JP2016075651A - Reactor pressure vessel and repair method thereof - Google Patents

Reactor pressure vessel and repair method thereof Download PDF

Info

Publication number
JP2016075651A
JP2016075651A JP2014207990A JP2014207990A JP2016075651A JP 2016075651 A JP2016075651 A JP 2016075651A JP 2014207990 A JP2014207990 A JP 2014207990A JP 2014207990 A JP2014207990 A JP 2014207990A JP 2016075651 A JP2016075651 A JP 2016075651A
Authority
JP
Japan
Prior art keywords
control rod
core
housing
core nuclear
reactor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014207990A
Other languages
Japanese (ja)
Inventor
靖己 北島
Yasuki Kitajima
靖己 北島
美香 田原
Mika Tawara
美香 田原
三男 小室
Mitsuo Komuro
三男 小室
一義 青木
Kazuyoshi Aoki
一義 青木
忠浩 三橋
Tadahiro Mihashi
忠浩 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014207990A priority Critical patent/JP2016075651A/en
Publication of JP2016075651A publication Critical patent/JP2016075651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor pressure vessel capable of preventing a reactor core internal structure, which is disposed in the reactor pressure vessel, from getting damaged due to vibrations caused from a fluid and capable of reducing stress generated on the reactor core internal structure.SOLUTION: The reactor pressure vessel includes: a reactor pressure vessel body; plural in-furnace nuclear instrumentation guide tubes 28 which are vertically disposed on the furnace bottom 25 in the lower part of the core 13 in the reactor pressure vessel body; plural in-furnace nuclear instrumentation housings 29 each of which is coaxially connected to the lower part of the in-furnace nuclear instrumentation guide tubes 28 via a connection block 32 and a step part 33; and a connection beam 31 for coupling the neighboring in-furnace nuclear instrumentation housings 29 at the step part 33.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、沸騰水型原子炉の原子炉圧力容器及びその改修方法に関する。   Embodiments described herein relate generally to a reactor pressure vessel of a boiling water reactor and a method for repairing the reactor pressure vessel.

沸騰水型原子炉では、原子炉圧力容器内に存在する炉心で冷却材(冷却水)を沸騰させて蒸気とし、タービンへ送って発電する。タービンを出た蒸気は冷却されて水に戻り、冷却材として再び原子炉圧力容器内へ戻される。この原子炉圧力容器内に戻された冷却材は、再循環ポンプ及びジェットポンプ、あるいはインターナルポンプなどで炉心下方の炉底部を通って炉心へ導かれる。   In a boiling water reactor, a coolant (cooling water) is boiled in a reactor core in a reactor pressure vessel to form steam, which is sent to a turbine for power generation. The steam exiting the turbine is cooled and returned to water, and returned again as a coolant into the reactor pressure vessel. The coolant returned to the reactor pressure vessel is guided to the core through the bottom of the core below the core by a recirculation pump and a jet pump or an internal pump.

この炉底部には、制御棒や炉内核計装器を収める案内管やハウジング類(即ち、制御棒案内管、制御棒駆動機構ハウジング、炉内核計装案内管、炉内核計装ハウジング等の原子炉炉内構造物)が林立するように設けられている。これらの案内管やハウジング類は、炉底部から炉心へ導かれる冷却材による流体力を受けて、振動することが知られている。   At the bottom of the furnace, there are guide tubes and housings for storing control rods and in-core nuclear instrumentation (ie, control rod guide tubes, control rod drive mechanism housings, in-core nuclear instrumentation guide tubes, in-core nuclear instrument housings, etc.). Furnace in-furnace structures) are provided to stand. These guide tubes and housings are known to vibrate upon receiving fluid force from a coolant guided from the bottom of the furnace to the core.

特許文献1及び2には、インターナルポンプによって炉底部へ導入される冷却材の流れの乱れを低減することで、原子炉炉内構造物の振動を低減する構造が開示されている。   Patent Documents 1 and 2 disclose a structure that reduces the vibration of the reactor internal structure by reducing the turbulence of the flow of the coolant introduced to the reactor bottom by the internal pump.

特開2004−233258号公報JP 2004-233258 A 特開平3−48797号公報JP-A-3-48797

沸騰水型原子炉の原子炉圧力容器においては、炉底部へ導入される冷却材の流体力によって原子炉炉内構造物が振動しても、この原子炉炉内構造物が損傷を蒙ることがないように設計されている。ところが、沸騰水型原子炉の運転開始以降に、原子炉の出力を増加させたり、安全性を高めるための機器構造物を設置した場合には、炉底部の冷却材の流動条件が変化して、原子炉圧力容器に設けられる原子炉炉内構造物の流体力による振動にも変化が生ずる恐れがある。   In the reactor pressure vessel of a boiling water reactor, even if the reactor internal structure vibrates due to the fluid force of the coolant introduced to the bottom of the reactor, the reactor internal structure may be damaged. Designed not to be. However, if the reactor power is increased or the equipment structure is installed to increase safety after the start of operation of the boiling water reactor, the flow conditions of the coolant at the bottom of the reactor will change. Further, there is a possibility that a change may occur in the vibration caused by the fluid force of the reactor internal structure provided in the reactor pressure vessel.

本発明における実施形態の目的は、上述の事情を考慮してなされたものであり、原子炉圧力容器に設けられる原子炉炉内構造物の流体による振動を低減して損傷を防止したり、あるいは原子炉炉内構造物に発生する応力を低減できる原子炉圧力容器及びその補強方法を提供することにある。   The object of the embodiment of the present invention is made in consideration of the above-described circumstances, and reduces vibrations caused by fluid of the reactor internal structure provided in the reactor pressure vessel to prevent damage, or An object of the present invention is to provide a reactor pressure vessel and a method for reinforcing the same that can reduce the stress generated in the reactor internal structure.

本発明の実施形態における原子炉圧力容器は、原子炉圧力容器本体と、前記原子炉圧力容器本体における炉心下方の炉底部にそれぞれ立設された複数の炉内核計装案内管と、前記炉内核計装案内管のそれぞれの下方に接続部および段差部を介して同軸に接続された複数の炉内核計装ハウジングと、隣接する前記炉内核計装ハウジングを前記段差部にて連結する連結梁を備えることを特徴とするものである。   A reactor pressure vessel according to an embodiment of the present invention includes a reactor pressure vessel main body, a plurality of in-core nuclear instrumentation guide tubes respectively erected at a bottom of the reactor pressure vessel main body below the core, and the in-core A plurality of in-core nuclear instrumentation housings connected coaxially via connection portions and stepped portions below each of the instrumentation guide tubes, and connecting beams for connecting the adjacent in-core nuclear instrumentation housings at the stepped portions. It is characterized by comprising.

また、本発明の実施形態における原子炉圧力容器の改修方法は、原子炉圧力容器本体における炉心下方の炉底部にそれぞれ立設された複数の炉内核計装案内管と、前記炉内核計装案内管のそれぞれの下方に接続部および段差部を介して同軸に接続された複数の炉内核計装ハウジングと、前記炉底部の前記炉内核計装ハウジング及び前記炉内核計装案内管の付近にそれぞれ立設された複数の制御棒案内管と、前記制御棒案内管のそれぞれの下方に同軸に接続された制御棒駆動機構ハウジングと、を備える原子炉圧力容器の改修方法において、まず、前記制御棒駆動機構ハウジングのいずれかに接続された前記制御棒案内管を、内部の制御棒と共に撤去し、次に、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジングの上部に連結梁設置装置を、前記炉心を支持する炉心支持板の開口を通して搬入して設置し、その後、前記連結梁設置装置が、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジング付近の前記炉内核計装ハウジングの前記段差部に、前記炉心支持板の前記開口を通して搬入された前記連結梁を締結して、前記炉内核計装ハウジングを連結することを特徴とするものである。   Further, a method for refurbishing a reactor pressure vessel according to an embodiment of the present invention includes a plurality of in-core nuclear instrumentation guide tubes erected on the bottom of the reactor pressure vessel main body below the core, and the in-core nuclear instrumentation guide. A plurality of in-core nuclear instrumentation housings connected coaxially via a connecting portion and a stepped portion below each of the tubes; and in the vicinity of the in-core nuclear instrumentation housing and the in-core nuclear instrumentation guide tube at the bottom of the reactor In a method for repairing a reactor pressure vessel, comprising: a plurality of control rod guide tubes installed upright; and a control rod drive mechanism housing connected coaxially below each of the control rod guide tubes. The control rod guide tube connected to one of the drive mechanism housings is removed together with an internal control rod, and then the control rod guide tube and the control rod drive mechanism housing from which the control rods have been removed are removed. The connecting beam installation device is carried in through the opening of the core support plate that supports the core, and then the connecting beam installation device is operated by the control rod drive in which the control rod guide tube and the control rod are removed. The in-core nuclear instrumentation housing is connected to the stepped portion of the in-core nuclear instrumentation housing near the mechanism housing by fastening the connection beam carried through the opening of the core support plate. It is.

更に、本発明の実施形態における原子炉圧力容器の改修方法は、原子炉圧力容器本体における炉心下方の炉底部にそれぞれ立設された複数の炉内核計装案内管と、前記炉内核計装案内管のそれぞれの下方に接続部及び段差部を介して同軸に接続された複数の炉内核計装ハウジングと、前記炉底部の前記炉内核計装ハウジング及び前記炉内核計装案内管の付近にそれぞれ立設された複数の制御棒案内管と、前記制御棒案内管のそれぞれの下方に同軸に接続された制御棒駆動機構ハウジングと、を備える原子炉圧力容器の改修方法において、まず、前記制御棒駆動機構ハウジングのいずれかに接続された前記制御棒案内管を、内部の制御棒と共に撤去し、次に、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジングの上方の冷却材中に水中浮遊型の連結梁設置装置を移動させ、その後、前記連結梁設置装置が、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジング付近の前記炉内核計装ハウジングの前記段差部に、前記炉心を支持する炉心支持板の開口を通して搬入された連結梁を締結して、前記炉内核計装ハウジングを連結することを特徴とするものである。   Furthermore, a method for refurbishing a reactor pressure vessel according to an embodiment of the present invention includes a plurality of in-core nuclear instrumentation guide tubes respectively erected on the bottom of a reactor pressure vessel main body below the core, and the in-core nuclear instrumentation guide. A plurality of in-core nuclear instrumentation housings connected coaxially via connection portions and stepped portions below each of the tubes, and in the vicinity of the in-core nuclear instrumentation housing and the in-core nuclear instrumentation guide tube at the bottom of the reactor In a method for repairing a reactor pressure vessel, comprising: a plurality of control rod guide tubes installed upright; and a control rod drive mechanism housing connected coaxially below each of the control rod guide tubes. The control rod guide tube connected to one of the drive mechanism housings is removed together with an internal control rod, and then the control rod guide tube and the control rod drive mechanism housing from which the control rods have been removed The in-core nucleometer in the vicinity of the control rod drive mechanism housing from which the control beam guide tube and the control rod are removed is moved in the coolant by moving the floating beam connecting beam installation device. A connecting beam carried in through an opening of a core support plate that supports the core is fastened to the stepped portion of the mounting housing to connect the in-core nuclear instrumentation housing.

上述の如く説明した実施形態によれば、原子炉圧力容器に設けられる原子炉炉内構造物の流体による振動を低減できる。   According to the embodiment described above, the vibration caused by the fluid of the reactor internal structure provided in the reactor pressure vessel can be reduced.

本発明の一実施形態に係る原子炉圧力容器を示す構成図。The block diagram which shows the reactor pressure vessel which concerns on one Embodiment of this invention. 図1の沸騰水型原子炉における炉底部の一部を拡大して示す部分拡大側面図。The partial expanded side view which expands and shows a part of reactor bottom part in the boiling water reactor of FIG. 図2のIII−III線に沿う断面図。Sectional drawing which follows the III-III line | wire of FIG. 図2のIV−IV線に沿う断面図。Sectional drawing which follows the IV-IV line | wire of FIG. 図2の炉内核計装ハウジングと連結梁との関係を示し、(A)は連結梁の設置前の状態を、(B)は連結梁の設置後の状態を、(C)は連結梁の締結部を断面状態でそれぞれ示す説明図。2 shows the relationship between the in-core nuclear instrumentation housing and the connecting beam in FIG. 2, (A) shows the state before installing the connecting beam, (B) shows the state after installing the connecting beam, and (C) shows the state of the connecting beam. Explanatory drawing which shows a fastening part in a cross-sectional state, respectively. 図2、図4及び図5の連結梁の一形態を示し、(A)は平面図、(B)は締結部を分解状態で示す分解斜視図。FIGS. 2, 4, and 5 show an embodiment of the connecting beam, where (A) is a plan view and (B) is an exploded perspective view showing a fastening portion in an exploded state. FIG. 図2、図4及び図5の連結梁の他の形態を示す平面図。The top view which shows the other form of the connection beam of FIG.2, FIG4 and FIG.5. 図6及び図7に示す連結梁の締結部を構成する留め具の接合状態を示し、(A)はボルト接合の場合、(B)は溶接接合の場合における部分平面図。The joint state of the fastener which comprises the fastening part of the connection beam shown in FIG.6 and FIG.7 is shown, (A) is a partial top view in the case of bolt joining, (B) is the case of welding joining. 図6及び図7に示す連結梁の締結部を構成する留め具の接合を形状記憶合金を用いて行う場合で、(A)及び(B)は接合前、(C)は接合後をそれぞれ示す部分断面図。FIG. 6 and FIG. 7 are cases where the fasteners constituting the fastening portion of the connecting beam are joined using a shape memory alloy, (A) and (B) are before joining, and (C) is after joining. FIG. 図2、図4及び図5の連結梁による原子炉圧力容器の改修手順を示し、(A)は連結梁設置装置の設置状況を示す説明図、(B)は連結梁設置装置による連結梁の設置状況を示す図10(A)のXB矢視図。FIG. 2, FIG. 4 and FIG. 5 show the repair procedure of the reactor pressure vessel using the connecting beam, (A) is an explanatory diagram showing the installation status of the connecting beam installation device, and (B) is an illustration of the connecting beam by the connecting beam installation device. The XB arrow directional view of FIG. 10 (A) which shows an installation condition. 図2、図4及び図5の連結梁による原子炉圧力容器の改修手順を、他の形態の連結梁設置装置を用いて行う場合を示す説明図。Explanatory drawing which shows the case where the repair procedure of the reactor pressure vessel by the connection beam of FIG.2, FIG4 and FIG.5 is performed using the connection beam installation apparatus of another form.

以下、本発明を実施するための形態を、図面に基づき説明する。
図1は、本発明の一実施形態に係る沸騰水型原子炉の原子炉圧力容器を示す構成図である。この原子炉圧力容器11は、原子炉圧力容器本体12内に炉心13を収容し、この炉心13を構成する多数の燃料集合体(不図示)はシュラウド14に囲まれると共に、炉心支持板15及び上部格子板16によって支持される。シュラウド14の上部はシュラウドヘッド17により閉塞され、このシュラウドヘッド17にスタンドパイプ18を経て気水分離器19が設置される。原子炉圧力容器本体12内には、気水分離器19の上方に蒸気乾燥器20が配置される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a reactor pressure vessel of a boiling water reactor according to an embodiment of the present invention. The reactor pressure vessel 11 houses a reactor core 13 in a reactor pressure vessel body 12, and a large number of fuel assemblies (not shown) constituting the reactor core 13 are surrounded by a shroud 14, and a reactor core support plate 15 and Supported by the upper grid plate 16. The upper part of the shroud 14 is closed by a shroud head 17, and a steam / water separator 19 is installed in the shroud head 17 via a stand pipe 18. A steam dryer 20 is disposed above the steam / water separator 19 in the reactor pressure vessel main body 12.

炉心13にて発生した蒸気は、気水分離器19にて水分が分離され、蒸気乾燥器20にて乾燥されて上部ドーム21に至り、主蒸気ノズル22から主蒸気系を経てタービン系(共に図示せず)へ至る。タービン系で仕事をした蒸気は復水となり、給水ノズル23を経て原子炉圧力容器本体12内へ冷却材(冷却水)24として供給される。この冷却材24は、再循環ポンプ及びジェットポンプ、またはインターナルポンプによって、原子炉圧力容器本体12内の炉心13下方の炉底部25を経て炉心13へ導かれる。   The steam generated in the reactor core 13 is separated from the water by the steam separator 19, dried by the steam dryer 20, reaches the upper dome 21, passes through the main steam system from the main steam nozzle 22, and the turbine system (both (Not shown). The steam that has worked in the turbine system becomes condensate and is supplied as coolant (cooling water) 24 into the reactor pressure vessel main body 12 through the water supply nozzle 23. The coolant 24 is guided to the core 13 through a reactor bottom 25 below the core 13 in the reactor pressure vessel body 12 by a recirculation pump and a jet pump or an internal pump.

原子炉圧力容器本体12の炉底部25には、図1〜図4に示すように、原子炉圧力容器11の原子炉炉内構造物である複数本の制御棒案内管26及び制御棒駆動機構ハウジング27が、制御棒案内管26を上方にして同軸状態で接続されて立設されて設けられている。更に炉底部25には、原子炉圧力容器11の原子炉炉内構造物である複数本の炉内核計装案内管28及び炉内核計装ハウジング29が、炉内核計装案内管28を上方にして同軸状態で接続されて立設されて設けられている。これらの炉内核計装案内管28及び炉内核計装ハウジング29は、制御棒案内管26及び制御棒駆動機構ハウジング27の付近に配置されている。   As shown in FIGS. 1 to 4, the reactor bottom portion 25 of the reactor pressure vessel main body 12 has a plurality of control rod guide tubes 26 and control rod drive mechanisms which are reactor internal structures of the reactor pressure vessel 11. A housing 27 is provided upright and connected in a coaxial state with the control rod guide tube 26 facing upward. Further, a plurality of in-core nuclear instrumentation guide tubes 28 and an in-core nuclear instrumentation housing 29 which are the reactor internal structures of the reactor pressure vessel 11 are disposed at the bottom 25 of the reactor pressure vessel 11 with the in-core nuclear instrumentation guide tube 28 facing upward. Are connected in a coaxial state and are provided upright. The in-core nuclear instrumentation guide tube 28 and the in-core nuclear instrumentation housing 29 are disposed in the vicinity of the control rod guide tube 26 and the control rod drive mechanism housing 27.

ここで、制御棒案内管26内に図示しない制御棒が、制御棒駆動機構ハウジング27内に図示しない制御棒駆動機構がそれぞれ収容されている。また、炉内核計装案内管28及び炉内核計装ハウジング29内には、図示しない炉内核計装器が収容されている。このうち、隣接する炉内核計装案内管28は、水平方向に配置されたスタビライザ30によって互いに支持され、姿勢の安定が図られている。   Here, a control rod (not shown) is accommodated in the control rod guide tube 26, and a control rod drive mechanism (not shown) is accommodated in the control rod drive mechanism housing 27. Further, in-core nuclear instrumentation guide tube 28 and in-core nuclear instrumentation housing 29 accommodate an in-core nuclear instrumentation device (not shown). Among these, the adjacent in-core nuclear instrumentation guide tubes 28 are supported by a stabilizer 30 arranged in the horizontal direction so that the posture is stabilized.

ところで、上述の制御棒案内管26及び制御棒駆動機構ハウジング27並びに炉内核計装案内管28及び炉内核計装ハウジング29は、炉底部25を流れる冷却材24によって流体力を受ける。原子炉圧力容器11を備える沸騰水型原子炉では、運転開始以降に、出力を増加させたり、安全性を高めるための機器構造物を設置することによって、炉底部25を流れる冷却材24の流動条件が変化する場合がある。本実施形態では、特に炉内核計装案内管28及び炉内核計装ハウジング29が、冷却材24の流動条件の変化によっても振動が抑制されるように、隣接する炉内核計装ハウジング29を、スタビライザ30の下方に配置された連結梁31を用いて連結している。   By the way, the control rod guide tube 26 and the control rod drive mechanism housing 27 as well as the in-core nuclear instrumentation guide tube 28 and the in-core nuclear instrumentation housing 29 are subjected to fluid force by the coolant 24 flowing through the bottom 25. In a boiling water reactor equipped with a reactor pressure vessel 11, the flow of the coolant 24 flowing through the reactor bottom 25 by installing an equipment structure for increasing output or improving safety after the start of operation. Conditions may change. In the present embodiment, in particular, the in-core nuclear instrumentation guide tube 28 and the in-core nuclear instrumentation housing 29 are arranged such that the adjacent in-core nuclear instrumentation housing 29 is suppressed so that vibration is also suppressed by a change in the flow condition of the coolant 24. It connects using the connection beam 31 arrange | positioned under the stabilizer 30. FIG.

つまり、連結梁31は、図5〜図7に示すように、梁部31Aと、この梁部31Aの両端に設けられた締結部31Bとを有して構成される。炉内核計装ハウジング29は、炉内核計装案内管28よりも大径に形成されており、従って、炉内核計装案内管28との接続部32近傍に段差部33を備える。連結梁31は、隣接する複数本の炉内核計装ハウジング29の段差部33に締結部31Bを締結させることで、これらの隣接する炉内核計装ハウジング29を互いに連結する。   That is, as shown in FIGS. 5 to 7, the connecting beam 31 includes a beam portion 31 </ b> A and fastening portions 31 </ b> B provided at both ends of the beam portion 31 </ b> A. The in-core nuclear instrumentation housing 29 is formed to have a larger diameter than the in-core nuclear instrumentation guide tube 28, and thus includes a stepped portion 33 in the vicinity of the connection portion 32 with the in-core nuclear instrumentation guide tube 28. The connecting beam 31 connects the adjacent in-core nuclear instrument housings 29 to each other by fastening the fastening portions 31B to the step portions 33 of the adjacent in-core in-core instrument housings 29.

ここで、連結梁31の締結部31Bは、図6及び図7に示すように、第1留め具34と第2留め具35とを有し、第1留め具34同士が接合されて組み合わされて、または第1留め具34と第2留め具35とが接合されて組み合わされて構成される。第1留め具34は、梁部31に一体成形されると共に、炉内核計装ハウジング29の段差部33の周囲90度の角度範囲に接触可能に設けられる。また、第2留め具35は、梁部31Aとは別個に成形されると共に、炉内核計装ハウジング29の段差部33の周囲90度の角度範囲に接触可能に設けられる。   Here, as shown in FIGS. 6 and 7, the fastening portion 31 </ b> B of the connecting beam 31 includes a first fastener 34 and a second fastener 35, and the first fasteners 34 are joined and combined. Or the first fastener 34 and the second fastener 35 are joined and combined. The first fastener 34 is integrally formed with the beam portion 31 and is provided so as to be able to contact an angular range of 90 degrees around the step portion 33 of the in-core nuclear instrumentation housing 29. Further, the second fastener 35 is formed separately from the beam portion 31 </ b> A and is provided so as to be able to come into contact with an angular range of 90 degrees around the stepped portion 33 of the in-core nuclear instrument housing 29.

従って、連結梁31は、図4及び図7に示すように、4個の第1留め具34が炉内核計装ハウジング29の段差部33の全周で接合されて締結部31Bが構成されることで、この炉内核計装ハウジング29を隣接する他の4本の炉内核計装ハウジング29と連結させる。   Therefore, as shown in FIGS. 4 and 7, in the connecting beam 31, the four first fasteners 34 are joined around the entire circumference of the stepped portion 33 of the in-core nuclear instrument housing 29 to form a fastening portion 31 </ b> B. Thus, the in-core nuclear instrument housing 29 is connected to the other four adjacent in-core nuclear instrument housings 29.

また、連結梁31は、合計で4個の第1留め具34及び第2留め具35が炉内核計装ハウジング29の段差部33の全周で接合されて締結部31Bが構成されることで、この炉内核計装ハウジング29を隣接する最大3本の他の炉内核計装ハウジング29と連結させる。例えば、連結梁31は、1個の第1留め具34と3個の第2留め具35とが炉内核計装ハウジング29の段差部33の全周で接合されて締結部31Bが構成されることで、この炉内核計装ハウジング29を隣接する1本の他の炉内核計装ハウジング29と連結させる。   In addition, the coupling beam 31 is configured such that a total of four first fasteners 34 and second fasteners 35 are joined around the entire circumference of the stepped portion 33 of the in-core nuclear instrumentation housing 29 to form a fastening portion 31B. This in-core nuclear instrumentation housing 29 is connected to a maximum of three other in-core nuclear instrumentation housings 29 adjacent to each other. For example, in the connecting beam 31, one first fastener 34 and three second fasteners 35 are joined on the entire circumference of the step portion 33 of the in-core nuclear instrument housing 29 to form a fastening portion 31 </ b> B. Thus, the in-core nuclear instrument housing 29 is connected to another adjacent in-core nuclear instrument housing 29.

連結梁31の締結部31Bは、第1留め具34同士がまたは第1留め具34と第2留め具35とが、図8(A)に示すボルト36及びナット37を用いて接合されることで構成される。また、連結梁31の締結部31Bは、第1留め具34同士がまたは第1留め具34と第2留め具35とが、図8(B)に示す溶接部38を形成する溶接により接合されることで構成される。   As for the fastening part 31B of the connection beam 31, the 1st fasteners 34 or the 1st fastener 34 and the 2nd fastener 35 are joined using the volt | bolt 36 and the nut 37 which are shown to FIG. 8 (A). Consists of. Further, the fastening portion 31B of the connecting beam 31 is joined by welding forming the welded portion 38 shown in FIG. 8B, or the first fasteners 34 or the first fastener 34 and the second fastener 35 are joined together. It is composed by.

更に、連結梁31の締結部31Bは、第1留め具34同士がまたは第1留め具34と第2留め具35とが、図9に示すように、形状記憶合金製の嵌合凸部39を嵌合凹部40に嵌合させて接合することで構成される。嵌合凸部39は、図9(A)及び(B)に示すように、常温の施行時(連結梁31の設置時)には抜き外し可能に嵌合凹部40に挿入されるが、原子炉圧力容器11を備える沸騰水型原子炉の運転温度(約200℃)では図9(C)に示すように膨張して嵌合凹部40に強固に嵌合され、抜き外しが不可能になる。   Further, the fastening portion 31B of the connecting beam 31 includes a fitting projection 39 made of a shape memory alloy, as shown in FIG. 9, in which the first fasteners 34 or the first fasteners 34 and the second fasteners 35 are arranged. Is fitted into the fitting recess 40 and joined. As shown in FIGS. 9A and 9B, the fitting convex portion 39 is detachably inserted into the fitting concave portion 40 when the room temperature is applied (when the connecting beam 31 is installed). At the operating temperature (about 200 ° C.) of the boiling water reactor equipped with the reactor pressure vessel 11, it expands as shown in FIG. 9C and is firmly fitted into the fitting recess 40, and cannot be removed. .

上述のような連結梁31を、隣接する炉内核計装ハウジング29に設置する設置方法(手順)を、図10を用いて説明する。   An installation method (procedure) for installing the connecting beam 31 as described above in the in-core nuclear instrumentation housing 29 will be described with reference to FIG.

まず、図10(A)に示すように、連結梁31による連結の対象となる炉内核計装ハウジング29の付近の制御棒駆動機構ハウジング27に接続された制御棒案内管26を、内部に収容された制御棒と共に撤去する。   First, as shown in FIG. 10A, the control rod guide tube 26 connected to the control rod drive mechanism housing 27 in the vicinity of the in-core nuclear instrumentation housing 29 to be connected by the connecting beam 31 is accommodated inside. Remove with control rod made.

次に、制御棒案内管26及び制御棒が撤去された制御棒駆動機構ハウジング27の上部に、遠隔操作可能な連結梁設置装置41を設置する。つまり、この連結梁設置装置41は、例えば制御棒案内管26を撤去することで炉心支持板15に形成された開口42を通して、制御棒案内管26及び制御棒が撤去された制御棒駆動機構ハウジング27の上方から搬入されて、この制御棒駆動機構ハウジング27の上部に設置される。   Next, the control beam guide tube 26 and the control rod drive mechanism housing 27 from which the control rod has been removed are installed on the connection beam installation device 41 that can be remotely operated. In other words, the connecting beam installation device 41 includes, for example, a control rod drive mechanism housing in which the control rod guide tube 26 and the control rod are removed through the opening 42 formed in the core support plate 15 by removing the control rod guide tube 26. 27 is carried in from above, and is installed on the upper part of the control rod drive mechanism housing 27.

その後、図10(B)に示すように、連結梁運搬装置43により炉心支持板15の開口42を通して吊り下げ状態で搬入された連結第31を、連結梁設置装置41がアーム44を用いて把持し、この把持した連結梁31を連結対象の炉内核計装ハウジング29の段差部33に締結することで、これらの連結対象の炉内核計装ハウジング29を連結梁31によって互いに連結する。   Thereafter, as shown in FIG. 10B, the connection beam installation device 41 uses the arm 44 to hold the connection No. 31 carried in the suspended state through the opening 42 of the core support plate 15 by the connection beam conveying device 43. Then, the gripped connecting beam 31 is fastened to the stepped portion 33 of the in-core nuclear instrumentation housing 29 to be connected, so that the in-core nuclear instrumentation housing 29 to be connected is connected to each other by the connecting beam 31.

また、隣接する炉内核計装ハウジング29に連結梁31を設置する設置方法(手順)の他の態様を、図11を用いて説明する。   Moreover, the other aspect of the installation method (procedure) which installs the connection beam 31 in the adjacent in-core nuclear instrumentation housing 29 is demonstrated using FIG.

この場合にも、まず、連結梁31による連結対象の炉内核計装ハウジング29の付近の制御棒駆動機構ハウジング27に接続された制御棒案内管26を、内部に収容された制御棒と共に撤去する。   Also in this case, first, the control rod guide tube 26 connected to the control rod drive mechanism housing 27 in the vicinity of the in-core nuclear instrument housing 29 to be connected by the connecting beam 31 is removed together with the control rod accommodated therein. .

次に、制御棒案内管26及び制御棒が撤去された制御棒駆動機構ハウジング27の上方の冷却材24中に、遠隔操作可能な水中浮遊型の連結梁設置装置45を、そのスクリュー46を動作させることで、例えば炉心支持板15の開口42を通過させて移動させる。   Next, in the coolant 24 above the control rod guide tube 26 and the control rod drive mechanism housing 27 from which the control rod has been removed, the remotely floating submerged connecting beam installation device 45 is operated and its screw 46 is operated. Thus, for example, the opening 42 of the core support plate 15 is passed through and moved.

その後、連結梁運搬装置43(図10(B)参照)により炉心支持板15の開口42を通して吊り下げ状態で搬入された連結梁31を、連結梁設置装置45がアーム44を用いて把持し、この把持した連結梁31を連結対象の炉内核計装ハウジング29の段差部33に締結することで、これらの連結対象の炉内核計装ハウジング29を連結梁31によって互いに連結する。   Thereafter, the connecting beam installation device 45 uses the arm 44 to grip the connecting beam 31 carried in a suspended state through the opening 42 of the core support plate 15 by the connecting beam transport device 43 (see FIG. 10B). By fastening the gripped connecting beam 31 to the stepped portion 33 of the in-core nuclear instrument housing 29 to be connected, the in-core reactor instrumentation housing 29 to be connected is connected to each other by the connecting beam 31.

以上のように構成されたことから、本実施形態によれば、次の効果(1)及び(2)を奏する。
(1)図2及び図4に示すように、原子炉圧力容器11における炉心13下方の炉底部25を流れる冷却材24の流動条件が変化した場合でも、隣接する炉内核計装ハウジング29が連結梁31により連結されたので、炉内核計装ハウジング29及び炉内核計装案内管28の冷却材24の流動による振動を低減でき、この結果、これらの炉内核計装ハウジング29及び炉内核計装案内管28の破損を確実に防止できる。
With the configuration as described above, according to the present embodiment, the following effects (1) and (2) are obtained.
(1) As shown in FIGS. 2 and 4, even when the flow condition of the coolant 24 flowing through the bottom 25 of the reactor pressure vessel 11 below the core 13 changes, the adjacent in-core nuclear instrument housing 29 is connected. Since they are connected by the beam 31, vibration due to the flow of the coolant 24 in the in-core nuclear instrument housing 29 and the in-core nuclear instrument guide tube 28 can be reduced. As a result, the in-core nuclear instrument housing 29 and the in-core nuclear instrumentation are reduced. Breakage of the guide tube 28 can be reliably prevented.

(2)隣接する炉内核計装ハウジング29における炉内核計装案内管28との接続部32近傍の段差部33に連結梁31が締結されたので、この段差部33は、連結梁31の締結部31Bにより補強されることで応力集中が抑制される。この結果、炉内核計装ハウジング29に発生する応力を低減できる。   (2) Since the connecting beam 31 is fastened to the stepped portion 33 in the vicinity of the connecting portion 32 of the adjacent in-core nuclear instrumentation housing 29 with the in-core nuclear instrumentation guide tube 28, the stepped portion 33 is fastened to the connecting beam 31. Stress concentration is suppressed by being reinforced by the portion 31B. As a result, the stress generated in the in-core nuclear instrument housing 29 can be reduced.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. It is included in the scope and gist of the invention, and is included in the invention described in the claims and the equivalent scope thereof.

11 原子炉圧力容器
12 原子炉圧力容器本体
13 炉心
15 炉心支持板
24 冷却材
25 炉底部
26 制御棒案内管(原子炉炉内構造物)
27 制御棒駆動機構ハウジング(原子炉炉内構造物)
28 炉内核計装案内管(原子炉炉内構造物)
29 炉内核計装ハウジング(原子炉炉内構造物)
31 連結梁
31A 梁部
31B 締結部
32 接続部
33 段差部
34 第1留め具
35 第2留め具
36 ボルト
38 溶接部
39 嵌合凸部
41、45 連結梁設置装置
42 開口
11 Reactor pressure vessel 12 Reactor pressure vessel body 13 Core 15 Core support plate 24 Coolant 25 Reactor bottom 26 Control rod guide tube (reactor internal structure)
27 Control rod drive mechanism housing (reactor internal structure)
28 In-core nuclear instrumentation guide tube (reactor internal structure)
29 In-core nuclear instrumentation housing (reactor internal structure)
31 connection beam 31A beam part 31B fastening part 32 connection part 33 step part 34 first fastener 35 second fastener 36 bolt 38 welding part 39 fitting convex part 41, 45 connection beam installation device 42 opening

Claims (6)

原子炉圧力容器本体と、
前記原子炉圧力容器本体における炉心下方の炉底部にそれぞれ立設された複数の炉内核計装案内管と、
前記炉内核計装案内管のそれぞれの下方に接続部および段差部を介して同軸に接続された複数の炉内核計装ハウジングと、
隣接する前記炉内核計装ハウジングを前記段差部にて連結する連結梁を備えることを特徴とする原子炉圧力容器。
A reactor pressure vessel body;
A plurality of in-core nuclear instrumentation guide tubes erected at the bottom of the reactor below the core in the reactor pressure vessel body;
A plurality of in-core nuclear instrument housings connected coaxially via a connecting portion and a stepped portion under each of the in-core nuclear instrumentation guide tubes;
A reactor pressure vessel comprising a connecting beam for connecting adjacent nuclear reactor instrumentation housings at the stepped portion.
前記連結梁は、梁部と、この梁部の両端に設けられた締結部とを有して構成され、
前記締結部は、炉内核計装ハウジングの周囲90度の角度範囲に接すると共に前記梁部の両端に一体成形された第1留め具と、前記炉内核計装ハウジングの周囲90度の角度範囲に接する第2留め具とを有し、前記第1留め具同士がまたは前記第1留め具と第2留め具とが組み合わされて構成されたことを特徴とする請求項1に記載の原子炉圧力容器。
The connecting beam is configured to include a beam portion and fastening portions provided at both ends of the beam portion,
The fastening portion is in contact with a 90-degree angle range around the in-core nuclear instrumentation housing and is integrally formed with both ends of the beam portion, and a 90-degree angle range around the in-core nuclear instrumentation housing. 2. The reactor pressure according to claim 1, further comprising a second fastener in contact with each other, wherein the first fasteners are combined with each other or the first fastener and the second fastener are combined. container.
前記連結梁は、4個の第1留め具が炉内核計装ハウジングの全周で接合されて締結部が構成されることで、この炉内核計装ハウジングを隣接する4本の他の炉内核計装ハウジングと連結させ、または、合計で4個の第1留め具及び第2留め具が炉内核計装ハウジングの全周で接合されて締結部が構成されることで、この炉内核計装ハウジングを隣接する最大3本の他の炉内核計装ハウジングと連結させるよう構成されたことを特徴とする請求項2に記載の原子炉圧力容器。 In the connecting beam, four first fasteners are joined around the entire circumference of the in-core nuclear instrumentation housing to form a fastening portion, so that the in-core nuclear instrumentation housing is adjacent to four other in-core cores. The in-core nuclear instrumentation is configured by connecting to the instrument housing or by connecting a total of four first and second fasteners on the entire circumference of the in-core nuclear instrument housing to form a fastening portion. The reactor pressure vessel according to claim 2, wherein the reactor is configured to connect the housing with a maximum of three other in-core nuclear instrument housings. 前記連結梁の締結部は、第1留め具同士がまたは前記第1留め具と第2留め具とが、ボルトを用いて接合、溶接により接合、または沸騰水型原子炉の運転温度において締付状態となる形状記憶合金を用いて嵌合により接合されて構成されたことを特徴とする請求項2または3に記載の原子炉圧力容器。 The fastening portion of the connecting beam is fastened between the first fasteners or between the first fastener and the second fastener using bolts, by welding, or at the operating temperature of the boiling water reactor. The reactor pressure vessel according to claim 2, wherein the reactor pressure vessel is configured to be joined by fitting using a shape memory alloy in a state. 原子炉圧力容器本体における炉心下方の炉底部にそれぞれ立設された複数の炉内核計装案内管と、前記炉内核計装案内管のそれぞれの下方に接続部および段差部を介して同軸に接続された複数の炉内核計装ハウジングと、前記炉底部の前記炉内核計装ハウジング及び前記炉内核計装案内管の付近にそれぞれ立設された複数の制御棒案内管と、前記制御棒案内管のそれぞれの下方に同軸に接続された制御棒駆動機構ハウジングと、を備える原子炉圧力容器の改修方法において、
まず、前記制御棒駆動機構ハウジングのいずれかに接続された前記制御棒案内管を、内部の制御棒と共に撤去し、
次に、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジングの上部に連結梁設置装置を、前記炉心を支持する炉心支持板の開口を通して搬入して設置し、
その後、前記連結梁設置装置が、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジング付近の前記炉内核計装ハウジングの前記段差部に、前記炉心支持板の前記開口を通して搬入された前記連結梁を締結して、前記炉内核計装ハウジングを連結することを特徴とする原子炉圧力容器の改修方法。
A plurality of in-core nuclear instrumentation guide tubes standing on the bottom of the reactor pressure vessel body below the core, respectively, and coaxially connected to each of the in-core nuclear instrumentation guide tubes via a connecting portion and a step portion A plurality of in-core nuclear instrumentation housings, a plurality of control rod guide tubes standing up in the vicinity of the in-core nuclear instrumentation housing and the in-core nuclear instrumentation guide tube at the bottom of the reactor, and the control rod guide tube A control rod drive mechanism housing connected coaxially below each of the reactor pressure vessels,
First, remove the control rod guide tube connected to any of the control rod drive mechanism housing together with the internal control rod,
Next, a connecting beam installation device is installed at the upper part of the control rod drive mechanism housing from which the control rod guide tube and the control rod have been removed, carried through an opening of a core support plate that supports the core, and installed.
Thereafter, the connecting beam installation device passes the opening of the core support plate into the stepped portion of the in-core nuclear instrumentation housing near the control rod drive mechanism housing from which the control rod guide tube and the control rod have been removed. A method of repairing a reactor pressure vessel, comprising: fastening the connected beam that is carried in and connecting the in-core nuclear instrumentation housing.
原子炉圧力容器本体における炉心下方の炉底部にそれぞれ立設された複数の炉内核計装案内管と、前記炉内核計装案内管のそれぞれの下方に接続部及び段差部を介して同軸に接続された複数の炉内核計装ハウジングと、前記炉底部の前記炉内核計装ハウジング及び前記炉内核計装案内管の付近にそれぞれ立設された複数の制御棒案内管と、前記制御棒案内管のそれぞれの下方に同軸に接続された制御棒駆動機構ハウジングと、を備える原子炉圧力容器の改修方法において、
まず、前記制御棒駆動機構ハウジングのいずれかに接続された前記制御棒案内管を、内部の制御棒と共に撤去し、
次に、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジングの上方の冷却材中に水中浮遊型の連結梁設置装置を移動させ、
その後、前記連結梁設置装置が、前記制御棒案内管及び前記制御棒が撤去された前記制御棒駆動機構ハウジング付近の前記炉内核計装ハウジングの前記段差部に、前記炉心を支持する炉心支持板の開口を通して搬入された連結梁を締結して、前記炉内核計装ハウジングを連結することを特徴とする原子炉圧力容器の改修方法。
A plurality of in-core nuclear instrumentation guide tubes standing on the bottom of the reactor pressure vessel main body, respectively, and coaxially connected to the lower part of the in-core nuclear instrumentation guide tube via connecting portions and step portions. A plurality of in-core nuclear instrumentation housings, a plurality of control rod guide tubes standing up in the vicinity of the in-core nuclear instrumentation housing and the in-core nuclear instrumentation guide tube at the bottom of the reactor, and the control rod guide tube A control rod drive mechanism housing connected coaxially below each of the reactor pressure vessels,
First, remove the control rod guide tube connected to any of the control rod drive mechanism housing together with the internal control rod,
Next, the floating rod connecting beam installation device is moved into the coolant above the control rod drive mechanism housing from which the control rod guide tube and the control rod have been removed,
Thereafter, the connecting beam installation device supports the core at the stepped portion of the in-core nuclear instrument housing near the control rod drive mechanism housing from which the control rod guide tube and the control rod have been removed. A method of repairing a reactor pressure vessel, comprising: fastening a connecting beam carried in through an opening of the core and connecting the in-core nuclear instrument housing.
JP2014207990A 2014-10-09 2014-10-09 Reactor pressure vessel and repair method thereof Pending JP2016075651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207990A JP2016075651A (en) 2014-10-09 2014-10-09 Reactor pressure vessel and repair method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207990A JP2016075651A (en) 2014-10-09 2014-10-09 Reactor pressure vessel and repair method thereof

Publications (1)

Publication Number Publication Date
JP2016075651A true JP2016075651A (en) 2016-05-12

Family

ID=55951199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207990A Pending JP2016075651A (en) 2014-10-09 2014-10-09 Reactor pressure vessel and repair method thereof

Country Status (1)

Country Link
JP (1) JP2016075651A (en)

Similar Documents

Publication Publication Date Title
JP5411412B2 (en) How to create a dry environment for underwater repair of reactor bottom heads using segmented caisson
US8194815B2 (en) Apparatus and system for dampening the vibration experienced by an object
JP5685394B2 (en) Riser brace clamp for jet pump
JP5032404B2 (en) Fixing device for measuring pipe in reactor and fixing method using the same
JP2009002946A (en) Inspection, maintenance, and repair apparatus and method for nuclear reactor
KR20170117144A (en) Steam generator with inclined tubesheet
JP4883953B2 (en) Core spray T-box mounting assembly
JP2010286484A (en) Simple riser brace clamp for jet pump
US20100329412A1 (en) System for dampening vibration
US9718151B2 (en) Reactor measurement-pipe maintenance clamp apparatus
JP5021041B2 (en) Mechanical assembly to ensure structural integrity of pipe fittings
JP2016075651A (en) Reactor pressure vessel and repair method thereof
US10249393B2 (en) Modular reactor steam generator configured to cover a reactor outer wall circumference
JP2007232421A (en) Natural circulation type boiling water reactor and its handling method
JP5941433B2 (en) Device for controlling the movement of components
US20160365160A1 (en) Anti-seismic apparatus for control element drive mechanisms
JP5214137B2 (en) Boiling water reactor
JP6882938B2 (en) Foundation members and seismic retrofitting methods
US5642955A (en) Strongback for remotely installing tie rod assembly in annulus below core spray piping in boiling water reactor
JP2017166813A (en) Open rack type vaporization device
JP2007171090A (en) Core shroud supporting device and installation method for core shroud
JP6444199B2 (en) Assembly method of lower core structure
US20120240397A1 (en) Method of removing retainer of jet pump and jet pump
US20100246743A1 (en) Steam flow vortex straightener
JP2014145590A (en) Nuclear reactor repair monitoring device and nuclear reactor repair method