JP2016075560A - Recombination device - Google Patents

Recombination device Download PDF

Info

Publication number
JP2016075560A
JP2016075560A JP2014205635A JP2014205635A JP2016075560A JP 2016075560 A JP2016075560 A JP 2016075560A JP 2014205635 A JP2014205635 A JP 2014205635A JP 2014205635 A JP2014205635 A JP 2014205635A JP 2016075560 A JP2016075560 A JP 2016075560A
Authority
JP
Japan
Prior art keywords
catalyst
recombination
hydrogen
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014205635A
Other languages
Japanese (ja)
Other versions
JP6531890B2 (en
Inventor
利 智 聡 毛
Tomoaki Mori
利 智 聡 毛
田 慎 吾 平
Shingo Hirata
田 慎 吾 平
十 嵐 実 五
Minoru Igarashi
十 嵐 実 五
藤 学 佐
Manabu Sato
藤 学 佐
野 竜 太 郎 日
Ryutaro Hino
野 竜 太 郎 日
地 優 上
Yu Kamiji
地 優 上
田 敦 彦 寺
Atsuhiko Terada
田 敦 彦 寺
畑 保 雄 西
Yasuo Nishihata
畑 保 雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Kawasaki Heavy Industries Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Japan Atomic Energy Agency filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2014205635A priority Critical patent/JP6531890B2/en
Priority to PCT/JP2015/078314 priority patent/WO2016056538A1/en
Publication of JP2016075560A publication Critical patent/JP2016075560A/en
Application granted granted Critical
Publication of JP6531890B2 publication Critical patent/JP6531890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst type recombination device capable of miniaturizing the whole device.SOLUTION: A recombination device includes: a catalyst part 3 for introducing processing object gas containing hydrogen and oxygen, and recombining hydrogen and oxygen; and such a cylindrical part 2 that the processing object gas after being treated in the catalyst part 3 is circulated through the inner part thereof.SELECTED DRAWING: Figure 1

Description

本発明は、触媒を用いて水素と酸素を結合させるための再結合装置に係わり、特に原子力発電所等の原子力関連設備に設置される再結合装置に関する。   The present invention relates to a recombination apparatus for combining hydrogen and oxygen using a catalyst, and more particularly to a recombination apparatus installed in a nuclear-related facility such as a nuclear power plant.

原子力発電所において過酷事故(シビアアクシデント)が発生した場合、炉心冷却能力の低下により燃料被覆管が高温となり、被覆管材料として使用されているジルコニウムと冷却材(水)とが反応する水−ジルコニウム反応、核分裂生成物等からの放射線により水が分解する水の放射性分解などによって、大量の水素が発生する可能性がある。   When a severe accident occurs at a nuclear power plant, the temperature of the fuel cladding tube becomes high due to a decrease in the cooling capacity of the core, and zirconium that is used as the cladding tube material reacts with the coolant (water)-Zirconium A large amount of hydrogen may be generated by the radioactive decomposition of water, which is decomposed by radiation from reaction, fission products, and the like.

この状態を放置しておくと、水素濃度が爆発限界に到達して水素爆発を起こす可能性がある。水素爆発によって原子炉格納容器や原子炉建屋が破損すると、放射性物質が環境中に放出される可能性があるので、過酷事故時における水素爆発を未然に防止するための手段が必要となる。   If this state is left unattended, the hydrogen concentration may reach the explosion limit and cause a hydrogen explosion. If the reactor containment vessel or reactor building is damaged by the hydrogen explosion, radioactive materials may be released into the environment. Therefore, a means for preventing a hydrogen explosion at the time of a severe accident is necessary.

従来、水−ジルコニウム反応により発生した水素を酸素と再結合させて、格納容器や原子炉建屋内の水素濃度を低下させるための再結合装置が知られている。そのような再結合装置の一つとして、触媒を用いて常温での水素と酸素との再結合を可能とした触媒式再結合装置が開発されている(特許文献1、2)。   Conventionally, a recombination apparatus is known for recombining hydrogen generated by a water-zirconium reaction with oxygen to lower the hydrogen concentration in a containment vessel or a reactor building. As one of such recombination apparatuses, a catalytic recombination apparatus that can recombine hydrogen and oxygen at room temperature using a catalyst has been developed (Patent Documents 1 and 2).

原子力施設に使用する触媒式再結合装置においては、運転の確実性を考慮して、電源や外部動力を使用せずに自立動作が可能なことが要求されるため、触媒反応時に生じる熱に起因する浮力を駆動力として利用している。   Catalytic recombination devices used in nuclear facilities are required to be able to operate independently without using a power source or external power in consideration of operational reliability. The buoyant force is used as the driving force.

触媒式再結合装置は、触媒を担持する触媒担体を含む触媒構造体を備えている。   The catalytic recombination apparatus includes a catalyst structure including a catalyst carrier that supports a catalyst.

特開2011−174773号公報JP 2011-174773 A 特開平11−94992号公報Japanese Patent Laid-Open No. 11-94992 特開平10−227885号公報Japanese Patent Laid-Open No. 10-227885

特許文献1の触媒式再結合装置における触媒構造体は、(縦長の)ボックス状のカートリッジに粒状の触媒を充填し、触媒が充填された複数のカートリッジを縦置きに並べて構成されている(ぺブル充填型)。   The catalyst structure in the catalytic recombination apparatus of Patent Document 1 is configured by filling a granular catalyst in a (longitudinal) box-shaped cartridge, and arranging a plurality of cartridges filled with the catalyst vertically (see FIG. Bull filling type).

ぺブル充填型触媒式再結合装置では、単位容積当たりの触媒表面積(反応面積)が大きくとれるため、単位容積当たりの反応が大きく、小型化できる可能性がある。しかし、触媒粒子間の空隙の不均一に起因して、反応物の流れの滞留時間分布、偏流、吹抜けなどが生じ、また触媒層の圧力損失が大きくなるという問題が生じる。特に、大きな圧力損失に対して自然対流を確保するためには、大きなチムニー(煙突)効果を得るために、大きなチムニーが必要となり、再結合装置が全体として大型化してしまう。   In the pebble-filled catalytic recombination apparatus, since the catalyst surface area (reaction area) per unit volume can be increased, the reaction per unit volume is large, and there is a possibility that the size can be reduced. However, due to the non-uniformity of the voids between the catalyst particles, there are problems that the residence time distribution of the reactant flow, the drift, the blow-through, etc. occur, and the pressure loss of the catalyst layer increases. In particular, in order to secure natural convection against a large pressure loss, a large chimney is required to obtain a large chimney effect, and the recombination apparatus becomes large as a whole.

また、特許文献2および3の触媒式再結合装置における触媒構造体は、複数の触媒を複数のプレート状に成形して縦に並べ、プレート間に被処理ガスを流すようにした構造(プレート型)となっている。   Further, the catalyst structure in the catalytic recombination apparatus of Patent Documents 2 and 3 has a structure (plate type) in which a plurality of catalysts are formed into a plurality of plates and arranged vertically, and a gas to be treated flows between the plates. ).

プレート型触媒式再結合装置では、被処理ガスは、適度の間隔を有して平行に配列されたプレート間を流れるため、反応物の流れの滞留時間分布、偏流、吹抜けなどが生じ、また触媒層の圧力損失などの問題は生じない。しかし、プレート型触媒式再結合装置において、触媒が付着されているのは、プレートの表面のみであるため、単位容積当たりの触媒の表面積は、ぺブル充填型より小さくなるため、同一の反応表面積を確保しようとすれば、触媒構造体自体としては大型化することになる。   In the plate-type catalytic recombination apparatus, the gas to be treated flows between the plates arranged in parallel with an appropriate interval, so that the residence time distribution of the reactant flow, drift, blow-off, etc. occur, and the catalyst Problems such as pressure loss in the layer do not occur. However, in the plate-type catalytic recombination apparatus, since the catalyst is attached only to the surface of the plate, the surface area of the catalyst per unit volume is smaller than that of the pebble-filled type. If it is going to ensure, catalyst structure itself will enlarge.

また、原子力発電所の過酷事故時において発生した水素が、比較的狭い場所に溜る可能性がある場合には、該狭所に再結合装置を設置して効率的に水素濃度を低減することが望ましい。しかしながら、従来の再結合装置は、上述したように大型であるため、狭い場所への設置が困難若しくは不可能であった。   If there is a possibility that hydrogen generated during a severe accident at a nuclear power plant may accumulate in a relatively narrow place, a recombination device can be installed in the narrow place to efficiently reduce the hydrogen concentration. desirable. However, since the conventional recombination apparatus is large as described above, it has been difficult or impossible to install in a narrow place.

本発明は、上述した従来技術の問題点に鑑みてなされたものであって、装置全体の小型化を図ることができる触媒式の再結合装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and it is an object of the present invention to provide a catalytic recombination apparatus that can reduce the overall size of the apparatus.

上記課題を解決するために、第1の態様による本発明は、触媒を用いて水素と酸素を結合するための再結合装置であって、表面に前記触媒を担持した貫通孔を多数有し、前記水素と前記酸素を含む処理対象ガスを導入して前記水素と前記酸素を再結合する触媒部と、前記触媒部により処理された後の前記処理対象ガスがその内部を流通する筒状部と、を備える、ことを特徴とする。   In order to solve the above-mentioned problem, the present invention according to the first aspect is a recombination device for combining hydrogen and oxygen using a catalyst, and has a large number of through-holes carrying the catalyst on the surface, A catalyst part that introduces a gas to be treated containing hydrogen and oxygen and recombines the hydrogen and oxygen; and a cylindrical part through which the gas to be treated after being treated by the catalyst part flows. , Comprising.

第2の態様による本発明は、第1の態様による本発明において、前記触媒部が、お互いに隣り合う貫通孔が薄壁で仕切られて形成されている、ことを特徴とする。   The present invention according to a second aspect is characterized in that, in the present invention according to the first aspect, the catalyst part is formed by partitioning through holes adjacent to each other with a thin wall.

第3の態様による本発明は、第1または第2の態様による本発明において、前記貫通孔の断面が、多角形である、ことを特徴とする。   The present invention according to a third aspect is characterized in that, in the present invention according to the first or second aspect, a cross section of the through hole is a polygon.

第4の態様による本発明は、第1乃至第3のいずれかの態様による本発明において、前記触媒部における前記水素と前記酸素の再結合反応により発生した熱に起因するガスの浮力によって、前記貫通孔における流動抵抗に抗して前記貫通孔において前記処理対象ガスの流れが発生するように、前記筒状部の有効長さおよび前記触媒部の高さが設定されている、ことを特徴とする。   According to a fourth aspect of the present invention, in the present invention according to any one of the first to third aspects, the buoyancy of the gas caused by the heat generated by the recombination reaction of the hydrogen and the oxygen in the catalyst unit The effective length of the cylindrical portion and the height of the catalyst portion are set so that the flow of the gas to be treated is generated in the through hole against the flow resistance in the through hole. To do.

第5の態様による本発明は、第4の態様による本発明において、前記触媒部の高さは約5mm以下である、ことを特徴とする。   The present invention according to the fifth aspect is characterized in that, in the present invention according to the fourth aspect, the height of the catalyst portion is about 5 mm or less.

第6の態様による本発明は、第4または第5の態様による本発明において、前記貫通孔の流路相当直径が1mm乃至1.79mmである、ことを特徴とする。   The present invention according to a sixth aspect is characterized in that, in the present invention according to the fourth or fifth aspect, the flow path equivalent diameter of the through hole is 1 mm to 1.79 mm.

第7の態様による本発明は、第1乃至第6のいずれかの態様による本発明において、前記筒状部の出口側に、前記筒状部内への水や異物の侵入を防止するための侵入防止手段をさらに有する、ことを特徴とする。   According to a seventh aspect of the present invention, in the present invention according to any one of the first to sixth aspects, an intrusion for preventing intrusion of water or foreign matter into the cylindrical portion on the outlet side of the cylindrical portion. It further has a prevention means.

第8の態様による本発明は、第7の態様による本発明において、前記侵入防止手段は、前記筒状部の上端開口を封止する傘状部材を有し、前記筒状部の上端部の側面にガス流出口が形成されている、ことを特徴とする。   The present invention according to an eighth aspect is the present invention according to the seventh aspect, wherein the intrusion prevention means includes an umbrella-shaped member that seals the upper end opening of the cylindrical portion, and the upper end portion of the cylindrical portion is A gas outlet is formed on the side surface.

第9の態様による本発明は、第1乃至第8のいずれかの態様による本発明において、前記触媒構造体は、前記筒状部の入口部に着脱自在に装着されている、ことを特徴とする。   The present invention according to a ninth aspect is characterized in that, in the present invention according to any one of the first to eighth aspects, the catalyst structure is detachably attached to an inlet portion of the cylindrical portion. To do.

本発明による再結合装置によれば、触媒部分の構造を小型化することにより、装置全体の小型化を図ることができる。   According to the recombination apparatus according to the present invention, the entire apparatus can be downsized by downsizing the structure of the catalyst portion.

本発明の一実施形態による触媒式の再結合装置の概略構成図。1 is a schematic configuration diagram of a catalytic recombination device according to an embodiment of the present invention. 図1のII−II線に沿った矢視図。The arrow line view along the II-II line of FIG. 図1のIII−III線に沿った矢視図。FIG. 3 is an arrow view along the line III-III in FIG. 1. 図1のIV−IV線に沿った矢視図。The arrow line view along the IV-IV line of FIG. 図1に示した再結合装置の触媒支持部材を拡大して示した上面図。The top view which expanded and showed the catalyst support member of the recombination apparatus shown in FIG. 図5に示した触媒支持部材の縦断面図。FIG. 6 is a longitudinal sectional view of the catalyst support member shown in FIG. 5. 図5に示した触媒支持部材の底面図。The bottom view of the catalyst support member shown in FIG. 図1に示した再結合装置の触媒ホルダーを拡大して示した上面図。The top view which expanded and showed the catalyst holder of the recombination apparatus shown in FIG. 図8に示した触媒ホルダーの縦断面図。The longitudinal cross-sectional view of the catalyst holder shown in FIG. 図8に示した触媒ホルダーの底面図。The bottom view of the catalyst holder shown in FIG. 図1に示した再結合装置の触媒部の構造を説明するための図であり、(a)は触媒部を模式的に示した平面図、(b)は(a)のA−A断面図。It is a figure for demonstrating the structure of the catalyst part of the recombination apparatus shown in FIG. 1, (a) is the top view which showed the catalyst part typically, (b) is AA sectional drawing of (a). . (a)は図11(a)のXIIa部を拡大して示した平面図、(b)は図11(b)のXIIb部を拡大して示した縦断面図。(A) is the top view which expanded and showed the XIIa part of Fig.11 (a), (b) is the longitudinal cross-sectional view which expanded and showed the XIIb part of FIG.11 (b). 図1のXIII部を拡大して示した縦断面図。The longitudinal cross-sectional view which expanded and showed the XIII part of FIG. 触媒部の厚さと水素処理量との関係を示したグラフ。The graph which showed the relationship between the thickness of a catalyst part, and the amount of hydrogen treatment. 図1に示した再結合装置の流路構成モデルを示した模式図。The schematic diagram which showed the flow-path structural model of the recombination apparatus shown in FIG. 図1に示した再結合装置の最適範囲を示したグラフ。The graph which showed the optimal range of the recombination apparatus shown in FIG.

以下、本発明の一実施形態による触媒式の再結合装置について、図面を参照して説明する。   Hereinafter, a catalytic recombination apparatus according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態による再結合装置は、触媒を用いて水素と酸素を結合するための装置であり、原子力発電所等の原子力関連設備に設置される。   The recombination apparatus according to this embodiment is an apparatus for combining hydrogen and oxygen using a catalyst, and is installed in a nuclear-related facility such as a nuclear power plant.

図1乃至図4に示したように、本実施形態による再結合装置1は、水素および酸素を含む処理対象ガスがその内部を流通する筒状部2を有する。筒状部2は、円筒状の部材で構成されている。但し、筒状部2を構成する部材は円筒状部材に限られず、例えば方形断面の筒状部材を用いることもできる。   As shown in FIGS. 1 to 4, the recombination apparatus 1 according to the present embodiment has a cylindrical portion 2 through which a processing target gas containing hydrogen and oxygen flows. The cylindrical part 2 is comprised with the cylindrical member. However, the member which comprises the cylindrical part 2 is not restricted to a cylindrical member, For example, the cylindrical member of a square cross section can also be used.

筒状部2の下端には、表面に触媒を担持した貫通孔(流路)を多数有する触媒部3を含む触媒構造体4が設けられている。触媒構造体4は、円盤状又は円筒状の外形をしており、図5乃至図7に示した構造体支持部材5の上面の円周状突起の内周側に嵌合され、構造体支持部材5と共に筒状部2の下端開口に装着される。   At the lower end of the cylindrical portion 2, a catalyst structure 4 including a catalyst portion 3 having a large number of through holes (flow paths) carrying a catalyst on the surface is provided. The catalyst structure 4 has a disk-like or cylindrical outer shape and is fitted to the inner peripheral side of the circumferential protrusion on the upper surface of the structure support member 5 shown in FIGS. Attached to the lower end opening of the cylindrical portion 2 together with the member 5.

触媒構造体4は、図8乃至図10に示した触媒ホルダー6と、図11に示した触媒部3とを有する。触媒ホルダー6は、触媒部3の周縁部を保持する略円環状の枠状保持部材から成り、円盤状又は円筒状の触媒部3は、触媒ホルダー6の凹部に嵌合される。触媒ホルダー6は、例えばステンレス材料で形成することができる。   The catalyst structure 4 includes the catalyst holder 6 shown in FIGS. 8 to 10 and the catalyst portion 3 shown in FIG. The catalyst holder 6 is composed of a substantially annular frame-shaped holding member that holds the peripheral edge portion of the catalyst portion 3, and the disc-shaped or cylindrical catalyst portion 3 is fitted into the concave portion of the catalyst holder 6. The catalyst holder 6 can be formed of, for example, a stainless material.

触媒部3に設けられた多数の貫通孔(流路)は、その断面が三角形、四角形、五角形又は六角形などの多角形であって、お互いに隣接する流路が薄壁で仕切られて形成されている(ハニカム構造)。触媒部は、多孔質なセラミックやステンレス鋼などを支持体としている。すなわち、触媒部3には、図12に示したように多数の貫通孔7が形成されている。貫通孔7は、筒状部2への処理対象ガスの導入方向(本例においては、筒状部2の軸線方向)に沿って延在しており、その内部を処理対象ガス(水素と酸素を含む)が流通する。   A large number of through-holes (flow paths) provided in the catalyst unit 3 are polygons such as a triangle, a quadrangle, a pentagon, or a hexagon, and the flow paths adjacent to each other are partitioned by thin walls. (Honeycomb structure). The catalyst part uses a porous ceramic or stainless steel as a support. That is, a large number of through holes 7 are formed in the catalyst portion 3 as shown in FIG. The through-hole 7 extends along the direction in which the processing target gas is introduced into the cylindrical portion 2 (in this example, the axial direction of the cylindrical portion 2). Is distributed).

触媒部3には、少なくとも各貫通孔7の内周面に触媒が付与されている。ハニカム構造を採用することによって、触媒部3の比表面積(単位体積当たりの表面積)を増大させることができるので、処理対象ガスと触媒との接触効率を大幅に高めることができる。   A catalyst is applied to the catalyst portion 3 at least on the inner peripheral surface of each through hole 7. By adopting the honeycomb structure, the specific surface area (surface area per unit volume) of the catalyst part 3 can be increased, so that the contact efficiency between the gas to be treated and the catalyst can be greatly increased.

図13に示したように、筒状部2の下端部には鍔状部2Aが形成されている。筒状部2の鍔状部2Aと外部支持片8との間に構造体支持部材5の周縁部5Aが配置され、ボルト9によってこれらの部材が積層状態で固定されている。   As shown in FIG. 13, a bowl-shaped portion 2 </ b> A is formed at the lower end portion of the tubular portion 2. A peripheral portion 5A of the structure support member 5 is disposed between the flange-shaped portion 2A of the cylindrical portion 2 and the external support piece 8, and these members are fixed in a laminated state by bolts 9.

図1に示したように、筒状部2の出口側(上端側)には、筒状部2内への水や異物の侵入を防止するための侵入防止手段10が設けられている。侵入防止手段10は、筒状部2の上端開口を封止する傘状部材11を含む。原子力発電所における事故時対応として、原子炉格納容器の内部にスプレー水が噴霧される場合があるが、傘状部材11によって、スプレー水の筒状部2内への侵入を防止することができる。これにより、触媒に水が付着することにより基礎反応が阻害されることを防止できる。   As shown in FIG. 1, on the outlet side (upper end side) of the cylindrical portion 2, an intrusion prevention means 10 for preventing intrusion of water and foreign matter into the cylindrical portion 2 is provided. The intrusion prevention means 10 includes an umbrella-like member 11 that seals the upper end opening of the tubular portion 2. In response to an accident at a nuclear power plant, spray water may be sprayed inside the reactor containment vessel, but the umbrella-shaped member 11 can prevent the spray water from entering the tubular portion 2. . Thereby, it can prevent that basic reaction is inhibited by water adhering to a catalyst.

筒状部2の上端側の側面には、ガス流出口12が形成されており、筒状部2内を流通するガスは、ガス流出口12を介して側方に放出される。ガス流出口12には、網状部材13が設けられており、網状部材13は、筒状部2内への異物(飛来物)の侵入を防止する侵入防止手段10として機能する。   A gas outlet 12 is formed on the side surface on the upper end side of the cylindrical portion 2, and the gas flowing through the cylindrical portion 2 is discharged to the side via the gas outlet 12. A mesh member 13 is provided at the gas outlet 12, and the mesh member 13 functions as an intrusion prevention means 10 that prevents intrusion of foreign matter (flying objects) into the cylindrical portion 2.

本実施形態による再結合装置1は、その稼働に際して電源を必要とせず、筒状部2内での自然対流を駆動力として利用するものである。すなわち、触媒構造体4における水素と酸素の再結合反応により発生した熱に起因するガスの浮力によって、触媒部3の複数の貫通孔7における流動抵抗に抗して筒状部2内で自然対流が発生するように、筒状部2の有効長さ(自然対流の発生に寄与する部分の長さ)および触媒部3の高さが設定されている。   The recombination device 1 according to the present embodiment does not require a power source for its operation, and uses natural convection in the cylindrical portion 2 as a driving force. That is, natural convection in the cylindrical portion 2 against the flow resistance in the plurality of through holes 7 of the catalyst portion 3 due to the buoyancy of the gas due to the heat generated by the recombination reaction of hydrogen and oxygen in the catalyst structure 4 The effective length of the cylindrical portion 2 (the length of the portion that contributes to the occurrence of natural convection) and the height of the catalyst portion 3 are set.

すなわち、再結合装置1の処理対象ガスは、筒状部2の下端入口から流入し、触媒構造体4を通過する際に、水素と酸素の再結合反応によって水蒸気が生じる。なお、触媒の存在下においては、再結合反応は常温でも生じる。再結合反応により発生した熱によりガスが加熱されて密度差による浮力が生じ、これを駆動力として自然対流が生じる(チムニー効果)。生成された水蒸気を含む処理後のガスは、筒状部2の上部側面のガス流出口12から外部へ放出される。   That is, when the gas to be processed of the recombination apparatus 1 flows from the lower end inlet of the cylindrical portion 2 and passes through the catalyst structure 4, water vapor is generated by the recombination reaction of hydrogen and oxygen. In the presence of a catalyst, the recombination reaction occurs even at room temperature. The gas is heated by the heat generated by the recombination reaction to generate buoyancy due to the density difference, and natural convection is generated using this as a driving force (chimney effect). The treated gas containing the generated water vapor is discharged to the outside from the gas outlet 12 on the upper side surface of the cylindrical portion 2.

図14は、触媒高さ(触媒部3の高さ)と水素処理量との関係を、水素濃度4vol%、反応率100%、自然対流の場合について示している。水素処理量は、再結合装置1への処理対象ガスの単位流入面積当たりの処理量(kg/h)を示している。   FIG. 14 shows the relationship between the catalyst height (the height of the catalyst unit 3) and the hydrogen treatment amount in the case of a hydrogen concentration of 4 vol%, a reaction rate of 100%, and natural convection. The hydrogen processing amount indicates the processing amount (kg / h) per unit inflow area of the gas to be processed into the recombination apparatus 1.

図14から分かるように、触媒高さ(触媒部3の高さ)が大きくなるにつれて、水素処理量は小さくなっている。水素と酸素との反応は非常に早いので、処理対象ガスが触媒部3に導入された直後に反応が実質的に完了する。このため、触媒高さを大きくしても、反応促進への寄与はほとんど無い。むしろ、触媒部3における流動抵抗が大きくなるので、処理対象ガスの流量が低下し、その結果、水素処理量が低下してしまう。
したがって、触媒部の高さを5mmより大きくしても、水素処理能力は低下する一方再結合装置が大型化するのに対して、触媒部の高さを5mmより小さくすると、水素処理能力が向上し、かつ再結合装置が小型できることがわかる。
As can be seen from FIG. 14, the amount of hydrogen treatment decreases as the catalyst height (the height of the catalyst unit 3) increases. Since the reaction between hydrogen and oxygen is very fast, the reaction is substantially completed immediately after the gas to be treated is introduced into the catalyst unit 3. For this reason, even if the catalyst height is increased, there is almost no contribution to reaction promotion. Rather, since the flow resistance in the catalyst unit 3 increases, the flow rate of the gas to be processed decreases, and as a result, the amount of hydrogen treatment decreases.
Therefore, even if the height of the catalyst part is larger than 5 mm, the hydrogen treatment capacity is reduced, while the recombination apparatus is enlarged. On the other hand, if the height of the catalyst part is smaller than 5 mm, the hydrogen treatment capacity is improved. And it turns out that a recombination apparatus can be reduced in size.

次に、本実施形態における結合装置として実用上望ましい範囲(主要部寸法)について検討する。   Next, a practically desirable range (major part dimensions) for the coupling device in the present embodiment will be considered.

図15は、本実施形態による再結合装置の流路構成モデルを示している。   FIG. 15 shows a flow path configuration model of the recombination device according to the present embodiment.

水素と酸素の触媒反応による発熱に伴う浮力は、流れが層流域にある場合は以下の式(1)で表される。   The buoyancy accompanying heat generated by the catalytic reaction of hydrogen and oxygen is expressed by the following formula (1) when the flow is in a laminar flow region.

=Δρ×g×h ・・・・(1)
ここで、
:触媒反応による発熱に伴う浮力[N/m
Δρ:密度差ρIN−ρOUT[kg/m
ρIN:入口側気体密度[kg/m
ρOUT:出口側気体密度[kg/m
g:重力加速度[m/s
:チムニー高さ[m]
なお、チムニー高さとは、筒状部2の内部でチムニー効果が生じる部分に対応する有効高さである。
P A = Δρ × g × h 2 (1)
here,
P A : Buoyancy due to heat generation by catalytic reaction [N / m 2 ]
Δρ: density difference ρ IN −ρ OUT [kg / m 3 ]
ρ IN : Inlet side gas density [kg / m 3 ]
ρ OUT : outlet side gas density [kg / m 3 ]
g: Gravity acceleration [m / s 2 ]
h 2 : Chimney height [m]
The chimney height is an effective height corresponding to a portion where the chimney effect occurs in the cylindrical portion 2.

触媒部3における流動抵抗は、以下の式(2)で表される。   The flow resistance in the catalyst part 3 is represented by the following formula (2).

=32×μ×h×VIN/d ・・・・(2)
ここで、
:流動抵抗[N/m
μ:粘性係数[Pa・s]
:触媒高さ[m]
IN:入口流速[m/s]
:触媒流路相当直径[m]
触媒による発熱に伴う浮力Pと触媒部3における流動抵抗Pとが釣り合う(P=P)と仮定すると、式(1)と式(2)より、以下となる。
P B = 32 × μ × h 1 × V IN / d 1 2 (2)
here,
P B : Flow resistance [N / m 2 ]
μ: Viscosity coefficient [Pa · s]
h 1 : catalyst height [m]
V IN : Inlet flow velocity [m / s]
d 1 : catalyst channel equivalent diameter [m]
Assuming the flow resistance P B in buoyancy P A and the catalyst unit 3 due to heat generated by the catalyst are balanced with (P A = P B), and formula (1) from equation (2) becomes less.

/h=32×μ×VIN/d /(Δρ×g) ・・・・(3)

また、H=h+hとすると、以下となる。
h 2 / h 1 = 32 × μ × V IN / d 1 2 / (Δρ × g) (3)

When H = h 1 + h 2 , the following is obtained.

H/h=32×μ×VIN/d /(Δρ×g)+1・・・(4)
図16は、式(4)を基に作成した本実施形態による再結合装置として実用上望ましい範囲(グラフ中の黒塗部分)を示している。
H / h 1 = 32 × μ × V IN / d 1 2 / (Δρ × g) +1 (4)
FIG. 16 shows a practically desirable range (blacked portion in the graph) for the recombination device according to the present embodiment created based on the formula (4).

Hの上限を再結合装置の小型化のため300mm、hの下限を製作上の制限から3mmとしたため、図16において、H/hは、上限については100、下限については、H=h(h=0mm)の場合であることから1としている。また、VINの下限は、既往の再結合装置の水素処理量を考慮して0.3m/sとしている。dの上限は、製作可能な触媒部を基に1.79mmとしている。 Since the upper limit of H is set to 300 mm for the downsizing of the recombination apparatus and the lower limit of h 1 is set to 3 mm from the manufacturing limit, in FIG. 16, H / h 1 is 100 for the upper limit and H = h for the lower limit. 1 because it is the case of 1 (h 2 = 0 mm). The lower limit of VIN is set to 0.3 m / s in consideration of the hydrogen treatment amount of the existing recombination apparatus. The upper limit of d 1 is 1.79 mm based on the catalyst part that can be manufactured.

以上述べたように、本実施形態による触媒式の再結合装置1によれば、触媒部3は、筒状部2への処理対象ガスの導入方向に沿って多数の断面が微小な貫通孔7が形成され、かつ高さが小さいので、大きな触媒面積確保による小型でかつ高い処理能力を確保できるとともに、触媒層における圧力損失の低減が実現できる。触媒層の圧力損失の提言は、比較的小さな筒状部であっても、チムニー効果による自然対流を確保できるため、従来の再結合装置に比べて、触媒の単位体積当たりの水素処理量を大幅に増大させることができる。   As described above, according to the catalytic recombination device 1 according to the present embodiment, the catalyst unit 3 has through-holes 7 having a large number of cross-sections along the introduction direction of the gas to be processed into the cylindrical unit 2. Is formed and the height is small, it is possible to secure a small and high processing capacity by securing a large catalyst area, and to realize a reduction in pressure loss in the catalyst layer. The proposal for pressure loss in the catalyst layer is to ensure natural convection due to the chimney effect even with a relatively small cylindrical part, so the amount of hydrogen treated per unit volume of the catalyst is greatly increased compared to conventional recombination equipment. Can be increased.

以上の検討結果を踏まえた本実施形態による再結合装置1おいては、既往の再結合装置の水素処理量を考慮して、触媒高さ(触媒部3の厚さ)を5mmに設定すると、触媒部3の直径は93mmであり、装置全体の概略寸法は、直径105mm、高さ420mmで、重量は約2kgである。これは、既往の再結合装置の寸法・重量に比べて、大幅に小型化されている。   In the recombination apparatus 1 according to the present embodiment based on the above examination results, the catalyst height (thickness of the catalyst unit 3) is set to 5 mm in consideration of the hydrogen treatment amount of the existing recombination apparatus. The diameter of the catalyst unit 3 is 93 mm, and the overall dimensions of the entire apparatus are a diameter of 105 mm, a height of 420 mm, and a weight of about 2 kg. This is much smaller than the size and weight of the existing recombination apparatus.

但し、本発明による再結合装置における触媒部の厚さや装置全体の寸法は、これらの数値に限定されるものではなく、例えば、前記で説明したような実用上望ましい範囲で適宜選択して設定することができる。 その結果、触媒部3を含む触媒構造体4のみでなく、筒状部を含む再結合装置全体の寸法を、従来の触媒式再結合装置の場合に比して大幅に小さくすることができる。これにより、装置全体の小型化および軽量化を図ることができる。   However, the thickness of the catalyst part and the overall dimensions of the recombination apparatus according to the present invention are not limited to these numerical values, and are appropriately selected and set within a practically desirable range as described above, for example. be able to. As a result, not only the catalyst structure 4 including the catalyst part 3 but also the entire recombination apparatus including the cylindrical part can be greatly reduced in size as compared with the case of the conventional catalytic recombination apparatus. Thereby, size reduction and weight reduction of the whole apparatus can be achieved.

再結合装置1の小型・軽量化により、装置の据付け・取外し作業が容易となり、また、作業時間の短縮による作業員の被ばく量の低減も可能となる。   Due to the small size and light weight of the recombination device 1, the device can be easily installed and removed, and the exposure amount of the worker can be reduced by shortening the work time.

また、再結合装置1の小型・軽量化は、水素が溜る可能性のある狭い場所への再結合装置1の設置を可能とし、或いは、必要な水素処理量に応じて多くの基数を容易に設置することが可能となる。   Further, the downsizing and weight reduction of the recombination device 1 makes it possible to install the recombination device 1 in a narrow place where hydrogen can accumulate, or to easily increase a large number of bases depending on the required amount of hydrogen treatment. It becomes possible to install.

また、本実施形態による再結合装置1によれば、触媒構造体4が筒状部2の下端部にボルト9で着脱自在に装着されているので、ボルト9を外して筒状部2から触媒構造体4を取り外すことにより、触媒の交換を容易に行なうことができる。   Further, according to the recombination device 1 according to the present embodiment, since the catalyst structure 4 is detachably attached to the lower end portion of the cylindrical portion 2 with the bolt 9, the bolt 9 is removed and the catalyst is removed from the cylindrical portion 2. By removing the structure 4, the catalyst can be easily replaced.

1 再結合装置
2 筒状部
2A 筒状部下端の鍔状部
3 触媒部(有孔板状部材)
4 触媒構造体
5 構造体支持部材
5A 構造体支持部材の周縁部
6 触媒ホルダー
7 触媒部の貫通孔
8 外部支持片
9 ボルト
10 侵入防止手段
11 傘状部材
12 ガス流出口
13 網状部材
DESCRIPTION OF SYMBOLS 1 Recombination apparatus 2 Cylindrical part 2A Cylindrical part of a cylindrical part lower end 3 Catalyst part (perforated plate-shaped member)
DESCRIPTION OF SYMBOLS 4 Catalyst structure 5 Structure support member 5A Peripheral part of structure support member 6 Catalyst holder 7 Through hole of catalyst part 8 External support piece 9 Bolt 10 Intrusion prevention means 11 Umbrella-shaped member 12 Gas outlet 13 Net-like member

Claims (9)

触媒を用いて水素と酸素を結合するための再結合装置であって、
表面に前記触媒を担持した貫通孔を多数有し、前記水素と前記酸素を含む処理対象ガスを導入して前記水素と前記酸素を再結合する触媒部と、
前記触媒部により処理された後の前記処理対象ガスがその内部を流通する筒状部と、
を備える、再結合装置。
A recombination device for combining hydrogen and oxygen using a catalyst,
A catalyst part having a large number of through-holes carrying the catalyst on the surface, introducing a gas to be treated containing the hydrogen and oxygen, and recombining the hydrogen and oxygen;
A cylindrical part through which the gas to be treated after being treated by the catalyst part circulates;
A recombination device.
前記触媒部が、お互いに隣り合う貫通孔が薄壁で仕切られて形成されている請求項1記載の再結合装置。   The recombination apparatus according to claim 1, wherein the catalyst part is formed by partitioning through-holes adjacent to each other with a thin wall. 前記貫通孔の断面が、多角形である、請求項1または2に記載の再結合装置。   The recombination apparatus according to claim 1, wherein a cross-section of the through hole is a polygon. 前記触媒部における前記水素と前記酸素の再結合反応により発生した熱に起因するガスの浮力によって、前記貫通孔における流動抵抗に抗して前記貫通孔において前記処理対象ガスの流れが発生するように、前記筒状部の有効長さおよび前記触媒部の高さが設定されている、請求項1乃至3いずれかに記載の再結合装置。   The flow of the gas to be treated is generated in the through hole against the flow resistance in the through hole by the buoyancy of the gas caused by the heat generated by the recombination reaction of the hydrogen and oxygen in the catalyst unit. The recombination apparatus according to any one of claims 1 to 3, wherein an effective length of the cylindrical portion and a height of the catalyst portion are set. 前記触媒部の高さは約5mm以下である、請求項4記載の再結合装置。   The recombination apparatus according to claim 4, wherein the height of the catalyst portion is about 5 mm or less. 前記貫通孔の流路相当直径が1mm乃至1.79mmである、請求項4または5に記載の再結合装置。   The recombination apparatus according to claim 4 or 5, wherein a diameter corresponding to the flow path of the through hole is 1 mm to 1.79 mm. 前記筒状部の出口側に、前記筒状部内への水や異物の侵入を防止するための侵入防止手段をさらに有する、請求項1乃至6のいずれか一項に記載の再結合装置。   The recombination device according to any one of claims 1 to 6, further comprising an intrusion prevention unit for preventing intrusion of water and foreign matter into the tubular portion on the outlet side of the tubular portion. 前記侵入防止手段は、前記筒状部の上端開口を封止する傘状部材を有し、
前記筒状部の上端部の側面にガス流出口が形成されている、請求項7記載の再結合装置。
The intrusion prevention means has an umbrella-like member that seals the upper end opening of the cylindrical portion,
The recombination apparatus according to claim 7, wherein a gas outlet is formed on a side surface of an upper end portion of the cylindrical portion.
前記触媒構造体は、前記筒状部の入口部に着脱自在に装着されている、請求項1乃至8のいずれか一項に記載の再結合装置。
The recombination device according to any one of claims 1 to 8, wherein the catalyst structure is detachably attached to an inlet portion of the cylindrical portion.
JP2014205635A 2014-10-06 2014-10-06 Recoupling device Active JP6531890B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014205635A JP6531890B2 (en) 2014-10-06 2014-10-06 Recoupling device
PCT/JP2015/078314 WO2016056538A1 (en) 2014-10-06 2015-10-06 Recombination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205635A JP6531890B2 (en) 2014-10-06 2014-10-06 Recoupling device

Publications (2)

Publication Number Publication Date
JP2016075560A true JP2016075560A (en) 2016-05-12
JP6531890B2 JP6531890B2 (en) 2019-06-19

Family

ID=55653149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205635A Active JP6531890B2 (en) 2014-10-06 2014-10-06 Recoupling device

Country Status (2)

Country Link
JP (1) JP6531890B2 (en)
WO (1) WO2016056538A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468697A (en) * 1987-08-14 1989-03-14 Siemens Ag Recoupler for hydrogen and oxygen
JPH02137703A (en) * 1988-11-16 1990-05-28 Hitachi Ltd Oxygen-hydrogen recombiner
JPH10227885A (en) * 1997-02-17 1998-08-25 Hitachi Ltd Flammable gas concentration controlling system
JP2005337086A (en) * 2004-05-26 2005-12-08 Ngk Insulators Ltd Pressure loss presumption method of honeycomb structure body, honeycomb structure body and its manufacturing method
JP2009520663A (en) * 2005-12-23 2009-05-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Catalyst for recombining hydrogen with oxygen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468697A (en) * 1987-08-14 1989-03-14 Siemens Ag Recoupler for hydrogen and oxygen
JPH02137703A (en) * 1988-11-16 1990-05-28 Hitachi Ltd Oxygen-hydrogen recombiner
JPH10227885A (en) * 1997-02-17 1998-08-25 Hitachi Ltd Flammable gas concentration controlling system
JP2005337086A (en) * 2004-05-26 2005-12-08 Ngk Insulators Ltd Pressure loss presumption method of honeycomb structure body, honeycomb structure body and its manufacturing method
JP2009520663A (en) * 2005-12-23 2009-05-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Catalyst for recombining hydrogen with oxygen

Also Published As

Publication number Publication date
JP6531890B2 (en) 2019-06-19
WO2016056538A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US10717660B2 (en) Vessel for removing radionuclides from a liquid
JP6140760B2 (en) Used nuclear fuel assembly storage container, used nuclear fuel assembly storage container assembly, and spent nuclear fuel assembly storage container assembly method
UA121845C2 (en) Filter for a nuclear reactor containment ventilation system
JP6309746B2 (en) Hydrogen removal device
TW201423764A (en) Systems and methods for dry storage and/or transport of consolidated nuclear spent fuel rods
RU2453006C1 (en) Container to transport spent nuclear fuel
JP6624584B2 (en) Recombination device
US7027549B2 (en) Nuclear power plant system and method of operating the same
WO2016056538A1 (en) Recombination device
JP2015045518A (en) Filter-equipped vent device
JP5898783B2 (en) Natural circulation boiling water reactor and its chimney
JP4458489B2 (en) Channel forming device and natural circulation boiling water reactor
CN102371135A (en) Improved pressure release device for reaction vessel
JP2010217091A (en) Containment vessel passive cooling system and liquid-metal-cooled reactor
JP6490952B2 (en) Reactor and water treatment device
JP2016145752A (en) Radioactive substance removal device
JPH0772293A (en) Cartridge of catalytic reaction equipment
JP6367700B2 (en) Decontamination method for contaminated water storage tank
Hirata et al. Development of New Type Passive Autocatalytic Recombiner–Part 2. Proposal of Conceptual Structure
JP5684909B2 (en) Cooling water filtering device and cooling water filtering method for primary circulation path of nuclear power plant
JP4961502B2 (en) Radioactive material storage method
JP4158799B2 (en) Radioactive waste storage facility
JP6180748B2 (en) Sedimentation separation apparatus and sedimentation separation method for radioactive liquid waste
JP2011203030A (en) Hydrotreating device of reactor containment vessel
JP6355535B2 (en) Reactor and water treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R150 Certificate of patent or registration of utility model

Ref document number: 6531890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250