JP2016074021A - Hot three-dimensional bending device - Google Patents

Hot three-dimensional bending device Download PDF

Info

Publication number
JP2016074021A
JP2016074021A JP2014207594A JP2014207594A JP2016074021A JP 2016074021 A JP2016074021 A JP 2016074021A JP 2014207594 A JP2014207594 A JP 2014207594A JP 2014207594 A JP2014207594 A JP 2014207594A JP 2016074021 A JP2016074021 A JP 2016074021A
Authority
JP
Japan
Prior art keywords
coil
cooling device
workpiece
water cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014207594A
Other languages
Japanese (ja)
Other versions
JP6419520B2 (en
Inventor
直明 嶋田
Naoaki Shimada
直明 嶋田
富澤 淳
Atsushi Tomizawa
淳 富澤
信宏 岡田
Nobuhiro Okada
信宏 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014207594A priority Critical patent/JP6419520B2/en
Publication of JP2016074021A publication Critical patent/JP2016074021A/en
Application granted granted Critical
Publication of JP6419520B2 publication Critical patent/JP6419520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a 3DQ device which can manufacture a bent component which satisfies an extremely high dimensional accuracy, for example, within a range of ±0.5 mm, even if a cross-sectional shape of the component is a flat shape and a strength thereof in a height direction is small.SOLUTION: A 3DQ device 10 is equipped with: a feeding mechanism 4 for a square tube 2; a support mechanism 3 for positioning the square tube 2; a coil 5 for heating the square tube 2 to Acpoint or higher; a busbar 6 which so supports the coil 5 as to be suspended and supplies a high-frequency power to the coil 5; a water-cooling apparatus 7 which injects cooling water onto an outer periphery of the heated square tube 2; and a holding mechanism or a gripping mechanism 8. The holding mechanism or the gripping mechanism 8 and the support mechanism 3 give a bending moment to a high temperature part 2a of the square tube 2, and further, the water-cooling apparatus 7 is fixedly located so that the water-cooling apparatus is not displaced downwards from a prescribed position during utilization thereof.SELECTED DRAWING: Figure 4

Description

本発明は、熱間三次元曲げ加工装置に関する。   The present invention relates to a hot three-dimensional bending apparatus.

特許文献1には、図1に概要を示す熱間三次元曲げ加工装置1(以下、「3DQ装置」という)が開示されている。以下、この3DQ装置1を説明する。   Patent Document 1 discloses a hot three-dimensional bending apparatus 1 (hereinafter referred to as “3DQ apparatus”) whose outline is shown in FIG. Hereinafter, the 3DQ device 1 will be described.

図1に示すように、閉じた断面を有する中空の被加工材2(以降の説明では鋼管を例にとる)を、所定の位置に固定配置された支持ロール3により位置決めしながら、送り装置4により鋼管2の軸方向(図1中の矢印が示す方向)へ送る。支持ロール3より鋼管2の送り方向の下流側(以下、単に「下流側」とも称し、反対の位置関係を単に「上流側」とも称する。)には、鋼管2を周囲から加熱する環状の高周波誘導加熱コイル5(以下、単に「コイル」ともいう。)が配置される。コイル5を懸垂支持するブスバー(フィーダ)6からコイル5へ高周波電力を供給して、送られる鋼管2をAc点以上に加熱する。コイル5の送り方向の下流側に配置された環状の水冷装置7から、加熱された鋼管2の外周に冷却水を噴射して、鋼管2を焼入れる。 As shown in FIG. 1, while feeding a hollow workpiece 2 having a closed cross section (in the following description, a steel pipe is taken as an example) by a support roll 3 fixedly arranged at a predetermined position, a feeding device 4 Is sent in the axial direction of the steel pipe 2 (the direction indicated by the arrow in FIG. 1). On the downstream side in the feed direction of the steel pipe 2 from the support roll 3 (hereinafter, also simply referred to as “downstream side”, and the opposite positional relationship is also simply referred to as “upstream side”), an annular high frequency heating the steel pipe 2 from the surroundings. An induction heating coil 5 (hereinafter also simply referred to as “coil”) is disposed. High-frequency power is supplied to the coil 5 from a bus bar (feeder) 6 that suspends and supports the coil 5, and the steel pipe 2 to be fed is heated to Ac 3 points or more. Cooling water is sprayed to the outer periphery of the heated steel pipe 2 from the annular water cooling device 7 disposed on the downstream side in the feed direction of the coil 5 to quench the steel pipe 2.

そして、コイル5で加熱されてから水冷装置7で冷却されるまでの領域に形成されている鋼管2の高温部2aに、水冷装置7よりも下流側に配置された挟持手段または把持手段8と支持ロール3とにより連続的または断続的に曲げモーメントを付与することにより、鋼管2に熱間曲げ加工を行って曲げ部材9を製造する。   And, in the high temperature part 2a of the steel pipe 2 formed in the region from being heated by the coil 5 until being cooled by the water cooling device 7, sandwiching means or gripping means 8 disposed downstream of the water cooling device 7 The bending member 9 is manufactured by performing a hot bending process on the steel pipe 2 by applying a bending moment continuously or intermittently with the support roll 3.

なお、高温部2aの軸方向の長さは曲げ加工可能な範囲で短いことが、曲げ部材9の寸法精度を高めるために望ましい。このため、水冷装置7は、コイル5のすぐ近くに配置される。水冷装置7とコイル5とが接続されて一体物とされることも多く、その方が省スペースの面では有利であるが、水冷装置7とコイル5とを一体にする必要はない。   In addition, in order to raise the dimensional accuracy of the bending member 9, it is desirable for the length of the high temperature part 2a to be short in the range which can be bent. For this reason, the water cooling device 7 is disposed in the immediate vicinity of the coil 5. In many cases, the water-cooling device 7 and the coil 5 are connected to be integrated, and this is advantageous in terms of space saving, but the water-cooling device 7 and the coil 5 do not need to be integrated.

ところで、3DQ装置1により熱間三次元曲げ加工を行われて製造される製品は、主として自動車用部材(例えばサスペンションアーム)であり、製品には、一例として±0.5mmという厳しい寸法精度が求められる。   By the way, products manufactured by performing hot three-dimensional bending with the 3DQ apparatus 1 are mainly automobile members (for example, suspension arms), and the product requires a strict dimensional accuracy of ± 0.5 mm as an example. It is done.

特許文献2の段落0004には、送り出される鋼管2に僅かな曲がり(反り)が存在することが避けられないため、支持ロール3から出た鋼管2がコイル5の内部を通過する時に、鋼管2の外周とコイル5の内周との隙間が周方向で不均一になり、コイル5の内周との距離が近い部分とこの距離が遠い部分とにおいて鋼管1に温度差が発生して曲げ加工の加工精度が低下する可能性があると記載されている。   In paragraph 0004 of Patent Document 2, since it is inevitable that a slight bend (warp) exists in the steel pipe 2 to be sent out, when the steel pipe 2 coming out of the support roll 3 passes through the inside of the coil 5, the steel pipe 2. The gap between the outer circumference of the coil 5 and the inner circumference of the coil 5 becomes uneven in the circumferential direction, and a bending process occurs due to a temperature difference in the steel pipe 1 between a portion where the distance from the inner circumference of the coil 5 is near and a portion where this distance is far. It is described that there is a possibility that the processing accuracy of the material may be lowered.

その対策として、特許文献2においては、コイルを固定した可動架台を、フローティング支持手段を介して固定架台にフローティング支持し、可動架台に鋼管の外周面に当接する複数のガイド部材を設けることが記載されている。これにより、鋼管の曲がり(反り)に応じて可動架台とともにコイルをセンタリングし、鋼管の外周とコイルの内周との隙間を均一化することができるので、鋼管を周方向に均一に加熱できるとしている。   As a countermeasure, Patent Document 2 describes that a movable frame having a coil fixed thereon is float-supported on the fixed frame via a floating support means, and a plurality of guide members that contact the outer peripheral surface of the steel pipe are provided on the movable frame. Has been. As a result, the coil can be centered together with the movable frame in accordance with the bending (warping) of the steel pipe, and the gap between the outer circumference of the steel pipe and the inner circumference of the coil can be made uniform, so that the steel pipe can be heated uniformly in the circumferential direction. Yes.

特開2008−23573号公報JP 2008-23573 A 特開2012−55963号公報JP 2012-55963 A

本発明者らが、鋭意検討を重ねた結果、3DQ装置により製造される曲げ部材がその断面形状へ強度の低い部分を有する場合に、コイル5を懸垂支持するブスバー6が延びて設置される方向と、曲げ部材における強度が低い方向(例えば、曲げ部材の断面形状が矩形である場合に短辺が延びて存在する方向)とが一致すると、曲げ部材が例えば±0.5mmといった極めて高い寸法精度を要求される部品であるときには、特許文献2により開示された曲げ装置を用いても、所望の寸法精度を有する曲げ部材を製造できないことを知見した。   The direction in which the bus bar 6 for hanging and supporting the coil 5 is extended and installed when the bending member manufactured by the 3DQ apparatus has a low-strength portion in its cross-sectional shape as a result of extensive studies by the inventors. And the direction in which the strength of the bending member is low (for example, the direction in which the short side extends when the cross-sectional shape of the bending member is rectangular) matches, the bending member has a very high dimensional accuracy of, for example, ± 0.5 mm. It has been found that a bending member having a desired dimensional accuracy cannot be manufactured even when the bending apparatus disclosed in Patent Document 2 is used.

本発明の目的は、3DQ装置により製造される曲げ部材がその断面形状へ強度の低い部分を有する場合に、コイルを懸垂支持するブスバーが延びて設置される方向と、曲げ部材における強度が低い方向(例えば、曲げ部材の断面形状が矩形である場合に短辺が延びて存在する方向)とが一致するときにも、例えば±0.5mmといった極めて高い寸法精度を満足する曲げ部材を製造することができる3DQ装置を提供することである。   An object of the present invention is to provide a direction in which a bus bar for suspending and supporting a coil extends and a direction in which the strength of the bending member is low when the bending member manufactured by the 3DQ apparatus has a low strength portion in its cross-sectional shape. (For example, when the cross-sectional shape of the bending member is rectangular, the bending member that satisfies the extremely high dimensional accuracy of, for example, ± 0.5 mm) is manufactured even when it coincides with the direction in which the short side extends. It is to provide a 3DQ device capable of

本発明者らは、3DQ装置1について詳細に検討した。この検討では、3DQ装置1による被加工材2が、偏平な閉じた断面を有する中空の角管であることを前提とした。この検討の結果、以下に列記の新規な知見A,Bを得て、本発明を完成した。   The inventors examined the 3DQ device 1 in detail. In this examination, it is assumed that the workpiece 2 by the 3DQ apparatus 1 is a hollow square tube having a flat closed cross section. As a result of this examination, the following new findings A and B were obtained, and the present invention was completed.

(A)3DQ装置1の稼働時に、コイル5による発熱により、コイル5に高周波電力を供給するとともにコイル5を懸垂支持するブスバー6が膨張する。ブスバー6の膨張により、ブスバー6の下部に固定されるコイル5と、コイル5と一体化された水冷装置7とが、当初の設置位置から主に下方へ変位し、コイル5および水冷装置7が角管2に対して偏芯する。   (A) When the 3DQ device 1 is in operation, heat generated by the coil 5 expands the bus bar 6 that supplies high-frequency power to the coil 5 and supports the coil 5 in a suspended manner. The expansion of the bus bar 6 causes the coil 5 fixed to the lower part of the bus bar 6 and the water cooling device 7 integrated with the coil 5 to be displaced downward from the original installation position, so that the coil 5 and the water cooling device 7 are It is eccentric with respect to the square tube 2.

図2(a)は、上下方向長さが600mmのブスバー6によりコイル5を懸垂支持してコイル5の加熱をON,OFFした場合におけるコイル5の変位量を示すグラフであり、図2(b)は、コイル5およびブスバー6付近を抜き出して示す説明図である。   FIG. 2A is a graph showing the amount of displacement of the coil 5 when the coil 5 is suspended and supported by the bus bar 6 having a vertical length of 600 mm and the heating of the coil 5 is turned on and off. ) Is an explanatory view showing the vicinity of the coil 5 and the bus bar 6.

図2(a)および図2(b)に示すように、コイル5の加熱をONするとブスバー6が熱膨張し、これにより、コイル5が加熱前の位置から下方へおよそ0.5mm変位する。このため、コイル5および水冷装置7が角管2に対して偏芯する。   As shown in FIGS. 2A and 2B, when the heating of the coil 5 is turned ON, the bus bar 6 is thermally expanded, and thereby the coil 5 is displaced downward by about 0.5 mm from the position before the heating. For this reason, the coil 5 and the water cooling device 7 are eccentric with respect to the square tube 2.

この偏芯が発生すると、製品(曲げ部材)9の寸法精度が大幅に低下する。
(B)コイル5の偏芯と水冷装置7の偏芯とのどちらが曲げ部材9の寸法精度の低下により影響するのかを調査するために、水冷装置7とコイル5とを一体化せずに別部品とし、角管2に対して、コイル5を偏芯させずに水冷装置7だけを偏芯させた。
When this eccentricity occurs, the dimensional accuracy of the product (bending member) 9 is significantly reduced.
(B) In order to investigate which of the eccentricity of the coil 5 and the eccentricity of the water cooling device 7 is affected by the decrease in the dimensional accuracy of the bending member 9, the water cooling device 7 and the coil 5 are not integrated. As a component, only the water cooling device 7 was eccentric with respect to the square tube 2 without decentering the coil 5.

図3(a)は、偏平断面を有する角管7において、コイル5および水冷装置7をいずれも偏芯させた場合の高さ方向の寸法精度の低下の程度を▲印で示すとともに水冷装置7のみ偏芯させた場合の高さ方向の寸法精度の低下の程度を○印で示すグラフであり、図3(b)は、角管2の断面寸法を示す説明図である。   FIG. 3A shows the degree of reduction in dimensional accuracy in the height direction when the coil 5 and the water cooling device 7 are both eccentric in the square tube 7 having a flat cross section, as well as the water cooling device 7. FIG. 3B is an explanatory diagram showing the cross-sectional dimensions of the square tube 2. FIG. 3B is a graph showing the degree of decrease in dimensional accuracy in the height direction when only the eccentricity is made.

図3(a)および図3(b)に示すように、水冷装置7のみ偏芯させた場合の曲げ部材9の寸法精度の低下の程度は、意外にも、コイル5および水冷装置7をいずれも偏芯させた場合の曲げ部材9の寸法精度の低下の程度と、同程度であった。   As shown in FIGS. 3 (a) and 3 (b), the degree of decrease in the dimensional accuracy of the bending member 9 when only the water cooling device 7 is eccentric is surprisingly different between the coil 5 and the water cooling device 7. Also, the degree of dimensional accuracy of the bending member 9 when the eccentric member was eccentric was almost the same as that of the bending member 9.

このことから、曲げ部材9の寸法精度の低下に主に影響するのは、特許文献1に開示されるように角管2に対するコイルの偏芯ではなく、角管2に対する水冷装置7の偏芯であることが判明した。   From this, it is not the eccentricity of the coil with respect to the rectangular tube 2 but the eccentricity of the water cooling device 7 with respect to the rectangular tube 2 that mainly affects the decrease in the dimensional accuracy of the bending member 9. It turned out to be.

本発明は、以下に列記の通りである。
(1)偏平な閉じた断面を有する中空の被加工材を長手方向へ送る送り機構と、
前記送り機構よりも前記被加工材の送り方向の下流側の所定の位置に固定配置されて前記被加工材を位置決めする支持機構と、
前記支持機構よりも下流側の所定の位置に配置され、前記被加工材をAc点以上に加熱する高周波誘導加熱コイルと、
前記高周波誘導加熱コイルを、その延設方向が前記被加工材における強度が低い方向と略一致するように支持するとともに、該高周波誘導加熱コイルに電力を供給するブスバーと、
前記被加工材の送り方向について前記高周波誘導加熱コイルよりも下流側の所定の位置に配置され、前記被加工材の外周に冷却水を噴射する水冷装置と、
前記水冷装置よりも下流側に三次元に移動自在に配置され、前記被加工材を移動自在に挟持する挟持機構または前記被加工材を固定して把持する把持機構とを備え、
前記挟持機構または前記把持機構と前記支持機構とは、前記高周波誘導加熱コイルにより加熱されてから前記水冷装置により冷却されるまでの領域に形成される前記被加工材の高温部に曲げモーメントを付与し、さらに、
前記水冷装置は、稼働時には、前記所定の位置から下方へ変位しないように固定して設置されること
を特徴とする3DQ装置。
The present invention is listed below.
(1) a feed mechanism for feeding a hollow workpiece having a flat closed cross section in the longitudinal direction;
A support mechanism that positions the workpiece by being fixedly arranged at a predetermined position downstream of the feed mechanism in the feed direction of the workpiece;
A high-frequency induction heating coil which is disposed at a predetermined position downstream of the support mechanism and heats the workpiece to Ac 3 points or more;
A bus bar for supporting the high-frequency induction heating coil such that its extending direction substantially coincides with a direction in which the strength of the workpiece is low, and supplying power to the high-frequency induction heating coil;
A water-cooling device that is disposed at a predetermined position downstream of the high-frequency induction heating coil with respect to the feed direction of the workpiece, and that injects cooling water to the outer periphery of the workpiece;
A three-dimensionally arranged downstream of the water-cooling device, and a holding mechanism for holding the workpiece movably or a holding mechanism for holding and holding the workpiece.
The clamping mechanism or the gripping mechanism and the support mechanism give a bending moment to a high temperature part of the workpiece formed in a region from being heated by the high frequency induction heating coil to being cooled by the water cooling device. And then
The 3DQ device is characterized in that the water cooling device is fixedly installed so as not to be displaced downward from the predetermined position during operation.

(2)前記ブスバーは、前記高周波誘導加熱コイルを懸垂して支持する(1)項に記載された3DQ装置。   (2) The 3DQ device according to (1), wherein the bus bar suspends and supports the high-frequency induction heating coil.

(3)前記水冷装置は、前記支持機構との位置関係が変化しないように固定して設置される(1)項または(2)項に記載された3DQ装置。   (3) The 3DQ device according to (1) or (2), wherein the water cooling device is fixedly installed so that a positional relationship with the support mechanism does not change.

(4)前記水冷装置は、前記高周波誘導加熱コイルと一体化されている(1)項から(3)項までのいずれか1項に記載された3DQ装置。   (4) The 3DQ device according to any one of items (1) to (3), wherein the water cooling device is integrated with the high-frequency induction heating coil.

本発明により、例えば±0.5mmといった極めて高い寸法精度を満足する偏平な閉じた断面を有する中空の曲げ部材、特に自動車用部材(例えばサスペンションアーム)を製造することができるようになる。   According to the present invention, it becomes possible to manufacture a hollow bending member having a flat closed cross section that satisfies extremely high dimensional accuracy of, for example, ± 0.5 mm, particularly an automobile member (for example, a suspension arm).

図1は、熱間三次元曲げ加工装置の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of a hot three-dimensional bending apparatus. 図2(a)は、上下方向長さが600mmのブスバーによりコイルを懸垂支持してコイルをON,OFFした場合におけるコイルの変位量を示すグラフであり、図2(b)は、コイルおよびブスバー付近を抜き出して示す説明図である。2A is a graph showing the amount of displacement of the coil when the coil is suspended and supported by a bus bar having a vertical length of 600 mm, and the coil is turned on and off. FIG. 2B is a graph showing the coil and bus bar. It is explanatory drawing which extracts and shows the vicinity. 図3(a)は、偏平断面を有する角管において、コイルおよび水冷装置をいずれも偏芯させた場合の高さ方向の寸法精度の低下の程度を▲印で示すとともに水冷装置のみ偏芯させた場合の高さ方向の寸法精度の低下の程度を○印で示すグラフであり、図3(b)は、角管の断面寸法を示す説明図である。FIG. 3 (a) shows the degree of reduction in dimensional accuracy in the height direction when both the coil and the water cooling device are eccentric in a square tube having a flat cross section, and only the water cooling device is eccentric. FIG. 3B is an explanatory diagram showing a cross-sectional dimension of a square tube. 図4は、3DQ装置における水冷装置の設置形態を示す説明図であり、図4(a)はコイルと水冷装置とが接続されて一体に構成される場合を示し、図4(b)はコイルと水冷装置とが一体化されずに独立して設置されている場合を示す。FIG. 4 is an explanatory view showing an installation form of the water cooling device in the 3DQ device, FIG. 4 (a) shows a case where the coil and the water cooling device are connected and configured integrally, and FIG. 4 (b) shows the coil. And the case where the water cooling device is installed independently without being integrated.

本発明を、添付図面を参照しながら、説明する。なお、略述すると、図1に示す3DQ装置1に対する本発明に係る3DQ装置10の相違点は水冷装置7の設置態様であるので、以降の説明は図1も参照しながら行うことにする。   The present invention will be described with reference to the accompanying drawings. In brief, since the difference between the 3DQ device 10 according to the present invention with respect to the 3DQ device 1 shown in FIG. 1 is the installation mode of the water cooling device 7, the following description will be made with reference to FIG.

図1に示すように、本発明に係る3DQ装置10は、送り機構4と、支持機構3と、高周波誘導加熱コイル5と、ブスバー6と、水冷装置7と、挟持機構または把持機構8とを有する。   As shown in FIG. 1, a 3DQ device 10 according to the present invention includes a feed mechanism 4, a support mechanism 3, a high frequency induction heating coil 5, a bus bar 6, a water cooling device 7, and a clamping mechanism or a gripping mechanism 8. Have.

3DQ装置10は、偏平な閉じた断面を有する中空の被加工材2に熱間三次元曲げ加工を行って、偏平な閉じた断面を有する中空の曲げ部材9を製造する。被加工材2の断面形状としては、矩形、楕円形、長円形等が例示される。以降の説明では、被加工材2が、矩形の断面形状を有する中空かつ鋼製の角管2である場合を例にとる。   The 3DQ apparatus 10 performs a hot three-dimensional bending process on the hollow workpiece 2 having a flat closed cross section to produce a hollow bending member 9 having a flat closed cross section. Examples of the cross-sectional shape of the workpiece 2 include a rectangle, an ellipse, and an oval. In the following description, a case where the workpiece 2 is a hollow and square steel tube 2 having a rectangular cross-sectional shape is taken as an example.

[送り機構4]
送り機構4は、角管2をその長手方向へ送ることが可能なものであればよく、特定の送り機構には制限されない。送り機構としては、この種の送り機構として周知慣用のものを用いることができ、具体的には、ボールネジを用いるものや搬送ローラを用いるもの等が例示される。さらに、送り機構4として産業用ロボットを用いてもよい。
[Feeding mechanism 4]
The feed mechanism 4 only needs to be able to feed the square tube 2 in its longitudinal direction, and is not limited to a specific feed mechanism. As the feed mechanism, a well-known and conventional one can be used as this type of feed mechanism, and specifically, one using a ball screw, one using a transport roller, and the like are exemplified. Further, an industrial robot may be used as the feed mechanism 4.

[支持機構3]
支持機構3は、送り機構4よりも角管2の送り方向の下流側の所定の位置に固定して配置される。支持機構3は、角管2を、位置決めしながらその長手方向へ送る。支持機構3としては、この種の支持機構として周知慣用のものを用いることができ、具体的には、角管4の外面に当接する一対の駆動ロールが例示される。図1に示す例では、一対の駆動ロール3を2組タンデムに配置している。
[Support mechanism 3]
The support mechanism 3 is fixedly disposed at a predetermined position downstream of the feed mechanism 4 in the feed direction of the square tube 2. The support mechanism 3 sends the square tube 2 in its longitudinal direction while positioning. As the support mechanism 3, a well-known and conventional one can be used as this type of support mechanism. Specifically, a pair of drive rolls that come into contact with the outer surface of the square tube 4 is exemplified. In the example shown in FIG. 1, a pair of drive rolls 3 are arranged in two sets of tandem.

[コイル5]
高周波誘導加熱コイル5は、支持機構3よりも下流側の所定の位置に配置される。コイル5は、角管2の周囲から所定の距離離れて角管2を取り囲んで配置される。コイル5は、高周波磁界を発生して高周波エネルギーを角管2に供給することにより、角管2をAc3点以上に加熱する。コイル5としては、この種のコイルとして周知慣用のものを用いることができる。
[Coil 5]
The high frequency induction heating coil 5 is disposed at a predetermined position downstream of the support mechanism 3. The coil 5 is disposed surrounding the square tube 2 at a predetermined distance from the periphery of the square tube 2. The coil 5 generates a high frequency magnetic field and supplies high frequency energy to the square tube 2 to heat the square tube 2 to the Ac3 point or higher. As the coil 5, a well-known and commonly used coil of this type can be used.

[ブスバー6]
ブスバー6は、コイル5が上述の所定の位置に配置されるように、コイル5を懸垂支持する。また、ブスバー6は、高電圧・高電流にも耐え得る導体(例えば銅製)からなり、コイル5および水冷装置7を確実に保持するため板状に構成されている。ブスバー6は、電流密度が規定値を超えないように所定の表面積を有している。
[Bus bar 6]
The bus bar 6 suspends and supports the coil 5 so that the coil 5 is disposed at the predetermined position. The bus bar 6 is made of a conductor (for example, made of copper) that can withstand high voltage and high current, and is configured in a plate shape to securely hold the coil 5 and the water cooling device 7. The bus bar 6 has a predetermined surface area so that the current density does not exceed a specified value.

ブスバー6の上部は、ブスバー6の上部に配置された高周波電源(図示しない)に固定されている。このため、ブスバー6は、熱膨張すると、主に下方へ向けて変位する。   The upper part of the bus bar 6 is fixed to a high-frequency power source (not shown) arranged on the upper part of the bus bar 6. For this reason, the bus bar 6 is mainly displaced downward when thermally expanded.

[水冷装置7]
水冷装置7は、角管2の送り方向についてコイル5よりも下流側の所定の位置に配置される。上述のように、角管2に形成される高温部2aの軸方向の長さが曲げ加工可能な範囲で短いことが曲げ加工精度を高めるために有利である。このため、水冷装置7は、コイル5に近接して設置される。したがって、水冷装置7をコイル5と一体に設けることが望ましいが、コイル5と切り離して別部品としてもよい。水冷装置7は、角管2の全周に冷却水を噴射することにより、コイル5によりAc3点以上に加熱された角管2を急速に冷却して焼入れる。
[Water cooling device 7]
The water cooling device 7 is disposed at a predetermined position downstream of the coil 5 in the feeding direction of the square tube 2. As described above, it is advantageous for increasing the bending accuracy that the length in the axial direction of the high temperature portion 2a formed in the square tube 2 is as short as possible. For this reason, the water cooling device 7 is installed close to the coil 5. Therefore, it is desirable to provide the water cooling device 7 integrally with the coil 5, but it may be separated from the coil 5 as a separate part. The water cooling device 7 rapidly cools and quenches the square tube 2 heated to the Ac3 point or more by the coil 5 by injecting cooling water to the entire circumference of the square tube 2.

[挟持機構または把持機構8]
挟持機構または把持機構8は、水冷装置7よりも下流側に、三次元に移動自在に配置される。挟持機構8は、角管2を移動自在に挟持するものであり、例えば、角管2の外面に当接する一対の駆動ロールにより構成されることが例示される。一方、把持機構8は、角管2の内面または外面に固定して装着されることにより角管2を把持するものであり、例えば角管2の内部に固定して配置されるチャック機構が例示される。
[Holding mechanism or gripping mechanism 8]
The clamping mechanism or gripping mechanism 8 is arranged on the downstream side of the water cooling device 7 so as to be movable in three dimensions. The sandwiching mechanism 8 is a mechanism that sandwiches the square tube 2 movably, and is exemplified by a pair of drive rolls that come into contact with the outer surface of the square tube 2. On the other hand, the gripping mechanism 8 grips the square tube 2 by being fixedly attached to the inner surface or the outer surface of the square tube 2. For example, a chuck mechanism fixedly disposed inside the square tube 2 is exemplified. Is done.

3DQ装置10では、挟持機構または把持機構8のいずれも用いることができ、状況に応じて適宜選択すればよい。挟持機構または把持機構8を三次元で移動自在に配置するには、挟持機構または把持機構8を産業用ロボットにより保持することが簡便である。   In the 3DQ device 10, either the clamping mechanism or the gripping mechanism 8 can be used, and may be selected as appropriate according to the situation. In order to dispose the holding mechanism or gripping mechanism 8 in a three-dimensional manner, it is easy to hold the holding mechanism or the gripping mechanism 8 with an industrial robot.

挟持機構または把持機構8と支持機構3とが、コイル5により加熱されてから水冷装置7により冷却されるまでの領域に形成される角管2の高温部2aに曲げモーメントを付与する。これにより、矩形の閉じた断面を有する中空の曲げ部材9が製造される。   The pinching mechanism or gripping mechanism 8 and the support mechanism 3 impart a bending moment to the high temperature portion 2a of the square tube 2 formed in the region from being heated by the coil 5 until being cooled by the water cooling device 7. Thereby, the hollow bending member 9 which has a rectangular closed cross section is manufactured.

上述したように、3DQ装置10の稼働時に、コイル5による発熱により、コイル5を懸垂支持するブスバー6が膨張する。ブスバー6の膨張により、水冷装置7がコイル5と一体に構成されている場合には、ブスバー6の下部に固定されるコイル5と、コイル5と一体化された水冷装置7とが当初の位置から主に下方へ変位する。このため、コイル5および水冷装置7が角管2に対して偏芯する。そして、角管2に対する水冷装置7の偏芯により、3DQ装置10により製造される曲げ部材9の寸法精度が低下する。   As described above, when the 3DQ device 10 is in operation, the bus bar 6 that suspends and supports the coil 5 expands due to heat generated by the coil 5. When the water cooling device 7 is configured integrally with the coil 5 due to the expansion of the bus bar 6, the coil 5 fixed to the lower portion of the bus bar 6 and the water cooling device 7 integrated with the coil 5 are initially positioned. Displaces mainly from the bottom. For this reason, the coil 5 and the water cooling device 7 are eccentric with respect to the square tube 2. And the dimensional accuracy of the bending member 9 manufactured with the 3DQ apparatus 10 falls by eccentricity of the water cooling apparatus 7 with respect to the square tube 2. FIG.

そこで、3DQ装置10では、水冷装置7が、稼働時に所定の位置から下方へ変位しないように、固定して設置される。これにより、水冷装置7は、支持機構3との位置関係が変化しないように固定して設置される。   Therefore, in the 3DQ device 10, the water cooling device 7 is fixedly installed so as not to be displaced downward from a predetermined position during operation. Thereby, the water cooling device 7 is fixedly installed so that the positional relationship with the support mechanism 3 does not change.

図4は、3DQ装置10における水冷装置7の設置形態を示す説明図であり、図4(a)はコイル5と水冷装置7とが接続されて一体に構成される場合を示し、図4(b)はコイル5と水冷装置7とが一体化されずに独立して設置されている場合を示す。   FIG. 4 is an explanatory view showing an installation form of the water cooling device 7 in the 3DQ device 10, and FIG. 4 (a) shows a case where the coil 5 and the water cooling device 7 are connected and configured integrally, and FIG. b) shows the case where the coil 5 and the water-cooling device 7 are installed independently without being integrated.

上述のように、水冷装置7を、3DQ装置の稼働時に所定の位置から下方へ変位しないように固定して設置する手段は、特に制限されない。例えば、図4(a)に示すようにコイル5と水冷装置7とが一体に構成される場合には固定台11にコイル5または水冷装置7の少なくともいずれか一方を搭載することが例示され、また、図4(b)に示すように水冷装置7がコイル5と一体化せずに別部品とされている場合には固定台11に水冷装置7を搭載することが例示される。   As described above, the means for fixing and installing the water cooling device 7 so as not to be displaced downward from a predetermined position when the 3DQ device is in operation is not particularly limited. For example, when the coil 5 and the water cooling device 7 are configured integrally as shown in FIG. 4A, it is exemplified that at least one of the coil 5 or the water cooling device 7 is mounted on the fixed base 11. In addition, as shown in FIG. 4B, when the water cooling device 7 is not integrated with the coil 5 and is a separate part, the water cooling device 7 is mounted on the fixed base 11.

固定台11を用いることにより、水冷装置7の下方への変位に起因した、角管2に対する水冷装置7の偏芯を防止できるので、曲げ部材9の寸法精度の低下を防止できる。   By using the fixed base 11, the eccentricity of the water cooling device 7 with respect to the square tube 2 due to the downward displacement of the water cooling device 7 can be prevented, so that the dimensional accuracy of the bending member 9 can be prevented from being lowered.

なお、図4(a)では、図4(a)はコイル5と水冷装置7とが接続されて一体に構成される場合を示したが、これとは異なり、水冷装置7がコイル5に内蔵されて一体に構成されていてもよいことは言うまでもない。   In FIG. 4A, FIG. 4A shows a case where the coil 5 and the water cooling device 7 are connected and configured integrally, but unlike this, the water cooling device 7 is built in the coil 5. Needless to say, they may be integrally formed.

2 角管
2a 高温部
3 支持機構
4 送り機構
5 高周波誘導加熱コイル
6 ブスバー
7 水冷装置
8 挟持機構または把持機構
9 曲げ部材
10 本発明の3DQ装置
2 Square tube 2a High temperature part 3 Support mechanism 4 Feed mechanism 5 High frequency induction heating coil 6 Bus bar 7 Water cooling device 8 Nipping mechanism or gripping mechanism 9 Bending member 10 3DQ device of the present invention

Claims (4)

偏平な閉じた断面を有する中空の被加工材を長手方向へ送る送り機構と、
前記送り機構よりも前記被加工材の送り方向の下流側の所定の位置に固定配置されて前記被加工材を位置決めする支持機構と、
前記支持機構よりも下流側の所定の位置に配置され、前記被加工材をAc点以上に加熱する高周波誘導加熱コイルと、
前記高周波誘導加熱コイルを、その延設方向が前記被加工材における強度が低い方向と略一致するように支持するとともに、該高周波誘導加熱コイルに電力を供給するブスバーと、
前記被加工材の送り方向について前記高周波誘導加熱コイルよりも下流側の所定の位置に配置され、前記被加工材の外周に冷却水を噴射する水冷装置と、
前記水冷装置よりも下流側に三次元に移動自在に配置され、前記被加工材を移動自在に挟持する挟持機構または前記被加工材を固定して把持する把持機構とを備え、
前記挟持機構または前記把持機構と前記支持機構とは、前記高周波誘導加熱コイルにより加熱されてから前記水冷装置により冷却されるまでの領域に形成される前記被加工材の高温部に曲げモーメントを付与し、さらに、
前記水冷装置は、稼働時には、前記所定の位置から下方へ変位しないように固定して設置されること
を特徴とする熱間三次元曲げ加工装置。
A feed mechanism for feeding a hollow workpiece having a flat closed cross section in the longitudinal direction;
A support mechanism that positions the workpiece by being fixedly arranged at a predetermined position downstream of the feed mechanism in the feed direction of the workpiece;
A high-frequency induction heating coil which is disposed at a predetermined position downstream of the support mechanism and heats the workpiece to Ac 3 points or more;
A bus bar for supporting the high-frequency induction heating coil such that its extending direction substantially coincides with a direction in which the strength of the workpiece is low, and supplying power to the high-frequency induction heating coil;
A water-cooling device that is disposed at a predetermined position downstream of the high-frequency induction heating coil with respect to the feed direction of the workpiece, and that injects cooling water to the outer periphery of the workpiece;
A three-dimensionally arranged downstream of the water-cooling device, and a holding mechanism for holding the workpiece movably or a holding mechanism for holding and holding the workpiece.
The clamping mechanism or the gripping mechanism and the support mechanism give a bending moment to a high temperature part of the workpiece formed in a region from being heated by the high frequency induction heating coil to being cooled by the water cooling device. And then
The hot three-dimensional bending apparatus, wherein the water cooling device is fixedly installed so as not to be displaced downward from the predetermined position during operation.
前記ブスバーは、前記高周波誘導加熱コイルを懸垂して支持する請求項1に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to claim 1, wherein the bus bar suspends and supports the high-frequency induction heating coil. 前記水冷装置は、前記支持機構との位置関係が変化しないように固定して設置される請求項1または請求項2に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to claim 1 or 2, wherein the water cooling device is fixedly installed so that a positional relationship with the support mechanism does not change. 前記水冷装置は、前記高周波誘導加熱コイルと一体化されている請求項1から請求項3までのいずれか1項に記載された熱間三次元曲げ加工装置。   The hot three-dimensional bending apparatus according to any one of claims 1 to 3, wherein the water cooling device is integrated with the high-frequency induction heating coil.
JP2014207594A 2014-10-08 2014-10-08 Hot three-dimensional bending machine Active JP6419520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207594A JP6419520B2 (en) 2014-10-08 2014-10-08 Hot three-dimensional bending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207594A JP6419520B2 (en) 2014-10-08 2014-10-08 Hot three-dimensional bending machine

Publications (2)

Publication Number Publication Date
JP2016074021A true JP2016074021A (en) 2016-05-12
JP6419520B2 JP6419520B2 (en) 2018-11-07

Family

ID=55950570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207594A Active JP6419520B2 (en) 2014-10-08 2014-10-08 Hot three-dimensional bending machine

Country Status (1)

Country Link
JP (1) JP6419520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941363A (en) * 2018-07-19 2018-12-07 珠海格力智能装备有限公司 Unloading mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174225A (en) * 1983-03-23 1984-10-02 Hitachi Ltd Method of bending welded steel tube
JPH08197146A (en) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd Position controller for high-frequency heating coil
JP2000094043A (en) * 1998-09-25 2000-04-04 Dai Ichi High Frequency Co Ltd Metal tube bending device
JP2007083304A (en) * 2005-03-03 2007-04-05 Sumitomo Metal Ind Ltd Method for bending metallic material, bending apparatus, bending equipment train and bent product using the same
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2013222591A (en) * 2012-04-16 2013-10-28 Ihi Corp Induction heating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174225A (en) * 1983-03-23 1984-10-02 Hitachi Ltd Method of bending welded steel tube
JPH08197146A (en) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd Position controller for high-frequency heating coil
JP2000094043A (en) * 1998-09-25 2000-04-04 Dai Ichi High Frequency Co Ltd Metal tube bending device
JP2007083304A (en) * 2005-03-03 2007-04-05 Sumitomo Metal Ind Ltd Method for bending metallic material, bending apparatus, bending equipment train and bent product using the same
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2013222591A (en) * 2012-04-16 2013-10-28 Ihi Corp Induction heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941363A (en) * 2018-07-19 2018-12-07 珠海格力智能装备有限公司 Unloading mechanism

Also Published As

Publication number Publication date
JP6419520B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
CN102791395B (en) Flexure member manufacturing method and flexture member manufacturing device
CN102792771B (en) The manufacturing installation of load coil, tool member and manufacture method
JP4673656B2 (en) Hot press forming equipment
KR101508108B1 (en) Spinning molding device and molding method
JP6574518B2 (en) Diameter expansion method and forming apparatus for pipe
KR101570296B1 (en) Heating device for forming curved plate
JP6419520B2 (en) Hot three-dimensional bending machine
EP2740808B1 (en) Method and apparatus for heating steel sheet
JPWO2016194627A1 (en) Long member quenching apparatus and long member quenching method
JP6424555B2 (en) Hot three-dimensional bending machine
JP2016074020A (en) Hot three-dimensional bending device
EP3084016B1 (en) Induction heating coil and induction heating method
JP5021367B2 (en) Induction heating coil and induction heating device
CN105745993B (en) Induction heating apparatus
JP6668181B2 (en) Apparatus and method for manufacturing quenched member
JP6992680B2 (en) 3D hot bending quenching device and quenching method
US20200040417A1 (en) Quenching processing apparatus
US10462854B2 (en) Apparatus and method for heating annular workpiece, and heating coil
JP6365206B2 (en) Hot bending member manufacturing apparatus and manufacturing method
JP2002018524A (en) Deformation straightening apparatus of annular member
KR20110130980A (en) Molding apparatus for partial heating
CN111385932A (en) Electromagnetic induction heating coil and heating device for isothermal biaxial tension test
CN201254589Y (en) Steel rapid heating apparatus
CN101307377A (en) Steel rapid-heating device and steel rapid-heating method
RU132021U1 (en) PLANT FOR PRODUCTION OF WELDED PROFILED Billets

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250