JP2016075514A - Open-circuit voltage estimation device - Google Patents

Open-circuit voltage estimation device Download PDF

Info

Publication number
JP2016075514A
JP2016075514A JP2014204817A JP2014204817A JP2016075514A JP 2016075514 A JP2016075514 A JP 2016075514A JP 2014204817 A JP2014204817 A JP 2014204817A JP 2014204817 A JP2014204817 A JP 2014204817A JP 2016075514 A JP2016075514 A JP 2016075514A
Authority
JP
Japan
Prior art keywords
voltage
current
secondary battery
open
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014204817A
Other languages
Japanese (ja)
Inventor
荘田 隆博
Takahiro Shoda
隆博 荘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2014204817A priority Critical patent/JP2016075514A/en
Publication of JP2016075514A publication Critical patent/JP2016075514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an open-circuit voltage estimation device which can estimate the open-circuit voltage of a secondary cell with high accuracy.SOLUTION: A differential voltage ΔV between a voltage V1 when a first current I1 flows in a secondary cell B and a voltage V2 when a second current I2 flows is measured, and an inclination r of a linear line L is found by this differential voltage ΔV and a differential current ΔI. With this method, an error in the inclination r can be reduced, as compared with a method in which the inclination of the linear line is found by linking two independently measured points. Although the coordinates of a point M, not just the inclination r, need to be found in order to determine the linear line L, but the linear line L only moves vertically in parallel within the error range of the point M, and therefore it is possible to estimate an open-circuit voltage OCV with high accuracy, as compared with the conventional method in which the error occurring in inclination is large.SELECTED DRAWING: Figure 3

Description

本発明は、二次電池の開放電圧を推定する開放電圧推定装置に関するものである。   The present invention relates to an open-circuit voltage estimation device that estimates an open-circuit voltage of a secondary battery.

例えば、電動モータを用いて走行する電気自動車(EV)や、エンジンと電動モータとを併用して走行するハイブリッド自動車(HEV)などの各種車両には、電動モータの動力源として、リチウムイオン充電池やニッケル水素充電池などの二次電池が搭載されている。   For example, in various vehicles such as an electric vehicle (EV) that travels using an electric motor and a hybrid vehicle (HEV) that travels using both an engine and an electric motor, a lithium ion rechargeable battery is used as a power source for the electric motor. And rechargeable batteries such as nickel metal hydride batteries.

このような二次電池において、充電容量(即ち、残容量)であるSOC(State of Charge)を推定する方法として、二次電池の開放電圧に基づいて推定する方法や、充放電時の電流の積算値に基づいて推定する方法が知られており、これらの方法を組み合わせて充電容量を推定する方法が提案されている(例えば、特許文献1参照)。特許文献1に記載された充電容量の推定方法では、二つの方法を適宜に組み合わせることにより推定値の精度の向上が図られている。   In such a secondary battery, as a method of estimating SOC (State of Charge) which is a charging capacity (that is, remaining capacity), a method of estimating based on an open-circuit voltage of the secondary battery, a current of charge / discharge A method of estimating based on the integrated value is known, and a method of estimating the charge capacity by combining these methods has been proposed (for example, see Patent Document 1). In the charging capacity estimation method described in Patent Document 1, the accuracy of the estimated value is improved by appropriately combining the two methods.

特開2011−257207号公報JP 2011-257207 A

特許文献1に記載の方法のように開放電圧に基づいて充電容量を推定する際、二次電池は負荷電流や充電電流が流れると内部抵抗によって電圧降下してしまうため、充放電時に開放電圧を測定することは困難であった。そこで、充放電時に二次電池の開放電圧を推定する方法の一例として、以下のような方法が考えられる。まず、充放電時に二次電池に互いに異なる2つの電流I01、I02が流れる際の電圧V01、V02を測定する。さらに、図4に示すように、横軸を電流I、縦軸を電圧Vとする座標系において第1測定点M01(I01,V01)と第2測定点M02(I02,V02)とをプロットし、この二点を結ぶ直線L0を求める。この直線L0は、傾きr0が二次電池の内部抵抗に対応するとともに、縦軸との交点における電圧が、電流が0のときの電圧、即ち、開放電圧OCVとなる。   When estimating the charge capacity based on the open voltage as in the method described in Patent Document 1, the secondary battery drops due to internal resistance when a load current or charge current flows. It was difficult to measure. Then, the following methods can be considered as an example of the method of estimating the open circuit voltage of a secondary battery at the time of charging / discharging. First, voltages V01 and V02 when two different currents I01 and I02 flow through the secondary battery during charging and discharging are measured. Further, as shown in FIG. 4, a first measurement point M01 (I01, V01) and a second measurement point M02 (I02, V02) are plotted in a coordinate system in which the horizontal axis is current I and the vertical axis is voltage V. Then, a straight line L0 connecting these two points is obtained. In the straight line L0, the slope r0 corresponds to the internal resistance of the secondary battery, and the voltage at the intersection with the vertical axis is the voltage when the current is 0, that is, the open circuit voltage OCV.

しかしながら、測定した電圧には誤差が生じる可能性があり、例えば図4に示すエラーバーの誤差範囲内の電圧が測定値となり得る。第1測定点M01及び第2測定点M02がともに誤差を含み得るため、これらに基づいて開放電圧OCVを推定すると精度が低くなってしまう。特に、一方の電圧の測定値が誤差範囲の最大値となるとともに他方の電圧の測定値が最小値となってしまうと、傾きr0に大きな誤差が生じてしまい、開放電圧OCVの推定精度が低くなってしまう。   However, an error may occur in the measured voltage. For example, a voltage within the error range of the error bar shown in FIG. 4 can be a measured value. Since both the first measurement point M01 and the second measurement point M02 may include an error, if the open-circuit voltage OCV is estimated based on these, the accuracy is lowered. In particular, if the measured value of one voltage becomes the maximum value of the error range and the measured value of the other voltage becomes the minimum value, a large error occurs in the slope r0, and the estimation accuracy of the open circuit voltage OCV is low. turn into.

本発明の目的は、二次電池の開放電圧を高精度に推定することができる開放電圧推定装置を提供することにある。   An object of the present invention is to provide an open-circuit voltage estimation device capable of estimating an open-circuit voltage of a secondary battery with high accuracy.

前記課題を解決し目的を達成するために、請求項1に記載された発明は、二次電池の開放電圧を推定する開放電圧推定装置であって、第1入力端子及び第2入力端子を有し、該第1入力端子及び該第2入力端子のそれぞれに入力された電圧の差分値に応じた差分電圧を出力する差分電圧出力手段と、前記二次電池の一方の電極を前記第1入力端子及び前記第2入力端子に排他的に接続する切換スイッチと、前記第1入力端子と前記二次電池の他方の電極との間の電圧を保持可能な第1電圧保持手段と、前記第2入力端子と前記他方の電極との間の電圧を保持可能な第2電圧保持手段と、前記二次電池に第1電流が流れる際に当該二次電池の一方の電極と前記第1入力端子とを接続し、前記二次電池に前記第1電流と大きさが異なる第2電流が流れる際に当該二次電池の一方の電極と前記第2入力端子とを接続するように、前記切換スイッチを制御する接続切換制御手段と、前記一方の電極と前記他方の電極との間の電圧を測定する電圧測定手段と、前記第1電流、前記第2電流、前記差分電圧、前記電圧測定手段による電圧測定時に前記二次電池に流れる測定時電流、及び、前記電圧測定手段の測定電圧に基づいて前記開放電圧を推定する推定手段と、を備えることを特徴とする開放電圧推定装置である。   In order to solve the problems and achieve the object, the invention described in claim 1 is an open-circuit voltage estimation device for estimating an open-circuit voltage of a secondary battery, and has a first input terminal and a second input terminal. Differential voltage output means for outputting a differential voltage corresponding to a differential value of voltages input to the first input terminal and the second input terminal, and one electrode of the secondary battery connected to the first input A changeover switch exclusively connected to the terminal and the second input terminal, first voltage holding means capable of holding a voltage between the first input terminal and the other electrode of the secondary battery, and the second A second voltage holding means capable of holding a voltage between the input terminal and the other electrode; one electrode of the secondary battery and the first input terminal when a first current flows through the secondary battery; A second current having a magnitude different from that of the first current is connected to the secondary battery. A connection switching control means for controlling the changeover switch so as to connect one electrode of the secondary battery and the second input terminal, and a voltage between the one electrode and the other electrode. Voltage measuring means for measuring the first current, the second current, the differential voltage, a measurement current flowing in the secondary battery during voltage measurement by the voltage measurement means, and a measurement voltage of the voltage measurement means An open-circuit voltage estimation apparatus comprising: an estimation unit that estimates the open-circuit voltage based on the open-circuit voltage.

請求項2に記載された発明は、請求項1に記載の発明において、前記推定手段が、電流を一方の軸とするとともに電圧を他方の軸とする座標系において、前記第1電流と前記第2電流との差分電流と、前記差分電圧と、の比に基づいて傾きを算出するとともに、前記測定時電流及び前記測定電圧を示す座標を通るとともに該傾きを有する直線を求め、当該直線と前記他方の軸との交点に基づいて前記開放電圧を推定することを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the invention according to the first aspect, in the coordinate system in which the estimation unit has a current as one axis and a voltage as the other axis. The slope is calculated based on the ratio of the difference current between two currents and the difference voltage, and a straight line that passes through the coordinates indicating the current during measurement and the measurement voltage and has the slope is obtained. The open circuit voltage is estimated on the basis of the intersection with the other axis.

請求項3に記載された発明は、請求項1又は2に記載の発明において、前記第1電流及び前記第2電流が、放電時に前記二次電池に流れる電流であることを特徴とするものである。   The invention described in claim 3 is the invention described in claim 1 or 2, characterized in that the first current and the second current are currents flowing through the secondary battery during discharge. is there.

請求項4に記載された発明は、請求項1〜3のいずれか1項に記載の発明において、前記測定時電流が、前記第1電流又は前記第2電流に等しいことを特徴とするものである。   The invention described in claim 4 is characterized in that, in the invention described in any one of claims 1 to 3, the current during measurement is equal to the first current or the second current. is there.

請求項5に記載された発明は、請求項1〜4のいずれか1項に記載の発明において、前記差分電圧出力手段が、前記差分電圧として前記差分値を所定の増幅率で増幅した電圧を出力するように構成されていることを特徴とするものである。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, a voltage obtained by amplifying the differential value at a predetermined amplification factor as the differential voltage by the differential voltage output means. It is characterized by being configured to output.

請求項1に記載された発明によれば、差分電圧出力手段が、第1入力端子及び第2入力端子を有し、これら第1入力端子及び第2入力端子のそれぞれに入力された電圧の差分値に応じた差分電圧を出力する。切換スイッチが、二次電池の一方の電極を第1入力端子及び第2入力端子に排他的に接続する。第1電圧保持手段が、第1入力端子と二次電池の他方の電極との間の電圧を保持する。第2電圧保持手段が、第2入力端子と二次電池の他方の電極との間の電圧を保持する。接続切換制御手段が、二次電池に第1電流が流れる際に二次電池の一方の電極と第1入力端子とを接続し、かつ、二次電池に第2電流が流れる際に二次電池の一方の電極と第2入力端子とを接続するように、切換スイッチを制御する。電圧測定手段が、二次電池に任意の電流(測定時電流)が流れた際に、二次電池の一方の電極と他方の電極との間の電圧(測定電圧)を測定する。そして、推定手段が、第1電流、前記第2電流、差分電圧、測定時電流、及び、測定電圧に基づいて開放電圧を推定する。   According to the first aspect of the present invention, the differential voltage output means has the first input terminal and the second input terminal, and the difference between the voltages input to the first input terminal and the second input terminal, respectively. The differential voltage corresponding to the value is output. The changeover switch exclusively connects one electrode of the secondary battery to the first input terminal and the second input terminal. The first voltage holding unit holds a voltage between the first input terminal and the other electrode of the secondary battery. The second voltage holding means holds the voltage between the second input terminal and the other electrode of the secondary battery. The connection switching control means connects one electrode of the secondary battery and the first input terminal when the first current flows through the secondary battery, and the secondary battery when the second current flows through the secondary battery. The changeover switch is controlled so as to connect one of the electrodes and the second input terminal. The voltage measuring means measures a voltage (measurement voltage) between one electrode and the other electrode of the secondary battery when an arbitrary current (current during measurement) flows through the secondary battery. And an estimation means estimates an open circuit voltage based on a 1st electric current, the said 2nd electric current, a difference voltage, a current at the time of measurement, and a measurement voltage.

このようにしたことから、二次電池に第1電流が流れた際の両電極間の電圧を第1電圧保持手段によって保持し、第2電流が流れた際の両電極間の電圧を第2電圧保持手段によって保持することができ、この2つの電圧の差分値が差分電圧出力手段によって差分電圧として出力される。これに対し、例えば、二次電池の両電極間の電圧を直接測定する構成とした場合には、二次電池の最低使用電圧から最高使用電圧の間でしか電圧が変化しないにもかかわらず、測定器(例えばアナログ−デジタル変換器)の入力レンジを0以上最高電圧以下に合わせる必要があり、最低使用電圧がオフセット電圧として含まれてしまう。即ち、測定器の分解能の一部しか利用することができない。一方、差分電圧は、このようなオフセット電圧を含まず絶対電圧と比較して非常に小さい値となることから、適宜に増幅して測定器の入力レンジに合わせることにより、測定器の分解能を最大限に利用して高精度で検出することができる。この差分電圧を高精度で検出することにより、電圧と電流との関係を表す直線の傾きを高精度で求めることができる。このように直線の傾きを高精度で求めることによって、開放電圧を高精度に推定することができる。   Since it did in this way, the voltage between both electrodes when the 1st electric current flows into a secondary battery is hold | maintained by a 1st voltage holding means, and the voltage between both electrodes when a 2nd electric current flows is 2nd. The voltage can be held by the voltage holding means, and the difference value between the two voltages is output as a difference voltage by the difference voltage output means. On the other hand, for example, when the voltage between both electrodes of the secondary battery is directly measured, the voltage changes only between the lowest usable voltage and the highest usable voltage of the secondary battery, The input range of the measuring instrument (for example, an analog-digital converter) needs to be adjusted to 0 or more and the maximum voltage or less, and the minimum use voltage is included as an offset voltage. That is, only a part of the resolution of the measuring instrument can be used. On the other hand, the differential voltage does not include such an offset voltage and becomes a very small value compared to the absolute voltage, so that the resolution of the measuring instrument can be maximized by appropriately amplifying it to match the input range of the measuring instrument. It is possible to detect with high accuracy by using the limit. By detecting this differential voltage with high accuracy, the slope of a straight line representing the relationship between voltage and current can be determined with high accuracy. Thus, the open circuit voltage can be estimated with high accuracy by obtaining the slope of the straight line with high accuracy.

請求項2に記載された発明によれば、推定手段が、電流を一方の軸とするとともに電圧を他方の軸とする座標系において、差分電流と差分電圧との比に基づく傾きを有するとともに測定時電流及び測定電圧を示す座標を通る直線を求め、この直線と他方の軸との交点に基づいて開放電圧を推定するように構成されている。このようにしたことから、例えば、電流Iを横軸とするとともに電圧Vを縦軸とする直交座標系において、差分電流ΔIと差分電流ΔVとにより定まる傾きをr(=ΔV/ΔI)とし、測定時電流I0及び測定電圧V0を示す座標(I0,V0)を通る直線、即ち、V=r・(I−I0)+V0で表される直線が求められる。この直線と縦軸との交点、即ち、当該直線を表す関係式にI=0を代入して求められる電圧V=−r・I0+V0に基づいて開放電圧を推定することができる。   According to the invention described in claim 2, the estimation means has a slope based on a ratio between the differential current and the differential voltage and measures in a coordinate system having the current as one axis and the voltage as the other axis. A straight line passing through the coordinates indicating the hourly current and the measured voltage is obtained, and the open circuit voltage is estimated based on the intersection of the straight line and the other axis. Thus, for example, in an orthogonal coordinate system having the current I as the horizontal axis and the voltage V as the vertical axis, the slope determined by the differential current ΔI and the differential current ΔV is r (= ΔV / ΔI), A straight line passing through the coordinates (I0, V0) indicating the measurement current I0 and the measurement voltage V0, that is, a straight line represented by V = r · (I−I0) + V0 is obtained. The open circuit voltage can be estimated based on the intersection of the straight line and the vertical axis, that is, the voltage V = −r · I0 + V0 obtained by substituting I = 0 into the relational expression representing the straight line.

請求項3に記載された発明によれば、第1電流及び第2電流が放電時に二次電池に流れる電流である。このようにしたことから、二次電池に接続された負荷の大きさの変動に応じて適宜に第1電流及び第2電流を設定することができる。さらに、放電時に開放電圧を高精度に推定することにより、二次電池の残容量の推定精度を向上させることができ、充電が必要なタイミングを正確に判定することができる。   According to the third aspect of the present invention, the first current and the second current are currents that flow through the secondary battery during discharging. Since it did in this way, a 1st electric current and a 2nd electric current can be set suitably according to the fluctuation | variation of the magnitude | size of the load connected to the secondary battery. Furthermore, by estimating the open circuit voltage with high accuracy at the time of discharging, it is possible to improve the estimation accuracy of the remaining capacity of the secondary battery, and it is possible to accurately determine the timing that requires charging.

請求項4に記載された発明によれば、測定時電流が、第1電流又は第2電流に等しい。このようにしたことから、電圧保持手段による電圧の保持と略同時に電圧測定手段が電圧を測定することができ、測定に要する時間を短くすることができる。さらに、第1電流I1及び第2電流I2を測定する電流測定手段が設けられる場合には、電流の測定回数を減らすことができる。   According to the fourth aspect of the present invention, the measurement current is equal to the first current or the second current. Since it did in this way, a voltage measurement means can measure a voltage substantially simultaneously with holding | maintenance of the voltage by a voltage holding means, and the time which measurement requires can be shortened. Furthermore, when current measuring means for measuring the first current I1 and the second current I2 is provided, the number of times of current measurement can be reduced.

請求項5に記載された発明によれば、差分電圧出力手段が、差分電圧として前記差分値を所定の増幅率で増幅した電圧を出力するように構成されている。このようにしたことから、差分電圧をより大きな値として得ることができ、開放電圧をより一層高精度に推定することができる。   According to the invention described in claim 5, the differential voltage output means is configured to output a voltage obtained by amplifying the differential value with a predetermined amplification factor as the differential voltage. Since it did in this way, a differential voltage can be obtained as a bigger value, and an open circuit voltage can be estimated still more accurately.

本発明の実施形態に係る開放電圧推定装置を示す概略構成図である。It is a schematic block diagram which shows the open circuit voltage estimation apparatus which concerns on embodiment of this invention. 図1の開放電圧推定装置が備えるマイクロコンピュータのCPUによって実行される開放電圧推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the open circuit voltage estimation process performed by CPU of the microcomputer with which the open circuit voltage estimation apparatus of FIG. 1 is provided. 図2の開放電圧推定処理によって二次電池の開放電圧を求める様子を示すグラフである。It is a graph which shows a mode that the open circuit voltage of a secondary battery is calculated | required by the open circuit voltage estimation process of FIG. 従来の開放電圧推定方法を示すグラフである。It is a graph which shows the conventional open circuit voltage estimation method.

以下、本発明の実施形態の開放電圧推定装置について、図1〜3を参照して説明する。図1は、本実施形態の開放電圧推定装置の概略構成を示す図である。図2は、図1の開放電圧推定装置が備えるマイクロコンピュータのCPUによって実行される開放電圧推定処理の一例を示すフローチャートである。図3は、図2の開放電圧推定処理によって二次電池の開放電圧を求める様子を示すグラフである。   Hereinafter, an open-circuit voltage estimation apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a schematic configuration of an open-circuit voltage estimation apparatus according to the present embodiment. FIG. 2 is a flowchart illustrating an example of an open-circuit voltage estimation process executed by the CPU of the microcomputer included in the open-circuit voltage estimation apparatus in FIG. FIG. 3 is a graph showing how the open-circuit voltage of the secondary battery is obtained by the open-circuit voltage estimation process of FIG.

本実施形態の開放電圧推定装置は、例えば、電気自動車に搭載され、当該電気自動車が備える二次電池の電極間に接続されて、当該二次電池の開放電圧を推定するものである。勿論、電気自動車以外の二次電池を備えた装置、システムなどに適用してもよい。   The open-circuit voltage estimation apparatus according to the present embodiment is mounted on, for example, an electric vehicle and connected between electrodes of a secondary battery included in the electric vehicle, and estimates an open-circuit voltage of the secondary battery. Of course, you may apply to the apparatus, system, etc. which were equipped with secondary batteries other than an electric vehicle.

このような二次電池(図中、符号Bで示す)は、電圧を生じる起電力部eと内部抵抗rとを有している。二次電池Bは、両電極(正極Bp及び負極Bn)間に電圧Vを生じ、この電圧Vは、起電力部eによる起電力によって生じる電圧(即ち、開放電圧OCV)と内部抵抗rに電流が流れることにより生じる電圧Vrとによって決定される(V=OCV+Vr)。即ち、二次電池Bを流れる電流が0となると、両電極間の電圧Vは開放電圧OCVに等しくなる。二次電池Bの負極Bnは、基準電位Gに接続されている。   Such a secondary battery (indicated by symbol B in the figure) has an electromotive force portion e that generates a voltage and an internal resistance r. The secondary battery B generates a voltage V between both electrodes (the positive electrode Bp and the negative electrode Bn), and this voltage V is a voltage generated by an electromotive force generated by the electromotive force unit e (that is, an open circuit voltage OCV) and an internal resistance r Is determined by the voltage Vr generated by the current flowing (V = OCV + Vr). That is, when the current flowing through the secondary battery B becomes 0, the voltage V between both electrodes becomes equal to the open circuit voltage OCV. The negative electrode Bn of the secondary battery B is connected to the reference potential G.

図1に示すように、本実施形態の開放電圧推定装置(図中、符号1で示す)は、増幅器11と、切換スイッチ12と、第1電圧保持手段としての第1コンデンサ13と、第2電圧保持手段としての第2コンデンサ14と、充放電手段15と、電圧測定手段16と、第1アナログ−デジタル変換器21と、第2アナログ−デジタル変換器22と、マイクロコンピュータ40(以下、「μCOM40」という)と、を有している。   As shown in FIG. 1, the open circuit voltage estimation device (indicated by reference numeral 1 in the figure) of the present embodiment includes an amplifier 11, a changeover switch 12, a first capacitor 13 as first voltage holding means, and a second The second capacitor 14 as the voltage holding means, the charging / discharging means 15, the voltage measuring means 16, the first analog-digital converter 21, the second analog-digital converter 22, and the microcomputer 40 (hereinafter, “ μCOM40 ”).

増幅器11は、例えば、オペアンプなどで構成されており、2つの入力端子(第1入力端子In1及び第2入力端子In2)と1つの出力端子(出力端子Out)を備え、これら2つの入力端子に入力された電圧の差分値を所定の増幅率Avで増幅した増幅電圧Vmを出力端子から出力する。増幅器11は、差分電圧出力手段に相当する。   The amplifier 11 is composed of, for example, an operational amplifier, and includes two input terminals (first input terminal In1 and second input terminal In2) and one output terminal (output terminal Out). An amplified voltage Vm obtained by amplifying the difference value of the input voltage with a predetermined amplification factor Av is output from the output terminal. The amplifier 11 corresponds to a differential voltage output unit.

切換スイッチ12は、例えば、アナログスイッチなどで構成された1回路2接点(SPDT(単極双投))のスイッチである。切換スイッチ12は、2つの切換端子a、bのうちの一方の切換端子aが、増幅器11の第1入力端子In1に接続され、他方の切換端子bが、増幅器11の第2入力端子In2に接続されている。また、切換スイッチ12は、共通端子cが、二次電池Bの正極Bp(二次電池の一方の端子)に接続されている。切換スイッチ12は、後述するμCOM40に接続されており、μCOM40からの制御信号に応じて、2つの切換端子a、bと共通端子cとの接続を切り替えて、二次電池Bの正極Bpを第1入力端子In1及び第2入力端子In2に排他的に接続する。   The change-over switch 12 is, for example, a one-circuit two-contact (SPDT (single pole double throw)) switch constituted by an analog switch or the like. In the changeover switch 12, one of the two changeover terminals a and b is connected to the first input terminal In1 of the amplifier 11, and the other changeover terminal b is connected to the second input terminal In2 of the amplifier 11. It is connected. The changeover switch 12 has a common terminal c connected to the positive electrode Bp of the secondary battery B (one terminal of the secondary battery). The change-over switch 12 is connected to a later-described μCOM 40, and switches the connection between the two change-over terminals a and b and the common terminal c in accordance with a control signal from the μCOM 40 to change the positive electrode Bp of the secondary battery B to the first. It is exclusively connected to the first input terminal In1 and the second input terminal In2.

第1コンデンサ13は、増幅器11の第1入力端子In1と基準電位Gとの間に接続されており、つまり、第1コンデンサ13は、第1入力端子In1と二次電池Bの負極Bnとの間に設けられている。これにより、第1コンデンサ13には、第1入力端子In1と二次電池Bの負極Bnとの間の電圧が保持される。   The first capacitor 13 is connected between the first input terminal In1 of the amplifier 11 and the reference potential G, that is, the first capacitor 13 is connected between the first input terminal In1 and the negative electrode Bn of the secondary battery B. It is provided in between. Thus, the voltage between the first input terminal In1 and the negative electrode Bn of the secondary battery B is held in the first capacitor 13.

第2コンデンサ14は、増幅器11の第2入力端子In2と基準電位Gとの間に接続されており、つまり、第2コンデンサ14は、第2入力端子In2と二次電池Bの負極Bnとの間に設けられている。これにより、第2コンデンサ14には、第2入力端子In2と二次電池Bの負極Bnとの間の電圧が保持される。   The second capacitor 14 is connected between the second input terminal In2 of the amplifier 11 and the reference potential G, that is, the second capacitor 14 is connected between the second input terminal In2 and the negative electrode Bn of the secondary battery B. It is provided in between. Thereby, the voltage between the second input terminal In2 and the negative electrode Bn of the secondary battery B is held in the second capacitor 14.

充放電手段15は、二次電池Bの正極Bpと基準電位G(即ち、二次電池Bの負極Bn)との間に接続されており、二次電池Bの充電時には、当該二次電池Bの正極Bpを図示しない充電部に接続して充電電流を流すように設けられ、放電時には、図示しない負荷(例えば、電気自動車の走行用モータや暖房用の電気ヒータ)に接続するとともに、二次電池Bから当該負荷に流れる負荷電流の大きさを調節可能に設けられている。充放電手段15は、後述するμCOM40に接続されており、μCOM40からの制御信号に応じて、二次電池Bの充放電を切り換える。   The charging / discharging means 15 is connected between the positive electrode Bp of the secondary battery B and the reference potential G (that is, the negative electrode Bn of the secondary battery B), and when the secondary battery B is charged, the secondary battery B The positive electrode Bp is connected to a charging unit (not shown) to flow a charging current. During discharging, the positive electrode Bp is connected to a load (not shown) (for example, an electric vehicle driving motor or a heating electric heater) and secondary. The load current flowing from the battery B to the load is provided so as to be adjustable. The charging / discharging unit 15 is connected to a later-described μCOM 40 and switches charging / discharging of the secondary battery B in accordance with a control signal from the μCOM 40.

電圧測定手段16は、二次電池Bの正極Bpと基準電位G(即ち、二次電池Bの負極Bn)との間に接続されており、二次電池Bに充電電流又は負荷電流が流れた際に両電極間の電圧Vを測定可能に構成されている。電圧測定手段16は、後述するμCOM40に接続されており、μCOM40からの制御信号に応じて、電圧Vを測定する。   The voltage measuring means 16 is connected between the positive electrode Bp of the secondary battery B and the reference potential G (that is, the negative electrode Bn of the secondary battery B), and a charging current or a load current flows through the secondary battery B. In this case, the voltage V between both electrodes can be measured. The voltage measuring means 16 is connected to a later-described μCOM 40 and measures the voltage V in accordance with a control signal from the μCOM 40.

第1アナログ−デジタル変換器21(以下、「第1ADC21」という)は、電圧測定手段16によって測定された二次電池Bの両電極間の電圧を量子化して、当該電圧に対応するデジタル値を示す信号を出力する。第2アナログ−デジタル変換器22(以下、「第2ADC22」という)は、増幅器11から出力された増幅電圧Vmを量子化して、当該増幅電圧Vmに対応するデジタル値を示す信号を出力する。本実施形態において、第1ADC21及び第2ADC22は、個別の電子部品として実装されているが、これに限定されるものではなく、例えば、後述するμCOM40に内蔵されたアナログ−デジタル変換部などを用いて、各電圧を量子化してもよい。   The first analog-to-digital converter 21 (hereinafter referred to as “first ADC 21”) quantizes the voltage between both electrodes of the secondary battery B measured by the voltage measuring means 16, and obtains a digital value corresponding to the voltage. The signal shown is output. The second analog-digital converter 22 (hereinafter referred to as “second ADC 22”) quantizes the amplified voltage Vm output from the amplifier 11 and outputs a signal indicating a digital value corresponding to the amplified voltage Vm. In the present embodiment, the first ADC 21 and the second ADC 22 are mounted as individual electronic components. However, the present invention is not limited to this. For example, an analog-digital conversion unit built in the μCOM 40 described later is used. Each voltage may be quantized.

μCOM40は、CPU、ROM、RAMなどを内蔵して構成されており、開放電圧推定装置1全体の制御を司る。ROMには、CPUを接続切換制御手段及び推定手段などの各種手段として機能させるための制御プログラムが予め記憶されており、CPUは、この制御プログラムを実行することにより上記各種手段として機能する。   The μCOM 40 includes a CPU, a ROM, a RAM, and the like, and controls the entire open-circuit voltage estimating apparatus 1. The ROM stores in advance a control program for causing the CPU to function as various means such as connection switching control means and estimation means, and the CPU functions as the various means by executing this control program.

μCOM40は、切換スイッチ12に接続された第1出力ポートPO1、及び、充放電手段15に接続された第2出力ポートPO2を備えている。μCOM40のCPUは、第1出力ポートPO1を通じて切換スイッチ12に制御信号を送信して、二次電池Bに充電電流又は負荷電流として第1電流I1が流れる際に二次電池Bの正極Bpと第1入力端子In1とを接続し、かつ、二次電池Bに充電電流又は負荷電流として第2電流I2が流れる際に二次電池Bの正極Bpと第2入力端子In2とを接続するように、切換スイッチ12を制御する。また、μCOM40のCPUは、第2出力ポートPO2を通じて充放電手段15に制御信号を送信して、二次電池Bの充電と放電とを切り換えるとともに、二次電池Bに適宜な充電電流又は負荷電流が流れるように充放電手段15を制御する。   The μCOM 40 includes a first output port PO1 connected to the changeover switch 12 and a second output port PO2 connected to the charging / discharging means 15. The CPU of the μCOM 40 transmits a control signal to the changeover switch 12 through the first output port PO1, and when the first current I1 flows through the secondary battery B as a charging current or a load current, The first input terminal In1 is connected, and when the second current I2 flows as a charging current or a load current to the secondary battery B, the positive electrode Bp of the secondary battery B and the second input terminal In2 are connected. The changeover switch 12 is controlled. Further, the CPU of the μCOM 40 transmits a control signal to the charging / discharging means 15 through the second output port PO2 to switch between charging and discharging of the secondary battery B, and an appropriate charging current or load current for the secondary battery B. The charging / discharging means 15 is controlled so as to flow.

μCOM40は、第1ADC21から出力された信号が入力される第1入力ポートPI1、及び、第2ADC22から出力された信号が入力される第2入力ポートPI2を有している。これら第1入力ポートPI1及び第2入力ポートPI2に入力された信号は、μCOM40のCPUが認識できる形式の情報に変換されて当該CPUに送られる。μCOM40のCPUは、当該情報に基づいて、二次電池Bの両電極間の電圧V及び増幅電圧Vmを検出する。CPUは、後述するように増幅電圧Vm、二次電池Bに流れた電流の差分値である差分電流、電圧測定手段15の測定電圧、及び、電圧測定手段15による電圧測定時の電流(測定時電流)に基づいて二次電池Bの開放電圧を推定し、さらに当該開放電圧に基づいて二次電池Bの充電容量(残容量)を推定する。   The μCOM 40 has a first input port PI1 to which a signal output from the first ADC 21 is input, and a second input port PI2 to which a signal output from the second ADC 22 is input. The signals input to the first input port PI1 and the second input port PI2 are converted into information in a format that can be recognized by the CPU of the μCOM 40 and sent to the CPU. The CPU of the μCOM 40 detects the voltage V and the amplified voltage Vm between both electrodes of the secondary battery B based on the information. As will be described later, the CPU uses the amplified voltage Vm, the differential current that is the differential value of the current flowing in the secondary battery B, the measured voltage of the voltage measuring means 15, and the current at the time of voltage measurement by the voltage measuring means 15 (measurement time). The open circuit voltage of the secondary battery B is estimated based on the current), and the charge capacity (remaining capacity) of the secondary battery B is estimated based on the open circuit voltage.

μCOM40は、図示しない通信ポートを有している。この通信ポートは、図示しない車両内ネットワーク(例えば、CAN(Controller Area Network)など)に接続されており、当該車両内ネットワークを通じて車両メンテナンス用の端末装置などの表示装置に接続される。μCOM40のCPUは、通信ポート及び車両内ネットワークを通じて、推定した充電容量を示す信号を表示装置に送信し、この表示装置において当該信号に基づき二次電池Bの充電容量を表示する。または、μCOM40のCPUは、通信ポート及び車両内ネットワークを通じて、推定した充電容量を示す信号を車両に搭載されたコンビネーションメータなどの表示装置に送信し、この表示装置において当該信号に基づき二次電池Bの充電容量を表示するようにしてもよい。   The μCOM 40 has a communication port (not shown). This communication port is connected to an in-vehicle network (for example, CAN (Controller Area Network)), and is connected to a display device such as a terminal device for vehicle maintenance through the in-vehicle network. The CPU of the μCOM 40 transmits a signal indicating the estimated charge capacity to the display device through the communication port and the in-vehicle network, and displays the charge capacity of the secondary battery B on the display device based on the signal. Alternatively, the CPU of the μCOM 40 transmits a signal indicating the estimated charging capacity to a display device such as a combination meter mounted on the vehicle through the communication port and the in-vehicle network, and the secondary battery B based on the signal in the display device. May be displayed.

次に、上述した開放電圧推定装置1が備えるμCOM40における開放電圧推定処理の一例について、図2のフローチャートを参照して説明するとともに、開放電圧推定処理においてμCOM40で行われる計算について図3を参照して説明する。   Next, an example of the open-circuit voltage estimation process in the μCOM 40 included in the open-circuit voltage estimation apparatus 1 described above will be described with reference to the flowchart of FIG. 2, and the calculation performed by the μCOM 40 in the open-circuit voltage estimation process will be described with reference to FIG. 3. I will explain.

μCOM40のCPU(以下、単に「CPU」という)は、例えば、車両の走行開始時や加速時に、車両に搭載された電子制御装置から通信ポートを通じて二次電池Bの放電開始命令を受信すると、第2出力ポートPO2を通じて充放電手段15に対し放電開始の制御信号を送信する。充放電手段15はこの制御信号に応じて、二次電池Bを走行用モータに接続し、二次電池Bの放電が開始される。そして、図2に示す開放電圧推定処理に進む。   When the CPU of the μCOM 40 (hereinafter simply referred to as “CPU”) receives a discharge start command for the secondary battery B from the electronic control device mounted on the vehicle through the communication port, for example, when the vehicle starts running or accelerates, A discharge start control signal is transmitted to the charge / discharge means 15 through the two output port PO2. In response to this control signal, the charging / discharging means 15 connects the secondary battery B to the traveling motor and starts discharging the secondary battery B. And it progresses to the open circuit voltage estimation process shown in FIG.

開放電圧推定処理において、CPUは、二次電池Bの放電が開始されると、第1出力ポートPO1を通じて切換スイッチ12に対して他方の切換端子bと共通端子cとを接続する制御信号を送信する(S110)。切換スイッチ12は、この制御信号に応じて他方の切換端子bと共通端子cとを接続することにより、二次電池Bの正極Bpと増幅器11の第2入力端子In2とを接続する。これにより、第2コンデンサ14が二次電池Bの正極Bp及び負極Bnの間に接続されて、第2コンデンサ14に、二次電池Bから電荷が流れ込む。   In the open circuit voltage estimation process, when the discharge of the secondary battery B is started, the CPU transmits a control signal for connecting the other switch terminal b and the common terminal c to the switch 12 through the first output port PO1. (S110). The changeover switch 12 connects the positive electrode Bp of the secondary battery B and the second input terminal In2 of the amplifier 11 by connecting the other changeover terminal b and the common terminal c in accordance with this control signal. Thereby, the second capacitor 14 is connected between the positive electrode Bp and the negative electrode Bn of the secondary battery B, and the charge flows from the secondary battery B into the second capacitor 14.

次に、CPUは、二次電池Bに第2電流I2が流れるまで待機する(S120)。そして、ある程度時間が経過すると、第2コンデンサ14には、第2電流I2が流れる際の二次電池Bの両電極間の電圧が保持される。なお、第2電流I2は、測定してもよいし負荷の大きさから推定してもよく、例えば、負荷電流を測定する電流測定手段が設けられるとともに測定結果がμCOM40に入力されることで、第2電流I2が流れたことをCPUが判断してもよいし、μCOM40に負荷の大きさと負荷電流との関係を予め記憶させておき、負荷の大きさが所定値となったら第2電流I2が流れたとCPUが判断してもよい。また、第2電流I2の大きさは予め定められていなくてもよく、例えば、CPUが、二次電池Bの放電開始直後や所定時間経過後に流れる負荷電流を第2電流I2と判断し、電流測定手段によってこの電流の大きさを測定してもよい。   Next, the CPU stands by until the second current I2 flows through the secondary battery B (S120). Then, after a certain amount of time has elapsed, the voltage between both electrodes of the secondary battery B when the second current I2 flows is held in the second capacitor 14. Note that the second current I2 may be measured or estimated from the size of the load. For example, a current measuring unit for measuring the load current is provided and the measurement result is input to the μCOM 40. The CPU may determine that the second current I2 has flowed, or the μCOM 40 stores in advance the relationship between the load magnitude and the load current, and when the load magnitude reaches a predetermined value, the second current I2 The CPU may determine that has flowed. The magnitude of the second current I2 may not be determined in advance. For example, the CPU determines that the load current that flows immediately after the start of the discharge of the secondary battery B or after a predetermined time has elapsed as the second current I2, and You may measure the magnitude | size of this electric current by a measurement means.

次に、CPUは、二次電池Bに第2電流I2が流れて所定時間が経過すると、第2コンデンサ14への電荷の蓄積が完了したと判断し、第1出力ポートPO1を通じて切換スイッチ12に対して一方の切換端子aと共通端子cとを接続する制御信号を送信する(S130)。切換スイッチ12は、CPUからの制御信号に応じて、一方の切換端子aと共通端子cとを接続することにより、二次電池Bの正極Bpと増幅器11の第1入力端子In1とを接続する。これにより、第1コンデンサ13が二次電池Bの正極Bp及び負極Bnの間に接続されて、第1コンデンサ13に、二次電池Bから電荷が流れ込む。   Next, when the second current I2 flows through the secondary battery B and a predetermined time has elapsed, the CPU determines that the charge accumulation in the second capacitor 14 has been completed, and switches the changeover switch 12 through the first output port PO1. On the other hand, a control signal for connecting one switching terminal a and the common terminal c is transmitted (S130). The change-over switch 12 connects the positive electrode Bp of the secondary battery B and the first input terminal In1 of the amplifier 11 by connecting one switch terminal a and the common terminal c in accordance with a control signal from the CPU. . Thereby, the first capacitor 13 is connected between the positive electrode Bp and the negative electrode Bn of the secondary battery B, and the charge flows from the secondary battery B into the first capacitor 13.

次に、CPUは、二次電池Bに第2電流I2と大きさの異なる第1電流I1が流れるまで待機する(S140)。そして、第1電流I1が流れてある程度時間が経過すると、第1コンデンサ13には、第1電流I1が流れた際の二次電池Bの両電極間の電圧が保持される。なお、第1電流I1は、第2電流I2と略同様に、測定してもよいし負荷の大きさから推定してもよい。また、第1電流I1の大きさは予め定められていなくてもよく、第2電流I2との差分電流の大きさが予め定められてもよい。   Next, the CPU stands by until a first current I1 having a magnitude different from that of the second current I2 flows through the secondary battery B (S140). When a certain amount of time elapses after the first current I1 flows, the first capacitor 13 holds the voltage between both electrodes of the secondary battery B when the first current I1 flows. The first current I1 may be measured or estimated from the size of the load in substantially the same manner as the second current I2. Further, the magnitude of the first current I1 may not be determined in advance, and the magnitude of the differential current from the second current I2 may be determined in advance.

次に、CPUは、第2入力ポートPI2に入力された信号から得られた情報に基づいて増幅器11から出力された増幅電圧Vmを検出するとともに、第1入力ポートPI1に入力された信号から得られた情報に基づいて電圧測定手段16から出力された測定電圧V0を検出する(S150)。このとき、二次電池Bには第1電流I1が流れていることから、測定電圧V0は、第1コンデンサ13の両端間の電圧V1に等しい。   Next, the CPU detects the amplified voltage Vm output from the amplifier 11 based on information obtained from the signal input to the second input port PI2, and obtains it from the signal input to the first input port PI1. Based on the received information, the measurement voltage V0 output from the voltage measurement means 16 is detected (S150). At this time, since the first current I1 flows through the secondary battery B, the measured voltage V0 is equal to the voltage V1 across the first capacitor 13.

次に、CPUは、検出した増幅電圧Vmを増幅器11の増幅率Avで除することで、第1コンデンサ13の両端間の電圧V1と第2コンデンサ14の両端間の電圧V2との差分電圧ΔV(=V1−V2)を求め、さらにこの差分電圧ΔVを第1電流I1と第2電流I2との差分電流ΔI(=I1−I2)で除する(S160)。即ち、図3に示すように電流Iを横軸として電圧Vを縦軸とする直交座標系において、負荷電流と二次電池Bの両電極間の電圧V(=OCV+Vr)との関係を表す直線の傾きrを算出する。   Next, the CPU divides the detected amplified voltage Vm by the amplification factor Av of the amplifier 11 to thereby obtain a differential voltage ΔV between the voltage V1 across the first capacitor 13 and the voltage V2 across the second capacitor 14. (= V1−V2) is obtained, and the difference voltage ΔV is further divided by the difference current ΔI (= I1−I2) between the first current I1 and the second current I2 (S160). That is, as shown in FIG. 3, in a rectangular coordinate system having the current I as the horizontal axis and the voltage V as the vertical axis, a straight line representing the relationship between the load current and the voltage V (= OCV + Vr) between both electrodes of the secondary battery B. Is calculated.

次に、CPUは、測定電圧V0と、そのときの測定時電流I0(即ち、第1電流I1に等しい)と、を示す座標を決定する(S170)。即ち図3に示す直交座標系において、点M(I1,V1)の位置を決定する。   Next, the CPU determines coordinates indicating the measurement voltage V0 and the current during measurement I0 (that is, equal to the first current I1) (S170). That is, the position of the point M (I1, V1) is determined in the orthogonal coordinate system shown in FIG.

次に、CPUは、図3に示す点Mを通るとともに傾きrを有する直線Lを求め、この直線と縦軸との交点の座標を求める(S180)。即ち、直線Lを表す関係式として、V=r・(I−I1)+V1を求め、この式にI=0を代入し、開放電圧OCV=−I1・r+V1を推定し、開放電圧推定処理を終了する。そして、開放電圧推定処理の終了後、CPUは、この開放電圧OCVと、予め記憶した開放電圧と充電容量との関係と、に基づいて、二次電池Bの充電容量を推定し、通信ポートを通じて、この充電容量を他の装置等に送信する。   Next, the CPU obtains a straight line L passing through the point M shown in FIG. 3 and having an inclination r, and obtains the coordinates of the intersection of this straight line and the vertical axis (S180). That is, as a relational expression representing the straight line L, V = r · (I−I1) + V1 is obtained, and I = 0 is substituted into this equation, and the open circuit voltage OCV = −I1 · r + V1 is estimated. finish. And after completion | finish of an open circuit voltage estimation process, CPU estimates the charge capacity of the secondary battery B based on this open circuit voltage OCV and the relationship between the open circuit voltage and charge capacity memorize | stored previously, and through a communication port. The charging capacity is transmitted to another device or the like.

図2のフローチャートにおけるステップS110及びS130の処理を実行するCPUが、接続切換制御手段に相当し、S160〜S180の処理を実行するCPUが、推定手段に相当する。   The CPU that executes the processes of steps S110 and S130 in the flowchart of FIG. 2 corresponds to connection switching control means, and the CPU that executes the processes of S160 to S180 corresponds to estimation means.

このような本実施形態によれば、以下のような効果がある。即ち、増幅器11によって増幅された増幅電圧Vmから差分電圧ΔVを求めることにより、この差分電圧ΔVと差分電流ΔIとによって直線Lの傾きrを高精度に求めることができ、独立に測定した2点を結ぶことにより直線の傾きを求める方法と比較して、傾きrの誤差を小さくすることができる。また、直線Lを決定するためには傾きrだけでなく点Mの座標を求める必要があり、点Mには図3にエラーバーで示すような誤差が生じうるものの、直線Lはこの誤差範囲内で上下に平行移動するだけであり、傾きに生じる誤差が大きい従来の方法と比較して、開放電圧OCVを高精度に推定することができる。   According to this embodiment, there are the following effects. That is, by obtaining the differential voltage ΔV from the amplified voltage Vm amplified by the amplifier 11, the slope r of the straight line L can be obtained with high accuracy from the differential voltage ΔV and the differential current ΔI, and two points measured independently. The error of the slope r can be reduced as compared with the method of obtaining the slope of the straight line by connecting. Further, in order to determine the straight line L, it is necessary to obtain not only the inclination r but also the coordinates of the point M. Although an error as indicated by an error bar in FIG. The open circuit voltage OCV can be estimated with high accuracy as compared with the conventional method in which the error in the tilt is large.

さらに、二次電池Bの放電時の負荷電流である第1電流I1及び第2電流I2に基づいて開放電圧OCVを推定することにより、二次電池Bに接続された負荷の大きさの変動に応じて適宜に第1電流及び第2電流を設定することができる。さらに、放電時に開放電圧OCVを高精度に推定することにより、二次電池Bの残容量の推定精度を向上させることができ、充電が必要なタイミングを正確に判定することができる。   Further, by estimating the open circuit voltage OCV based on the first current I1 and the second current I2 that are load currents at the time of discharging the secondary battery B, the variation in the size of the load connected to the secondary battery B can be reduced. Accordingly, the first current and the second current can be set as appropriate. Furthermore, by estimating the open circuit voltage OCV with high accuracy at the time of discharging, the estimation accuracy of the remaining capacity of the secondary battery B can be improved, and the timing at which charging is required can be accurately determined.

さらに、二次電池Bに第1電流I1が流れたときに電圧測定手段16が二次電池Bの両電極間の電圧を測定して測定電圧V0とすることから、測定時電流I0が第1電流I1に等しく、第1コンデンサ13の充電完了直後に測定電圧V0を測定することができ、測定に要する時間を短くすることができる。さらに、第1電流I1及び第2電流I2を測定する電流測定手段が設けられる場合には、電流の測定回数を減らすことができる。   Further, when the first current I1 flows through the secondary battery B, the voltage measuring means 16 measures the voltage between both electrodes of the secondary battery B to obtain the measured voltage V0. It is equal to the current I1, and the measurement voltage V0 can be measured immediately after the charging of the first capacitor 13 is completed, and the time required for the measurement can be shortened. Furthermore, when current measuring means for measuring the first current I1 and the second current I2 is provided, the number of times of current measurement can be reduced.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。   In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.

例えば、前記実施形態では、二次電池Bを走行用モータに接続して放電する際の負荷電流である第1電流I1及び第2電流I2に基づいて開放電圧OCVを推定するものとしたが、第1電流及び第2電流は、二次電池をその他の負荷に接続した際の負荷電流であってもよいし、充電時に二次電池に流れる電流であってもよいし、放電時の電流と充電時の電流とが組み合わされてもよい。   For example, in the embodiment, the open-circuit voltage OCV is estimated based on the first current I1 and the second current I2 that are load currents when the secondary battery B is connected to the traveling motor and discharged. The first current and the second current may be a load current when the secondary battery is connected to another load, may be a current flowing through the secondary battery during charging, or may be a current during discharging. The current at the time of charging may be combined.

また、前記実施形態では、二次電池Bに第1電流I1が流れる際に電圧測定手段16が二次電池Bの両電極間の電圧を測定するものとしたが、電圧測定手段は、任意の電流が流れる際に電圧を測定すればよく、第2電流I2が流れる際に測定してもよい。また、二次電池Bの負荷電流を測定する電流測定手段が設けられ、電流測定手段によって負荷電流を測定し、略同時に電圧測定手段によって電圧を測定する構成であってもよい。   Moreover, in the said embodiment, when the 1st electric current I1 flows into the secondary battery B, the voltage measurement means 16 shall measure the voltage between the both electrodes of the secondary battery B, However, A voltage measurement means is arbitrary The voltage may be measured when the current flows, and may be measured when the second current I2 flows. Moreover, the structure which measures the load current by a current measurement means, and measures a voltage by a voltage measurement means at the same time may be sufficient as the current measurement means which measures the load current of the secondary battery B may be provided.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in terms of materials, quantity, and other detailed configurations. Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.

1 開放電圧推定装置
11 増幅器(差分電圧出力手段)
12 切換スイッチ
13 第1コンデンサ(第1電圧保持手段)
14 第2コンデンサ(第2電圧保持手段)
16 電圧測定手段
40 マイクロコンピュータ(接続切換制御手段、推定手段)
B 二次電池
DESCRIPTION OF SYMBOLS 1 Open circuit voltage estimation apparatus 11 Amplifier (differential voltage output means)
12 switch 13 first capacitor (first voltage holding means)
14 Second capacitor (second voltage holding means)
16 Voltage measurement means 40 Microcomputer (connection switching control means, estimation means)
B Secondary battery

Claims (5)

二次電池の開放電圧を推定する開放電圧推定装置であって、
第1入力端子及び第2入力端子を有し、該第1入力端子及び該第2入力端子のそれぞれに入力された電圧の差分値に応じた差分電圧を出力する差分電圧出力手段と、
前記二次電池の一方の電極を前記第1入力端子及び前記第2入力端子に排他的に接続する切換スイッチと、
前記第1入力端子と二次電池の他方の電極との間の電圧を保持可能な第1電圧保持手段と、
前記第2入力端子と前記他方の電極との間の電圧を保持可能な第2電圧保持手段と、
前記二次電池に第1電流が流れる際に当該二次電池の一方の電極と前記第1入力端子とを接続し、前記二次電池に前記第1電流と大きさが異なる第2電流が流れる際に当該二次電池の一方の電極と前記第2入力端子とを接続するように、前記切換スイッチを制御する接続切換制御手段と、
前記一方の電極と前記他方の電極との間の電圧を測定する電圧測定手段と、
前記第1電流、前記第2電流、前記差分電圧、前記電圧測定手段による電圧測定時に前記二次電池に流れる測定時電流、及び、前記電圧測定手段の測定電圧に基づいて前記開放電圧を推定する推定手段と、を備えることを特徴とする開放電圧推定装置。
An open-circuit voltage estimation device for estimating an open-circuit voltage of a secondary battery,
Differential voltage output means having a first input terminal and a second input terminal, and for outputting a differential voltage corresponding to a differential value of voltages input to the first input terminal and the second input terminal,
A changeover switch for exclusively connecting one electrode of the secondary battery to the first input terminal and the second input terminal;
First voltage holding means capable of holding a voltage between the first input terminal and the other electrode of the secondary battery;
Second voltage holding means capable of holding a voltage between the second input terminal and the other electrode;
When a first current flows through the secondary battery, one electrode of the secondary battery and the first input terminal are connected, and a second current having a magnitude different from the first current flows through the secondary battery. Connection switching control means for controlling the changeover switch so as to connect one electrode of the secondary battery and the second input terminal.
Voltage measuring means for measuring a voltage between the one electrode and the other electrode;
The open-circuit voltage is estimated based on the first current, the second current, the differential voltage, a measurement current that flows through the secondary battery during voltage measurement by the voltage measurement unit, and a measurement voltage of the voltage measurement unit. An open-circuit voltage estimation device comprising: an estimation unit.
前記推定手段が、電流を一方の軸とするとともに電圧を他方の軸とする座標系において、前記第1電流と前記第2電流との差分電流と、前記差分電圧と、の比に基づいて傾きを算出するとともに、前記測定時電流及び前記測定電圧を示す座標を通るとともに該傾きを有する直線を求め、当該直線と前記他方の軸との交点に基づいて前記開放電圧を推定することを特徴とする請求項1に記載の開放電圧推定装置。   In the coordinate system having the current as one axis and the voltage as the other axis, the estimating means is inclined based on a ratio between the difference current between the first current and the second current and the difference voltage. And calculating a straight line passing through the coordinates indicating the current during measurement and the measured voltage and having the slope, and estimating the open-circuit voltage based on the intersection of the straight line and the other axis. The open-circuit voltage estimation apparatus according to claim 1. 前記第1電流及び前記第2電流が、放電時に前記二次電池に流れる電流であることを特徴とする請求項1又は2に記載の開放電圧推定装置。   3. The open-circuit voltage estimation device according to claim 1, wherein the first current and the second current are currents that flow through the secondary battery during discharging. 4. 前記測定時電流が、前記第1電流又は前記第2電流に等しいことを特徴とする請求項1〜3のいずれか1項に記載の開放電圧推定装置。   The open-circuit voltage estimation apparatus according to claim 1, wherein the measurement current is equal to the first current or the second current. 前記差分電圧出力手段が、前記差分電圧として前記差分値を所定の増幅率で増幅した電圧を出力するように構成されていることを特徴とする請求項1〜4のいずれか1項に記載の開放電圧推定装置。   The said differential voltage output means is comprised so that the voltage which amplified the said difference value with the predetermined amplification factor as said difference voltage may be output, The any one of Claims 1-4 characterized by the above-mentioned. Open voltage estimation device.
JP2014204817A 2014-10-03 2014-10-03 Open-circuit voltage estimation device Pending JP2016075514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014204817A JP2016075514A (en) 2014-10-03 2014-10-03 Open-circuit voltage estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014204817A JP2016075514A (en) 2014-10-03 2014-10-03 Open-circuit voltage estimation device

Publications (1)

Publication Number Publication Date
JP2016075514A true JP2016075514A (en) 2016-05-12

Family

ID=55951234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014204817A Pending JP2016075514A (en) 2014-10-03 2014-10-03 Open-circuit voltage estimation device

Country Status (1)

Country Link
JP (1) JP2016075514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016862A1 (en) * 2020-07-23 2022-01-27 广州汽车集团股份有限公司 Method and system for monitoring health status of battery pack

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133069A (en) * 1986-11-25 1988-06-04 Matsushita Electric Ind Co Ltd Apparatus for measuring dc difference voltage
JP2001283936A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Battery remaining capacity correction method
JP2005189028A (en) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd Inputtable/outputtable power estimator for secondary battery
JP2009053012A (en) * 2007-08-27 2009-03-12 Panasonic Corp Electricity storage device
JP2009276297A (en) * 2008-05-16 2009-11-26 Mazda Motor Corp Apparatus and method of measuring voltage
JP2010200574A (en) * 2009-02-27 2010-09-09 Panasonic Corp Self-diagnosis circuit and power supply
JP2010249770A (en) * 2009-04-20 2010-11-04 Nissan Motor Co Ltd Internal resistance operation method of secondary battery
JP2011054413A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd System and method for determining deterioration state of secondary battery
JP2011257219A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Internal resistance of secondary battery and calculation device for calculating open voltage
JP2012058089A (en) * 2010-09-09 2012-03-22 Calsonic Kansei Corp Parameter estimation apparatus
US20120274360A1 (en) * 2011-04-29 2012-11-01 Linear Technology Corporation Switched capacitance voltage differential sensing circuit with near infinite input impedance
US20130049761A1 (en) * 2011-08-31 2013-02-28 Delphi Technologies, Inc. Battery stack cell monitor
JP2013044733A (en) * 2011-08-26 2013-03-04 Gs Yuasa Corp Internal resistance calculation device and internal resistance calculation method
JP2013246088A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Method and device for estimating internal resistance of battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133069A (en) * 1986-11-25 1988-06-04 Matsushita Electric Ind Co Ltd Apparatus for measuring dc difference voltage
JP2001283936A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Battery remaining capacity correction method
JP2005189028A (en) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd Inputtable/outputtable power estimator for secondary battery
JP2009053012A (en) * 2007-08-27 2009-03-12 Panasonic Corp Electricity storage device
JP2009276297A (en) * 2008-05-16 2009-11-26 Mazda Motor Corp Apparatus and method of measuring voltage
JP2010200574A (en) * 2009-02-27 2010-09-09 Panasonic Corp Self-diagnosis circuit and power supply
JP2010249770A (en) * 2009-04-20 2010-11-04 Nissan Motor Co Ltd Internal resistance operation method of secondary battery
JP2011054413A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd System and method for determining deterioration state of secondary battery
JP2011257219A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Internal resistance of secondary battery and calculation device for calculating open voltage
JP2012058089A (en) * 2010-09-09 2012-03-22 Calsonic Kansei Corp Parameter estimation apparatus
US20120274360A1 (en) * 2011-04-29 2012-11-01 Linear Technology Corporation Switched capacitance voltage differential sensing circuit with near infinite input impedance
JP2013044733A (en) * 2011-08-26 2013-03-04 Gs Yuasa Corp Internal resistance calculation device and internal resistance calculation method
US20130049761A1 (en) * 2011-08-31 2013-02-28 Delphi Technologies, Inc. Battery stack cell monitor
JP2013246088A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Method and device for estimating internal resistance of battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016862A1 (en) * 2020-07-23 2022-01-27 广州汽车集团股份有限公司 Method and system for monitoring health status of battery pack

Similar Documents

Publication Publication Date Title
US10637267B2 (en) Battery state detection device
JP6317031B2 (en) Battery control device and vehicle system
JP6227309B2 (en) Battery state detection device
JP6277864B2 (en) Battery internal state estimation device
US10666066B2 (en) Differential voltage measurement device
KR101695122B1 (en) Apparatus and method for estimating electric energy of electric storage device
JP6554453B2 (en) Differential voltage measuring device
JP2007017357A (en) Method and device for detecting remaining capacity of battery
JP6875866B2 (en) Battery status detector
US10042005B2 (en) Internal resistance calculating device
JP2015014563A (en) Battery state detector
JP2018116012A (en) Differential voltage measurement device
JP6279442B2 (en) Fault detection system
JP2015118022A (en) Battery temperature estimation system
JP6224363B2 (en) Battery state detection device
JP5040731B2 (en) Battery remaining capacity display device
US10838005B2 (en) Differential voltage measuring device
JP6115915B2 (en) Battery state detection device
JP2016075515A (en) Maximum output current estimation device
JP2016075514A (en) Open-circuit voltage estimation device
JP6401122B2 (en) Secondary battery status detector
JP6434245B2 (en) Charging rate estimation device and power supply system
JP2019211290A (en) Battery capacity estimation device and battery capacity estimation method
JP2019070622A (en) Secondary battery system
JP2015102444A (en) State-of-battery detection device and state-of-battery detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181023