JP6992680B2 - 3D hot bending quenching device and quenching method - Google Patents

3D hot bending quenching device and quenching method Download PDF

Info

Publication number
JP6992680B2
JP6992680B2 JP2018107079A JP2018107079A JP6992680B2 JP 6992680 B2 JP6992680 B2 JP 6992680B2 JP 2018107079 A JP2018107079 A JP 2018107079A JP 2018107079 A JP2018107079 A JP 2018107079A JP 6992680 B2 JP6992680 B2 JP 6992680B2
Authority
JP
Japan
Prior art keywords
induction heating
frequency induction
heating coil
steel pipe
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018107079A
Other languages
Japanese (ja)
Other versions
JP2019210509A (en
Inventor
一夫 植松
信宏 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018107079A priority Critical patent/JP6992680B2/en
Publication of JP2019210509A publication Critical patent/JP2019210509A/en
Application granted granted Critical
Publication of JP6992680B2 publication Critical patent/JP6992680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、3次元熱間曲げ焼入れ装置および焼入れ方法に関する。 The present invention relates to a three-dimensional hot bending quenching apparatus and a quenching method.

近年、地球温暖化防止を目的とした燃費向上によるCO削減を図るための自動車の軽量化や、自動車の衝突時の安全性の向上を図るため、自動車構成部材の高強度化および薄肉化が推進されている。自動車構成部材の高強度化および薄肉化を実現する技術の一つとして、3次元熱間曲げ焼入れ(以下、「3DQ」ともいう)が知られる。 In recent years, in order to reduce the weight of automobiles by improving fuel efficiency for the purpose of preventing global warming and to improve the safety in the event of a collision of automobiles, the strength and wall thickness of automobile components have been increased. It is being promoted. Three-dimensional hot bending quenching (hereinafter, also referred to as "3DQ") is known as one of the technologies for realizing high strength and thinning of automobile components.

特許文献1には3DQが開示される。3DQは、略述すると、支持手段により軸方向へ送り可能に保持された素材である鋼管を上流側から押し出しながら、支持手段の下流側で曲げ加工またはせん断加工を行って曲げ鋼管を製造する押通し加工方法である。 Patent Document 1 discloses 3DQ. In short, 3DQ is a push for manufacturing a bent steel pipe by performing bending or shearing on the downstream side of the support means while extruding the steel pipe, which is a material held so as to be able to be fed in the axial direction by the support means, from the upstream side. It is a through processing method.

支持手段の下流側に設けられた産業用ロボットにより鋼管の先端を把持する。支持手段の出側で鋼管の外周を取り囲んで配置される円環状かつ銅製の高周波誘導加熱コイルにより、軸方向へ送られる鋼管をAc点以上に加熱する。 The tip of the steel pipe is gripped by an industrial robot provided on the downstream side of the support means. An annular and copper high-frequency induction heating coil arranged around the outer circumference of the steel pipe on the exit side of the support means heats the steel pipe sent in the axial direction to three or more points of Ac.

高周波誘導加熱コイルの下流側に配置された水冷装置により、加熱された鋼管を急速に冷却する。これにより、鋼管の軸方向の一部にAc点以上の加熱領域を形成する。そして、産業用ロボットによる鋼管の把持位置を制御することにより、加熱領域に支持手段および産業用ロボットにより曲げモーメントまたはせん断力を付与することにより、曲げ鋼管を製造する。 A water cooling device located on the downstream side of the high-frequency induction heating coil rapidly cools the heated steel pipe. As a result, a heating region having three or more Ac points is formed in a part of the steel pipe in the axial direction. Then, the bent steel pipe is manufactured by applying a bending moment or a shearing force to the heating region by the supporting means and the industrial robot by controlling the gripping position of the steel pipe by the industrial robot.

3DQのように被加工材である鋼管を加熱して曲げ加工またはせん断加工を行う場合、鋼管を断面内で均一に加熱すること、すなわち鋼管の断面周方向において温度が不均一になることを抑制することが求められる。 When bending or shearing a steel pipe, which is a work material, as in 3DQ, heating the steel pipe uniformly within the cross section, that is, suppressing the temperature from becoming non-uniform in the circumferential direction of the cross section of the steel pipe. Is required to do.

例えば、高周波誘導加熱コイルの巻き数が1巻(1ターン)である場合、以下に説明するように、鋼管の断面周方向において温度が不均一になりやすい。図3は、1ターンの高周波誘導加熱コイルを示す図である。図3に示すように、1ターンの高周波誘導加熱コイル100では、1ターンの開始部100aおよび終了部100bの間に絶縁部(空隙部100c、または空隙部100cに図示しない絶縁材を挟む場合には、その絶縁材)が設けられる。このような1ターンの高周波誘導加熱コイル100を用いて鋼管を加熱する場合には、鋼管のうち上記絶縁部に相対する部分は、加熱されないか、あるいは加熱効率が他の部分よりも低下する。このため、鋼管の断面周方向温度の不均一が生じる。 For example, when the number of turns of the high-frequency induction heating coil is one (one turn), the temperature tends to be non-uniform in the circumferential direction of the cross section of the steel pipe, as described below. FIG. 3 is a diagram showing a one-turn high-frequency induction heating coil. As shown in FIG. 3, in the one-turn high-frequency induction heating coil 100, when an insulating material (not shown) is sandwiched between the start portion 100a and the end portion 100b of one turn in the gap portion 100c or the gap portion 100c. Is provided with its insulating material). When the steel pipe is heated by using such a one-turn high-frequency induction heating coil 100, the portion of the steel pipe facing the insulating portion is not heated or the heating efficiency is lower than that of the other portions. Therefore, the temperature in the circumferential direction of the cross section of the steel pipe becomes non-uniform.

したがって、一般的に、高周波誘導加熱コイルの巻き数を2以上に増やすことにより、高周波誘導加熱コイルの絶縁部による影響を緩和し、鋼管の断面周方向温度の不均一を抑制する。 Therefore, in general, by increasing the number of turns of the high-frequency induction heating coil to 2 or more, the influence of the insulating portion of the high-frequency induction heating coil is alleviated, and the non-uniformity of the temperature in the cross-sectional circumferential direction of the steel pipe is suppressed.

一方、3DQでは、加熱領域の軸方向両側に存在する低温領域により面外変形を防ぎながら、加熱領域のみで鋼管を変形させる。このため、曲げ部の内周側のしわなどの成形不良の発生を抑制するには、変形領域である加熱領域の鋼管送り方向長さ(本明細書では「加熱幅」とも言う)をできるだけ短くすることが望ましい。 On the other hand, in 3DQ, the steel pipe is deformed only in the heating region while preventing out-of-plane deformation by the low temperature regions existing on both sides in the axial direction of the heating region. Therefore, in order to suppress the occurrence of molding defects such as wrinkles on the inner peripheral side of the bent portion, the length of the heated region, which is the deformed region, in the steel pipe feed direction (also referred to as “heating width” in the present specification) is made as short as possible. It is desirable to do.

そのためには、高周波誘導加熱コイルの鋼管送り方向長さ(本明細書では「コイル幅」ともいう)を短くすることが望ましく、さらに、高周波誘導加熱コイルの巻き数もできるだけ少なくすること、すなわち巻き数が1である高周波誘導加熱コイル(本明細書では「1ターンコイル」ともいう)を用いることが望ましい。 For that purpose, it is desirable to shorten the length of the high-frequency induction heating coil in the steel tube feed direction (also referred to as “coil width” in the present specification), and further, the number of turns of the high-frequency induction heating coil should be as small as possible, that is, winding. It is desirable to use a high frequency induction heating coil (also referred to as "1 turn coil" in the present specification) having a number of 1.

しかし、1ターンコイルでは、上述したように、高周波誘導加熱コイルの絶縁部に起因して、鋼管の断面周方向温度の不均一が生じる。加工速度を低下することにより熱伝導によってこの不均一をある程度抑制することはできる。しかし、1ターンコイルを用いるために加熱出力が不足し、直線部や曲げが緩い低曲率部で加工速度を高めることができず、生産性が低下する。 However, in the one-turn coil, as described above, the non-uniformity of the temperature in the circumferential direction of the cross section of the steel pipe occurs due to the insulating portion of the high frequency induction heating coil. This non-uniformity can be suppressed to some extent by heat conduction by reducing the processing speed. However, since the one-turn coil is used, the heating output is insufficient, the machining speed cannot be increased in the straight portion or the low curvature portion where the bending is loose, and the productivity is lowered.

すなわち、3DQで用いる高周波誘導加熱コイルのコイル幅に関して、鋼管の断面周方向温度の不均一の抑制を図る条件と、曲げ部のしわの抑制を図る条件は、二律背反の関係にある。 That is, regarding the coil width of the high-frequency induction heating coil used in 3DQ, the condition for suppressing the non-uniformity of the temperature in the circumferential direction of the cross section of the steel pipe and the condition for suppressing the wrinkle of the bent portion are in a trade-off relationship.

特許文献2には、3DQに用いる高周波誘導加熱コイルが開示される。この高周波誘導加熱コイルは、1ターンの高周波誘導加熱コイルを鋼管の送り方向へ直列に2つ並べて配置し、2つの高周波誘導加熱コイルの非実効コイル長Lnと、内周コイル長L0との比(Ln/L0)を0.05以下とすることにより、鋼管を周方向へ均一に、かつ鋼管の送り方向へ狭い範囲で加熱できる。 Patent Document 2 discloses a high frequency induction heating coil used for 3DQ. In this high frequency induction heating coil, two high frequency induction heating coils of one turn are arranged side by side in series in the feed direction of the steel pipe, and the ratio of the ineffective coil length Ln of the two high frequency induction heating coils to the inner circumference coil length L0. By setting (Ln / L0) to 0.05 or less, the steel pipe can be heated uniformly in the circumferential direction and in a narrow range in the feed direction of the steel pipe.

さらに、3DQにおいて曲げ半径の小さい曲げ加工、すなわち高曲率での曲げ加工を行うことにより高曲率部(小曲げ半径部)を有する曲げ部材を製造する場合、曲げ部の加工速度が高いと鋼管を把持する産業用ロボットのマニピュレータの速度変化が過大となり、マニピュレータが振動し、加工精度が低下する。この現象は、産業用ロボットのマニピュレータの速度=回転半径(∝加工済み部品長)×角速度の関係から、特に加工の後半に顕著に発生する。 Further, when a bending member having a high curvature portion (small bending radius portion) is manufactured by performing bending with a small bending radius in 3DQ, that is, bending with a high curvature, if the processing speed of the bending portion is high, the steel pipe is formed. The speed change of the manipulator of the industrial robot to be gripped becomes excessive, the manipulator vibrates, and the machining accuracy decreases. This phenomenon occurs remarkably especially in the latter half of machining due to the relationship of speed = turning radius (∝ machined part length) x angular velocity of the manipulator of an industrial robot.

特許文献3には、鋼管の高曲率部で加工速度および加熱出力を低下することにより、鋼管の加熱幅を狭くしてしわの発生を抑制する方法が開示されている。この発明は、曲げ鋼管の直線部および低曲率部の加工時には、加熱出力および加工速度を高めて生産性を確保し、曲げ鋼管の高曲率部の加工時には、加熱出力および加工速度を低下させて、加工精度の低下を防止する。 Patent Document 3 discloses a method of narrowing the heating width of a steel pipe and suppressing the occurrence of wrinkles by reducing the processing speed and the heating output at a high curvature portion of the steel pipe. INDUSTRIAL APPLICABILITY According to the present invention, when machining a straight portion and a low curvature portion of a bent steel pipe, the heating output and the machining speed are increased to ensure productivity, and when machining a high curvature portion of the bent steel pipe, the heating output and the machining speed are lowered. , Prevents deterioration of machining accuracy.

特開2007-83304号公報Japanese Unexamined Patent Publication No. 2007-83304 国際公開第2011/083817号International Publication No. 2011/088817 国際公開第2016/031970号International Publication No. 2016/031970

特許文献1により開示された発明は、1ターンコイルを用いるため、加工速度を落とすことにより鋼管の断面周方向温度の不均一を抑制できるものの、1ターンコイルを用いるために生産性の低下は否めない。 Since the invention disclosed in Patent Document 1 uses a one-turn coil, it is possible to suppress non-uniformity of the temperature in the circumferential direction of the cross section of the steel pipe by slowing down the processing speed, but it is undeniable that the productivity is lowered due to the use of the one-turn coil. do not have.

なお、特許文献1により開示された発明では、高周波誘導加熱コイルを鋼管の送り方向に対して可動にする必要があり、高周波誘導加熱コイルの構造が複雑になる。また、鋼管と高周波誘導加熱コイルが鋼管の断面形状によっては干渉するおそれもある。 In the invention disclosed in Patent Document 1, it is necessary to move the high frequency induction heating coil with respect to the feeding direction of the steel pipe, and the structure of the high frequency induction heating coil becomes complicated. In addition, the steel pipe and the high-frequency induction heating coil may interfere with each other depending on the cross-sectional shape of the steel pipe.

特許文献2,3により開示された発明は、電気的に接続された2個の1ターンの高周波誘導加熱コイルを用いる。このため、加熱幅を狭くすることが容易ではなく、高曲率部の曲げ内周側でのしわの発生を防止できない。 The invention disclosed in Patent Documents 2 and 3 uses two electrically connected 1-turn high-frequency induction heating coils. Therefore, it is not easy to narrow the heating width, and it is not possible to prevent the occurrence of wrinkles on the bending inner peripheral side of the high curvature portion.

本発明は、直線部または低曲率部と高曲率部を軸方向へ備える高強度の曲げ鋼管を、焼きムラやしわを発生させずに精度よく、かつ生産性を向上させながら製造することができる3次元熱間曲げ焼入れ装置および焼入れ方法を提供することである。 INDUSTRIAL APPLICABILITY According to the present invention, a high-strength bent steel pipe provided with a straight portion or a low-curvature portion and a high-curvature portion in the axial direction can be manufactured with high accuracy and productivity without causing uneven quenching and wrinkles. It is to provide a three-dimensional hot bending quenching apparatus and a quenching method.

本発明者らは、3DQにより、鋼管に高曲率部を加工する場合の曲げ内周側でのしわの発生を防止するとともに生産性の低下を防止しながら、曲げ鋼管を製造するために、高曲率部の加工時には加工速度を低下し、それ以外の部分では加工速度を高めることを前提として、鋭意検討を重ねた。その結果、以下に列記の知見A~Cを得て、本発明を完成した。 The present inventors use 3DQ to prevent the occurrence of wrinkles on the inner peripheral side of bending when processing a high-curvature portion on a steel pipe, and to prevent a decrease in productivity, in order to manufacture a bent steel pipe. On the premise that the machining speed is reduced when machining curved parts and the machining speed is increased in other parts, intensive studies were conducted. As a result, the present invention was completed by obtaining the findings A to C listed below.

なお、前記鋼管としては、直径17.3mm~100.0mm、肉厚0.8mm~6.5mmの焼き入れ後の引張強度が1470MPa以上の鋼管を対象とするのが工業生産上好ましい。さらに生産の安定性を重視する場合は、前記鋼管としては、直径17.3mm~80.0mm、肉厚0.8mm~3.2mmの焼き入れ後の引張強度が1470MPa以上の鋼管を対象とするのが望ましい。 As the steel pipe, it is preferable for industrial production to target a steel pipe having a diameter of 17.3 mm to 100.0 mm and a wall thickness of 0.8 mm to 6.5 mm and having a tensile strength of 1470 MPa or more after quenching. When the stability of production is more important, the steel pipes have a diameter of 17.3 mm to 80.0 mm and a wall thickness of 0.8 mm to 3.2 mm and a tensile strength of 1470 MPa or more after quenching. Is desirable.

(A)互いに電気的に遮断され、かつそれぞれの加熱出力を独立して制御可能である2個の1ターンの高周波誘導加熱コイルを、鋼管の送り方向へ直列に並べて配置する。これら2個の高周波誘導加熱コイルのうちの下流側の高周波誘導加熱コイルを、コイル幅が小さい1ターンコイル(本明細書では「狭幅1ターンコイル」ともいう)とする。 (A) Two 1-turn high-frequency induction heating coils that are electrically cut off from each other and can independently control their respective heating outputs are arranged side by side in series in the feed direction of the steel pipe. Of these two high-frequency induction heating coils, the downstream-side high-frequency induction heating coil is referred to as a one-turn coil having a small coil width (also referred to as a "narrow-width one-turn coil" in the present specification).

(B)高曲率部の加工では、鋼管の加熱幅をできるだけ狭くするため、狭幅1ターンコイルのみを用いて加熱する。高曲率部以外の部分の加工では、加工速度を高めて生産性を向上するため、狭幅1ターンコイルおよび上流側コイルをともに用いて加熱出力を上げて加熱する。 (B) In the processing of the high curvature portion, in order to make the heating width of the steel pipe as narrow as possible, heating is performed using only a narrow width 1-turn coil. In the machining of parts other than the high curvature portion, in order to increase the machining speed and improve productivity, both the narrow width 1-turn coil and the upstream coil are used to increase the heating output for heating.

(C)(狭幅1ターンコイルおよび上流側コイルの合計の加熱出力)/加工速度を、鋼管の断面線長および肉厚に応じて特定範囲内に適宜設定することにより、鋼管の送り方向への加熱温度を所定の温度域内に保つ。 (C) (The total heating output of the narrow 1-turn coil and the upstream coil) / By setting the machining speed within a specific range according to the cross-sectional line length and wall thickness of the steel pipe, in the feed direction of the steel pipe. Keep the heating temperature within the specified temperature range.

本発明は以下に列記のとおりである。
(1)高周波誘導加熱コイルを備え、該高周波誘導加熱コイルは素材である鋼管の軸方向へ該鋼管と相対的に移動しながら該鋼管を加熱可能である3次元熱間曲げ焼入れ装置であって、
前記高周波誘導加熱コイルは、1ターンコイルであり、該1ターンコイルの1ターンの開始部および終了部の間に設けられる第1の絶縁部を有する第1の高周波誘導加熱コイル、並びに該第1の高周波誘導加熱コイルとは独立の1ターンコイルであり、該1ターンコイルの1ターンの開始部および終了部の間に設けられる第2の絶縁部を有する第2の高周波誘導加熱コイルを前記鋼管の相対的な送り方向へ並んで有し、
前記第1の高周波誘導加熱コイルは、前記送り方向において前記第2の高周波誘導加熱コイルよりも下流側に配置され、鋼管送り方向長さであるコイル幅が4~10mmであり、
前記鋼管の送り方向に直交する断面において、前記第1の絶縁部と前記第2の絶縁部とは、互いに、前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルの周方向へずれて位置し、
前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルは、電気的に絶縁され、かつそれぞれの加熱出力を独立して制御可能であるとともに、
前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルは、前記鋼管を900~1050℃に加熱可能であることを特徴とする、3次元熱間曲げ焼入れ装置。
The present invention is as listed below.
(1) A three-dimensional hot bending quenching device provided with a high-frequency induction heating coil, which can heat the steel pipe while moving relative to the steel pipe in the axial direction of the steel pipe as a material. ,
The high frequency induction heating coil is a one-turn coil, and is a first high frequency induction heating coil having a first insulating portion provided between a start portion and an end portion of one turn of the one turn coil, and the first high frequency induction heating coil. A second high-frequency induction heating coil having a second insulating portion provided between a start portion and an end portion of one turn of the one-turn coil, which is a one-turn coil independent of the high-frequency induction heating coil of the above steel pipe. Have side by side in the relative feed direction of
The first high-frequency induction heating coil is arranged on the downstream side of the second high-frequency induction heating coil in the feed direction, and has a coil width of 4 to 10 mm, which is the length in the steel tube feed direction.
In the cross section orthogonal to the feeding direction of the steel pipe, the first insulating portion and the second insulating portion are connected to each other in the circumferential direction of the first high frequency induction heating coil and the second high frequency induction heating coil. Positioned off,
The first high-frequency induction heating coil and the second high-frequency induction heating coil are electrically insulated, and their respective heating outputs can be controlled independently.
The first high-frequency induction heating coil and the second high-frequency induction heating coil are three-dimensional hot bending quenching devices characterized in that the steel pipe can be heated to 900 to 1050 ° C.

(2)前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルの間に配置される絶縁部材を備える、(1)項に記載の3次元熱間曲げ焼入れ装置。 (2) The three-dimensional hot bending quenching apparatus according to item (1), comprising an insulating member arranged between the first high frequency induction heating coil and the second high frequency induction heating coil.

(3)第1の高周波電源装置と、前記第1の高周波電源装置から独立した第2の高周波電源装置を備え、
前記第1の高周波電源装置は、前記第1の高周波誘導加熱コイルに高周波電力を供給し、
前記第2の高周波電源装置は、前記第2の高周波誘導加熱コイルに高周波電力を供給する、(1)または(2)項に記載の3次元熱間曲げ焼入れ装置。
(3) A first high-frequency power supply device and a second high-frequency power supply device independent of the first high-frequency power supply device are provided.
The first high frequency power supply device supplies high frequency power to the first high frequency induction heating coil.
The three-dimensional hot bending quenching device according to item (1) or (2), wherein the second high frequency power supply device supplies high frequency power to the second high frequency induction heating coil.

(4)(1)~(3)項のいずれかに記載の3次元熱間曲げ焼入れ装置を用いる3次元熱間曲げ焼入れ方法であって、
前記鋼管に曲率が{0.1+50(t/D)}/D以上の曲げ部を形成する場合には、前記鋼管の相対的な送り速度を20mm/sec以下として前記第1の高周波誘導加熱コイルのみで前記鋼管を加熱し、
前記鋼管に前記曲げ部以外の部分(例えば直線部や低曲率部)を形成する場合には、前記鋼管の相対的な送り速度を60mm/sec以上として前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルで前記鋼管を加熱し、
前記曲率が鋼管の長手方向で変化する場合において、前記曲率が{0.1+50(t/D)}/Dとなって、前記相対的な送り速度を変化させる際は、絶対値が10mm/sec/sec以上の加速度で前記相対的な送り速度を変化させ、かつ、前記第2の高周波誘導加熱コイルの加熱を開始または停止することを特徴とする3次元熱間曲げ焼入れ方法。
ただし、Dは前記鋼管の直径であり、tは前記鋼管の肉厚である。
(4) A three-dimensional hot bending quenching method using the three-dimensional hot bending quenching apparatus according to any one of (1) to (3).
When a bent portion having a curvature of {0.1 + 50 (t / D) 2 } / D or more is formed on the steel pipe, the relative feed rate of the steel pipe is set to 20 mm / sec or less and the first high frequency induction heating is performed. The steel pipe is heated only by the coil,
When a portion other than the bent portion (for example, a straight portion or a low curvature portion) is formed on the steel pipe, the relative feed rate of the steel pipe is set to 60 mm / sec or more, and the first high frequency induction heating coil and the first high frequency induction heating coil are formed. The steel pipe is heated by the high frequency induction heating coil of 2.
When the curvature changes in the longitudinal direction of the steel pipe, the curvature becomes {0.1 + 50 (t / D) 2 } / D, and when the relative feed rate is changed, the absolute value is 10 mm / A three-dimensional hot bending and quenching method comprising changing the relative feed rate at an acceleration of sec / sec or more and starting or stopping the heating of the second high-frequency induction heating coil.
However, D is the diameter of the steel pipe, and t is the wall thickness of the steel pipe.

本発明によれば、高曲率部は、低加工速度かつ低加熱出力で狭い加熱幅で加工を行うためにしわの発生が抑制されるとともに、直線部や低曲率部等の高曲率部以外の部分では、高加工速度かつ高加熱出力で加工を行うことにより、鋼管の断面周方向温度の不均一を抑制しながら、部品全体としての高い生産性と、高曲率部のまげ内周側でのしわの抑制を図ることができる。 According to the present invention, the high-curvature portion is processed at a low processing speed, a low heating output, and a narrow heating width, so that wrinkles are suppressed and the portion other than the high-curvature portion such as a straight portion or a low curvature portion is suppressed. In the part, by machining at a high machining speed and high heating output, while suppressing the non-uniformity of the temperature in the circumferential direction of the cross section of the steel pipe, the high productivity of the entire part and the high curvature on the inner circumference side of the bend. Wrinkles can be suppressed.

図1は、本発明に係る3次元熱間曲げ焼入れ装置を模式的に例示する説明図である。FIG. 1 is an explanatory diagram schematically illustrating a three-dimensional hot bending quenching apparatus according to the present invention. 図2は、高周波誘導加熱コイルの加熱出力のパターンの一例を示すグラフである。FIG. 2 is a graph showing an example of the heating output pattern of the high frequency induction heating coil. 図3は、1ターンコイルを示す図である。FIG. 3 is a diagram showing a one-turn coil.

添付図面を参照しながら、本発明を説明する。
1.本発明に係る3次元熱間曲げ焼入れ装置1
図1は、本発明に係る3次元熱間曲げ焼入れ装置1を模式的に例示する説明図である。
The present invention will be described with reference to the accompanying drawings.
1. 1. Three-dimensional hot bending quenching apparatus 1 according to the present invention
FIG. 1 is an explanatory diagram schematically illustrating a three-dimensional hot bending quenching apparatus 1 according to the present invention.

3次元熱間曲げ焼入れ装置1(以下、「3DQ装置1」という)は、支持手段2で軸方向へ送り可能に保持された鋼管3を、例えば産業用ロボットやボールねじといった送り手段4により上流側から連続的に押し出しながら、支持手段2の下流側で曲げ加工またはせん断加工を行って曲げ鋼管を製造する。 The three-dimensional hot bending and quenching device 1 (hereinafter referred to as “3DQ device 1”) is an upstream of a steel pipe 3 held so as to be feedable in the axial direction by a support means 2 by a feed means 4 such as an industrial robot or a ball screw. While continuously extruding from the side, bending or shearing is performed on the downstream side of the support means 2 to manufacture a bent steel tube.

支持手段2の下流側に設けられた産業用ロボット5のマニピュレータの先端に装着された効果器6により、鋼管3の先端を把持する。支持手段2の出側で鋼管3の外周を取り囲んで配置された円環状かつ銅製の高周波誘導加熱コイル7により、軸方向へ送られる鋼管3をAc点以上に加熱する。これにより、鋼管3の軸方向の一部にAc点以上の加熱領域3aを形成する。本実施形態では、高周波誘導加熱コイル7の下流側に配置された水冷装置10により、加熱された鋼管3を急速に冷却する。 The tip of the steel pipe 3 is gripped by the effector 6 attached to the tip of the manipulator of the industrial robot 5 provided on the downstream side of the support means 2. An annular and copper high-frequency induction heating coil 7 arranged around the outer circumference of the steel pipe 3 on the exit side of the support means 2 heats the steel pipe 3 sent in the axial direction to three or more points of Ac. As a result, a heating region 3a having three or more Ac points is formed in a part of the steel pipe 3 in the axial direction. In the present embodiment, the heated steel pipe 3 is rapidly cooled by the water cooling device 10 arranged on the downstream side of the high frequency induction heating coil 7.

本実施形態では、産業用ロボット5による鋼管3の把持位置を制御することにより、支持手段2および産業用ロボット5により、加熱領域3aに曲げモーメントまたはせん断力を付与して、曲げ鋼管を製造する。 In the present embodiment, by controlling the gripping position of the steel pipe 3 by the industrial robot 5, the supporting means 2 and the industrial robot 5 apply a bending moment or a shearing force to the heating region 3a to manufacture the bent steel pipe. ..

高周波誘導加熱コイル7は、鋼管3の軸方向へ鋼管3と相対的に移動しながら鋼管3を加熱する。すなわち、固定して設置された高周波誘導加熱コイル7の内部を鋼管3が通過してもよいし、固定して支持された鋼管3の軸方向へ高周波誘導加熱コイル7を移動させてもよい。 The high frequency induction heating coil 7 heats the steel pipe 3 while moving relative to the steel pipe 3 in the axial direction of the steel pipe 3. That is, the steel pipe 3 may pass through the inside of the fixed and installed high frequency induction heating coil 7, or the high frequency induction heating coil 7 may be moved in the axial direction of the fixed and supported steel pipe 3.

高周波誘導加熱コイル7は、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9を鋼管3の相対的な送り方向に並んで有する。このように、本発明では、これまでの3DQ装置において高周波誘導加熱コイルとして用いられてきた2ターンコイルを、電気的に独立した第1の高周波誘導加熱コイル8と第2の高周波誘導加熱コイル9に分割する。 The high frequency induction heating coil 7 has a first high frequency induction heating coil 8 and a second high frequency induction heating coil 9 arranged side by side in the relative feed direction of the steel tube 3. As described above, in the present invention, the two-turn coil used as the high-frequency induction heating coil in the conventional 3DQ apparatus is replaced with the electrically independent first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9. Divide into.

第1の高周波誘導加熱コイル8は、鋼管3の送り方向において、第2の高周波誘導加熱コイル9よりも下流側に配置される。第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9はそれぞれ、1ターンコイルである。上述の1ターンコイル100と同様に、第1の高周波誘導加熱コイル8は第1の絶縁部(図示しない)を有し、第2の高周波誘導加熱コイル9は第2の絶縁部(図示しない)を有している。 The first high frequency induction heating coil 8 is arranged on the downstream side of the second high frequency induction heating coil 9 in the feed direction of the steel pipe 3. The first high frequency induction heating coil 8 and the second high frequency induction heating coil 9 are 1-turn coils, respectively. Similar to the 1-turn coil 100 described above, the first high frequency induction heating coil 8 has a first insulating portion (not shown), and the second high frequency induction heating coil 9 has a second insulating portion (not shown). have.

第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9のうち、特に高曲率部の加工に用いる第1の高周波誘導加熱コイル8は、コイル幅が狭いほうが鋼管3の加熱幅を狭くするためには有効であるため、1ターンコイルとし、そのコイル幅を4~10mmとする。 Of the first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9, the first high-frequency induction heating coil 8 used for processing a high curvature portion has a narrower coil width to narrow the heating width of the steel pipe 3. Since it is effective for this purpose, a one-turn coil is used, and the coil width is 4 to 10 mm.

曲げ鋼管の直線部および低曲率部の加工では、加熱出力および加工速度をともに高めて生産性を高める。この場合、鋼管3の加熱幅(加熱領域3aの鋼管軸方向長さ)は広くても問題ないので、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9をともに用いるとともに、冷却までの距離も多少長くても問題ないため、第2の高周波誘導加熱コイル9を上流側に配置する。 In the machining of straight parts and low curvature parts of bent steel pipes, both the heating output and the machining speed are increased to increase productivity. In this case, there is no problem even if the heating width of the steel pipe 3 (the length in the axial direction of the steel pipe of the heating region 3a) is wide, so that both the first high frequency induction heating coil 8 and the second high frequency induction heating coil 9 are used and cooled. Since there is no problem even if the distance to the coil is a little long, the second high frequency induction heating coil 9 is arranged on the upstream side.

一方、曲げ鋼管の高曲率部の加工では、加熱出力および加工速度ともに低く抑制し、さらには鋼管3の加熱幅も狭くしたいので、第1の高周波誘導加熱コイル8だけを用い、加熱から冷却までの距離を短くする。 On the other hand, in the machining of the high curvature portion of the bent steel pipe, both the heating output and the machining speed should be suppressed to a low level, and the heating width of the steel pipe 3 should be narrowed. Therefore, only the first high frequency induction heating coil 8 is used from heating to cooling. Shorten the distance.

鋼管3の送り方向へ直列に配置する第1の高周波誘導加熱コイル8の第1の絶縁部(図示しない)と、第2の高周波誘導加熱コイル9の第2の絶縁部(図示しない)は、例えば特許文献2により開示されるように、断面周方向温度の不均一を抑制するために、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9の周方向へずれて位置する。言い換えると、鋼管3の送り方向から見て、第1の絶縁部と第2の絶縁部とは、鋼管3(加熱領域3a)の周方向に互いにずれて配置されている。 The first insulating portion (not shown) of the first high frequency induction heating coil 8 arranged in series in the feed direction of the steel tube 3 and the second insulating portion (not shown) of the second high frequency induction heating coil 9 are For example, as disclosed in Patent Document 2, in order to suppress non-uniformity of the temperature in the circumferential direction of the cross section, the first high frequency induction heating coil 8 and the second high frequency induction heating coil 9 are positioned so as to be offset in the circumferential direction. In other words, the first insulating portion and the second insulating portion are arranged so as to be offset from each other in the circumferential direction of the steel pipe 3 (heating region 3a) when viewed from the feeding direction of the steel pipe 3.

第1の絶縁部および第2の絶縁部のこのずれの程度は、鋼管3の断面周方向温度の不均一が抑制されるようにずれていればよいが、現実的には、2つの高周波誘導加熱コイル8,9それぞれのブスバー11,12の設置場所の関係から、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9の中心角で30°以上ずれていることが望ましい。 The degree of this deviation between the first insulating portion and the second insulating portion may be such that the non-uniformity of the temperature in the circumferential direction of the cross section of the steel pipe 3 is suppressed, but in reality, two high frequency inductions are performed. It is desirable that the central angles of the first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9 are deviated by 30 ° or more from the relationship of the installation locations of the bus bars 11 and 12 of the heating coils 8 and 9, respectively.

第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9は、電気的に絶縁され、かつそれぞれの加熱出力を独立して制御可能である。 The first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9 are electrically insulated, and their respective heating outputs can be controlled independently.

具体的には、鋼管3の送り方向について、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9の間に絶縁部材13を備える。なお、第1の高周波誘導加熱コイル8と水冷装置10との間にも絶縁部材14を設けることが望ましい。 Specifically, an insulating member 13 is provided between the first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9 in the feed direction of the steel pipe 3. It is desirable to provide an insulating member 14 between the first high frequency induction heating coil 8 and the water cooling device 10.

さらに、3DQ装置1は、第1の高周波電源装置15と、第1の高周波電源装置15から独立した第2の高周波電源装置16を備える。第1の高周波電源装置15は、ブスバー11を介して第1の高周波誘導加熱コイル8に高周波電力を供給し、第2の高周波電源装置16は、ブスバー12を介して第2の高周波誘導加熱コイル9に高周波電力を供給する。 Further, the 3DQ device 1 includes a first high frequency power supply device 15 and a second high frequency power supply device 16 independent of the first high frequency power supply device 15. The first high frequency power supply device 15 supplies high frequency power to the first high frequency induction heating coil 8 via the bus bar 11, and the second high frequency power supply device 16 supplies the second high frequency induction heating coil via the bus bar 12. High frequency power is supplied to 9.

第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9は、鋼管3の加熱温度が900~1050℃となるように、加熱する。本実施形態に係る3DQ装置1における加工条件の一例を表1にまとめて示す。なお、上述の実施形態では、3DQ装置1が第1の高周波誘導加熱コイル8と第2の高周波誘導加熱コイル9とを含む場合について説明したが、3DQ装置1が、さらに、第3の高周波誘導加熱コイル等の他の高周波誘導加熱コイルを備えていてもよい。すなわち、3DQ装置1が、3つ以上の高周波誘導加熱コイルを備えていてもよい。この場合、複数の高周波誘導加熱コイルのうち、鋼管3の送り方向において最も下流側に配置された高周波誘導加熱コイルが第1の高周波誘導加熱コイルに設定され、かつ他の高周波誘導加熱コイルから電気的に絶縁される。 The first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9 are heated so that the heating temperature of the steel tube 3 is 900 to 1050 ° C. Table 1 summarizes an example of the processing conditions in the 3DQ apparatus 1 according to the present embodiment. In the above-described embodiment, the case where the 3DQ device 1 includes the first high-frequency induction heating coil 8 and the second high-frequency induction heating coil 9 has been described, but the 3DQ device 1 further includes a third high-frequency induction heating coil. Other high frequency induction heating coils such as a heating coil may be provided. That is, the 3DQ device 1 may include three or more high frequency induction heating coils. In this case, among the plurality of high-frequency induction heating coils, the high-frequency induction heating coil arranged on the most downstream side in the feed direction of the steel tube 3 is set as the first high-frequency induction heating coil, and electricity is generated from the other high-frequency induction heating coil. Is insulated.

Figure 0006992680000001
Figure 0006992680000001

表1において、高曲率および低曲率は、2ターンコイルを用いた場合の通常の加工条件でのしわの発生の有無によって区分することができる。文献「塑性と加工」(第57巻第668号49-55頁)に示された実験データから、丸管におけるしわの有無は以下の(1)式により推測できる。 In Table 1, high curvature and low curvature can be classified according to the presence or absence of wrinkles under normal machining conditions when a two-turn coil is used. From the experimental data shown in the document "Plasticity and Machining" (Vol. 57, No. 668, pp. 49-55), the presence or absence of wrinkles in the round tube can be estimated by the following equation (1).

しわ限界曲げR=D/{0.1+50(t/D)} ・・・・・(1)
(1)式において、Dは鋼管3の直径であり、tは鋼管3の肉厚である。
Wrinkle limit bending R = D / {0.1 + 50 (t / D) 2 } ・ ・ ・ ・ ・ (1)
In the equation (1), D is the diameter of the steel pipe 3 and t is the wall thickness of the steel pipe 3.

(1)式より、表1における「高曲率部」とは、曲率が1/R={0.1+50(t/D)}/D以上の曲げ部を意味する。 From the equation (1), the “high curvature portion” in Table 1 means a bent portion having a curvature of 1 / R = {0.1 + 50 (t / D) 2 } / D or more.

表1における加熱出力は、加工速度および鋼管3の断面形状に応じて決定されるものであり、3DQにより製造される曲げ鋼管が焼入れにより所望の高強度(TS:1470MPa以上)を得るために、鋼管3の加熱温度が900~1050℃となるように調整される。 The heating output in Table 1 is determined according to the processing speed and the cross-sectional shape of the steel pipe 3, and the bent steel pipe manufactured by 3DQ obtains the desired high strength (TS: 1470 MPa or more) by quenching. The heating temperature of the steel pipe 3 is adjusted to 900 to 1050 ° C.

このような加熱、冷却および曲げ加工を一連の工程で行うには、高曲率部と、高曲率部以外の直線部および低曲率部で高周波誘導加熱コイルを使い分けることもできるが、加工装置が大型化するために加工精度の確保が難しくなる。 In order to perform such heating, cooling and bending in a series of steps, it is possible to use the high frequency induction heating coil properly in the high curvature part, the straight part other than the high curvature part and the low curvature part, but the processing equipment is large. Therefore, it becomes difficult to secure the processing accuracy.

2.本発明に係る3次元熱間曲げ焼入れ方法
上述した本発明に係る3次元熱間曲げ焼入れ装置を用いる3次元熱間曲げ焼入れ方法を説明する。
2. 2. Three-dimensional hot bending and quenching method according to the present invention A three-dimensional hot bending and quenching method using the above-mentioned three-dimensional hot bending and quenching apparatus according to the present invention will be described.

図2は、鋼管3の加工速度および高周波誘導加熱コイル7の加熱出力のパターンの一例を示すグラフである。より具体的には、図2(a)は、第1の高周波誘導加熱コイル8の加熱出力パターンの一例を示し、図2(b)は、第2の高周波誘導加熱コイル9の加熱出力パターンの一例を示す。 FIG. 2 is a graph showing an example of the processing speed of the steel pipe 3 and the heating output pattern of the high frequency induction heating coil 7. More specifically, FIG. 2A shows an example of the heating output pattern of the first high frequency induction heating coil 8, and FIG. 2B shows the heating output pattern of the second high frequency induction heating coil 9. An example is shown.

図2のグラフに示すように、鋼管3に曲率が{0.1+50(t/D)}/D以上の高曲率部を形成する場合には、例えば、第1の高周波誘導加熱コイル8の加熱出力を20kWに設定し、鋼管3の相対的な送り速度を20mm/sec以下として、第1の高周波誘導加熱コイル8のみで鋼管3を加熱する。なお、3DQ装置1が、3つ以上の高周波誘導加熱コイルを備えている場合でも、鋼管3に高曲率部を形成する際には、第1の高周波誘導加熱コイル8のみで鋼管3を加熱する。 As shown in the graph of FIG. 2, when a high curvature portion having a curvature of {0.1 + 50 (t / D) 2 } / D or more is formed in the steel pipe 3, for example, the first high frequency induction heating coil 8 is used. The heating output is set to 20 kW, the relative feed rate of the steel pipe 3 is set to 20 mm / sec or less, and the steel pipe 3 is heated only by the first high frequency induction heating coil 8. Even when the 3DQ device 1 is provided with three or more high-frequency induction heating coils, when forming a high-curvature portion on the steel pipe 3, the steel pipe 3 is heated only by the first high-frequency induction heating coil 8. ..

さらに、鋼管3に高曲率部以外の低曲率部や直線部を形成する場合には、例えば、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9の加熱出力を40kWに設定し、鋼管3の相対的な送り速度を60mm/sec以上として、第1の高周波誘導加熱コイル8および第2の高周波誘導加熱コイル9により鋼管3を加熱する。なお、3DQ装置1が、3つ以上の高周波誘導加熱コイルを備えている場合、鋼管3に高曲率部以外の低曲率部や直線部を形成する際には、例えば、全ての高周波誘導加熱コイルによって鋼管3を加熱する。なお、前記曲率が{0.1+50(t/D)}/Dになった瞬間に、前記相対的な送り速度を60mm/sec以上または20mm/sec以下に変化させることは工業的に不可能である。したがって、前記曲率が鋼管の長手方向で変化する場合において、前記曲率が{0.1+50(t/D)}/Dとなって、前記相対的な送り速度を変化させる際は、前記相対的な送り速度が60mm/sec以上または20mm/sec以下になるように、絶対値が10mm/sec/sec以上の工業的に可能な加速度で前記相対的な送り速度を変化させ、かつ、前記第2の高周波誘導加熱コイルの加熱を開始または停止すればよい。 Further, when forming a low curvature portion or a straight portion other than the high curvature portion on the steel pipe 3, for example, the heating output of the first high frequency induction heating coil 8 and the second high frequency induction heating coil 9 is set to 40 kW. The steel tube 3 is heated by the first high frequency induction heating coil 8 and the second high frequency induction heating coil 9 with the relative feed rate of the steel tube 3 being 60 mm / sec or more. When the 3DQ device 1 is provided with three or more high-frequency induction heating coils, for example, when forming a low-curvature portion or a straight portion other than the high-curvature portion on the steel pipe 3, all the high-frequency induction heating coils are used. Heats the steel tube 3 with. It is industrially impossible to change the relative feed rate to 60 mm / sec or more or 20 mm / sec or less at the moment when the curvature becomes {0.1 + 50 (t / D) 2 } / D. Is. Therefore, when the curvature changes in the longitudinal direction of the steel pipe, the curvature becomes {0.1 + 50 (t / D) 2 } / D, and when the relative feed rate is changed, the relative feed rate is changed. The relative feed rate is changed at an industrially possible acceleration with an absolute value of 10 mm / sec / sec or more so that the feed rate is 60 mm / sec or more or 20 mm / sec or less, and the second feed rate is changed. The heating of the high frequency induction heating coil may be started or stopped.

これにより、高曲率部では低加工速度かつ低加熱出力により狭い加熱幅で加工を行うことができるため、高曲率部の曲げ内周側でのしわの発生が抑制されるとともに、高曲率部以外の低曲率部や直線部では、高加工速度かつ高加熱出力で加工を行うことができるため、生産性の低下が抑制される。このため、部品全体としての高い生産性と、高曲率部でのしわの抑制を両立できる。 As a result, in the high curvature portion, machining can be performed in a narrow heating width due to the low machining speed and low heating output, so that the occurrence of wrinkles on the bending inner peripheral side of the high curvature portion is suppressed, and the generation other than the high curvature portion is suppressed. In the low-curvature portion and the straight portion of the above, processing can be performed at a high processing speed and a high heating output, so that a decrease in productivity is suppressed. Therefore, it is possible to achieve both high productivity of the entire component and suppression of wrinkles in the high curvature portion.

第1直線部(長さ500mm、直径50.8mm,肉厚1.0mm)と、高曲率部(曲げ半径350mm,曲げ角度90°、曲率1/325 mm-1)と、第2直線部(長さ500mm)を軸方向に有する曲げ鋼管を、図1に示す3DQ装置1と、従来の3DQ装置を用いて、素材である鋼管を950℃に加熱して製造した。 The first straight part (length 500 mm, diameter 50.8 mm, wall thickness 1.0 mm), the high curvature part (bending radius 350 mm, bending angle 90 °, curvature 1/325 mm -1 ), and the second straight part (bending radius 350 mm, curvature 1/325 mm -1) A bent steel tube having a length (length of 500 mm) in the axial direction was manufactured by heating the steel tube as a material to 950 ° C. using the 3DQ device 1 shown in FIG. 1 and the conventional 3DQ device.

後記の表3の本発明例1,2では、図1に示すように、コイル幅が6mmの第1の高周波誘導加熱コイル8と第2の高周波誘導加熱コイル9を配置した。一方、表3の比較例1では第1の絶縁部および第2の絶縁部のずれの程度(位相差)を0として1ターンコイルを2つ配置した。本発明例1,2および比較例1では、第1および第2直線部を形成する際には、2つの高周波誘導加熱コイルを用いて鋼管を加熱し、高曲率部を形成する際には、下流側の高周波誘導加熱コイルのみを用いて鋼管を加熱した。比較例2~4では1ターンコイルを1つ配置し、比較例5~7では2ターンコイルを1つ配置した。 In Examples 1 and 2 of the present invention in Table 3 below, as shown in FIG. 1, a first high-frequency induction heating coil 8 and a second high-frequency induction heating coil 9 having a coil width of 6 mm are arranged. On the other hand, in Comparative Example 1 of Table 3, two 1-turn coils were arranged with the degree of deviation (phase difference) between the first insulating portion and the second insulating portion being 0. In Examples 1 and 2 of the present invention and Comparative Example 1, when forming the first and second straight portions, the steel pipe is heated by using two high frequency induction heating coils, and when forming the high curvature portion, the steel pipe is heated. The steel pipe was heated using only the high frequency induction heating coil on the downstream side. In Comparative Examples 2 to 4, one 1-turn coil was arranged, and in Comparative Examples 5 to 7, one 2-turn coil was arranged.

表2に、用いた1ターンコイルおよび2ターンコイルの加工速度(mm/sec)ごとの、加熱幅(mm)、加熱出力(kW)およびしわ限界R(mm)をまとめて示す。表2における「加熱幅」は、「塑性と加工」第56巻第658号49~54ページに基づき、(最高到達温度-200℃)となっている加熱領域の幅として求めた。 Table 2 summarizes the heating width (mm), heating output (kW), and wrinkle limit R (mm) for each processing speed (mm / sec) of the used 1-turn coil and 2-turn coil. The "heating width" in Table 2 was determined as the width of the heating region (maximum ultimate temperature-200 ° C.) based on "Plasticity and Machining" Vol. 56, No. 658, pp. 49-54.

Figure 0006992680000002
Figure 0006992680000002

結果を表3にまとめて示す。表3では、しわは、鋼管の曲げ内側表面が平滑である場合に○(合格)とし、鋼管曲げ内側に凹凸が認められる場合に×(不合格)とした。評価は、すべての項目で○である場合に合格とし、いずれかの項目で×である場合に×(不合格)とした。 The results are summarized in Table 3. In Table 3, wrinkles were marked with ◯ (pass) when the inner surface of the bent steel pipe was smooth, and × (failed) when unevenness was observed inside the bent steel pipe. In the evaluation, if all the items were ○, the evaluation was passed, and if any item was ×, the evaluation was × (failed).

Figure 0006992680000003
Figure 0006992680000003

本発明例1は、3DQ装置1を用いて、第1の高周波誘導加熱コイル8のコイル幅が6mmであり、第1の絶縁部および第2の絶縁部の位相差が180°であり、鋼管を950℃に加熱して製造された。また、本発明例2は、3DQ装置1を用いて、第1の高周波誘導加熱コイル8のコイル幅が6mmであり、第1の絶縁部および第2の絶縁部の位相差が90°であり、鋼管を950℃に加熱して製造された。このため、本発明例1,2では、部品全体としての高い生産性と、高曲率部でのしわの抑制を図ることができた。 In Example 1 of the present invention, using the 3DQ device 1, the coil width of the first high-frequency induction heating coil 8 is 6 mm, the phase difference between the first insulating portion and the second insulating portion is 180 °, and the steel pipe. Was produced by heating to 950 ° C. Further, in Example 2 of the present invention, using the 3DQ device 1, the coil width of the first high frequency induction heating coil 8 is 6 mm, and the phase difference between the first insulating portion and the second insulating portion is 90 °. , Manufactured by heating a steel pipe to 950 ° C. Therefore, in Examples 1 and 2 of the present invention, high productivity of the entire component and suppression of wrinkles in the high curvature portion could be achieved.

これに対し、比較例1は、3DQ装置1を用いて、第1の高周波誘導加熱コイル8のコイル幅が6mmであり、鋼管を950℃に加熱して製造したものの、第1の絶縁部および第2の絶縁部の位相差が0°であったため、焼きムラが発生した。 On the other hand, in Comparative Example 1, although the coil width of the first high frequency induction heating coil 8 was 6 mm and the steel pipe was heated to 950 ° C. using the 3DQ device 1, the first insulating portion and the first insulating portion and the steel pipe were manufactured. Since the phase difference of the second insulating portion was 0 °, uneven baking occurred.

比較例2は、1ターンコイルを1つ配置したため、焼きムラが発生した。 In Comparative Example 2, since one 1-turn coil was arranged, uneven baking occurred.

比較例3は、1ターンコイルを1つ配置し、高曲率部での加工速度を低下しなかったため、焼きムラおよび高曲率部の内周側でのしわが発生した。 In Comparative Example 3, since one one-turn coil was arranged and the processing speed in the high curvature portion was not reduced, uneven baking and wrinkles on the inner peripheral side of the high curvature portion occurred.

比較例4は、第1,2直線部での加工速度を高めなかったため、生産性が低下した。比較例5は、2ターンコイルを1つ配置し、第1,2直線部での加工速度を高めなかったため、高曲率部の内周側でのしわが発生し、生産性も低下した。 In Comparative Example 4, the processing speed at the first and second straight portions was not increased, so that the productivity was lowered. In Comparative Example 5, since one 2-turn coil was arranged and the machining speed in the first and second straight lines was not increased, wrinkles were generated on the inner peripheral side of the high curvature portion, and the productivity was also lowered.

比較例6は、2ターンコイルを1つ配置したため、高曲率部の内周側でのしわが発生した。 In Comparative Example 6, since one 2-turn coil was arranged, wrinkles were generated on the inner peripheral side of the high curvature portion.

さらに、比較例7は、2ターンコイルを1つ配置し、高曲率部での加工速度を低下しなかったため、高曲率部の内周側でのしわが発生した。 Further, in Comparative Example 7, since one 2-turn coil was arranged and the processing speed in the high curvature portion was not reduced, wrinkles occurred on the inner peripheral side of the high curvature portion.

1 3次元熱間曲げ焼入れ装置(3DQ装置)
2 支持手段
3 鋼管
3a 加熱領域
4 送り手段
5 産業用ロボット
6 効果器
7 高周波誘導加熱コイル
8 第1の高周波誘導加熱コイル
9 第2の高周波誘導加熱コイル
10 水冷装置
11,12 ブスバー
13 絶縁部材
14 絶縁部材
15 第1の高周波電源装置(外部から高周波電源装置への電力供給線は省略した。)
16 第2の高周波電源装置(外部から高周波電源装置への電力供給線は省略した。)

1 3D hot bending quenching device (3DQ device)
2 Support means 3 Steel pipe 3a Heating region 4 Feeding means 5 Industrial robot 6 Effector 7 High frequency induction heating coil 8 First high frequency induction heating coil 9 Second high frequency induction heating coil 10 Water cooling device 11, 12 Bus bar 13 Insulation member 14 Insulation member 15 First high-frequency power supply device (The power supply line from the outside to the high-frequency power supply device is omitted.)
16 Second high-frequency power supply device (The power supply line from the outside to the high-frequency power supply device is omitted.)

Claims (4)

高周波誘導加熱コイルを備え、該高周波誘導加熱コイルは素材である鋼管の軸方向へ該鋼管と相対的に移動しながら該鋼管を加熱可能である3次元熱間曲げ焼入れ装置であって、
前記高周波誘導加熱コイルは、1ターンコイルであり、該1ターンコイルの1ターンの開始部および終了部の間に設けられる第1の絶縁部を有する第1の高周波誘導加熱コイル、並びに該第1の高周波誘導加熱コイルとは独立の1ターンコイルであり、該1ターンコイルの1ターンの開始部および終了部の間に設けられる第2の絶縁部を有する第2の高周波誘導加熱コイルを前記鋼管の相対的な送り方向へ並んで有し、
前記第1の高周波誘導加熱コイルは、前記送り方向において前記第2の高周波誘導加熱コイルよりも下流側に配置され、鋼管送り方向長さであるコイル幅が4~10mmであり、
前記鋼管の送り方向に直交する断面において、前記第1の絶縁部と前記第2の絶縁部とは、互いに、前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルの周方向へずれて位置し、
前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルは、電気的に絶縁され、かつそれぞれの加熱出力を独立して制御可能であるとともに、
前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルは、前記鋼管を900~1050℃に加熱可能であることを特徴とする、3次元熱間曲げ焼入れ装置。
A three-dimensional hot bending quenching device provided with a high-frequency induction heating coil, which can heat the steel pipe while moving relative to the steel pipe in the axial direction of the steel pipe as a material.
The high frequency induction heating coil is a one-turn coil, and is a first high frequency induction heating coil having a first insulating portion provided between a start portion and an end portion of one turn of the one turn coil, and the first high frequency induction heating coil. A second high-frequency induction heating coil having a second insulating portion provided between a start portion and an end portion of one turn of the one-turn coil, which is a one-turn coil independent of the high-frequency induction heating coil of the above steel pipe. Have side by side in the relative feed direction of
The first high-frequency induction heating coil is arranged on the downstream side of the second high-frequency induction heating coil in the feed direction, and has a coil width of 4 to 10 mm, which is the length in the steel tube feed direction.
In the cross section orthogonal to the feeding direction of the steel pipe, the first insulating portion and the second insulating portion are connected to each other in the circumferential direction of the first high frequency induction heating coil and the second high frequency induction heating coil. Positioned off,
The first high-frequency induction heating coil and the second high-frequency induction heating coil are electrically insulated, and their respective heating outputs can be controlled independently.
The first high-frequency induction heating coil and the second high-frequency induction heating coil are three-dimensional hot bending quenching devices characterized in that the steel pipe can be heated to 900 to 1050 ° C.
前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルの間に配置される絶縁部材を備える、請求項1に記載の3次元熱間曲げ焼入れ装置。 The three-dimensional hot bending quenching apparatus according to claim 1, further comprising an insulating member arranged between the first high frequency induction heating coil and the second high frequency induction heating coil. 第1の高周波電源装置と、前記第1の高周波電源装置から独立した第2の高周波電源装置を備え、
前記第1の高周波電源装置は、前記第1の高周波誘導加熱コイルに高周波電力を供給し、
前記第2の高周波電源装置は、前記第2の高周波誘導加熱コイルに高周波電力を供給する、請求項1または2に記載の3次元熱間曲げ焼入れ装置。
A first high frequency power supply device and a second high frequency power supply device independent of the first high frequency power supply device are provided.
The first high frequency power supply device supplies high frequency power to the first high frequency induction heating coil.
The three-dimensional hot bending quenching device according to claim 1 or 2, wherein the second high-frequency power supply device supplies high-frequency power to the second high-frequency induction heating coil.
請求項1~3のいずれかに記載の3次元熱間曲げ焼入れ装置を用いる3次元熱間曲げ焼入れ方法であって、
前記鋼管に曲率が{0.1+50(t/D)}/D以上の曲げ部を形成する場合には、前記鋼管の相対的な送り速度を20mm/sec以下として前記第1の高周波誘導加熱コイルのみで前記鋼管を加熱し、
前記鋼管に前記曲げ部以外の部分を形成する場合には、前記鋼管の相対的な送り速度を60mm/sec以上として前記第1の高周波誘導加熱コイルおよび前記第2の高周波誘導加熱コイルで前記鋼管を加熱し、
前記曲率が鋼管の長手方向で変化する場合において、前記曲率が{0.1+50(t/D)}/Dとなって、前記相対的な送り速度を変化させる際は、絶対値が10mm/sec/sec以上の加速度で前記相対的な送り速度を変化させ、かつ、前記第2の高周波誘導加熱コイルの加熱を開始または停止することを特徴とする3次元熱間曲げ焼入れ方法。
ただし、Dは前記鋼管の直径であり、tは前記鋼管の肉厚である。

A three-dimensional hot bending and quenching method using the three-dimensional hot bending and quenching apparatus according to any one of claims 1 to 3.
When a bent portion having a curvature of {0.1 + 50 (t / D) 2 } / D or more is formed on the steel pipe, the relative feed rate of the steel pipe is set to 20 mm / sec or less and the first high frequency induction heating is performed. The steel pipe is heated only by the coil,
When forming a portion other than the bent portion in the steel pipe, the steel pipe is used with the first high-frequency induction heating coil and the second high-frequency induction heating coil with the relative feed rate of the steel pipe set to 60 mm / sec or more. Heat and
When the curvature changes in the longitudinal direction of the steel pipe, the curvature becomes {0.1 + 50 (t / D) 2 } / D, and when the relative feed rate is changed, the absolute value is 10 mm / A three-dimensional hot bending and quenching method comprising changing the relative feed rate at an acceleration of sec / sec or more and starting or stopping the heating of the second high-frequency induction heating coil.
However, D is the diameter of the steel pipe, and t is the wall thickness of the steel pipe.

JP2018107079A 2018-06-04 2018-06-04 3D hot bending quenching device and quenching method Active JP6992680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018107079A JP6992680B2 (en) 2018-06-04 2018-06-04 3D hot bending quenching device and quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018107079A JP6992680B2 (en) 2018-06-04 2018-06-04 3D hot bending quenching device and quenching method

Publications (2)

Publication Number Publication Date
JP2019210509A JP2019210509A (en) 2019-12-12
JP6992680B2 true JP6992680B2 (en) 2022-01-13

Family

ID=68846480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107079A Active JP6992680B2 (en) 2018-06-04 2018-06-04 3D hot bending quenching device and quenching method

Country Status (1)

Country Link
JP (1) JP6992680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331014B (en) * 2020-04-10 2021-11-30 西北工业大学 Airplane section self-resistance electric heating incremental free bending forming clamp and forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000708A1 (en) 2007-06-29 2009-01-01 Gm Global Technology Operations, Inc. Method for manufacture of complex heat treated tubular structure
WO2011083817A1 (en) 2010-01-06 2011-07-14 住友金属工業株式会社 Induction heating coil, device for manufacturing of workpiece, and manufacturing method
WO2011083816A1 (en) 2010-01-06 2011-07-14 住友金属工業株式会社 Flexure member manufacturing method and flexture member manufacturing device
WO2016031970A1 (en) 2014-08-28 2016-03-03 新日鐵住金株式会社 Method for manufacturing bend member, and hot bending device for steel material
JP2016043375A (en) 2014-08-21 2016-04-04 第一高周波工業株式会社 Method for manufacturing bent metal tube, bending device for metal tube and coil
WO2017170608A1 (en) 2016-03-31 2017-10-05 新日鐵住金株式会社 Heat treatment apparatus, heat treatment method for steel material, and hot bending method for steel material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000708A1 (en) 2007-06-29 2009-01-01 Gm Global Technology Operations, Inc. Method for manufacture of complex heat treated tubular structure
WO2011083817A1 (en) 2010-01-06 2011-07-14 住友金属工業株式会社 Induction heating coil, device for manufacturing of workpiece, and manufacturing method
WO2011083816A1 (en) 2010-01-06 2011-07-14 住友金属工業株式会社 Flexure member manufacturing method and flexture member manufacturing device
JP2016043375A (en) 2014-08-21 2016-04-04 第一高周波工業株式会社 Method for manufacturing bent metal tube, bending device for metal tube and coil
WO2016031970A1 (en) 2014-08-28 2016-03-03 新日鐵住金株式会社 Method for manufacturing bend member, and hot bending device for steel material
WO2017170608A1 (en) 2016-03-31 2017-10-05 新日鐵住金株式会社 Heat treatment apparatus, heat treatment method for steel material, and hot bending method for steel material

Also Published As

Publication number Publication date
JP2019210509A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5472324B2 (en) Bending member manufacturing method and manufacturing apparatus
JP6159748B2 (en) Bending product manufacturing method and manufacturing apparatus
JP4825019B2 (en) Bending method of metal material, bending apparatus and bending equipment row, and bending product using them
KR101404386B1 (en) Induction heating coil, device for manufacturing of workpiece, and manufacturing method
JP6992680B2 (en) 3D hot bending quenching device and quenching method
JP2012197488A (en) Apparatus and method for producing heat-treated steel material or bending member
JP5822285B2 (en) Hot three-dimensional bending machine
US10335843B2 (en) Method for manufacturing bent member, and hot-bending apparatus for steel material
JP6245358B2 (en) Manufacturing method of bending member and hot bending apparatus for steel
US20130081437A1 (en) Manufacturing laying head pipe path below transformation temperature
JP5163764B2 (en) Expanded pipe manufacturing method for metal pipe
JP2018514386A (en) Method for induction bending deformation of pressure-resistant tubes with thick wall thickness and large diameter
JP2017202513A (en) Electro-seamed steel pipe manufacturing method
JP6365206B2 (en) Hot bending member manufacturing apparatus and manufacturing method
JP6657568B2 (en) Method and apparatus for manufacturing bending member
JP6750226B2 (en) Three-dimensional hot bending and quenching apparatus, three-dimensional hot bending and quenching member manufacturing method, and automobile structural member manufacturing method
CN116984497A (en) Manufacturing method of ultra-large caliber thin-wall seamless steel tube
JP2016007630A (en) Pipe bending apparatus
JP2016159321A (en) Manufacturing method and manufacturing apparatus for bent member
JP2007222881A (en) Method of manufacturing hot electric resistance welded steel tube
JP2001300659A (en) Tube expanding method for tube material
JP2012166227A (en) Hot working device of steel pipe
JP2011230150A (en) Method and apparatus for manufacturing processed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R151 Written notification of patent or utility model registration

Ref document number: 6992680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151