JP6624584B2 - Recombination device - Google Patents

Recombination device Download PDF

Info

Publication number
JP6624584B2
JP6624584B2 JP2014205637A JP2014205637A JP6624584B2 JP 6624584 B2 JP6624584 B2 JP 6624584B2 JP 2014205637 A JP2014205637 A JP 2014205637A JP 2014205637 A JP2014205637 A JP 2014205637A JP 6624584 B2 JP6624584 B2 JP 6624584B2
Authority
JP
Japan
Prior art keywords
catalyst
cylindrical body
hydrogen
recombination device
recombination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014205637A
Other languages
Japanese (ja)
Other versions
JP2016074554A (en
Inventor
利 智 聡 毛
利 智 聡 毛
田 慎 吾 平
田 慎 吾 平
十 嵐 実 五
十 嵐 実 五
藤 学 佐
藤 学 佐
野 竜 太 郎 日
野 竜 太 郎 日
地 優 上
地 優 上
田 敦 彦 寺
田 敦 彦 寺
畑 保 雄 西
畑 保 雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Kawasaki Motors Ltd
Original Assignee
Japan Atomic Energy Agency
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Kawasaki Jukogyo KK filed Critical Japan Atomic Energy Agency
Priority to JP2014205637A priority Critical patent/JP6624584B2/en
Priority to PCT/JP2015/078316 priority patent/WO2016056539A1/en
Publication of JP2016074554A publication Critical patent/JP2016074554A/en
Application granted granted Critical
Publication of JP6624584B2 publication Critical patent/JP6624584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inorganic Chemistry (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、触媒を用いて水素と酸素を結合させるための再結合装置に関する。   The present invention relates to a recombination device for bonding hydrogen and oxygen using a catalyst.

高レベルの放射性廃棄物が貯蔵される放射性廃棄物貯槽においては、水の放射性分解によって放射性廃棄物貯槽内に水素が発生することが考えられる。時間の経過とともに内部水素濃度が上昇し、爆発限界に到達した場合には、貯槽内で水素爆発が生じる可能性がある。放射性廃棄物貯槽内で水素爆発が生じると、放射性物質の閉じ込め機能が失われ、放射性物質が外部に放出される可能性がある。   In a radioactive waste storage tank storing a high level of radioactive waste, it is conceivable that hydrogen is generated in the radioactive waste storage tank by radioactive decomposition of water. If the internal hydrogen concentration increases with time and reaches the explosion limit, a hydrogen explosion may occur in the storage tank. When a hydrogen explosion occurs in a radioactive waste storage tank, the function of confining radioactive materials is lost, and radioactive materials may be released to the outside.

このような水素爆発を未然に防止するために、放射性廃棄物貯槽内の水素濃度が爆発限界に到達しないよう、水素濃度を低下させるための手段が求められている。   In order to prevent such a hydrogen explosion, there is a need for a means for reducing the hydrogen concentration so that the hydrogen concentration in the radioactive waste storage tank does not reach the explosion limit.

従来、原子力発電所における過酷事故(シビアアクシデント)対策として、ジルコニウム−水反応によって発生した大量の水素を、触媒を用いて酸素と再結合させて水素濃度を低下させる装置が知られている(特許文献1)。   Conventionally, as a countermeasure against a severe accident in a nuclear power plant, a device has been known in which a large amount of hydrogen generated by a zirconium-water reaction is recombined with oxygen using a catalyst to reduce the hydrogen concentration (Patent) Reference 1).

特開2011−174773号公報JP 2011-174773 A

しかしながら、過酷事故対策として開発された既往の再結合装置は、原子炉格納容器や原子炉建屋の内部に設置するものであり、放射性廃棄物貯槽への設置には対応していない。すなわち、放射性廃棄物貯槽のように内部空間領域が狭く、且つ気密性が求められる設備には、既往の再結合装置を設置することができない。   However, existing recombination devices developed as a countermeasure for severe accidents are installed inside the reactor containment vessel or reactor building, and are not compatible with installation in radioactive waste storage tanks. That is, the existing recombination device cannot be installed in a facility such as a radioactive waste storage tank where the internal space area is narrow and airtightness is required.

また、放射性廃棄物貯槽以外にも、内部で水素が発生して時間の経過と共に水素濃度が上昇する可能性がある容器やタンクにおいては、水素濃度が爆発限界に到達する前に水素濃度を低下させるための手段が必要である。   In addition, in containers and tanks other than radioactive waste storage tanks where hydrogen is generated inside and the hydrogen concentration may increase over time, the hydrogen concentration is reduced before the hydrogen concentration reaches the explosion limit. We need some means to make it happen.

しかしながら、そのような容器やタンクは、通常、原子炉格納容器のような大きな内部空間を備えておらず、しかも気密性が求められる。このため、過酷事故対策として開発された既往の大型の再結合装置を設置することは困難若しくは不可能である。   However, such containers and tanks usually do not have a large internal space such as a reactor containment vessel, and are required to be airtight. For this reason, it is difficult or impossible to install a large-scale reconnection device already developed as a measure against severe accidents.

本発明は、上述した従来技術の問題点に鑑みてなされたものであって、放射性廃棄物貯槽等のようにその内部空間領域が狭く、且つ気密性が求められる設備への設置に適した触媒式の再結合装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the related art, and has a small internal space area such as a radioactive waste storage tank and a catalyst suitable for installation in equipment requiring airtightness. It is an object of the present invention to provide a recombination device of the type.

上記課題を解決するために、第1の態様による本発明は、容器に取り付けて当該容器内部で発生した水素を触媒を用いて酸素と結合するための再結合装置であって、前記容器から流入した前記水素および前記酸素を含むガスがその内部を流通する第一の筒状体と、前記第一の筒状体の出口に連結され、前記第一の筒状体から流入した前記ガスを前記容器に戻す戻し部と、を備え、前記第一の筒状体が、入口側に前記水素と前記酸素とを結合する触媒部を有している、ことを特徴とする。   In order to solve the above-mentioned problem, the present invention according to a first aspect is a recombination device attached to a container to combine hydrogen generated inside the container with oxygen using a catalyst, wherein A first cylindrical body through which the gas containing hydrogen and oxygen flows, and connected to an outlet of the first cylindrical body, the gas flowing from the first cylindrical body is filled with the gas. And a return section for returning to the container, wherein the first cylindrical body has a catalyst section on the inlet side for binding the hydrogen and the oxygen.

第2の態様による本発明は、第1の態様による本発明において、前記戻し部が、前記第一の筒状体の外面を取り囲むように形成されている第二の筒状体と、前記第一の筒状体に連結され前記第一の筒状体から流入した前記ガスを方向変換して前記第二の筒状体に流出させる方向変換部を備えている、ことを特徴とする。   The present invention according to a second aspect is the invention according to the first aspect, wherein the return portion is formed so as to surround an outer surface of the first cylindrical body, It is characterized by having a direction change part connected to one cylindrical body and changing the direction of the gas flowing from the first cylindrical body and flowing out the gas to the second cylindrical body.

第3の態様による本発明は、第1または第2の態様による本発明において、前記第一の筒状体および前記戻し部が、一体として前記容器に着脱可能なように構成されている、ことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the first tubular body and the return portion are configured to be integrally detachable from the container. It is characterized by.

第4の態様による本発明は、前記第一の筒状体および/又は前記戻し部が、前記容器に形成された開口部を気密に封止する開口封止部材、を備えた、ことを特徴とする。   The present invention according to a fourth aspect is characterized in that the first cylindrical body and / or the return portion include an opening sealing member that hermetically seals an opening formed in the container. And

第5の態様による本発明は、第1乃至第4のいずれかの態様による本発明において、前記触媒部は、表面に前記触媒を担持した貫通孔を多数有し、前記水素と前記酸素を含む前記処理対象ガスを導入して前記水素と前記酸素を再結合する略板状又は筒状部材を有する、ことを特徴とする。   According to a fifth aspect of the present invention, in the present invention according to any one of the first to fourth aspects, the catalyst section has a large number of through holes carrying the catalyst on a surface thereof, and includes the hydrogen and the oxygen. It is characterized by having a substantially plate-like or tubular member for introducing the gas to be treated and recombining the hydrogen and the oxygen.

第6の態様による本発明は、第1乃至第5のいずれかの態様による本発明において、前記触媒部が、お互いの隣り合う貫通孔が薄壁で仕切られて形成されている、ことを特徴とする。   The present invention according to a sixth aspect is the invention according to any one of the first to fifth aspects, wherein the catalyst portion is formed by separating through holes adjacent to each other with thin walls. And

第7の態様による本発明は、第6の態様による本発明において、前記触媒部の断面が、多角形である、ことを特徴とする。   The present invention according to a seventh aspect is the invention according to the sixth aspect, wherein a cross section of the catalyst part is polygonal.

第8の態様による本発明は、第6または第7の態様による本発明において、前記触媒部における前記水素と前記酸素の再結合反応により発生した熱に起因するガスの浮力によって、前記複数の貫通孔における流動抵抗に抗して前記第一の筒状体内で自然対流が発生するように、前記第一の筒状体の有効長さおよび前記触媒部の厚さが設定されている、ことを特徴とする。   According to an eighth aspect of the present invention, in the invention according to the sixth or seventh aspect, the plurality of through holes are formed by buoyancy of a gas caused by heat generated by a recombination reaction between the hydrogen and the oxygen in the catalyst section. The effective length of the first cylindrical body and the thickness of the catalyst portion are set such that natural convection occurs in the first cylindrical body against the flow resistance in the holes. Features.

第9の態様による本発明は、第8の態様による本発明において、前記触媒部の厚みは約5mmである、ことを特徴とする。   The invention according to a ninth aspect is the invention according to the eighth aspect, wherein the thickness of the catalyst part is about 5 mm.

本発明によれば、放射性廃棄物貯槽等のような空間領域が狭く、且つ気密性が求められる設備への設置に適した触媒式の再結合装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the space area | regions, such as a radioactive waste storage tank, are narrow, and the catalyst-type recombination apparatus suitable for installation in the facilities which require airtightness can be provided.

本発明の第一の実施形態による触媒式の再結合装置を放射性廃棄物貯槽に装着状態で示した正面図。FIG. 2 is a front view showing the catalytic recombination device according to the first embodiment of the present invention mounted on a radioactive waste storage tank. 図1に示した再結合装置の上面図。FIG. 2 is a top view of the recombination device shown in FIG. 1. 図1に示した再結合装置の縦断面図。FIG. 2 is a longitudinal sectional view of the recombination device shown in FIG. 1. 図1のIV-IV線に沿った矢視図。FIG. 4 is an arrow view along the line IV-IV in FIG. 1. 図5のV-V線に沿った矢視図。FIG. 6 is an arrow view along the line VV in FIG. 5. 図1に示した再結合装置の触媒ホルダーを示した上面図。FIG. 2 is a top view illustrating a catalyst holder of the recombination apparatus illustrated in FIG. 1. 図6に示した触媒ホルダーの縦断面図。FIG. 7 is a longitudinal sectional view of the catalyst holder shown in FIG. 6. 図6に示した触媒ホルダーの底面図。FIG. 7 is a bottom view of the catalyst holder shown in FIG. 6. 図1に示した再結合装置の触媒部の構造を説明するための図であり、(a)は触媒部を模式的に示した平面図、(b)は(a)のA−A断面図。FIGS. 2A and 2B are diagrams for explaining the structure of a catalyst unit of the recombination apparatus shown in FIG. 1, wherein FIG. 1A is a plan view schematically showing the catalyst unit, and FIG. . (a)は図9(a)のXa部を拡大して示した平面図、(b)は図9(b)のXb部を拡大して示した縦断面図。9A is an enlarged plan view of a portion Xa in FIG. 9A, and FIG. 9B is a longitudinal sectional view showing an enlarged portion Xb of FIG. 9B. 図3のXI部を拡大して示した縦断面図。FIG. 4 is an enlarged longitudinal sectional view of a part XI in FIG. 3. 触媒部の厚さと水素処理量との関係を示したグラフ。4 is a graph showing the relationship between the thickness of a catalyst unit and the amount of hydrogen treatment. 図1に示した再結合装置の流路構成モデルを示した模式図。FIG. 2 is a schematic diagram illustrating a flow path configuration model of the recombination apparatus illustrated in FIG. 1. 図1に示した再結合装置の最適範囲を示したグラフ。2 is a graph showing an optimum range of the recombination device shown in FIG. 1.

以下、本発明の一実施形態による触媒式の再結合装置について、図面を参照して説明する。   Hereinafter, a catalytic recombination device according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態による再結合装置は、触媒を用いて水素と酸素を結合するための装置であり、特に放射性廃棄物貯槽への設置に適したものである。とりわけ、放射性廃棄物貯槽に設けられたノズルの部分への装着に適している。   The recombination device according to the present embodiment is a device for combining hydrogen and oxygen using a catalyst, and is particularly suitable for installation in a radioactive waste storage tank. In particular, it is suitable for mounting on a nozzle provided in a radioactive waste storage tank.

但し、本発明による再結合装置は、放射性廃棄物貯槽以外にも、内部で水素が発生して時間の経過と共に水素濃度が上昇する可能性がある容器やタンクに設置することができる。   However, the recombination device according to the present invention can be installed not only in the radioactive waste storage tank but also in a container or a tank in which hydrogen is generated inside and the hydrogen concentration may increase with time.

図1および図3に示したように、放射性廃棄物貯槽50の上部には円筒状のノズル51が設けられており、本実施形態による再結合装置1は、このノズル51の部分に着脱自在に装着されている。   As shown in FIGS. 1 and 3, a cylindrical nozzle 51 is provided at the upper part of the radioactive waste storage tank 50, and the recombination device 1 according to the present embodiment is detachably attached to the nozzle 51. It is installed.

図1および図3に示したように、本実施形態による再結合装置1は、水素および酸素を含む処理対象ガスがその内部を流通する第一の筒状体2を有する。第一の筒状体2は、円筒状の部材で構成されている。但し、第一の筒状体2を構成する部材は円筒状部材に限られず、例えば方形断面の筒状部材を用いることもできる。   As shown in FIGS. 1 and 3, the recombination apparatus 1 according to the present embodiment has a first cylindrical body 2 through which a gas to be treated including hydrogen and oxygen flows. The first cylindrical body 2 is formed of a cylindrical member. However, the member forming the first cylindrical body 2 is not limited to a cylindrical member, and for example, a cylindrical member having a square cross section can be used.

図1乃至図4に示したように、第一の筒状体2の出口部には、第一の筒状体2から流出したガスの流れ方向を変換して再度、放射性廃棄物貯槽に戻す戻し部が設けられている。具体的には、戻し部は、第一の筒状体2の外面を取り囲むように形成されている第二の筒状体4と、その第二の筒状体の上部に連結した鏡板(戻し部)3(お椀を伏せた形状)から構成されており、第一の筒状体上部から流出したガスは、鏡板部分の方向変換部において、半径方向に広がりつつ、鉛直上方向から鉛直下方向へ流れ方向を変換して、第一の筒状体と第二の筒状体の間の流路を下方に流れ、再度、放射性廃棄物貯槽に戻される。第二の筒状体4は、下端に形成されたフランジ部5を有する。   As shown in FIGS. 1 to 4, the flow direction of the gas flowing out of the first cylindrical body 2 is changed at the outlet of the first cylindrical body 2 and returned to the radioactive waste storage tank again. A return section is provided. Specifically, the return portion includes a second cylindrical member 4 formed so as to surround the outer surface of the first cylindrical member 2 and a head plate (return member) connected to an upper portion of the second cylindrical member. Part) 3 (shape of a bowl), the gas flowing out from the upper part of the first cylindrical body spreads in the radial direction in the direction changing part of the end plate part, and spreads vertically upward from vertically downward. The flow direction is changed to flow downward in the flow path between the first tubular body and the second tubular body, and returned to the radioactive waste storage tank again. The second cylindrical body 4 has a flange portion 5 formed at a lower end.

第二の筒状体4のフランジ部5は、放射性廃棄物貯槽50のノズル51の上端に形成されたフランジ部52に対してボルト6で固定されている。フランジ部5、52同士の間に気密シールが形成され、これにより、放射性廃棄物貯槽50内部の気密性が確保される。   The flange portion 5 of the second cylindrical body 4 is fixed to the flange portion 52 formed at the upper end of the nozzle 51 of the radioactive waste storage tank 50 with bolts 6. An airtight seal is formed between the flange portions 5 and 52, thereby ensuring airtightness inside the radioactive waste storage tank 50.

図3および図4に示したように、第二の筒状体4の内周面と第一の筒状体2の外周面とが、周方向に90度間隔で配置された細長板状の内部連結部材7によって連結されている。   As shown in FIGS. 3 and 4, the inner peripheral surface of the second cylindrical body 4 and the outer peripheral surface of the first cylindrical body 2 are formed in an elongated plate shape arranged at 90 ° intervals in the circumferential direction. They are connected by an internal connecting member 7.

図1に示したように、第一の筒状体2の上半部は放射性廃棄物貯槽50のノズル51の内部に配置されており、ノズル51および第二の筒状体4の内周面と、第一の筒状体2の外周面との間にガスの環状流路8が形成されている。第一の筒状体2の上端開口から上方に流出したガスは、流れ方向変換部(戻し部)3で下向きに流れを変えて、環状流路8を通って放射性廃棄物貯槽50内に還流する。   As shown in FIG. 1, the upper half of the first cylindrical body 2 is disposed inside the nozzle 51 of the radioactive waste storage tank 50, and the inner peripheral surface of the nozzle 51 and the second cylindrical body 4. An annular gas flow path 8 is formed between the first cylindrical body 2 and the outer peripheral surface of the first cylindrical body 2. The gas that has flowed upward from the upper end opening of the first cylindrical body 2 changes its flow downward in the flow direction changing part (return part) 3 and returns to the radioactive waste storage tank 50 through the annular flow path 8. I do.

図1および図3に示したように、第二の筒状体4の鏡板部4A、すなわち第一の筒状体2の出口に対向する部分が、中心から外側に向けて下方に傾斜するドーム状に形成されている。   As shown in FIGS. 1 and 3, a dome in which the end plate portion 4 </ b> A of the second cylindrical body 4, that is, the portion facing the outlet of the first cylindrical body 2 is inclined downward from the center toward the outside. It is formed in a shape.

図1および図3に示したように、第一の筒状体2の入口側(下端側)には、触媒構造体9が設けられている。触媒構造体9は、図6乃至図8に示した触媒ホルダー10と、図9に示した略円板状又は略円筒状の触媒部11とを有する。   As shown in FIGS. 1 and 3, a catalyst structure 9 is provided on the inlet side (lower end side) of the first cylindrical body 2. The catalyst structure 9 has the catalyst holder 10 shown in FIGS. 6 to 8 and the substantially disk-shaped or substantially cylindrical catalyst part 11 shown in FIG.

触媒部11は、ガスの通過する流路に、表面に触媒を担持した細径のぺブルを充填し、若しくは表面に触媒を担持したプレートを配列し、又は表面に触媒を担持した多数のハニカム状の壁面を配列している。
触媒ホルダー10は、触媒部11の周縁部を保持する略円環状の枠状保持部材から成り、略円板状又は略円筒状の触媒部11は、触媒ホルダー10の凹部に嵌合される。触媒ホルダーは、例えばステンレス材料で形成することができる。
The catalyst section 11 is formed by filling a gas passage with a small-diameter pebble carrying a catalyst on the surface, or arranging a plate carrying the catalyst on the surface, or a large number of honeycombs carrying the catalyst on the surface. -Shaped wall surfaces are arranged.
The catalyst holder 10 is formed of a substantially annular frame-shaped holding member that holds a peripheral portion of the catalyst portion 11, and the substantially disk-shaped or substantially cylindrical catalyst portion 11 is fitted into a concave portion of the catalyst holder 10. The catalyst holder can be formed of, for example, a stainless steel material.

以下では、小型でかつ高性能が実現できる可能性が高いハニカム構造を有する触媒部およびそれに関連する構造に関して説明する。   Hereinafter, a catalyst unit having a honeycomb structure that is likely to be small and high in performance and a structure related thereto will be described.

触媒部11に設けられた多数の貫通孔(流路)は、その断面が三角形、四角形、五角形又は六角形などの多角形であって、お互いに隣接する流路が薄壁で仕切られている(ハニカム構造)。触媒部は、多孔質なセラミックスやステンレス鋼などを支持体としている。すなわち、触媒部11には、図10に示したように多数の貫通孔12が形成されている。貫通孔12は、第一の筒状体2への処理対象ガスの導入方向(本例においては、第一の筒状体2の軸線方向)に沿って延在しており、その内部を処理対象ガス(水素と酸素を含む)が流通する。   A large number of through holes (flow paths) provided in the catalyst section 11 have a polygonal shape such as a triangle, a quadrangle, a pentagon, or a hexagon in cross section, and flow paths adjacent to each other are partitioned by thin walls. (Honeycomb structure). The catalyst section uses porous ceramics, stainless steel, or the like as a support. That is, a large number of through holes 12 are formed in the catalyst section 11 as shown in FIG. The through-hole 12 extends along the direction of introduction of the gas to be treated into the first tubular body 2 (in this example, the axial direction of the first tubular body 2), and the inside thereof is treated. The target gas (including hydrogen and oxygen) flows.

触媒部には、少なくとも各貫通孔12の内周面に触媒が付与されている。ハニカム構造を採用することによって、触媒部11の比表面積(単位体積当たりの表面積)を増大させることができるので、処理対象ガスと触媒との接触効率を大幅に高めることができる。   The catalyst is provided at least on the inner peripheral surface of each through hole 12 in the catalyst portion. By adopting the honeycomb structure, the specific surface area (surface area per unit volume) of the catalyst section 11 can be increased, so that the contact efficiency between the gas to be treated and the catalyst can be greatly increased.

図11は、第一の筒状体2に対する触媒構造体9の取付け構造を示している。第一の筒状体2の内周面には、環状の突起部13が形成されている。環状の突起部13に下方には、環状の支持部14が上端に形成された短筒状の支持部材15が配置されている。環状の突起部13と環状の支持部14との間に触媒構造体9の周縁部が配置されている。短筒状の支持部材15が第一の筒状体2に対してボルト16で固定されており、触媒構造体9が筒状部2に固定されている。   FIG. 11 shows a mounting structure of the catalyst structure 9 to the first tubular body 2. An annular projection 13 is formed on the inner peripheral surface of the first cylindrical body 2. Below the annular protrusion 13, a short cylindrical support member 15 having an annular support portion 14 formed at the upper end is disposed. The peripheral portion of the catalyst structure 9 is arranged between the annular protrusion 13 and the annular support portion 14. The short tubular support member 15 is fixed to the first tubular body 2 with bolts 16, and the catalyst structure 9 is fixed to the tubular portion 2.

次に、本実施形態による再結合装置1における水素と酸素の再結合作用について説明する。   Next, the recombination action of hydrogen and oxygen in the recombination device 1 according to the present embodiment will be described.

本実施形態による再結合装置1は、その使用に際して電源を必要とせず、第一の筒状体2内での自然対流を駆動力として利用するものである。すなわち、触媒構造体9における水素と酸素の再結合反応により発生した熱に起因するガスの浮力によって、触媒部11の複数の貫通孔12における流動抵抗に抗して第一の筒状体2内で自然対流が発生するように、第一の筒状体2の有効長さ(自然対流の発生に寄与する部分の長さ)および触媒部11の厚さが設定されている。   The recombination device 1 according to the present embodiment does not require a power source when used, and utilizes natural convection in the first cylindrical body 2 as a driving force. That is, the buoyancy of the gas caused by the heat generated by the recombination reaction of hydrogen and oxygen in the catalyst structure 9 prevents the flow resistance in the plurality of through holes 12 of the catalyst portion 11 from flowing through the first cylindrical body 2. The effective length of the first cylindrical body 2 (the length of a portion contributing to the generation of natural convection) and the thickness of the catalyst portion 11 are set so that natural convection occurs.

すなわち、放射性廃棄物貯槽50内で発生して貯槽上部に蓄積した高濃度の水素を含む処理対象ガスは、第一の筒状体2の下端入口から流入し、触媒構造体9を通過する際に、水素と酸素の再結合反応によって水蒸気が生じる。なお、触媒の存在下においては、再結合反応は常温でも生じる。再結合反応により発生した熱によりガスが加熱されて密度差による浮力が生じ、これを駆動力として自然対流が生じる(チムニー効果)。   That is, the gas to be treated containing high-concentration hydrogen generated in the radioactive waste storage tank 50 and accumulated in the upper part of the storage tank flows from the lower end inlet of the first cylindrical body 2 and passes through the catalyst structure 9. Then, water vapor is generated by a recombination reaction between hydrogen and oxygen. In the presence of a catalyst, the recombination reaction occurs even at room temperature. The gas is heated by the heat generated by the recombination reaction to generate buoyancy due to the density difference, and natural convection is generated using the buoyancy as a driving force (chimney effect).

再結合反応により生成された水蒸気を含む処理後のガスは、第一の筒状体2の上端開口から上方に放出される。放出されたガスは、その流れを下方に変えて、環状流路8を通って放射性廃棄物貯槽50内に還流する。   The treated gas containing water vapor generated by the recombination reaction is discharged upward from the upper end opening of the first cylindrical body 2. The released gas changes its flow downward and returns to the radioactive waste storage tank 50 through the annular flow path 8.

図12は、触媒高さ(触媒部11の高さ)と水素処理量との関係を、水素濃度4vol%、反応率100%、自然対流の場合について示している。水素処理量は、再結合装置1への処理対象ガスの単位流入面積当たりの処理量(kg/h)を示している。   FIG. 12 shows the relationship between the catalyst height (height of the catalyst section 11) and the amount of hydrogen treatment in the case of a hydrogen concentration of 4 vol%, a reaction rate of 100%, and natural convection. The hydrogen treatment amount indicates a treatment amount (kg / h) per unit inflow area of the gas to be treated into the recombination device 1.

図12から分かるように、触媒高さ(触媒部11の高さ)が大きくなるにつれて、水素処理量は小さくなっている。水素と酸素との反応は非常に早いので、処理対象ガスが触媒部11に導入された直後に反応が実質的に完了する。このため、触媒高さを大きくしても、反応促進への寄与はほとんど無い。むしろ、触媒部11における流動抵抗が大きくなるので、処理対象ガスの流量が低下し、その結果、水素処理量が低下してしまう。   As can be seen from FIG. 12, as the catalyst height (height of the catalyst portion 11) increases, the hydrogen treatment amount decreases. Since the reaction between hydrogen and oxygen is very fast, the reaction is substantially completed immediately after the gas to be treated is introduced into the catalyst unit 11. Therefore, even if the height of the catalyst is increased, there is almost no contribution to the promotion of the reaction. Rather, since the flow resistance in the catalyst unit 11 increases, the flow rate of the gas to be treated decreases, and as a result, the amount of hydrogen treatment decreases.

したがって、触媒部の高さを5mmより大きくしても、水素処理能力は低下する一方、再結合装置が大型化するのに対して、触媒部の高さを5mmより小さくすると、水素処理能力が向上し、かつ再結合装置が小型化することがわかる。   Therefore, even if the height of the catalyst section is larger than 5 mm, the hydrogen processing capacity is reduced, while the size of the recombination device is increased, whereas if the height of the catalyst section is smaller than 5 mm, the hydrogen processing capacity is reduced. It can be seen that the size of the recombination device is improved and the size of the recombination device is reduced.

次に、本実施形態における再結合装置として望ましい範囲(主要部寸法)について検討する。   Next, a desirable range (dimensions of main parts) as the recombination device in the present embodiment will be examined.

図13は、本実施形態による再結合装置1の流路構成モデルを示している。   FIG. 13 shows a flow path configuration model of the recombination apparatus 1 according to the present embodiment.

水素と酸素の触媒反応による発熱に伴う浮力は、流れが層流域にある場合は以下の式(1)で表される。   The buoyancy caused by the heat generated by the catalytic reaction between hydrogen and oxygen is expressed by the following equation (1) when the flow is in a laminar flow region.

=Δρ×g×h ・・・・(1)
ここで、
:触媒反応による発熱に伴う浮力[N/m
Δρ:密度差ρIN−ρOUT[kg/m
ρIN:入口側気体密度[kg/m
ρOUT:出口側気体密度[kg/m
g:重力加速度[m/s
:チムニー高さ[m]
なお、チムニー高さとは、筒状部2の内部でチムニー効果が生じる部分に対応する有効高さである。
P A = Δρ × g × h 2 (1)
here,
P A : Buoyancy [N / m 2 ] due to heat generated by catalytic reaction
Δρ: density difference ρ IN −ρ OUT [kg / m 3 ]
ρ IN : Inlet gas density [kg / m 3 ]
ρ OUT : Outlet gas density [kg / m 3 ]
g: Gravitational acceleration [m / s 2 ]
h 2: chimney height [m]
Note that the chimney height is an effective height corresponding to a portion where the chimney effect occurs inside the tubular portion 2.

触媒部11における流動抵抗は、以下の式(2)で表される。   The flow resistance in the catalyst section 11 is represented by the following equation (2).

=32×μ×h×VIN/d ・・・・(2)
ここで、
:流動抵抗[N/m
μ:粘性係数[Pa・s]
:触媒高さ[m]
IN:入口流速[m/s]
:触媒流路相当直径[m]
触媒による発熱に伴う浮力Pと触媒部11における流動抵抗Pとが釣り合う(P=P)と仮定すると、式(1)と式(2)より、以下となる。
P B = 32 × μ × h 1 × V IN / d 1 2 ···· (2)
here,
P B : Flow resistance [N / m 2 ]
μ: viscosity coefficient [Pa · s]
h 1 : catalyst height [m]
V IN : Inlet flow rate [m / s]
d 1 : equivalent diameter of catalyst channel [m]
Assuming that the buoyancy P A due to heat generated by the catalyst and the flow resistance P B in the catalyst section 11 are balanced (P A = P B ), the following is obtained from the equations (1) and (2).

/h=32×μ×VIN/d /(Δρ×g) ・・・・(3)
また、H=h+hとすると、以下となる。
h 2 / h 1 = 32 × μ × V IN / d 1 2 / (Δρ × g) ···· (3)
Further, if H = h 1 + h 2 , the following is obtained.

H/h=32×μ×VIN/d /(Δρ×g)+1・・・(4)
図14は、式(4)を基にした本実施形態による再結合装置1として望ましい範囲(グラフ中の黒塗部分)を示している。
H / h 1 = 32 × μ × V IN / d 1 2 / (Δρ × g) +1 ··· (4)
FIG. 14 shows a desirable range (black portion in the graph) for the recombination device 1 according to the present embodiment based on the equation (4).

図14において、Hの上限を再結合装置の小型化のため300mm、hの下限を製作上の制限から3mmとしたため、図14において、H/hは、上限については100、下限については、H=h(h=0mm)の場合であることから1としている。また、VINの下限は、既往の再結合装置の水素処理量を考慮して0.3m/sとしている。dの上限は、製作可能な触媒部を基に1.79mmとしている。 In FIG. 14, 300 mm for the size reduction of the recombination device the upper limit of H, due to the 3mm from limitations in manufacturing the lower limit of h 1, in FIG. 14, H / h 1, for the upper limit is 100, the lower limit is , H = h 1 (h 2 = 0 mm). In addition, the lower limit of VIN is set to 0.3 m / s in consideration of the hydrogen throughput of the existing recombination device. The upper limit of d 1 has a 1.79mm based on manufacturable catalyst unit.

以上述べたように、本実施形態による触媒式の再結合装置1によれば、触媒構造体9を備えた第一の筒状体2の出口部に戻し部3を設け、戻し部3によって放射性廃棄物貯槽50のノズル51の開口を気密に封止するようにしたので、内部空間領域が狭く且つ気密性が求められる放射性廃棄物貯槽50においても、再結合装置1を支障なく取り付けることができる。   As described above, according to the catalytic recombination device 1 of the present embodiment, the return portion 3 is provided at the outlet of the first cylindrical body 2 provided with the catalyst structure 9, and the return Since the opening of the nozzle 51 of the waste storage tank 50 is hermetically sealed, even in the radioactive waste storage tank 50 where the internal space area is narrow and airtightness is required, the recombination device 1 can be attached without any trouble. .

このように放射性廃棄物貯槽50に再結合装置1を装着することにより、放射性廃棄物貯槽50の内部で発生した水素の濃度を制御して爆発限界に到達することを防止し、水素爆発の発生可能性を排除することができる。なお、本実施形態による再結合装置1において、確実な自然循環力を確保するためには、第一の筒状体2と第二の筒状体4の間の気体の温度を低温に維持する必要があるため、必要に応じて、第二の筒状体4を、その周囲に冷却ファン(再結合装置と独立したものであり、図示は省略)を設けて強制冷却する。ただし、このような冷却機構を設けても、再結合装置を含む放射性廃棄物貯槽は気密構造とすることができ、また、冷却機構も簡易なものであるため、従来のものに比べ非常に簡易な再結合装置により水素爆発を防止することができる。   By attaching the recombination device 1 to the radioactive waste storage tank 50 in this manner, the concentration of hydrogen generated inside the radioactive waste storage tank 50 is controlled to prevent the explosion limit from being reached, and the occurrence of a hydrogen explosion Possibilities can be excluded. In the recombining apparatus 1 according to the present embodiment, in order to ensure a reliable natural circulation force, the temperature of the gas between the first cylindrical body 2 and the second cylindrical body 4 is maintained at a low temperature. If necessary, the second cylindrical body 4 is forcibly cooled by providing a cooling fan (independent of the recombining device, not shown) around the second cylindrical body 4 as necessary. However, even if such a cooling mechanism is provided, the radioactive waste storage tank including the recombination device can have an airtight structure, and the cooling mechanism is also simple, so it is very simple compared to the conventional one. Hydrogen explosion can be prevented by a simple recombination device.

また、本実施形態による再結合装置1は、放射性廃棄物貯槽50の上部に設けられた既設のノズル51に装着することができるので、再結合装置1を設置するための特別な構造を必要とせず、設置作業の手間とコストを削減することができる。   Further, the recombination apparatus 1 according to the present embodiment can be mounted on the existing nozzle 51 provided on the upper part of the radioactive waste storage tank 50, so that a special structure for installing the recombination apparatus 1 is required. In addition, labor and cost for installation work can be reduced.

また、本実施形態による再結合装置1は、触媒部11として、第一の筒状体2への処理対象ガスの導入方向に沿って多数の貫通孔12が形成された触媒部を使用しているので、チムニー効果による自然対流を確保しつつ、従来の再結合装置に比べて、触媒の単位体積当たりの水素処理量を大幅に増大させることができる。   In addition, the recombination apparatus 1 according to the present embodiment uses a catalyst unit in which a large number of through holes 12 are formed along the direction in which the gas to be treated is introduced into the first cylindrical body 2 as the catalyst unit 11. As a result, the natural convection due to the Chimney effect can be ensured, and the amount of hydrogen treatment per unit volume of the catalyst can be greatly increased as compared with the conventional recombination device.

その結果、触媒部11を含む触媒構造体9の寸法を、従来の触媒式再結合装置の場合に比して大幅に小さくすることができる。これにより、装置全体の小型化および軽量化を図ることができる。再結合装置1の小型・軽量化により、冷却ファンが必要な場合であっても、それとは独立して、装置の据付け・取外し作業が容易となり、また、作業時間の短縮による作業員の被ばく量の低減も可能となる。   As a result, the size of the catalyst structure 9 including the catalyst portion 11 can be significantly reduced as compared with the case of a conventional catalytic recombining device. This makes it possible to reduce the size and weight of the entire device. Even if a cooling fan is required, the installation and removal of the device can be facilitated independently of the need for a cooling fan due to the reduction in size and weight of the reconnection device 1, and the exposure of workers due to shortening of the operation time is reduced. Can also be reduced.

また、本実施形態による再結合装置1によれば、触媒構造体9が第一の筒状体2の内部に着脱自在に装着されているので、第一の筒状体2から触媒構造体9を取り外すことにより、触媒の交換を容易に行なうことができる。   Further, according to the recombination device 1 according to the present embodiment, since the catalyst structure 9 is detachably mounted inside the first tubular body 2, the catalyst structure 9 is removed from the first tubular body 2. By removing the catalyst, the catalyst can be easily replaced.

また、本実施形態による再結合装置1によれば、第二の筒状体4の鏡板部4A、すなわち第一の筒状体2の出口に対向する部分が、中心から外側に向けて下方に傾斜するドーム状に形成されているので、第二の筒状体4の鏡板部4Aで水蒸気が冷却されてその表面に凝縮水が付着した場合、凝縮水は鏡板部4Aの表面上を半径方向外側に向かって流れる。従って、凝縮水が第一の筒状体2の上端開口内に滴下することを防止でき、触媒に水が付着して基礎反応を阻害することを防止できる。   Further, according to the recombination device 1 according to the present embodiment, the end plate portion 4A of the second cylindrical body 4, that is, the portion facing the outlet of the first cylindrical body 2 is directed downward from the center toward the outside. Since the water vapor is cooled by the end plate portion 4A of the second cylindrical body 4 and condensed water adheres to the surface of the end plate portion 4A, the condensed water is formed on the surface of the end plate portion 4A in the radial direction. It flows outward. Therefore, it is possible to prevent the condensed water from dropping into the upper end opening of the first cylindrical body 2 and prevent the water from adhering to the catalyst and hindering the basic reaction.

1 触媒式の再結合装置
2 筒状部
3 戻し部(開口封止部材、鏡板、流れ方向変換部)
4 第二の筒状体
4A 第二の筒状体の鏡板部
5 フランジ部
6 ボルト
7 内部連結部材
8 環状流路
9 触媒構造体
10 触媒ホルダー
11 触媒部
12 触媒部の貫通孔
13 環状の突起部
14 環状の支持部
15 短筒状の支持部材
16 ボルト
50 放射性廃棄物貯槽
51 ノズル
52 フランジ部
DESCRIPTION OF SYMBOLS 1 Catalytic recombination device 2 Cylindrical part 3 Return part (opening sealing member, end plate, flow direction change part)
Reference Signs List 4 Second cylindrical body 4A End plate part of second cylindrical body 5 Flange part 6 Bolt 7 Internal connecting member 8 Annular flow path 9 Catalyst structure 10 Catalyst holder 11 Catalyst part 12 Through hole of catalyst part 13 Annular projection Part 14 Annular support part 15 Short cylindrical support member 16 Bolt 50 Radioactive waste storage tank 51 Nozzle 52 Flange part

Claims (8)

容器に取り付けて当該容器内部で発生した水素を触媒を用いて酸素と結合するための再結合装置であって、
前記容器から流入した前記水素および前記酸素を含むガスがその内部を流通する第一の筒状体と、
前記第一の筒状体の出口に連結され、前記第一の筒状体から流出したガスを前記容器に戻す戻し部と、を備え、
前記第一の筒状体が、入口側に前記水素と前記酸素とを結合する触媒部を有し、
前記戻し部が、前記第一の筒状体の外面を取り囲むように形成されている第二の筒状体と、前記第一の筒状体に連結され前記第一の筒状体から流出した前記ガスを方向変換して前記第二の筒状体に流入させる方向変換部とを有し、
前記第二の筒状体が、前記容器に取り付けられている、再結合装置。
A recombination device attached to a container to combine hydrogen generated inside the container with oxygen using a catalyst,
A first cylindrical body through which the gas containing the hydrogen and the oxygen flowing from the container flows,
A return portion connected to an outlet of the first cylindrical body and returning gas flowing out of the first cylindrical body to the container,
Said first tubular body, have a catalyst unit for coupling the hydrogen and the oxygen to the inlet side,
The return portion is a second tubular body formed to surround the outer surface of the first tubular body, and is connected to the first tubular body and flows out of the first tubular body. A direction changing unit that changes the direction of the gas and flows into the second cylindrical body,
The recombination device , wherein the second tubular body is attached to the container .
前記第一の筒状体および前記戻し部が、一体として前記容器に着脱可能なように構成されている、請求項記載の再結合装置。 It said first cylindrical body and the back portion is configured so as to be removably attached to the container as a unit, the recombination device according to claim 1. 前記第一の筒状体および/又は前記戻し部が、前記容器に形成された開口部を気密に封止する開口封止部材、を備えた請求項記載の再結合装置。 The recombination device according to claim 2, wherein the first cylindrical body and / or the return portion includes an opening sealing member that hermetically seals an opening formed in the container. 前記触媒部は、表面に前記触媒を担持した貫通孔を多数有し、前記水素と前記酸素を含む前記ガスを導入して前記水素と前記酸素を再結合する略板状又は筒状部材を有する、請求項1乃至のいずれか一項に記載の再結合装置。 The catalyst section has a large number of through-holes carrying the catalyst on its surface, and has a substantially plate-like or cylindrical member that introduces the gas containing the hydrogen and the oxygen and recombines the hydrogen and the oxygen. The recombination device according to any one of claims 1 to 3 . 前記触媒部が、お互いの隣り合う貫通孔が薄壁で仕切られて形成されている、請求項1乃至のいずれか一項に記載の再結合装置。 The recombination device according to any one of claims 1 to 4 , wherein the catalyst portion is formed by separating through holes adjacent to each other with a thin wall. 前記触媒部の断面が、多角形である、請求項記載の再結合装置。 The recombination device according to claim 5 , wherein a cross section of the catalyst unit is a polygon. 前記触媒部における前記水素と前記酸素の再結合反応により発生した熱に起因するガスの浮力によって、前記複数の貫通孔における流動抵抗に抗して前記第一の筒状体内で自然対流が発生するように、前記第一の筒状体の有効長さおよび前記触媒部の厚さが設定されている、請求項またはに記載の再結合装置。 Due to the buoyancy of the gas caused by the heat generated by the recombination reaction between the hydrogen and the oxygen in the catalyst section, natural convection occurs in the first cylindrical body against the flow resistance in the plurality of through holes. as the effective length and thickness of the catalyst portion of the first tubular member is set, the recombination device according to claim 5 or 6. 前記触媒部の厚みは約5mm以下である、請求項記載の再結合装置。 The recombination device according to claim 7 , wherein the thickness of the catalyst part is about 5 mm or less.
JP2014205637A 2014-10-06 2014-10-06 Recombination device Active JP6624584B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014205637A JP6624584B2 (en) 2014-10-06 2014-10-06 Recombination device
PCT/JP2015/078316 WO2016056539A1 (en) 2014-10-06 2015-10-06 Recombination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205637A JP6624584B2 (en) 2014-10-06 2014-10-06 Recombination device

Publications (2)

Publication Number Publication Date
JP2016074554A JP2016074554A (en) 2016-05-12
JP6624584B2 true JP6624584B2 (en) 2019-12-25

Family

ID=55653150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205637A Active JP6624584B2 (en) 2014-10-06 2014-10-06 Recombination device

Country Status (2)

Country Link
JP (1) JP6624584B2 (en)
WO (1) WO2016056539A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10839966B2 (en) 2017-05-10 2020-11-17 Westinghouse Electric Company Llc Vortex driven passive hydrogen recombiner and igniter
JP7390233B2 (en) 2020-03-30 2023-12-01 三菱重工業株式会社 Gas flow accelerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139603A (en) * 1971-09-09 1979-02-13 Westinghouse Electric Corp. Hydrogen-oxygen recombiner
DE3816012A1 (en) * 1987-08-14 1989-11-16 Siemens Ag DEVICE FOR RECOMBINATING HYDROGEN AND OXYGEN
JPH02137703A (en) * 1988-11-16 1990-05-28 Hitachi Ltd Oxygen-hydrogen recombiner
JPH0990092A (en) * 1995-09-20 1997-04-04 Hitachi Ltd Reactor container
KR100458741B1 (en) * 1995-10-31 2005-08-04 아토믹 에너지 오브 캐나다 리미티드 Passive emergency hydrogen mitigation system for water-cooled nuclear reactors
ATE391548T1 (en) * 2002-02-04 2008-04-15 Areva Np Gmbh METHOD FOR THE CATALYTIC OXIDATION OF A GAS AND RECOMBINATION DEVICE FOR CARRYING OUT THE METHOD AND SYSTEM WITH SUCH A RECOMBINATION DEVICE
DE102005061985A1 (en) * 2005-12-23 2007-07-05 Forschungszentrum Jülich GmbH New catalyst comprising a catalytic active material that supports recombination of hydrogen with oxygen, useful in nuclear reactor or other large technical arrangements, has active material embedded in matrix comprising metallic oxide

Also Published As

Publication number Publication date
JP2016074554A (en) 2016-05-12
WO2016056539A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
RU2698688C1 (en) Device for micro-bubbles generation
JP6624584B2 (en) Recombination device
JP2020169384A (en) Reaction by-product collection device for semiconductor process
JP6309746B2 (en) Hydrogen removal device
UA121845C2 (en) Filter for a nuclear reactor containment ventilation system
JP5266817B2 (en) Polycrystalline silicon production equipment
JP2017511889A (en) Flow distribution device and nuclear reactor module having the device
JP2017524930A (en) Convective dry containment filter vent system
JP5919824B2 (en) Gas generator
BR102015010744A2 (en) multitubular radial bed reactor
WO2016104007A1 (en) Hydrogen production device and hydrogen generation vessel
JP2010217091A (en) Containment vessel passive cooling system and liquid-metal-cooled reactor
WO2016056538A1 (en) Recombination device
CN201527199U (en) Tantalum bayonet-tube vertical type heat exchanger
JP5757168B2 (en) Fluorine gas generator
KR20210057180A (en) Hydrocarbon conversion apparatus and method
CN216808278U (en) Oxidation tower for subcritical water oxidation process
JP2016145752A (en) Radioactive substance removal device
CN102225296A (en) High efficiency mercury eliminator
JP5787573B2 (en) Gas-liquid separator
JP2017201260A (en) Radioactive waste storage facility
JP6367700B2 (en) Decontamination method for contaminated water storage tank
JP2020042040A (en) Filter vent device
JP2007010527A (en) Radioactive material storage body and radioactive material storage facility
JP6363381B2 (en) Flooring unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6624584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250