸12を、駆動源の許容電流を最大限に利用した最大能力で加速逆回転させて戻り動作を実行する。また主軸制御部18(残回転量検出部34)は、総戻り回転量S0′と回転位置FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を逐次検出する。検出した残戻り回転量Sr′は、検出の都度、主軸制御部18が数値制御部16に通知する。   After the main shaft 12 reaches the predetermined rotational position (point C), in step U4, the main shaft control unit 18 (initial operation control unit 30) sets the maximum return rotational speed V0 ′ as the target speed and the predetermined rotational position (point C). ) To the return completion position, the spindle 12 is accelerated and reverse-rotated with the maximum capacity utilizing the maximum allowable current of the drive source, and the return operation is executed. The spindle control unit 18 (remaining rotation amount detection unit 34) sequentially calculates the remaining return rotation amount Sr 'of the main shaft 12 from the current position to the return completion position based on the total return rotation amount S0' and the rotation position FBS. To detect. The main spindle control unit 18 notifies the numerical control unit 16 of the detected return rotation amount Sr ′ each time it is detected.

次に制御装置10は、図7に示すステップS12〜S18を実行する(ステップU5)。図11の動作例では、主軸制御部18(現在速度検出部36)は、最大能力での加速逆回転(時間T8)中に回転位置FBSに基づき逆回転の現在速度Vc′を逐次検出し、検出の都度、現在速度Vc′が最高戻り回転速度V0′に到達していないか否かを判断する(ステップS12)。Vc′がV0′に到達していない場合、主軸制御部18は、残戻り回転量Sr′が総戻り回転量S0′の1/2以下になっているか否かを判断する(ステップS13)。Sr′がS0′の1/2以下になっている場合、主軸制御部18は、主軸12を、駆動源の許容電流を最大限に利用した最大能力で減速逆回転させて戻り動作を継続実行する(ステップS14)。   Next, the control apparatus 10 performs step S12-S18 shown in FIG. 7 (step U5). In the operation example of FIG. 11, the spindle control unit 18 (current speed detection unit 36) sequentially detects the current speed Vc ′ of reverse rotation based on the rotational position FBS during acceleration reverse rotation (time T8) at the maximum capacity, Each time it is detected, it is determined whether or not the current speed Vc ′ has reached the maximum return rotational speed V0 ′ (step S12). When Vc ′ has not reached V0 ′, the spindle control unit 18 determines whether or not the remaining return rotation amount Sr ′ is equal to or less than ½ of the total return rotation amount S0 ′ (step S13). When Sr ′ is less than or equal to ½ of S0 ′, the main spindle control unit 18 continuously performs the return operation by rotating the main spindle 12 by decelerating and reversely rotating with the maximum capacity utilizing the allowable current of the drive source. (Step S14).

図11に示す例では、主軸12は、所定の回転位置(点C)に到達した後に逆回転の現在速度がVb(負の値)を超えるので、最大能力での加速逆回転において、例えばサーボモータの特性により、主軸12の逆回転の加速度はA0から漸減する(時間T8)。残戻り回転量Sr′が総戻り回転量S0′の1/2になった(つまり目標ねじ深さからの回転量が総回転量S0′の1/2になった)時点Dで、主軸12の動作は加速逆回転から減速逆回転に変わり、時間T9で、主軸12の最大能力での減速逆回転が実行される。このように、時間T8〜T9では、主軸制御部18は主軸12を速度制御する(ステップ状の速度指令を破線で例示する)。   In the example shown in FIG. 11, since the current speed of reverse rotation exceeds Vb (negative value) after reaching the predetermined rotational position (point C), the main shaft 12 is, for example, a servo in acceleration reverse rotation with the maximum capacity. Due to the characteristics of the motor, the reverse rotation acceleration of the main shaft 12 gradually decreases from A0 (time T8). At the time point D when the remaining return rotation amount Sr ′ becomes 1/2 of the total return rotation amount S0 ′ (that is, the rotation amount from the target screw depth becomes 1/2 of the total rotation amount S0 ′), the main shaft 12 The operation is changed from the reverse acceleration to the reverse deceleration, and at time T9, the reverse reverse rotation with the maximum capacity of the spindle 12 is executed. As described above, at time T8 to T9, the spindle control unit 18 controls the speed of the spindle 12 (a stepped speed command is exemplified by a broken line).

次に主軸制御部18(位置決め動作制御部38)は、主軸12の現在位置における残戻り回転量Sr′の絶対値|Sr′|が、|Sr′|=Vb/|A0′|/120を満たしているか否か(つまり主軸12の回転位置が点E(図11)に到達したか否か)を判断する(ステップS15)。|Sr′|=Vb/|A0′|/120を満たしている場合、主軸制御部18(位置決め動作制御部38)は、主軸12を最大減速度A0′(時間T7における逆回転の加速度A0に対応する値)で減速逆回転してSr′=0の点(つまり戻り完了位置)で停止させるための指令を作成し、この指令により主軸12を位置制御する(ステップS16)。主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、戻り完了位置に向かって最大減速度A0′で減速逆回転して戻り動作を実行し、Sr′=0になった時点で停止する。このように、点Eから戻り完了位置に到達するまでの時間T10(図11)では、主軸制御部18は主軸12を位置制御する(定加速度状の速度指令を破線で例示する)。 Next, the spindle control unit 18 (positioning operation control unit 38) determines that the absolute value | Sr ′ | of the remaining return rotation amount Sr ′ at the current position of the spindle 12 is | Sr ′ | = Vb 2 / | A0 ′ | / 120. (That is, whether or not the rotational position of the spindle 12 has reached point E (FIG. 11)) is determined (step S15). When | Sr ′ | = Vb 2 / | A0 ′ | / 120 is satisfied, the spindle control unit 18 (positioning operation control unit 38) reduces the spindle 12 to the maximum deceleration A0 ′ (acceleration of reverse rotation A0 at time T7). A command for decelerating and reversely rotating at a point of Sr ′ = 0 (that is, a return completion position) is generated, and the position of the spindle 12 is controlled by this command (step S16). In accordance with a command from the main spindle control unit 18 (positioning operation control unit 38), the main spindle 12 decelerates and reversely rotates at the maximum deceleration A0 'toward the return completion position, and returns to Sr' = 0. Stop at the moment. As described above, at the time T10 (FIG. 11) from the point E to the return completion position, the spindle control unit 18 controls the position of the spindle 12 (constant acceleration speed command is exemplified by a broken line).

主軸制御部18が主軸12の目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して逆送り動作を行わせる。数値制御部16は、主軸制御部18がステップU3〜ステップU5の処理を実行する間、主軸制御部18から通知される残戻り回転量Sr′を監視して、残戻り回転量Sr′が第2の所定値(零に近い極小値)以下になったときに、戻り動作が完了して工具がワークから引き抜かれたと判断する。   While the main shaft control unit 18 controls the reverse rotation operation from the target screw depth of the main shaft 12 to the return completion position, the feed shaft control unit 22 uses the rotation position FBS of the main shaft 12 to move the feed shaft 14 to the main shaft 12. A reverse feed operation is performed by controlling to follow the operation. The numerical controller 16 monitors the return rotation amount Sr ′ notified from the spindle control unit 18 while the spindle control unit 18 executes the processes of Step U3 to Step U5. When the value is equal to or smaller than a predetermined value of 2 (minimum value close to zero), it is determined that the return operation is completed and the tool is pulled out from the workpiece.

図12は、図10のステップU1において、切削動作中に残回転量Srが総回転量S0の1/2になる前に現在速度Vcが最高回転速度V0に到達した場合(図2のステップS3の判断がNOの場合)の、主軸12の動作を、速度−時間曲線で示す。図12の速度−時間曲線における時間T1、T2、T3、T4及びT5の主軸12の動作は、前述した図4の速度−時間曲線における時間T1、T2、T3、T4及びT5の主軸12の動作に対応する。すなわち図12に示すように、時間T1及びT2で、主軸12の最大能力の加速回転が実行されて、主軸12の現在速度Vcが最高回転速度V0に到達し、その後、時間T5に渡り一定速度V0で主軸12が回転してタップ加工を継続し、残回転量Srが加速時回転量Saに等しくなった時点Aで、主軸12の動作が加速回転から減速回転に変わり、時間T3で、主軸12の最大能力の減速回転が実行され、時間T4で、主軸12の位置制御が実行される。   FIG. 12 shows a case where the current speed Vc reaches the maximum rotational speed V0 before the remaining rotational speed Sr becomes 1/2 of the total rotational speed S0 during the cutting operation in Step U1 of FIG. 10 (Step S3 of FIG. 2). The operation of the spindle 12 when the determination of NO is NO) is shown by a speed-time curve. The operation of the main shaft 12 at the times T1, T2, T3, T4 and T5 in the speed-time curve of FIG. 12 is the operation of the main shaft 12 at the times T1, T2, T3, T4 and T5 in the speed-time curve of FIG. Corresponding to That is, as shown in FIG. 12, at the times T1 and T2, the maximum speed acceleration rotation of the main shaft 12 is executed, the current speed Vc of the main shaft 12 reaches the maximum rotation speed V0, and then the constant speed over the time T5. At time point A when the main shaft 12 is rotated at V0 and tapping is continued, and the remaining rotation amount Sr becomes equal to the rotation amount Sa during acceleration, the operation of the main shaft 12 changes from acceleration rotation to deceleration rotation. Deceleration rotation with the maximum capacity of 12 is executed, and position control of the spindle 12 is executed at time T4.

制御装置10がステップU1(図2のステップS1→S2→S3→S8→S9→S5→S6)を実行することにより、主軸12は、図12に示す時間T1、T2、T3、T4及びT5において、図4に示す時間T1、T2、T3、T4及びT5の動作と同様に動作する。但し主軸制御部18(位置決め動作制御部38)は、図2のステップS6で、主軸12の現在位置における残回転量の絶対値|Sr|が、|Sr|=Vb/|A0|/120を満たしている(つまり主軸12の回転位置が点Bに到達した)と判断したときに、ステップU2(図10)で、主軸12を最大減速度A0で減速回転してSr=0の点(つまり目標ねじ深さ)に到達させた後も引き続き最大減速度A0と同じ逆回転の加速度A0で主軸12を予め定めた回転位置(図12の点Cに相当)まで加速逆回転させるための指令を作成し、この指令により主軸12を位置制御する。 When the control device 10 executes step U1 (steps S1, S2, S3, S8, S9, S5, and S6 in FIG. 2), the spindle 12 is in the time T1, T2, T3, T4, and T5 shown in FIG. The operation is similar to the operation at times T1, T2, T3, T4, and T5 shown in FIG. However, the main shaft control unit 18 (positioning operation control unit 38) determines that the absolute value | Sr | of the remaining rotation amount at the current position of the main shaft 12 is | Sr | = Vb 2 / | A0 | / 120 in step S6 of FIG. Is satisfied (that is, the rotational position of the main shaft 12 has reached the point B), the main shaft 12 is decelerated and rotated at the maximum deceleration A0 in step U2 (FIG. 10). That is, after reaching the target screw depth), a command for accelerating and reversely rotating the spindle 12 to a predetermined rotational position (corresponding to point C in FIG. 12) at the same reverse rotational acceleration A0 as the maximum deceleration A0. And the position of the spindle 12 is controlled by this command.

図12に示すように、主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、点Bから目標ねじ深さに向かって最大減速度A0で減速回転しながら切削動作を遂行し、Sr=0になった時点で目標ねじ深さに到達する(時間T4)。目標ねじ深さに到達した瞬間、主軸12の現在速度Vcは零になるが、さらに主軸12は、主軸制御部18(位置決め動作制御部38)からの指令に従い、最大減速度A0を維持して逆回転の加速度A0を生じ、現在速度Vc(負の値)を徐々に増加させる加速逆回転により、時間T7に渡って、目標ねじ深さから点Cに向かう戻り動作を遂行する。このように、点Bから目標ねじ深さに到達するまでの時間T4及び目標ねじ深さから点Cに到達するまでの時間T7において、主軸制御部18は主軸12を位置制御し(ステップU2)、一定の加速度A0で連続的に動作させる(定加速度状の速度指令を破線で例示する)。時間T4及びT7における主軸12の動作は、図11に示す時間T4及びT7における主軸12の動作と同様である。   As shown in FIG. 12, the spindle 12 performs a cutting operation while rotating at a reduced speed with a maximum deceleration A0 from the point B toward the target screw depth in accordance with a command from the spindle control unit 18 (positioning operation control unit 38). Then, when Sr = 0, the target screw depth is reached (time T4). At the moment when the target screw depth is reached, the current speed Vc of the spindle 12 becomes zero, but the spindle 12 maintains the maximum deceleration A0 according to a command from the spindle control unit 18 (positioning operation control unit 38). A reverse operation from the target screw depth toward the point C is performed over time T7 by acceleration reverse rotation that generates reverse rotation acceleration A0 and gradually increases the current speed Vc (negative value). As described above, at the time T4 from the point B to reach the target screw depth and the time T7 from the target screw depth to the point C, the spindle control unit 18 controls the position of the spindle 12 (step U2). And continuously operating at a constant acceleration A0 (constant acceleration speed command is illustrated by a broken line). The operation of the main shaft 12 at times T4 and T7 is the same as the operation of the main shaft 12 at times T4 and T7 shown in FIG.

次いで制御装置10は、図10のステップU3及びU4を実行する。ステップU5では、図12に示すように、時間T8で、主軸12の最大能力の加速逆回転が実行されて、主軸12の現在速度Vc(負の値)が最高回転速度V0(負の値)に到達し、その後、時間T11に渡り一定速度V0で主軸12が逆回転して戻り動作を継続し、残戻り回転量Sr′が加速時回転量Saに等しくなった時点Dで、主軸12の動作が加速回転から減速回転に変わり、時間T9で、主軸12の最大能力の減速逆回転が実行され、時間T10で、主軸12の戻り完了位置までの位置制御が実行される。時間T8、T9及びT10における主軸12の動作は、図11に示す時間T8、T9及びT10における主軸12の動作と同様である。   Next, the control device 10 executes Steps U3 and U4 in FIG. In step U5, as shown in FIG. 12, at time T8, acceleration reverse rotation of the maximum capacity of the main shaft 12 is executed, and the current speed Vc (negative value) of the main shaft 12 becomes the maximum rotational speed V0 (negative value). After that, at a time D when the main shaft 12 reversely rotates at a constant speed V0 and continues the return operation over time T11, and the remaining return rotation amount Sr ′ becomes equal to the acceleration rotation amount Sa. The operation changes from acceleration rotation to deceleration rotation, and at time T9, deceleration reverse rotation with the maximum capacity of the spindle 12 is executed, and at time T10, position control to the return completion position of the spindle 12 is executed. The operation of the main shaft 12 at times T8, T9, and T10 is the same as the operation of the main shaft 12 at times T8, T9, and T10 shown in FIG.

主軸制御部18が主軸12の目標ねじ深さから戻り完了位置までの逆回転動作を制御する間、送り軸制御部22は、主軸12の回転位置FBSを用いて、送り軸14を主軸12の動作に追従するように制御して逆送り動作を行わせる。数値制御部16は、主軸制御部18がステップU3〜ステップU5の処理を実行する間、主軸制御部18から通知される残戻り回転量Sr′を監視して、残戻り回転量Sr′が第2の所定値(零に近い極小値)以下になったときに、戻り動作が完了して工具がワークから引き抜かれたと判断する。   While the main shaft control unit 18 controls the reverse rotation operation from the target screw depth of the main shaft 12 to the return completion position, the feed shaft control unit 22 uses the rotation position FBS of the main shaft 12 to move the feed shaft 14 to the main shaft 12. A reverse feed operation is performed by controlling to follow the operation. The numerical controller 16 monitors the return rotation amount Sr ′ notified from the spindle control unit 18 while the spindle control unit 18 executes the processes of Step U3 to Step U5. When the value is equal to or smaller than a predetermined value of 2 (minimum value close to zero), it is determined that the return operation is completed and the tool is pulled out from the workpiece.

図10〜図12に示す実施形態による制御装置10は、図1〜図9の実施形態による制御装置10、40、50と同様に、主軸12に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総回転量S0と最高回転速度V0のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高回転速度V0を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて切削動作を実行するとともに、その間の最大加速度A0と逐次検出する主軸12の残回転量Sr及び現在速度Vcとに基づき、主軸12を最大減速度A0で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させるように構成されている。したがって制御装置10によれば、数値制御部12に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。   The control device 10 according to the embodiment shown in FIGS. 10 to 12 performs the cutting operation from the machining start position to the target screw depth on the main shaft 12 in the same manner as the control devices 10, 40 and 50 according to the embodiment of FIGS. When performing, the numerical control unit 16 notifies only the total rotation amount S0 and the maximum rotation speed V0 of the main shaft 12 to the main shaft control unit 18 as the main shaft command CS, and the main shaft control unit 18 follows the main shaft command CS. The spindle 12 is accelerated with the maximum output using the maximum allowable current with the maximum rotational speed V0 as a target, and the cutting operation is executed. At the same time, the maximum acceleration A0 and the remaining rotational amount Sr of the spindle 12 and the current speed detected sequentially. Based on Vc, the spindle 12 is decelerated at the maximum deceleration A0, and the cutting operation up to the target screw depth is continuously executed in the shortest time to reach the target screw depth. Therefore, according to the control device 10, it is not necessary to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 with respect to the numerical controller 12, and the spindle 12 can be configured with a simpler configuration. Acceleration / deceleration control that maximizes the acceleration capability of the tapping process can be performed to shorten the tapping cycle time.

また、図10〜図12に示す実施形態による制御装置10は、主軸12に目標ねじ深さから戻り完了位置までの戻り動作を行わせる際に、まず、切削動作の終了時に主軸12を目標ねじ深さで停止させることなく(つまり加速度を零にすることなく)、最大減速度A0(負の値)と同じ逆回転の加速度A0(負の値)で、主軸12を所定の回転位置まで位置制御で加速逆回転させるように構成されている。この構成により、主軸12の動作を切削動作から戻り動作に切り替えるときの加速度の変化が無くなるので、加速度の変化に起因して主軸12に生じ得る機械構造上の衝撃や、加速度の変化に起因して主軸12と送り軸14との間に生じ得る同期誤差の増加を、未然に回避することができる。図7に示す主軸12の戻り動作では、切削動作の終了時に主軸12を目標ねじ深さで一旦停止させた(つまり加速度を零にした)後に、主軸12を目標ねじ深さから最大出力で加速逆回転させる速度制御を行うため、主軸12の動作反転時に、定加速度状の速度指令(位置制御)がステップ状の速度指令(速度制御)に切り替わることや機械の構成要素間で静摩擦が動摩擦に切り替わること等に起因して、機械構造上の衝撃や同期誤差の増加等を生じる場合がある。   When the control device 10 according to the embodiment shown in FIGS. 10 to 12 causes the main shaft 12 to perform the return operation from the target screw depth to the return completion position, first, the main shaft 12 is moved to the target screw at the end of the cutting operation. Without stopping at the depth (that is, without making the acceleration zero), the spindle 12 is moved to the predetermined rotational position with the same reverse rotation acceleration A0 (negative value) as the maximum deceleration A0 (negative value). It is configured to accelerate and reversely rotate under control. This configuration eliminates the change in acceleration when the operation of the spindle 12 is switched from the cutting operation to the return operation. Therefore, the change is caused by an impact on the mechanical structure that can occur in the spindle 12 due to the change in acceleration or a change in acceleration. Thus, an increase in synchronization error that may occur between the main shaft 12 and the feed shaft 14 can be avoided. In the returning operation of the main shaft 12 shown in FIG. 7, after the main shaft 12 is temporarily stopped at the target screw depth at the end of the cutting operation (that is, the acceleration is made zero), the main shaft 12 is accelerated from the target screw depth with the maximum output. In order to perform reverse rotation speed control, the constant acceleration speed command (position control) is switched to a step speed command (speed control) when the spindle 12 is reversed, and static friction becomes dynamic friction between machine components. Due to switching or the like, an impact on the mechanical structure or an increase in synchronization error may occur.

図10〜図12に示す実施形態による制御装置10では、主軸12を所定の回転位置まで位置制御で加速逆回転させた後は、数値制御部16が主軸制御部18に対して通知した主軸12の総戻り回転量S0′と最高戻り回転速度V0′のみの主軸指令CSに従い、主軸12を最大出力で加速させて戻り動作を実行するとともに、動作反転時の逆回転の加速度A0に対応する最大減速度A0′で主軸12を減速させながら戻り完了位置までの戻り動作を最短時間で継続実行して戻り完了位置で停止させるように構成されている。したがって制御装置10によれば、数値制御部12に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。   In the control device 10 according to the embodiment shown in FIGS. 10 to 12, after the spindle 12 is accelerated and reversely rotated by position control to a predetermined rotational position, the spindle 12 notified to the spindle controller 18 by the numerical controller 16. In accordance with the spindle command CS of only the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′, the spindle 12 is accelerated at the maximum output to execute the return operation, and the maximum corresponding to the reverse rotation acceleration A0 when the operation is reversed. While decelerating the spindle 12 at the deceleration A0 ′, the return operation to the return completion position is continuously executed in the shortest time and stopped at the return completion position. Therefore, according to the control device 10, it is not necessary to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 with respect to the numerical controller 12, and the spindle 12 can be configured with a simpler configuration. Acceleration / deceleration control that maximizes the acceleration capability of the tapping process can be performed to shorten the tapping cycle time.

図10〜図12に示す実施形態による制御装置10の構成は、主軸12と送り軸14との同期運転を制御する工作機械の制御方法として記述できる。この制御方法は、制御装置10が、加工開始位置から目標ねじ深さに至る間の主軸12の総回転量S0と最高回転速度V0とをタップ加工プログラムPから取得し、最高回転速度V0を目標値として加工開始位置から目標ねじ深さに向かって主軸12を最大能力で加速回転させ、最大能力での加速回転中に主軸12の回転位置フィードバック値FBSに基づき最大加速度A0を検出し、総回転量S0と回転位置フィードバック値FBSとに基づき、現在位置から目標ねじ深さに至るまでの主軸12の残回転量Srを検出し、回転位置フィードバック値FBSに基づき主軸12の現在速度Vcを検出し、最大能力での加速回転の後に、最大加速度A0と残回転量Srと現在速度Vcとに基づき、主軸12を最大能力で減速回転させて目標ねじ深さに到達させ、主軸12を目標ねじ深さで停止させずに、最大能力での減速回転における最大減速度A0(負の値)と同じ逆回転の加速度A0(負の値)で、主軸12を予め定めた回転位置まで加速逆回転させるものである。   The configuration of the control device 10 according to the embodiment shown in FIGS. 10 to 12 can be described as a machine tool control method for controlling the synchronous operation of the main shaft 12 and the feed shaft 14. In this control method, the control device 10 acquires the total rotation amount S0 and the maximum rotation speed V0 of the spindle 12 from the machining start position to the target screw depth from the tapping program P, and sets the maximum rotation speed V0 to the target. As a value, the spindle 12 is accelerated and rotated at the maximum capacity from the machining start position toward the target screw depth, and the maximum acceleration A0 is detected based on the rotational position feedback value FBS of the spindle 12 during the acceleration rotation at the maximum capacity, and the total rotation Based on the amount S0 and the rotational position feedback value FBS, the remaining rotational amount Sr of the main shaft 12 from the current position to the target screw depth is detected, and based on the rotational position feedback value FBS, the current speed Vc of the main shaft 12 is detected. After the acceleration rotation at the maximum capacity, the spindle 12 is decelerated and rotated at the maximum capacity based on the maximum acceleration A0, the remaining rotation amount Sr, and the current speed Vc, and the target screw depth Without stopping the spindle 12 at the target screw depth, the spindle 12 is moved at a reverse rotation acceleration A0 (negative value) that is the same as the maximum deceleration A0 (negative value) in the deceleration rotation at the maximum capacity. Acceleration reverse rotation is performed up to a predetermined rotation position.

さらにこの制御方法は、制御装置10が、目標ねじ深さから戻り完了位置に至る間の主軸12の総戻り回転量S0′と最高戻り回転速度V0′とをタップ加工プログラムPから取得し、最高戻り回転速度V0′を目標値として、予め定めた回転位置から戻り完了位置に向かって主軸12を最大能力で加速逆回転させ、総戻り回転量S0′と主軸12の回転位置フィードバック値FBSとに基づき、現在位置から戻り完了位置に至るまでの主軸12の残戻り回転量Sr′を検出し、回転位置フィードバック値FBSに基づき主軸12の逆回転の現在速度Vc′を検出し、最大能力での加速逆回転の後に、逆回転の加速度A0(負の値)と残戻り回転量Sr′と逆回転の現在速度Vc′とに基づき、主軸12を最大能力で減速逆回転させるとともに戻り完了位置で停止させるものである。   Further, in this control method, the control device 10 acquires the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′ of the main shaft 12 from the target screw depth to the return completion position from the tapping program P, and the maximum Using the return rotational speed V0 ′ as a target value, the main shaft 12 is accelerated and reversely rotated at a maximum capacity from a predetermined rotational position toward the return completion position, and the total return rotational amount S0 ′ and the rotational position feedback value FBS of the main shaft 12 are obtained. On the basis of this, the remaining return rotation amount Sr ′ of the main shaft 12 from the current position to the return completion position is detected, and the current speed Vc ′ of the reverse rotation of the main shaft 12 is detected based on the rotation position feedback value FBS. After the acceleration reverse rotation, the spindle 12 is decelerated and reversely rotated with the maximum capacity based on the reverse rotation acceleration A0 (negative value), the remaining return rotation amount Sr ′, and the reverse rotation current speed Vc ′. It is intended to stop at the return completion position.

10、40、50 制御装置
12 主軸
14 送り軸
16 数値制御部
18 主軸制御部
20 回転検出部
22 送り軸制御部
26 主軸指令出力部
28 送り軸指令出力部
30 初期動作制御部
32 最大加速度検出部
34 残回転量検出部
36 現在速度検出部
38 位置決め動作制御部
42 送り検出部
44 送り動作制御部
46 残送り量検出部
48 位置認識部
52 同期誤差計算部
56 表示制御部
10, 40, 50 Control device 12 Spindle 14 Feed axis 16 Numerical control section 18 Spindle control section 20 Rotation detection section 22 Feed axis control section 26 Spindle command output section 28 Feed axis command output section 30 Initial motion control section 32 Maximum acceleration detection section 34 Remaining rotation amount detection unit 36 Current speed detection unit 38 Positioning operation control unit 42 Feed detection unit 44 Feed operation control unit 46 Remaining feed amount detection unit 48 Position recognition unit 52 Synchronization error calculation unit 56 Display control unit

本発明の一態様は、主軸と送り軸との同期運転を制御する工作機械の制御装置であって、タップ加工プログラムに基づき主軸指令及び送り軸指令を作成する数値制御部と、主軸指令に従って主軸の回転動作を制御する主軸制御部と、主軸の回転位置を検出する回転検出部と、送り軸指令に従って、主軸の回転位置に基づき送り軸の送り動作を制御する送り軸制御部とを具備し、数値制御部は、加工開始位置から目標ねじ深さに至る間の主軸の総回転量と最高回転速度とをタップ加工プログラムから取得して、総回転量と最高回転速度とを主軸指令として主軸制御部に送る主軸指令出力部を備え、主軸制御部は、最高回転速度を目標値として加工開始位置から目標ねじ深さに向かって主軸を最大能力で加速回転させる初期動作制御部と、最大能力での加速回転中に主軸の回転位置に基づき最大加速度を検出する最大加速度検出部と、総回転量と主軸の回転位置とに基づき、現在位置から目標ねじ深さに至るまでの主軸の残回転量を検出する残回転量検出部と、主軸の回転位置に基づき主軸の現在速度を検出する現在速度検出部と、最大能力での加速回転の後に、最大加速度と残回転量と現在速度とに基づき、主軸を最大加速度に対応する最大減速度で減速回転させて目標ねじ深さに到達させる位置決め動作制御部と、を備える、制御装置である。 One aspect of the present invention is a machine tool control device that controls synchronous operation of a spindle and a feed axis, a numerical control unit that creates a spindle command and a feed axis command based on a tap machining program, and a spindle according to the spindle command A spindle control unit that controls the rotation operation of the spindle, a rotation detection unit that detects the rotation position of the spindle, and a feed axis control unit that controls the feed operation of the feed axis based on the rotation position of the spindle according to the feed axis command. The numerical control unit obtains the total spindle rotation speed and maximum rotation speed from the machining start position to the target screw depth from the tapping program, and uses the total rotation speed and maximum rotation speed as the spindle command. A spindle command output unit to be sent to the control unit. The spindle control unit has an initial operation control unit for accelerating and rotating the spindle at the maximum capacity from the machining start position to the target screw depth with the maximum rotation speed as a target value. The maximum acceleration detection unit that detects the maximum acceleration based on the rotation position of the spindle during acceleration rotation at the shaft, and the remaining rotation of the spindle from the current position to the target screw depth based on the total rotation amount and the rotation position of the spindle A remaining rotation amount detection unit for detecting the amount, a current speed detection unit for detecting the current speed of the main spindle based on the rotation position of the main shaft, and a maximum acceleration, a remaining rotation amount, and a current speed after the acceleration rotation at the maximum capacity. And a positioning operation control unit that decelerates and rotates the main shaft at a maximum deceleration corresponding to the maximum acceleration to reach a target screw depth.

本発明の他の態様は、主軸と送り軸との同期運転を制御する工作機械の制御方法であって、制御装置が、加工開始位置から目標ねじ深さに至る間の主軸の総回転量と最高回転速度とをタップ加工プログラムから取得し、最高回転速度を目標値として加工開始位置から目標ねじ深さに向かって主軸を最大能力で加速回転させ、最大能力での加速回転中に主軸の回転位置フィードバック値に基づき最大加速度を検出し、総回転量と回転位置フィードバック値とに基づき、現在位置から目標ねじ深さに至るまでの主軸の残回転量を検出し、回転位置フィードバック値に基づき主軸の現在速度を検出し、最大能力での加速回転の後に、最大加速度と残回転量と現在速度とに基づき、主軸を最大加速度に対応する最大減速度で減速回転させて目標ねじ深さに到達させる、制御方法である。 Another aspect of the present invention is a method for controlling a machine tool that controls synchronous operation of a main shaft and a feed shaft, wherein the control device includes a total amount of rotation of the main shaft from a machining start position to a target screw depth. The maximum rotation speed is acquired from the tap machining program, the maximum rotation speed is set as the target value, the spindle is accelerated from the machining start position to the target screw depth at the maximum capacity, and the spindle rotates during the acceleration rotation at the maximum capacity. The maximum acceleration is detected based on the position feedback value, the remaining amount of rotation of the main spindle from the current position to the target screw depth is detected based on the total rotation amount and the rotation position feedback value, and the main spindle is detected based on the rotation position feedback value. current detecting the speed, after acceleration rotation at maximum capacity, based on the maximum acceleration and the remaining amount of rotation and the current speed, depth target screw rotated at a speed at the maximum deceleration that corresponds to the maximum acceleration of the spindle To reach a control method.

上記実施形態による制御装置10は、主軸12に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総回転量S0と最高回転速度V0のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高回転速度V0を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて切削動作を実行するとともに、その間の最大加速度A0と逐次検出する主軸12の残回転量Sr及び現在速度Vcとに基づき、主軸12を最大減速度A0で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させるように構成されている。したがって制御装置10によれば、数値制御部1に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。 When the control device 10 according to the above embodiment causes the spindle 12 to perform a cutting operation from the machining start position to the target screw depth, the numerical control unit 16 controls the spindle control unit 18 with the total rotation amount S0 of the spindle 12. Only the maximum rotation speed V0 is notified as the spindle command CS, and the spindle control unit 18 accelerates the spindle 12 with the maximum output using the maximum allowable current for the maximum rotation speed V0 in accordance with the spindle command CS. , And based on the maximum acceleration A0 and the remaining rotation amount Sr of the main shaft 12 and the current speed Vc that are sequentially detected, the cutting operation to the target screw depth is performed in the shortest time while the main shaft 12 is decelerated at the maximum deceleration A0. It is constituted so that the target screw depth can be reached by continuously executing. Therefore, according to the control device 10, there is no need to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 to the numerical control unit 16 , and the spindle can be configured with a simpler configuration. It is possible to reduce the tapping cycle time by performing acceleration / deceleration control that maximizes the acceleration capability of twelve.

また、上記実施形態による制御装置10は、主軸12に目標ねじ深さから戻り完了位置までの戻り動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総戻り回転量S0′と最高戻り回転速度V0′のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高戻り回転速度V0′を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて戻り動作を実行するとともに、その間の最大加速度A0′と逐次検出する主軸12の残戻り回転量Sr′及び現在速度Vc′とに基づき、主軸12を最大減速度A0′で減速させながら戻り完了位置までの戻り動作を最短時間で継続実行して戻り完了位置で停止させるように構成されている。したがって制御装置10によれば、数値制御部1に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。 Further, in the control device 10 according to the above embodiment, when the spindle 12 performs the return operation from the target screw depth to the return completion position, the numerical controller 16 makes the total return of the spindle 12 to the spindle controller 18. Only the rotation amount S0 ′ and the maximum return rotation speed V0 ′ are notified as the spindle command CS, and the spindle control unit 18 follows the spindle command CS and outputs the maximum output using the maximum allowable current with the maximum return rotation speed V0 ′ as a target. The main shaft 12 is accelerated to perform a return operation, and the main shaft 12 is moved to the maximum deceleration A0 'based on the maximum acceleration A0' during this time and the remaining rotational speed Sr 'of the main shaft 12 and the current speed Vc' which are sequentially detected. The return operation until the return completion position is continuously executed in the shortest time while decelerating at, and stopped at the return completion position. Therefore, according to the control device 10, there is no need to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 to the numerical control unit 16 , and the spindle can be configured with a simpler configuration. It is possible to reduce the tapping cycle time by performing acceleration / deceleration control that maximizes the acceleration capability of twelve.

図11に示す例では、主軸12は、所定の回転位置(点C)に到達した後に逆回転の現在速度がVb(負の値)を超えるので、最大能力での加速逆回転において、例えばサーボモータの特性により、主軸12の逆回転の加速度はA0から漸減する(時間T8)。残戻り回転量Sr′が総戻り回転量S0′の1/2になった(つまり目標ねじ深さからの回転量が総戻り回転量S0′の1/2になった)時点Dで、主軸12の動作は加速逆回転から減速逆回転に変わり、時間T9で、主軸12の最大能力での減速逆回転が実行される。このように、時間T8〜T9では、主軸制御部18は主軸12を速度制御する(ステップ状の速度指令を破線で例示する)。 In the example shown in FIG. 11, since the current speed of reverse rotation exceeds Vb (negative value) after reaching the predetermined rotational position (point C), the main shaft 12 is, for example, a servo in acceleration reverse rotation with the maximum capacity. Due to the characteristics of the motor, the reverse rotation acceleration of the main shaft 12 gradually decreases from A0 (time T8). At the time point D when the remaining return rotation amount Sr ′ becomes 1/2 of the total return rotation amount S0 ′ (that is, the rotation amount from the target screw depth becomes 1/2 of the total return rotation amount S0 ′), the spindle The operation 12 is changed from the reverse acceleration to the reverse deceleration, and at the time T9, the reverse rotation at the maximum capacity of the spindle 12 is executed. As described above, at time T8 to T9, the spindle control unit 18 controls the speed of the spindle 12 (a stepped speed command is exemplified by a broken line).

次いで制御装置10は、図10のステップU3及びU4を実行する。ステップU5では、図12に示すように、時間T8で、主軸12の最大能力の加速逆回転が実行されて、主軸12の現在速度Vc(負の値)が最高戻り回転速度V0(負の値)に到達し、その後、時間T11に渡り一定速度V0で主軸12が逆回転して戻り動作を継続し、残戻り回転量Sr′が加速時回転量Saに等しくなった時点Dで、主軸12の動作が加速回転から減速回転に変わり、時間T9で、主軸12の最大能力の減速逆回転が実行され、時間T10で、主軸12の戻り完了位置までの位置制御が実行される。時間T8、T9及びT10における主軸12の動作は、図11に示す時間T8、T9及びT10における主軸12の動作と同様である。 Next, the control device 10 executes Steps U3 and U4 in FIG. In step U5, as shown in FIG. 12, at the time T8, the acceleration reverse rotation with the maximum capacity of the main shaft 12 is executed, and the current speed Vc (negative value) of the main shaft 12 becomes the maximum return rotation speed V0 (negative). After that, over the time T11, the main shaft 12 reversely rotates at a constant speed V0 and continues the return operation, and the remaining return rotation amount Sr ′ becomes equal to the acceleration rotation amount Sa ′. Thus, the operation of the spindle 12 changes from acceleration rotation to deceleration rotation, the deceleration reverse rotation with the maximum capacity of the spindle 12 is executed at time T9, and the position control to the return completion position of the spindle 12 is executed at time T10. . The operation of the main shaft 12 at times T8, T9, and T10 is the same as the operation of the main shaft 12 at times T8, T9, and T10 shown in FIG.

図10〜図12に示す実施形態による制御装置10は、図1〜図9の実施形態による制御装置10、40、50と同様に、主軸12に加工開始位置から目標ねじ深さまでの切削動作を行わせる際に、数値制御部16が主軸制御部18に対して、主軸12の総回転量S0と最高回転速度V0のみを主軸指令CSとして通知し、主軸制御部18がこの主軸指令CSに従い、最高回転速度V0を目標に許容電流を最大限に使用した最大出力で主軸12を加速させて切削動作を実行するとともに、その間の最大加速度A0と逐次検出する主軸12の残回転量Sr及び現在速度Vcとに基づき、主軸12を最大減速度A0で減速させながら目標ねじ深さまでの切削動作を最短時間で継続実行して目標ねじ深さに到達させるように構成されている。したがって制御装置10によれば、数値制御部1に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。 The control device 10 according to the embodiment shown in FIGS. 10 to 12 performs the cutting operation from the machining start position to the target screw depth on the main shaft 12 in the same manner as the control devices 10, 40 and 50 according to the embodiment of FIGS. When performing, the numerical control unit 16 notifies only the total rotation amount S0 and the maximum rotation speed V0 of the main shaft 12 to the main shaft control unit 18 as the main shaft command CS, and the main shaft control unit 18 follows the main shaft command CS. The spindle 12 is accelerated with the maximum output using the maximum allowable current with the maximum rotational speed V0 as a target, and the cutting operation is executed. At the same time, the maximum acceleration A0 and the remaining rotational amount Sr of the spindle 12 and the current speed detected sequentially. Based on Vc, the spindle 12 is decelerated at the maximum deceleration A0, and the cutting operation up to the target screw depth is continuously executed in the shortest time to reach the target screw depth. Therefore, according to the control device 10, there is no need to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 to the numerical control unit 16 , and the spindle can be configured with a simpler configuration. It is possible to reduce the tapping cycle time by performing acceleration / deceleration control that maximizes the acceleration capability of twelve.

図10〜図12に示す実施形態による制御装置10では、主軸12を所定の回転位置まで位置制御で加速逆回転させた後は、数値制御部16が主軸制御部18に対して通知した主軸12の総戻り回転量S0′と最高戻り回転速度V0′のみの主軸指令CSに従い、主軸12を最大出力で加速させて戻り動作を実行するとともに、動作反転時の逆回転の加速度A0に対応する最大減速度A0′で主軸12を減速させながら戻り完了位置までの戻り動作を最短時間で継続実行して戻り完了位置で停止させるように構成されている。したがって制御装置10によれば、数値制御部1に対し主軸12の出力特性に対応する加減速指令を作成するためのパラメータの設定や調整等を行う必要がなく、より簡単な構成で、主軸12の加速能力を最大限に発揮させる加減速制御を行って、タップ加工のサイクルタイムを短縮することが可能になる。 In the control device 10 according to the embodiment shown in FIGS. 10 to 12, after the spindle 12 is accelerated and reversely rotated by position control to a predetermined rotational position, the spindle 12 notified to the spindle controller 18 by the numerical controller 16. In accordance with the spindle command CS of only the total return rotation amount S0 ′ and the maximum return rotation speed V0 ′, the spindle 12 is accelerated at the maximum output to execute the return operation, and the maximum corresponding to the reverse rotation acceleration A0 when the operation is reversed. While decelerating the spindle 12 at the deceleration A0 ′, the return operation to the return completion position is continuously executed in the shortest time and stopped at the return completion position. Therefore, according to the control device 10, there is no need to set or adjust parameters for creating an acceleration / deceleration command corresponding to the output characteristics of the spindle 12 to the numerical control unit 16 , and the spindle can be configured with a simpler configuration. It is possible to reduce the tapping cycle time by performing acceleration / deceleration control that maximizes the acceleration capability of twelve.

Claims (14)

主軸と送り軸との同期運転を制御する工作機械の制御装置であって、
タップ加工プログラムに基づき主軸指令及び送り軸指令を作成する数値制御部と、
前記主軸指令に従って前記主軸の回転動作を制御する主軸制御部と、
前記主軸の回転位置を検出する回転検出部と、
前記送り軸指令に従って、前記回転位置に基づき前記送り軸の送り動作を制御する送り軸制御部とを具備し、
前記数値制御部は、加工開始位置から目標ねじ深さに至る間の前記主軸の総回転量と最高回転速度とを前記タップ加工プログラムから取得して、該総回転量と該最高回転速度とを前記主軸指令として前記主軸制御部に送る主軸指令出力部を備え、
前記主軸制御部は、
前記最高回転速度を目標値として前記加工開始位置から前記目標ねじ深さに向かって前記主軸を最大能力で加速回転させる初期動作制御部と、
前記最大能力での加速回転中に前記回転位置に基づき最大加速度を検出する最大加速度検出部と、
前記総回転量と前記回転位置とに基づき、現在位置から前記目標ねじ深さに至るまでの前記主軸の残回転量を検出する残回転量検出部と、
前記回転位置に基づき前記主軸の現在速度を検出する現在速度検出部と、
前記最大能力での加速回転の後に、前記最大加速度と前記残回転量と前記現在速度とに基づき、前記主軸を最大能力で減速回転させて前記目標ねじ深さに到達させる位置決め動作制御部と、
を備える、制御装置。
A machine tool control device for controlling the synchronous operation of a main shaft and a feed shaft,
A numerical control unit that creates a spindle command and a feed axis command based on a tap machining program;
A spindle control unit for controlling the rotation operation of the spindle according to the spindle command;
A rotation detector for detecting a rotation position of the spindle;
In accordance with the feed axis command, comprising a feed axis control unit for controlling the feed operation of the feed axis based on the rotational position,
The numerical control unit obtains the total rotation amount and the maximum rotation speed of the spindle from the machining start position to the target screw depth from the tapping program, and calculates the total rotation amount and the maximum rotation speed. A spindle command output unit that sends the spindle command to the spindle control unit,
The spindle control unit
An initial operation control unit for accelerating and rotating the spindle at a maximum capacity from the machining start position toward the target screw depth with the maximum rotation speed as a target value;
A maximum acceleration detector that detects a maximum acceleration based on the rotational position during acceleration rotation at the maximum capacity;
Based on the total rotation amount and the rotation position, a remaining rotation amount detection unit that detects a remaining rotation amount of the spindle from the current position to the target screw depth;
A current speed detector for detecting a current speed of the spindle based on the rotational position;
A positioning operation control unit that, after accelerating rotation at the maximum capacity, based on the maximum acceleration, the remaining rotation amount, and the current speed, causes the spindle to rotate at a reduced speed to reach the target screw depth;
A control device comprising:
前記送り軸の送り位置を検出する送り検出部をさらに具備し、
前記数値制御部は、前記加工開始位置から前記目標ねじ深さに至る間の前記送り軸の総送り量とねじピッチとを前記タップ加工プログラムから取得して、該総送り量と該ねじピッチとを前記送り軸指令として前記送り軸制御部に送る送り軸指令出力部を備え、
前記送り軸制御部は、
前記ねじピッチと前記回転位置とに基づき前記送り軸の送り動作を制御する送り動作制御部と、
前記総送り量と前記送り位置とに基づき、現在位置から前記目標ねじ深さに至るまでの前記送り軸の残送り量を検出する残送り量検出部とを備える、
請求項1に記載の制御装置。
A feed detector for detecting the feed position of the feed shaft;
The numerical control unit acquires a total feed amount and a screw pitch of the feed shaft from the machining start position to the target screw depth from the tapping program, and the total feed amount and the screw pitch. A feed axis command output unit that sends the feed axis command to the feed axis control unit,
The feed axis controller is
A feed operation control unit for controlling a feed operation of the feed shaft based on the screw pitch and the rotational position;
A remaining feed amount detection unit that detects a remaining feed amount of the feed shaft from the current position to the target screw depth based on the total feed amount and the feed position;
The control device according to claim 1.
前記数値制御部は、前記残回転量に基づき前記主軸の現在位置を認識するとともに前記残送り量に基づき前記送り軸の現在位置を認識する位置認識部を備える、請求項2に記載の制御装置。   The control device according to claim 2, wherein the numerical control unit includes a position recognition unit that recognizes a current position of the main shaft based on the remaining rotation amount and recognizes a current position of the feed shaft based on the remaining feed amount. . 前記数値制御部は、前記残回転量と前記残送り量と前記ねじピッチとに基づき、前記同期運転の同期誤差を計算する同期誤差計算部を備える、請求項2又は3に記載の制御装置。   The control device according to claim 2, wherein the numerical control unit includes a synchronization error calculation unit that calculates a synchronization error of the synchronous operation based on the remaining rotation amount, the remaining feed amount, and the screw pitch. 前記位置決め動作制御部は、前記主軸を前記目標ねじ深さで停止させる、請求項1に記載の制御装置。   The control device according to claim 1, wherein the positioning operation control unit stops the main shaft at the target screw depth. 前記数値制御部は、前記残回転量を監視して前記残回転量が第1の所定値以下になったときに、タップ加工が前記目標ねじ深さに達したと判断し、前記主軸指令出力部が、前記目標ねじ深さから戻り完了位置に至る間の前記主軸の総戻り回転量と最高戻り回転速度とを前記タップ加工プログラムから取得して、該総戻り回転量と該最高戻り回転速度とを前記主軸指令として前記主軸制御部に送り、
前記主軸制御部は、前記初期動作制御部が、前記最高戻り回転速度を目標値として前記目標ねじ深さから前記戻り完了位置に向かって前記主軸を最大能力で加速逆回転させ、前記最大加速度検出部が、前記最大能力での加速逆回転中に前記回転位置に基づき逆回転の最大加速度を検出し、前記残回転量検出部が、前記総戻り回転量と前記回転位置とに基づき、現在位置から前記戻り完了位置に至るまでの前記主軸の残戻り回転量を検出し、前記現在速度検出部が、前記回転位置に基づき前記主軸の逆回転の現在速度を検出し、前記位置決め動作制御部が、前記最大能力での加速逆回転の後に、前記逆回転の最大加速度と前記残戻り回転量と前記逆回転の現在速度とに基づき、前記主軸を最大能力で減速逆回転させるとともに前記戻り完了位置で停止させる、
請求項5に記載の制御装置。
The numerical control unit monitors the remaining rotation amount and determines that tapping has reached the target screw depth when the remaining rotation amount is equal to or less than a first predetermined value, and outputs the spindle command output. The total return rotation amount and maximum return rotation speed of the main shaft from the target screw depth to the return completion position are acquired from the tapping program, and the total return rotation amount and the maximum return rotation speed are acquired. To the spindle control unit as the spindle command,
The spindle control unit is configured such that the initial motion control unit accelerates and reversely rotates the spindle at a maximum capacity from the target screw depth toward the return completion position with the highest return rotation speed as a target value, and detects the maximum acceleration. A maximum acceleration of reverse rotation based on the rotation position during acceleration reverse rotation at the maximum capacity, and the remaining rotation amount detection unit detects a current position based on the total return rotation amount and the rotation position. The remaining return rotation amount of the main spindle from the return completion position to the return completion position, the current speed detection unit detects the current speed of reverse rotation of the main spindle based on the rotation position, and the positioning operation control unit After the acceleration reverse rotation at the maximum capacity, the spindle is decelerated and reverse rotated at the maximum capacity based on the maximum acceleration of the reverse rotation, the remaining return rotation amount, and the current speed of the reverse rotation, and the return completion position To stop,
The control device according to claim 5.
前記位置決め動作制御部は、前記主軸を前記目標ねじ深さで停止させずに、前記最大能力での減速回転における最大減速度と同じ逆回転の加速度で、前記主軸を予め定めた回転位置まで加速逆回転させる、請求項1に記載の制御装置。   The positioning operation control unit accelerates the spindle to a predetermined rotational position with the same reverse rotation acceleration as the maximum deceleration in the deceleration rotation at the maximum capacity without stopping the spindle at the target screw depth. The control device according to claim 1, wherein the control device is reversely rotated. 前記数値制御部は、前記残回転量を監視して前記残回転量が第1の所定値以下になったときに、タップ加工が前記目標ねじ深さに達したと判断し、前記主軸指令出力部が、前記目標ねじ深さから戻り完了位置に至る間の前記主軸の総戻り回転量と最高戻り回転速度とを前記タップ加工プログラムから取得して、該総戻り回転量と該最高戻り回転速度とを前記主軸指令として前記主軸制御部に送り、
前記主軸制御部は、前記初期動作制御部が、前記最高戻り回転速度を目標値として前記予め定めた回転位置から前記戻り完了位置に向かって前記主軸を最大能力で加速逆回転させ、前記残回転量検出部が、前記総戻り回転量と前記回転位置とに基づき、現在位置から前記戻り完了位置に至るまでの前記主軸の残戻り回転量を検出し、前記現在速度検出部が、前記回転位置に基づき前記主軸の逆回転の現在速度を検出し、前記位置決め動作制御部が、前記最大能力での加速逆回転の後に、前記逆回転の加速度と前記残戻り回転量と前記逆回転の現在速度とに基づき、前記主軸を最大能力で減速逆回転させるとともに前記戻り完了位置で停止させる、
請求項7に記載の制御装置。
The numerical control unit monitors the remaining rotation amount and determines that tapping has reached the target screw depth when the remaining rotation amount is equal to or less than a first predetermined value, and outputs the spindle command output. The total return rotation amount and maximum return rotation speed of the main shaft from the target screw depth to the return completion position are acquired from the tapping program, and the total return rotation amount and the maximum return rotation speed are acquired. To the spindle control unit as the spindle command,
The spindle control unit is configured to cause the initial operation control unit to rotate the spindle at a maximum capacity from the predetermined rotation position toward the return completion position with the highest return rotation speed as a target value, and to perform the remaining rotation. An amount detection unit detects a residual return rotation amount of the spindle from the current position to the return completion position based on the total return rotation amount and the rotation position, and the current speed detection unit detects the rotation position. And detecting the current speed of the reverse rotation of the main spindle based on the acceleration, the positioning operation control unit after the acceleration reverse rotation at the maximum capacity, the acceleration of the reverse rotation, the amount of return rotation, and the current speed of the reverse rotation Based on the above, the spindle is decelerated and reversely rotated at maximum capacity and stopped at the return completion position.
The control device according to claim 7.
前記数値制御部は、前記残戻り回転量を監視して前記残戻り回転量が第2の所定値以下になったときに、戻り動作が完了したと判断する、請求項6又は8に記載の制御装置。   9. The numerical control unit according to claim 6, wherein the numerical control unit monitors the remaining return rotation amount and determines that the return operation is completed when the remaining return rotation amount is equal to or less than a second predetermined value. Control device. 前記送り軸の送り位置を検出する送り検出部をさらに具備し、
前記数値制御部は、タップ加工が前記目標ねじ深さに達したと判断したときに、前記目標ねじ深さから前記戻り完了位置に至る間の前記送り軸の総戻り送り量とねじピッチとを前記タップ加工プログラムから取得して、該総戻り送り量と該ねじピッチとを前記送り軸指令として前記送り軸制御部に送る送り軸指令出力部を備え、
前記送り軸制御部は、
前記ねじピッチと前記回転位置とに基づき前記送り軸の戻り送り動作を制御する送り動作制御部と、
前記総戻り送り量と前記送り位置とに基づき、現在位置から前記戻り完了位置に至るまでの前記送り軸の残戻り送り量を検出する残送り量検出部とを備える、
請求項6、8又は9に記載の制御装置。
A feed detector for detecting the feed position of the feed shaft;
When it is determined that tapping has reached the target screw depth, the numerical control unit calculates a total return feed amount and a screw pitch of the feed shaft from the target screw depth to the return completion position. A feed axis command output unit that is acquired from the tapping program and sends the total return feed amount and the screw pitch to the feed axis control unit as the feed axis command,
The feed axis controller is
A feed operation control unit for controlling a return feed operation of the feed shaft based on the screw pitch and the rotational position;
A residual feed amount detector that detects a residual feed amount of the feed shaft from the current position to the return completion position based on the total return feed amount and the feed position;
The control device according to claim 6, 8 or 9.
前記数値制御部は、前記残戻り回転量に基づき前記主軸の現在位置を認識するとともに前記残戻り送り量に基づき前記送り軸の現在位置を認識する位置認識部を備える、請求項10に記載の制御装置。   11. The numerical control unit according to claim 10, further comprising a position recognition unit that recognizes a current position of the main shaft based on the residual return rotation amount and recognizes a current position of the feed shaft based on the residual return amount. Control device. 前記数値制御部は、前記残戻り回転量と前記残戻り送り量と前記ねじピッチとに基づき、前記同期運転の同期誤差を計算する同期誤差計算部を備える、請求項10又は11に記載の制御装置。   The control according to claim 10 or 11, wherein the numerical control unit includes a synchronization error calculation unit that calculates a synchronization error of the synchronous operation based on the residual rotation amount, the residual feed amount, and the screw pitch. apparatus. 前記数値制御部は、前記同期誤差を表示装置に表示させる表示制御部を備える、請求項4又は12に記載の制御装置。   The control device according to claim 4, wherein the numerical control unit includes a display control unit that displays the synchronization error on a display device. 主軸と送り軸との同期運転を制御する工作機械の制御方法であって、
制御装置が、
加工開始位置から目標ねじ深さに至る間の前記主軸の総回転量と最高回転速度とをタップ加工プログラムから取得し、
前記最高回転速度を目標値として前記加工開始位置から前記目標ねじ深さに向かって前記主軸を最大能力で加速回転させ、
前記最大能力での加速回転中に前記主軸の回転位置フィードバック値に基づき最大加速度を検出し、
前記総回転量と前記回転位置フィードバック値とに基づき、現在位置から前記目標ねじ深さに至るまでの前記主軸の残回転量を検出し、
前記回転位置フィードバック値に基づき前記主軸の現在速度を検出し、
前記最大能力での加速回転の後に、前記最大加速度と前記残回転量と前記現在速度とに基づき、前記主軸を最大能力で減速回転させて前記目標ねじ深さに到達させる、
制御方法。
A machine tool control method for controlling synchronous operation of a spindle and a feed axis,
The control unit
The total amount of rotation and the maximum rotation speed of the main spindle from the machining start position to the target screw depth are acquired from the tap machining program,
The spindle is accelerated and rotated at maximum capacity from the machining start position toward the target screw depth with the maximum rotational speed as a target value,
Detecting the maximum acceleration based on the rotational position feedback value of the spindle during acceleration rotation at the maximum capacity;
Based on the total rotation amount and the rotation position feedback value, a remaining rotation amount of the main shaft from the current position to the target screw depth is detected,
Detecting the current speed of the spindle based on the rotational position feedback value;
After accelerating rotation at the maximum capacity, based on the maximum acceleration, the remaining rotation amount, and the current speed, the spindle is rotated at a reduced speed to reach the target screw depth.
Control method.
JP2014266636A 2014-10-17 2014-12-26 Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft Active JP6001633B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015013283.0A DE102015013283B4 (en) 2014-10-17 2015-10-13 Apparatus and method for controlling a machine tool to control synchronized operation of a spindle axis and feed axis
US14/885,416 US9753452B2 (en) 2014-10-17 2015-10-16 Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
CN201510671742.1A CN105527928B (en) 2014-10-17 2015-10-16 The control device and control method of lathe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014213002 2014-10-17
JP2014213002 2014-10-17

Publications (2)

Publication Number Publication Date
JP2016078223A true JP2016078223A (en) 2016-05-16
JP6001633B2 JP6001633B2 (en) 2016-10-05

Family

ID=55957196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266636A Active JP6001633B2 (en) 2014-10-17 2014-12-26 Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft

Country Status (1)

Country Link
JP (1) JP6001633B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017010539A1 (en) 2016-11-16 2018-05-17 Fanuc Corporation Apparatus and method for controlling a machine tool to control synchronized operation of a spindle axis and a feed axis
CN108345274A (en) * 2017-01-25 2018-07-31 发那科株式会社 The control device and control method for the lathe that control main shaft is operated synchronously with feed shaft
JP2020154921A (en) * 2019-03-22 2020-09-24 ブラザー工業株式会社 Numerical control device and control method
US10955813B2 (en) 2018-02-20 2021-03-23 Fanuc Corporation Control apparatus for tapping
DE112021003447T5 (en) 2020-06-30 2023-06-01 Fanuc Corporation Control device and control method for a machine tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7177672B2 (en) 2018-11-26 2022-11-24 オークマ株式会社 Numerical controller

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120310A (en) * 1995-10-24 1997-05-06 Fanuc Ltd Method and system for moving axis
JP2001134321A (en) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp Numerical controller
JP2002283184A (en) * 2001-03-27 2002-10-03 Toyoda Mach Works Ltd Machining control method, its recording medium and its device
JP2003181722A (en) * 2001-12-18 2003-07-02 Toyoda Mach Works Ltd Tapping machining device and tapping machining method
JP2005216135A (en) * 2004-01-30 2005-08-11 Fanuc Ltd Threading/tapping controller
JP4014485B2 (en) * 2002-10-23 2007-11-28 株式会社松浦機械製作所 Rotation control method in tapping
JP2011183481A (en) * 2010-03-05 2011-09-22 Okuma Corp Method of controlling thread cutting
JP2011212788A (en) * 2010-03-31 2011-10-27 Fanuc Ltd Tapping device executing tapping work
WO2013183082A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Numeric control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120310A (en) * 1995-10-24 1997-05-06 Fanuc Ltd Method and system for moving axis
JP2001134321A (en) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp Numerical controller
JP2002283184A (en) * 2001-03-27 2002-10-03 Toyoda Mach Works Ltd Machining control method, its recording medium and its device
JP2003181722A (en) * 2001-12-18 2003-07-02 Toyoda Mach Works Ltd Tapping machining device and tapping machining method
JP4014485B2 (en) * 2002-10-23 2007-11-28 株式会社松浦機械製作所 Rotation control method in tapping
JP2005216135A (en) * 2004-01-30 2005-08-11 Fanuc Ltd Threading/tapping controller
JP2011183481A (en) * 2010-03-05 2011-09-22 Okuma Corp Method of controlling thread cutting
JP2011212788A (en) * 2010-03-31 2011-10-27 Fanuc Ltd Tapping device executing tapping work
WO2013183082A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Numeric control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017010539A1 (en) 2016-11-16 2018-05-17 Fanuc Corporation Apparatus and method for controlling a machine tool to control synchronized operation of a spindle axis and a feed axis
JP2018079537A (en) * 2016-11-16 2018-05-24 ファナック株式会社 Machine tool control device and control method for controlling synchronous operation of spindle and feed shaft
US10359761B2 (en) 2016-11-16 2019-07-23 Fanuc Corporation Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
DE102017010539B4 (en) * 2016-11-16 2021-01-21 Fanuc Corporation Device and method for controlling a machine tool in order to control a synchronized operation of a spindle axis and a feed axis
CN108345274A (en) * 2017-01-25 2018-07-31 发那科株式会社 The control device and control method for the lathe that control main shaft is operated synchronously with feed shaft
JP2018120431A (en) * 2017-01-25 2018-08-02 ファナック株式会社 Control device and control method of machine tool controlling synchronized operation of main shaft and feed shaft
US10551817B2 (en) 2017-01-25 2020-02-04 Fanuc Corporation Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
DE102018000519B4 (en) 2017-01-25 2020-08-06 Fanuc Corporation Device and method for controlling a machine tool to control synchronized operation of a spindle axis and feed axis
US10955813B2 (en) 2018-02-20 2021-03-23 Fanuc Corporation Control apparatus for tapping
JP2020154921A (en) * 2019-03-22 2020-09-24 ブラザー工業株式会社 Numerical control device and control method
CN111716148A (en) * 2019-03-22 2020-09-29 兄弟工业株式会社 Numerical controller and control method for numerical controller
DE112021003447T5 (en) 2020-06-30 2023-06-01 Fanuc Corporation Control device and control method for a machine tool

Also Published As

Publication number Publication date
JP6001633B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6088581B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP6034913B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP6001633B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP6140223B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP6396354B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
US9753452B2 (en) Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis
JP6301977B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
US9513619B2 (en) Numerical control device which performs tapping operation by using a main spindle and a feed shaft
JP6374469B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP6605926B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP6474435B2 (en) Machine tool control apparatus and control method for controlling synchronous operation of main shaft and feed shaft
JP2007000941A (en) Screw cutting control method and device
US20160116907A1 (en) Numerical control device
JP2010055161A (en) Numerical control device of machine tool
JPWO2014024215A1 (en) Torque control device
JP6799022B2 (en) Tap processing control device
JP7481447B2 (en) Machine tool control device and control method
JP2008027246A (en) Positioning controller and positioning control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150