JP2016070923A - Shell container for complex probe and complex probe - Google Patents

Shell container for complex probe and complex probe Download PDF

Info

Publication number
JP2016070923A
JP2016070923A JP2015176971A JP2015176971A JP2016070923A JP 2016070923 A JP2016070923 A JP 2016070923A JP 2015176971 A JP2015176971 A JP 2015176971A JP 2015176971 A JP2015176971 A JP 2015176971A JP 2016070923 A JP2016070923 A JP 2016070923A
Authority
JP
Japan
Prior art keywords
steel
molten metal
shell container
chamber
receiving chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015176971A
Other languages
Japanese (ja)
Other versions
JP6141373B2 (en
Inventor
イ,マン−オブ
Man Up Lee
ジョン,イ−ソン
Eui Sung Jung
キム,ヒョ−サン
Hyo Sang Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woojin Electro Nite Inc
Original Assignee
Woojin Electro Nite Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woojin Electro Nite Inc filed Critical Woojin Electro Nite Inc
Publication of JP2016070923A publication Critical patent/JP2016070923A/en
Application granted granted Critical
Publication of JP6141373B2 publication Critical patent/JP6141373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/12Thermometers specially adapted for specific purposes combined with sampling devices for measuring temperatures of samples of materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shell container for a complex probe and a complex probe for accurately measuring the solidification temperature of a molten metal.SOLUTION: According to one embodiment, a shell container for a complex probe which is immersed in a molten metal and into which the molten metal can be introduced, comprises: an introduction port which is formed in a side face and through which the molten metal is introduced; a metal receiving chamber and a collection chamber which are filled with the molten metal introduced through the introduction port; a received metal runner connecting the introduction port and the metal receiving chamber; and a collection runner connecting the introduction port and the collection chamber. The molten metal probe further includes a first temperature sensor having a temperature measurement part arranged in the metal receiving chamber, an internal wall surface of the metal receiving chamber having a ruggedly shaped pattern thereon.SELECTED DRAWING: Figure 2

Description

本発明は複合プローブ用シェルコンテナ及び複合プローブに関するものであり,より詳しくは,溶融金属に浸漬して溶融金属の温度を測定し,又は溶融金属の凝固温度を測定する複合プローブ用シェルコンテナ及び複合プローブに関するものである。   The present invention relates to a shell container for a composite probe and a composite probe. More specifically, the present invention relates to a shell container for a composite probe and a composite probe for measuring the temperature of a molten metal immersed in molten metal or measuring the solidification temperature of the molten metal. It relates to the probe.

複合プローブは,昇降装置(例えば,サブランス)によって電炉などの溶鋼に浸漬してから引き揚げられ,溶鋼の成分分析などのために利用される。   The composite probe is lifted after being immersed in molten steel such as an electric furnace by an elevating device (for example, a sub lance) and used for component analysis of the molten steel.

プローブ本体は,側面に形成されて溶鋼が導入される導入口を有する。プローブ本体の内部に導入された溶鋼は,受鋼室に充填された状態で凝固され,温度センサは,受鋼室に配置されて溶鋼の凝固温度を測定する。温度センサの測温部は溶鋼中の周囲から次第に凝固されて最後に凝固される部位に向かって配置され,溶鋼中の炭素量を推定するための凝固温度データを提供する。また,凝固された溶鋼は,発光分光分析や燃焼化学分析などの機器分析用試料として提供される。   The probe main body has an introduction port formed on the side surface through which molten steel is introduced. The molten steel introduced into the probe body is solidified in a state where the steel receiving chamber is filled, and a temperature sensor is disposed in the steel receiving chamber and measures the solidification temperature of the molten steel. The temperature measuring part of the temperature sensor is arranged from the surroundings in the molten steel toward the part that is gradually solidified and finally solidified, and provides solidification temperature data for estimating the carbon content in the molten steel. The solidified molten steel is provided as a sample for instrumental analysis such as emission spectroscopic analysis and combustion chemical analysis.

一方,最近の電炉操業は,多様な鋼種を処理するために吹錬パターンが多様化されており,良質の鉄鉱石が次第に枯渇し,低価格の原料の使用が増えるだけでなく,スクラップの需給状況によるHMR(Hot Metal Ratio)の変動が頻繁になることに対応する必要があり,T−T(Tap to Tap)タイムの短縮,原価節減及び設備効率性を追及しようとする顧客のニーズに応じて吹錬技術が複雑になり,プローブの測定時期及び環境も多様化されている。   On the other hand, the recent electric furnace operation has diversified blowing patterns to process various steel types, and high-quality iron ore is gradually depleted, which not only increases the use of low-priced raw materials, but also the supply and demand of scrap. It is necessary to respond to frequent changes in HMR (Hot Metal Ratio) depending on the situation, according to the needs of customers who want to reduce TT (Tap to Tap) time, cost reduction and equipment efficiency Blowing technology is becoming more complex, and the timing and environment for measuring probes are diversified.

大韓民国公開特許第1990−0005173号公報(1990.04.13)Republic of Korea Published Patent No. 1990-0005173 (1990.04.13)

本発明の目的は,溶融金属の凝固温度を正確に測定する複合プローブ用シェルコンテナ及び複合プローブを提供することにある。   An object of the present invention is to provide a shell container for a composite probe and a composite probe that accurately measure the solidification temperature of molten metal.

本発明の他の目的は,溶融金属の冷却速度を上昇して凝固時間を短縮する複合プローブ用シェルコンテナ及び複合プローブを提供することにある。   Another object of the present invention is to provide a composite probe shell container and a composite probe that increase the cooling rate of the molten metal to shorten the solidification time.

本発明のまた他の目的は,溶融金属が円滑に導入される複合プローブ用シェルコンテナ及び複合プローブを提供することにある。   It is another object of the present invention to provide a composite probe shell container and a composite probe into which molten metal is smoothly introduced.

本発明の更に他の目的は,以下の詳細な説明と添付した図面からより明確になるはずである。   Still other objects of the present invention will become more apparent from the following detailed description and the accompanying drawings.

本発明の一実施例によれば,溶融金属に浸漬して内部に前記溶融金属が導入可能な複合プローブ用シェルコンテナにおいて,前記シェルコンテナは,側面に形成されて前記溶融金属が導入される導入口と,前記導入口を介して導入された前記溶融金属が充填される受鋼室及び採取室と,前記導入口と前記受鋼室を連結する受鋼湯道と,前記導入口と前記採取室を連結する採取湯道と,を含み,前記溶融金属プローブは,前記受鋼室に配置された測温部を有する第1温度センサを更に含み,前記受鋼室の内壁面には凹凸形状のパターンが形成される。   According to an embodiment of the present invention, in the shell shell for a composite probe that can be introduced into the molten metal by being immersed in the molten metal, the shell container is formed on a side surface and the molten metal is introduced. An inlet, a steel receiving chamber and a sampling chamber filled with the molten metal introduced through the inlet, a steel receiving runner connecting the inlet and the steel receiving chamber, the inlet and the sampling A molten metal probe connecting the chambers, wherein the molten metal probe further includes a first temperature sensor having a temperature measuring portion disposed in the steel receiving chamber, and the inner wall surface of the steel receiving chamber has an uneven shape. Pattern is formed.

実施形態において,前記受鋼室は直方体であり,前記パターンは,前記受鋼室の長手方向に沿って形成された内壁面のうち前記受鋼室の中心部から離間した長手方向に短い表面に沿って形成される。   In the embodiment, the steel receiving chamber is a rectangular parallelepiped, and the pattern is formed on an inner wall surface formed along the longitudinal direction of the steel receiving chamber on a short surface in the longitudinal direction spaced from the center of the steel receiving chamber. Formed along.

他の実施形態において,前記受鋼室は容積を表面積で割った体積比が4乃至4.5である。   In another embodiment, the steel receiving chamber has a volume ratio of 4 to 4.5 obtained by dividing the volume by the surface area.

さらに,前記採取室は,前記シェルコンテナの縦方向に沿って配置され,前記採取湯道の角部は湾曲した形状である。   Furthermore, the collection chamber is disposed along the longitudinal direction of the shell container, and the corner of the collection runner has a curved shape.

さらに,前記受鋼湯道は,前記導入口から前記第1温度センサから遠くなる方向に傾斜し,前記シェルコンテナの横断面と前記受鋼湯道が成す傾斜角度は約20乃至60度である。   Further, the receiving steel runner is inclined away from the introduction port in a direction away from the first temperature sensor, and an inclination angle formed by a cross section of the shell container and the receiving steel runner is about 20 to 60 degrees. .

又,前記導入口は,前記受鋼室と連通する受鋼湯口及び前記採取室と連通する採取湯口を有し,前記受鋼湯口と前記採取湯口は隔離される。   Further, the introduction port has a receiving steel spout communicating with the receiving steel chamber and a sampling spout communicating with the sampling chamber, and the receiving steel spout and the sampling spout are isolated.

前記受鋼湯口の直径は約20乃至25mmである。   The diameter of the steel receiving gate is about 20 to 25 mm.

前記溶融金属プローブは前記シェルコンテナの先端に設置され,前記溶融金属の温度を測定する第2温度センサを更に含む。   The molten metal probe further includes a second temperature sensor installed at the tip of the shell container and measuring the temperature of the molten metal.

前記採取室及び前記受鋼室は,前記シェルコンテナの縦方向及び横方向に沿って重ならないように配置される。   The sampling chamber and the steel receiving chamber are arranged so as not to overlap along the longitudinal direction and the lateral direction of the shell container.

さらに,前記溶融金属プローブは,前記シェルコンテナの先端に設置されて前記溶融金属の温度を測定する第2温度センサを更に含み,前記導入口は,前記シェルコンテナの先端から縦方向に沿って約200mm以内に位置する。   Further, the molten metal probe further includes a second temperature sensor that is installed at the tip of the shell container and measures the temperature of the molten metal, and the introduction port is about a length along the longitudinal direction from the tip of the shell container. Located within 200mm.

本発明の一実施例によると,複合プローブは,溶融金属に浸漬された状態で測部に形成された開口を介して前記溶融金属を内部に導入可能なメイン枝管と,前記メイン枝管の外部に設置されて前記開口を閉鎖可能な外部枝管と,前記メイン枝管の内部に内装されるシェルコンテナと,前記シェルコンテナに装着される第1及び第2温度センサと,前記第1及び第2温度センサと電気的にアクセスされるコネクタと,を含み,前記シェルコンテナは,側面に形成されて前記開口と連通されて前記溶融金属が導入される導入口と,前記導入口を介して導入された前記溶融金属が充填される受鋼室及び採取室と,前記導入口と前記受鋼室を連結する受鋼湯道と,前記導入口と前記採取室を連結する採取湯道と,を含み,前記第1温度センサの測温部は前記受鋼室に配置され,前記第2温度センサは,前記シェルコンテナの先端に設置され,前記受鋼室の内壁面に凹凸形状のパターンが形成される。   According to an embodiment of the present invention, the composite probe includes a main branch pipe capable of introducing the molten metal into the inside through an opening formed in the measurement unit while being immersed in the molten metal, and the main branch pipe. An external branch pipe installed outside and capable of closing the opening; a shell container installed inside the main branch pipe; first and second temperature sensors attached to the shell container; A second temperature sensor and an electrically accessible connector, wherein the shell container is formed on a side surface and communicated with the opening to introduce the molten metal, and through the inlet A steel receiving chamber and a sampling chamber filled with the introduced molten metal, a steel receiving runner connecting the inlet and the steel receiving chamber, a sampling runner connecting the inlet and the sampling chamber, A temperature measuring part of the first temperature sensor Wherein disposed 受鋼 chamber, the second temperature sensor, the installed in the tip of the shell container, a pattern of irregularities formed on the inner wall surface of the 受鋼 chamber.

本発明の一実施例によると,溶融金属の冷却速度を上昇して溶融金属の凝固時間を短縮し,それを介して高過熱度を有する溶融金属内の炭素量を正確に推定することができる。また,溶融金属がプローブ本体の内部に円滑に導入されることができる。   According to one embodiment of the present invention, the solidification time of the molten metal can be shortened by increasing the cooling rate of the molten metal, and the amount of carbon in the molten metal having a high degree of superheat can be accurately estimated through this. . Further, the molten metal can be smoothly introduced into the probe body.

本発明の一実施例による溶融金属プローブを示す断面図である。It is sectional drawing which shows the molten metal probe by one Example of this invention. 図1に示す溶融金属プローブの分解斜視図である。It is a disassembled perspective view of the molten metal probe shown in FIG. 図1に示す溶融金属プローブの一部を切開した斜視図である。FIG. 2 is a perspective view in which a part of the molten metal probe shown in FIG. 1 is cut. 図1に示すシェルコンテナの比較例を示す図である。It is a figure which shows the comparative example of the shell container shown in FIG. 図4に示すシェルコンテナの内部で凝固された試料を示す図である。It is a figure which shows the sample solidified inside the shell container shown in FIG. 図1に示すシェルコンテナの第1実施例を示す図である。It is a figure which shows 1st Example of the shell container shown in FIG. 図6に示すシェルコンテナの内部で凝固された試料を示す図である。It is a figure which shows the sample solidified inside the shell container shown in FIG. 図1に示すシェルコンテナの第2実施例を示す図である。It is a figure which shows 2nd Example of the shell container shown in FIG. 図8に示すシェルコンテナの内部で凝固された試料を示す図である。It is a figure which shows the sample solidified inside the shell container shown in FIG. 第1温度センサを介して測定した溶融金属の温度を比較した結果を示すグラフである。It is a graph which shows the result of having compared the temperature of the molten metal measured through the 1st temperature sensor. 第1温度センサを介して測定した溶融金属の温度を比較した結果を示すグラフである。It is a graph which shows the result of having compared the temperature of the molten metal measured through the 1st temperature sensor. 成分分析及び凝固温度を介した推定によって溶融金属内の炭素量を示すグラフである。It is a graph which shows the carbon content in a molten metal by the estimation via a component analysis and solidification temperature. 成分分析及び凝固温度を介した推定によって溶融金属内の炭素量を示すグラフである。It is a graph which shows the carbon content in a molten metal by the estimation via a component analysis and solidification temperature. 受鋼湯口の直径による試料の状態を示す写真である。It is a photograph which shows the state of the sample by the diameter of a receiving steel gate. 受鋼湯口の直径による試料の状態を示す写真である。It is a photograph which shows the state of the sample by the diameter of a receiving steel gate.

以下,本発明の好ましい実施形態を添付した図1乃至図15を参照してより詳細に説明する。本発明の実施形態は様々な形態に変形されるが,本発明の範囲を後述する実施形態に限られると解釈してはならない。本実施形態は当該発明が属する技術分野における通常の知識を有する者に本発明をより詳細に説明するために提供されるものである。よって,図面に示す各要素の形状はより明確な説明を強調するために誇張されている可能性がある。   Hereinafter, a preferred embodiment of the present invention will be described in more detail with reference to FIGS. Although the embodiments of the present invention can be modified in various forms, the scope of the present invention should not be construed to be limited to the embodiments described below. This embodiment is provided in order to explain the present invention in more detail to those who have ordinary knowledge in the technical field to which the present invention belongs. Therefore, the shape of each element shown in the drawings may be exaggerated to emphasize a clearer description.

図1は,本発明の一実施例による溶融金属プローブを示す断面図であり,図2は図1に示す溶融金属プローブの分解斜視図である。図3は,図1に示す溶融金属プローブの一部を切開した斜視図である。   FIG. 1 is a sectional view showing a molten metal probe according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the molten metal probe shown in FIG. FIG. 3 is a perspective view in which a part of the molten metal probe shown in FIG. 1 is cut.

図1乃至図3に示すように,プローブ本体1はメイン枝管2を具備し,メイン枝管2は側部に形成された開口33a,33bを介して溶鋼などの溶融金属を内部に導入する。外部枝管4はメイン枝管2の外部に設置されて開口33a,33bを閉鎖する。プローブ本体1はホルダhに装着され,ホルダhはサブランスなどから構成される昇降装置に連結されて電炉などの溶鋼のような溶融金属に浸漬されてから引き揚げられる。浸漬の際,外部枝管4はスラグ層を通過して溶融金属浴の中に到達すると消失し,開口33a,33bを開放してプローブ本体1の内部に溶融金属を導入する。コネクタCはプローブ本体1,特に後述する第1及び第2温度センサ22,24とホルダhの電気的,機械的アクセスを可能とする。   As shown in FIGS. 1 to 3, the probe main body 1 includes a main branch pipe 2, and the main branch pipe 2 introduces molten metal such as molten steel into the inside through openings 33 a and 33 b formed in the side portions. . The external branch pipe 4 is installed outside the main branch pipe 2 and closes the openings 33a and 33b. The probe main body 1 is mounted on a holder h, and the holder h is connected to a lifting device constituted by a sub lance and the like, and is dipped in a molten metal such as molten steel such as an electric furnace and then lifted. During the immersion, the outer branch pipe 4 disappears when it passes through the slag layer and reaches the molten metal bath, and the openings 33a and 33b are opened to introduce the molten metal into the probe body 1. The connector C enables electrical and mechanical access to the probe main body 1, particularly first and second temperature sensors 22 and 24, which will be described later, and the holder h.

シェルコンテナ107はメイン枝管2の内部に内装される。シェルコンテナ107は開口33aに向かって開放された受鋼湯口3a,受鋼湯口3aから開口33aの反対方向に延長された受鋼湯道9,受鋼湯道9から転換されて先端部に向かって延長された受鋼室10を形成する。また,シェルコンテナ107は開口33bに向かって開放された採取湯口3b,採取湯口3bから開口33bの反対方向に延長された採取湯道11,採取湯道11から転換されて先端部に向かって延長された採取室18を形成する。   The shell container 107 is installed inside the main branch pipe 2. The shell container 107 has a steel receiving spout 3a opened toward the opening 33a, a steel receiving sprue 9 extending from the steel receiving spout 3a in a direction opposite to the opening 33a, and a conversion from the steel receiving sprue 9 toward the tip. An extended steel receiving chamber 10 is formed. Moreover, the shell container 107 is converted from the sampling tap 3b opened toward the opening 33b, the sampling tap 11 extending from the sampling tap 3b in the direction opposite to the opening 33b, and converted from the sampling tap 11 and extended toward the tip. The collected collection chamber 18 is formed.

一方,受鋼室10と採取室18は,シェルコンテナ107の縦方向に沿って重ならないよう配置され,採取室18は,受鋼室10に比べてシェルコンテナ107の先端に近接して配置される。同様に,導入口(採取湯口)3b及び採取湯道11は導入口(受鋼湯口)3a及び受鋼湯道9に比べてシェルコンテナ107の先端に近接して配置される。また,受鋼室10と採取室18はシェルコンテナ107の横方向に沿って重ならないように配置され,採取室18が受鋼室10に比べて導入口3a,3bが形成された側面に近接して配置される。   On the other hand, the steel receiving chamber 10 and the sampling chamber 18 are arranged so as not to overlap in the longitudinal direction of the shell container 107, and the sampling chamber 18 is arranged closer to the tip of the shell container 107 than the steel receiving chamber 10. The Similarly, the introduction port (collection gate) 3b and the collection runner 11 are arranged closer to the tip of the shell container 107 than the introduction port (receiver tap) 3a and the catch steel runway 9. Further, the steel receiving chamber 10 and the sampling chamber 18 are arranged so as not to overlap along the lateral direction of the shell container 107, and the sampling chamber 18 is closer to the side surface where the inlets 3 a and 3 b are formed than the steel receiving chamber 10. Arranged.

また,第1設置空間14は,受鋼室10の下の方(図1の基準に)に位置し,後述する第1温度センサ22の本体部22aが設置空間14内に実装される。収容空間20は採取室18と平行に配置されてシェルコンテナ107の先端に向かって開放され,第2温度センサ24の本体部24aが,収容空間20に収容される。   The first installation space 14 is located below the steel receiving chamber 10 (on the basis of FIG. 1), and a main body portion 22 a of a first temperature sensor 22 described later is mounted in the installation space 14. The storage space 20 is disposed in parallel with the collection chamber 18 and is opened toward the tip of the shell container 107, and the main body 24 a of the second temperature sensor 24 is stored in the storage space 20.

図2に示すように,シェルコンテナ107は基準面に沿って分割された分割ブロック107a,107bを具備し,分割ブロック107a,107bは基準面を中心に対称を成す。すなわち,基準面は上述した受鋼室10及び採取室18,受鋼湯道9及び採取湯道11をシェルコンテナ107の縦方向に沿って分割する。図2に示すように,分割された受鋼室10及び採取室18,受鋼湯道9及び採取湯道11などは結合された受鋼室10及び採取室18,受鋼湯道9及び採取湯道11などに比べて図において対称の折半に分割されたものであるため,各分割ブロック107a,107b内の受鋼室10及び採取室18,受鋼湯道9及び採取湯道11は,符号Hを付加して表示した。分割ブロック107a,107bは補助枝管17の内部に挿入され,このようなシェルコンテナ107に第1及び第2温度センサ22,24と採取容器23を組み立てて溶融金属プローブのプローブ本体1が形成される。   As shown in FIG. 2, the shell container 107 includes divided blocks 107a and 107b divided along the reference plane, and the divided blocks 107a and 107b are symmetrical about the reference plane. That is, the reference plane divides the steel receiving chamber 10 and the sampling chamber 18, the steel receiving runner 9 and the sampling runner 11 described above along the longitudinal direction of the shell container 107. As shown in FIG. 2, the divided steel receiving chamber 10 and sampling chamber 18, receiving steel runner 9 and sampling runner 11, etc. are coupled to steel receiving chamber 10 and sampling chamber 18, receiving steel runner 9 and sampling. Since it is divided into symmetrical halves in the figure as compared to the runner 11 etc., the receiving steel chamber 10 and the sampling chamber 18, the receiving steel runner 9 and the sampling runner 11 in each of the divided blocks 107a and 107b are: A symbol H is added for display. The divided blocks 107a and 107b are inserted into the auxiliary branch pipe 17, and the probe body 1 of the molten metal probe is formed by assembling the first and second temperature sensors 22 and 24 and the collection container 23 in such a shell container 107. The

第1温度センサ22は,本体部22aからU字型の測温管22bが延長され,測温管22bの内部に熱電対が設置される。測温部22cは測温管22bの先端部に位置する。よって,測温部22cを受鋼室10の正位置に挿入した状態で本体部22aが設置空間14内に実装され,本体部22aに連結されたリード線はコネクタCに連結される。   In the first temperature sensor 22, a U-shaped temperature measuring tube 22b is extended from the main body portion 22a, and a thermocouple is installed inside the temperature measuring tube 22b. The temperature measuring unit 22c is located at the tip of the temperature measuring tube 22b. Therefore, the main body portion 22a is mounted in the installation space 14 with the temperature measuring portion 22c inserted in the normal position of the steel receiving chamber 10, and the lead wire connected to the main body portion 22a is connected to the connector C.

採取容器23は溶融金属からディスク状の凝固試料を採取するための平らな容器であり,金属容器本体23aと案内管26を備える。案内管26は石英素材であり,金属容器本体23aは採取室18内に収納される。   The collection container 23 is a flat container for collecting a disk-shaped solidified sample from molten metal, and includes a metal container body 23 a and a guide tube 26. The guide tube 26 is made of quartz material, and the metal container body 23 a is accommodated in the collection chamber 18.

第2温度センサ24は,本体部24aからU字型の石英管などで形成される測温管24bが延長され,測温管24bの内部に熱電対が設置される。金属キャップ24cは測温管24bを覆っている。本体部24aは収容空間20内に挿入され,金属キャップ24cがシェルコンテナ107の先端から突出される。本体部24aに連結されたリード線はコネクタCに連結される。   In the second temperature sensor 24, a temperature measuring tube 24b formed of a U-shaped quartz tube or the like is extended from the main body 24a, and a thermocouple is installed inside the temperature measuring tube 24b. The metal cap 24c covers the temperature measuring tube 24b. The main body portion 24 a is inserted into the accommodation space 20, and the metal cap 24 c protrudes from the tip of the shell container 107. The lead wire connected to the main body 24a is connected to the connector C.

一方,脱酸剤Aが受鋼室10内に装填される。サブランスなどの昇降装置によってプローブ本体1が溶融金属に向かって下降すると,プローブ本体1はスラグ層を通過して溶融金属浴の中に浸漬される。よって,第2温度センサ24の金属キャップ24cが消失して溶融金属の温度を測定する。また,外部枝管4が消失して導入口3a,3bが開放されるとプローブ本体1の内部に溶融金属が導入された後,溶融金属は受鋼室10及び採取室18に向かって移動する。   On the other hand, the deoxidizer A is loaded into the steel receiving chamber 10. When the probe body 1 is lowered toward the molten metal by a lifting device such as a sub lance, the probe body 1 passes through the slag layer and is immersed in the molten metal bath. Therefore, the metal cap 24c of the second temperature sensor 24 disappears and the temperature of the molten metal is measured. Further, when the outer branch pipe 4 disappears and the introduction ports 3a and 3b are opened, the molten metal is introduced into the probe main body 1, and then the molten metal moves toward the steel receiving chamber 10 and the sampling chamber 18. .

受鋼室10に導入された溶融金属は受鋼室10に装填された脱酸剤Aを介して効率的に脱酸され,受鋼室10に充填されてから直ちに凝固を開始して周囲から次第に固形化され,受鋼室10のほぼ中心,すなわち熱均衡がよい位置に第1温度センサ22の測温部22cを配置して温度測定値の平坦部を得るための測温が行われる。   The molten metal introduced into the steel receiving chamber 10 is efficiently deoxidized via the deoxidizer A loaded in the steel receiving chamber 10, and immediately after the steel receiving chamber 10 is filled, solidification starts and the surroundings start. Temperature measurement is performed to obtain a flat portion of the temperature measurement value by gradually placing the temperature measurement unit 22c of the first temperature sensor 22 in the center of the steel receiving chamber 10, that is, at a position with good thermal balance.

受鋼室10に溶融金属が導入されると,溶融金属が凝固される過程で導入温度と凝固温度の差によってピーク(過熱度)が発生し,凝固潜熱によって凝固温度が一定時間安定に維持される凝固温度平坦部が生成される。溶鋼などの溶融金属内に存在する炭素の量は凝固温度データを介して推定され,溶融金属の凝固温度が一定の数値を維持する凝固温度平坦部を介して推定される。凝固温度平坦部は溶融金属の凝固潜熱放出の安定度及び持続時間によって影響を受け,また,実質的に安定度及び持続時間は溶融金属の温度及び成分,受鋼室10の形態及び材質に応じて変化する。   When molten metal is introduced into the steel receiving chamber 10, a peak (superheat degree) is generated due to the difference between the introduction temperature and the solidification temperature in the process of solidifying the molten metal, and the solidification temperature is stably maintained for a certain time by the solidification latent heat. A solidified temperature flat portion is generated. The amount of carbon present in a molten metal such as molten steel is estimated through solidification temperature data, and is estimated through a solidification temperature flat portion where the solidification temperature of the molten metal maintains a constant value. The solidification temperature plateau is affected by the stability and duration of the solidification latent heat release of the molten metal, and substantially the stability and duration depend on the temperature and composition of the molten metal, the form and material of the steel receiving chamber 10. Change.

一方,既知の溶融金属プローブの場合,溶融金属の冷却不均一のため受鋼室10内で局部的な相変態が生じて凝固温度平坦部が傾くか,凝固開始時点が遅くなって凝固温度を正確に感知することができない問題がある。   On the other hand, in the case of the known molten metal probe, because of the uneven cooling of the molten metal, a local phase transformation occurs in the steel receiving chamber 10 and the solidification temperature flat part is inclined, or the solidification start time is delayed and the solidification temperature is decreased. There is a problem that cannot be accurately detected.

特に,迅速出鋼操業(QDT:Quick Direct Tapping)のように吹錬操業の後半部に高い溶鋼温度のため高過熱度の溶鋼が導入され,このような溶鋼のため凝固温度平坦部が遅く形成されて測定時間内の正確な炭素量の推定が難しいか,凝固時間が長くなることによる冷却不均衡が発生して凝固温度平坦部が緩慢に形成される問題が発生する。すなわち,溶融金属の過熱度が大きすぎる場合,温度が漸進的に減少して凝固温度平坦部が生成されず,それによって制御部が演算ロジック(logic)を介して凝固温度開始以前の温度を凝固温度と誤って判断する恐れがある。この場合には,炭素の推定値は低くなり,これは測定エラー又は測定の正確性の低下に繋がる。よって,溶融金属の凝固時間を短縮する必要がある。   In particular, high superheated molten steel was introduced in the latter half of the blow smelting operation as in the case of quick direct tapping (QDT) due to the high molten steel temperature. As a result, it is difficult to accurately estimate the amount of carbon within the measurement time, or a problem arises in that a solidification temperature flat portion is slowly formed due to a cooling imbalance caused by a long solidification time. That is, when the superheat degree of the molten metal is too large, the temperature gradually decreases and the solidification temperature flat part is not generated, so that the control part solidifies the temperature before the solidification temperature start through the logic. There is a risk of misjudging it as temperature. In this case, the estimate of carbon is low, which leads to measurement errors or reduced measurement accuracy. Therefore, it is necessary to shorten the solidification time of the molten metal.

受鋼室10に溶融金属が導入されると,導入された溶融金属は熱エネルギーを伝導,対流,輻射によって外部に発散する。これをクボリノフ(Chvorinov)の式で示すと以下のようである。
f=c(体積(Vc)/表面積(Ac))2
(tf=凝固時間,Vc=体積,Ac=表面積,c=常数)
When molten metal is introduced into the steel receiving chamber 10, the introduced molten metal radiates the heat energy to the outside by conduction, convection, and radiation. This is expressed by the formula of Chvorinov as follows.
t f = c (volume (V c ) / surface area (A c )) 2
(T f = solidification time, V c = volume, A c = surface area, c = constant)

前記式から,凝固時間を短縮する理想的な受鋼室10の形状は球状よりは四角柱などの多角柱形状であり,測温部22cの位置が受鋼室10の中心部に位置する場合,直方体よりは正方形又は円柱が表面積を十分に確保することができるため均質凝固核形成(homogeneous nucleation)に容易である。   From the above equation, the ideal shape of the steel receiving chamber 10 for shortening the solidification time is a polygonal column shape such as a square column rather than a spherical shape, and the temperature measuring portion 22c is located at the center of the steel receiving chamber 10. , Square or cylinder can secure a sufficient surface area than rectangular parallelepiped, so it is easier for homogeneous nucleation.

しかし,シェルコンテナ107の内部の空間的制約のため受鋼室10の形状に制約があり,凝固温度平坦部を確保するためには受鋼室10の容積が一定の大きさ以上であるべきであるため,直方体が最適化された設計に当たる。   However, there is a restriction on the shape of the steel receiving chamber 10 due to the space restriction inside the shell container 107, and the volume of the steel receiving chamber 10 should be a certain size or more in order to secure a solidification temperature flat portion. Therefore, the rectangular parallelepiped is an optimized design.

前記式によると,凝固時間は体積比(モジュラス=体積/表面積)の2乗に比例するため,凝固時間を短縮するためには体積比を減らすべきである。その他には受鋼部の表面積を増加する必要があり,特に後述する温度センサ22aの測温部22cから離間した長手方向に短い表面に波状のパターンやエンボスパターン処理をして熱発散を加速することで凝固時間を短縮することができる。受鋼室10は直方体であるため,受鋼湯道9及び第1設置空間14に隣接した断面以外に受鋼室10の長さ方向に沿って形成された長手方向に短い表面及び長手方向に長い表面を有し,受鋼室10内に充填された溶融金属の中は長手方向に短い表面及び長手方向に長い表面を介して熱を発散し凝固される。この際,温度センサ22aの測温部22cは受鋼室10の中心部に位置し,前記長手方向に短い表面は長手方向に長い表面に比べて表面積が小さいだけではなく,受鋼室10の中心部から離間しているため,前記長手方向に短い表面を介した溶融金属の熱発散は前記長い表面に比べて遅延される恐れがある。そこで,パターン処理を介して表面積を増加する必要がある。また,受鋼室10の体積を減らして凝固試料の大きさを約20%以上減小している。   According to the above formula, since the solidification time is proportional to the square of the volume ratio (modulus = volume / surface area), the volume ratio should be reduced in order to shorten the solidification time. In addition, it is necessary to increase the surface area of the steel receiving part, and in particular, a heat wave is accelerated by performing a wave-like pattern or an embossing pattern process on a short surface in the longitudinal direction spaced from a temperature measuring part 22c of a temperature sensor 22a described later. Thus, the coagulation time can be shortened. Since the steel receiving chamber 10 is a rectangular parallelepiped, in addition to the cross section adjacent to the steel receiving runner 9 and the first installation space 14, the surface formed in the longitudinal direction of the steel receiving chamber 10 has a short surface and the longitudinal direction. The molten metal having a long surface and filled in the steel receiving chamber 10 dissipates heat through a short surface in the longitudinal direction and a long surface in the longitudinal direction to be solidified. At this time, the temperature measuring portion 22c of the temperature sensor 22a is located at the center of the steel receiving chamber 10, and the surface short in the longitudinal direction has a smaller surface area than the surface long in the longitudinal direction. Due to the separation from the center, the heat dissipation of the molten metal through the short surface in the longitudinal direction may be delayed compared to the long surface. Therefore, it is necessary to increase the surface area through pattern processing. Further, the volume of the steel receiving chamber 10 is reduced to reduce the size of the solidified sample by about 20% or more.

図4は図1に示すシェルコンテナの比較例を示す図であり,図5は,図4に示すシェルコンテナの内部で凝固された試料を示す図である。図6は,図1に示すシェルコンテナの第1実施例を示す図であり,図7は,図6に示すシェルコンテナの内部で凝固された試料を示す図である。図8は図1に示すシェルコンテナの第2実施例を示す図であり,図9は,図8に示すシェルコンテナの内部で凝固された試料を示す図である。   4 is a view showing a comparative example of the shell container shown in FIG. 1, and FIG. 5 is a view showing a sample solidified inside the shell container shown in FIG. 6 is a view showing a first embodiment of the shell container shown in FIG. 1, and FIG. 7 is a view showing a sample solidified inside the shell container shown in FIG. FIG. 8 is a view showing a second embodiment of the shell container shown in FIG. 1, and FIG. 9 is a view showing a sample solidified inside the shell container shown in FIG.

図5に示す試料S1は図4の受鋼室10と実質的に一致する形状であり,両側面f1は基準面の両側に配置されて互いに対向する内面に当たる。図7に示す試料S2は図6の受鋼室10と実質的に一致する形状であり,両側面f2,f2は基準面の両側に配置されて互いに対向する内面に当たる。すなわち,図6の受鋼室10は内面に波状の凹凸パターンが形成されるため,試料S2は波状の凹凸パターンp2を有する。図9に示す試料S3は,図8の受鋼室10と実質的に一致する形状であり,両側面f3,f3は,基準面の両側に配置されて互いに対向する内面に当たる。すなわち,図8の受鋼室10は内面に円形の突起を有するため,試料S3は円形の凹溝パターンp3を有する。 A sample S 1 shown in FIG. 5 has a shape substantially coincident with the steel receiving chamber 10 shown in FIG. 4, and both side surfaces f 1 are arranged on both sides of the reference surface and contact the inner surfaces facing each other. The sample S 2 shown in FIG. 7 has a shape substantially coincident with the steel receiving chamber 10 shown in FIG. 6, and both side surfaces f 2 and f 2 are arranged on both sides of the reference surface and contact the inner surfaces facing each other. That is, since the corrugated uneven pattern is formed on the inner surface of the steel receiving chamber 10 in FIG. 6, the sample S 2 has the corrugated uneven pattern p 2 . A sample S 3 shown in FIG. 9 has a shape substantially coinciding with the steel receiving chamber 10 of FIG. 8, and both side surfaces f 3 and f 3 are arranged on both sides of the reference surface and correspond to inner surfaces facing each other. That is, since the steel receiving chamber 10 in FIG. 8 has a circular protrusion on the inner surface, the sample S 3 has a circular concave groove pattern p 3 .

図4乃至図9に示す受鋼室をまとめると下記表1のようである。
The steel receiving chambers shown in FIGS. 4 to 9 are summarized as shown in Table 1 below.

前記表1によると,モジュラスが4〜4.5である際に波形安定性及び成分推定の正確度が優秀であった。4.0未満である場合,凝固温度平坦部の確保が難しいほどに速い冷却を示しており,4.5以上である場合,冷却遅延のため局部的に相平衡条件が形成されて測定値の信頼度が下落した。   According to Table 1, when the modulus is 4 to 4.5, the waveform stability and the accuracy of component estimation are excellent. If it is less than 4.0, it indicates that the cooling is so fast that it is difficult to ensure a flat part of the solidification temperature. If it is 4.5 or more, a phase equilibrium condition is formed locally due to cooling delay, and the measured value Reliability decreased.

一方,図6及び図8は波状の凹凸パターン又は凹溝状の凹凸パターンを示しているが,本発明は凹凸パターンの形状に制限されず,波状又は凹溝状が混在するか他の形態の凹凸パターンが形成されてもよい。   On the other hand, FIG. 6 and FIG. 8 show a wavy uneven pattern or a concave-convex pattern, but the present invention is not limited to the shape of the concave-convex pattern. An uneven pattern may be formed.

図10及び図11は,第1温度センサを介して測定した溶融金属の温度を比較した結果を示すグラフである。図10乃至図11の実線(1)は溶融金属の温度を示し,溶融金属が受鋼室10内に導入されると第1温度センサ22を介した測定波形は,高温の溶融金属のため持続的に上昇してから相平衡が行われた状態で凝固が開始されて凝固温度を示す。図10に示す比較例の場合,局部的に相平衡条件が形成されて傾いた形態の凝固温度を示すが,図11に示す実施形態2の場合には測定波形が比較的水平状態である凝固温度を示している。   FIG.10 and FIG.11 is a graph which shows the result of having compared the temperature of the molten metal measured through the 1st temperature sensor. The solid line (1) in FIGS. 10 to 11 indicates the temperature of the molten metal, and when the molten metal is introduced into the steel receiving chamber 10, the measurement waveform through the first temperature sensor 22 is sustained because of the high temperature molten metal. Solidification is started in a state where phase equilibration has been performed after the temperature rises, and indicates the solidification temperature. In the case of the comparative example shown in FIG. 10, the solidification temperature is in a tilted state with a locally formed phase equilibrium condition. In the case of the second embodiment shown in FIG. 11, the measurement waveform is in a relatively horizontal state. Indicates temperature.

図12及び図13は,成分分析及び凝固温度を介した推定によって溶融金属内の炭素量を示すグラフである。横軸は回収された試料の炭素成分分析(CA:Carbon Analysis)による値であり,縦軸は炭素推定値を示すグラフである。図12に示す比較例の場合,実線(横軸と縦軸の値が一致する場合)から一定範囲(±0.06%の範囲)を示す2本の点線間を逸脱している。一方,図13に示す実施例2の場合,実線から一定範囲(±0.06%の範囲)内に位置するため安定的な結果を示している。   12 and 13 are graphs showing the amount of carbon in the molten metal by component analysis and estimation via the solidification temperature. The horizontal axis is a value obtained by carbon analysis (CA) of the collected sample, and the vertical axis is a graph showing the estimated carbon value. In the case of the comparative example shown in FIG. 12, the distance between the two dotted lines indicating a certain range (± 0.06% range) deviates from the solid line (when the values on the horizontal and vertical axes match). On the other hand, the second embodiment shown in FIG. 13 shows a stable result because it is located within a certain range (± 0.06% range) from the solid line.

一方,溶融金属が受鋼湯道9を介して受鋼室10内に導入される過程において,受鋼湯道9の角が大きい場合,受鋼湯道9の角部で溶融金属が衝突し渦巻きを形成する渦流(vortex)現象が発生して乱流流動が形成され,それによって空気及びガスの混入が発生する恐れがある。よって,受鋼湯道9の角部9rをラウンド処理(湾曲した形状と)することが好ましく,該部を介して渦流現象を防止することができる。   On the other hand, in the process where the molten metal is introduced into the steel receiving chamber 10 via the steel receiving runner 9, when the corner of the steel receiving runner 9 is large, the molten metal collides with the corner of the steel receiving hot runner 9. A vortex phenomenon that forms a vortex is generated and a turbulent flow is formed, which may cause air and gas contamination. Therefore, it is preferable to round the corner portion 9r of the receiving steel runner 9 (with a curved shape), and the vortex phenomenon can be prevented through the portion.

また,図6に示すように,受鋼室10と採取室18はシェルコンテナ107の縦方向に沿って重ならないように配置されるが,採取湯道11はシェルコンテナ107の縦方向に沿って受鋼室10と重なって配置される。よって,採取湯道11を介して移動する溶融金属の高熱が受鋼室10,特に受鋼室10に配置された第1温度センサ22の測温部22cに影響を及ぼす恐れがあり,それによって凝固温度を正確に測定することができない。よって,シェルコンテナ107の縦方向に沿って受鋼室10と重なる採取湯道11の角部をラウンド処理して受鋼室10と採取室18との間に位置する隔壁の厚さを,採取室18から遠くなる方向に増加し,前記壁厚を介して採取湯道11を流れる溶融金属の高熱が測温部22cに及ぼす影響を最小化することができる。また,採取湯道11の角部がラウンド処理された場合,溶融金属が導入される過程で発生する渦流現象を最小化することができる。   In addition, as shown in FIG. 6, the steel receiving chamber 10 and the sampling chamber 18 are arranged so as not to overlap with each other in the vertical direction of the shell container 107, but the sampling runner 11 extends along the vertical direction of the shell container 107. It is arranged so as to overlap with the steel receiving chamber 10. Therefore, the high heat of the molten metal moving through the sampling runner 11 may affect the temperature measuring section 22c of the first temperature sensor 22 arranged in the steel receiving chamber 10, particularly the steel receiving chamber 10, thereby The solidification temperature cannot be measured accurately. Therefore, the corner portion of the sampling runner 11 that overlaps the steel receiving chamber 10 along the longitudinal direction of the shell container 107 is rounded, and the thickness of the partition located between the steel receiving chamber 10 and the sampling chamber 18 is sampled. It is possible to minimize the influence of the high heat of the molten metal that increases in the direction farther from the chamber 18 and flows through the sampling runner 11 through the wall thickness on the temperature measuring unit 22c. Further, when the corner portion of the sampling runner 11 is rounded, the eddy current phenomenon that occurs in the process of introducing the molten metal can be minimized.

また,上述した溶融金属プローブの可用範囲(すなわち,溶融金属の凝固温度の測定範囲)を拡張するために過熱度が低い溶融金属が導入される場合にも凝固温度を効果的に測定すべきであり,そのために溶融金属の導入を早くすることで,溶融金属の温度降下を最小化して,受鋼室10に到達した溶融金属の温度を電炉内の溶融金属の温度と近似させることが好ましい。   Also, the solidification temperature should be measured effectively when a molten metal with a low superheat is introduced to expand the usable range of the molten metal probe described above (ie, the measurement range of the solidification temperature of the molten metal). Therefore, it is preferable to minimize the temperature drop of the molten metal by accelerating the introduction of the molten metal, and to approximate the temperature of the molten metal reaching the steel receiving chamber 10 to the temperature of the molten metal in the electric furnace.

よって,受鋼湯口3a(及び/又は開口33a)の直径(図4中符号d)を最適化する必要があり,実験結果から約20〜25mmである際に溶融金属の充填性能が良好であった。約20mm未満であれば溶融金属が受鋼室10内に十分に充填される前に凝固が進行されて充填性能が低下しており,約25mmを超過すれば受鋼室10内に充填された溶融金属が逆流して充填性能がかえって低下する現象が発生する。図14及び図15は受鋼湯口の直径による試料の状態を示す写真であり,図14の受鋼湯口は直径が17mmで,図15の受鋼湯口は直径が24.5mmである。   Therefore, it is necessary to optimize the diameter (symbol d in FIG. 4) of the steel receiving spout 3a (and / or the opening 33a). From the experimental results, the molten metal filling performance is good. It was. If it is less than about 20 mm, solidification progresses before the molten metal is sufficiently filled in the steel receiving chamber 10 to deteriorate the filling performance. If it exceeds about 25 mm, the steel receiving chamber 10 is filled. A phenomenon occurs in which the molten metal flows backward to lower the filling performance. 14 and 15 are photographs showing the state of the sample according to the diameter of the steel receiving spout. The steel receiving spout in FIG. 14 has a diameter of 17 mm, and the steel receiving spout in FIG. 15 has a diameter of 24.5 mm.

また,受鋼室10及び採取室18は相対的に大きな鉄静圧(ferro-static pressure)を多く受けるようにするためにそれぞれ隔離(又は分離)された受鋼湯口3aと採取湯口3bを有する。受鋼湯口3aと採取湯口3bが一つに統合される場合,溶融金属が受鋼室10及び採取室に分離されてそれぞれ流動する過程で渦巻きを形成する渦流現象が発生して乱流流動が形成されるため,溶融金属の導入が容易ではないためである。特に,受鋼湯道9は導入口3aから第1温度センサ22から遠くなる方向に傾斜し,シェルコンテナ107の横断面と受鋼湯道9が成す傾斜角度θは約20乃至60度であることが好ましい。約20度未満であれば受鋼湯口3aが溶融金属プローブの先端から遠くなってスラグが導入される可能性が高くなり,約60度を超過すれば大きい傾斜のため溶融金属の充填性能が低下する恐れがある。   In addition, the steel receiving chamber 10 and the sampling chamber 18 have a steel receiving gate 3a and a sampling gate 3b that are isolated (or separated), respectively, so as to receive a relatively large amount of ferro-static pressure. . When the receiving steel spout 3a and the sampling spout 3b are integrated into one, a vortex phenomenon that forms a vortex is generated in the process in which the molten metal is separated into the receiving steel chamber 10 and the sampling chamber, respectively, and the turbulent flow is generated. This is because it is not easy to introduce molten metal. In particular, the receiving steel runner 9 is inclined away from the introduction port 3a in the direction away from the first temperature sensor 22, and the inclination angle θ formed by the cross section of the shell container 107 and the receiving steel runner 9 is about 20 to 60 degrees. It is preferable. If it is less than about 20 degrees, there is a high possibility that the receiving steel spout 3a is far from the tip of the molten metal probe and slag is introduced, and if it exceeds about 60 degrees, the filling performance of molten metal decreases due to the large inclination. There is a fear.

また,受鋼湯口3a及び採取湯口3bは溶融金属プローブの先端から約200mm以内にあることが好ましい。すなわち,溶融金属プローブの先端から受鋼湯口3aまでの距離Dは約200mm以下に当たる。これは通常溶融金属プローブの浸漬深さを約500〜600mm程度に設定する際,試料の健全性及び充填性能を確保するためである。   Moreover, it is preferable that the receiving steel gate 3a and the sampling gate 3b are within about 200 mm from the tip of the molten metal probe. That is, the distance D from the tip of the molten metal probe to the receiving steel gate 3a corresponds to about 200 mm or less. This is to ensure the soundness and filling performance of the sample when the immersion depth of the molten metal probe is normally set to about 500 to 600 mm.

一方,採取室18に向かって移動した溶融金属は採取容器23内で凝固されて機器分析などの分析のための凝固試料として提供される。溶融金属浴から引き揚げられたプローブ本体1に衝撃を加えると,シェルコンテナ107が衝撃によって崩壊され,採取室18を破壊して採取容器23を容易に分離することができる。次に,採取容器23は移送装置によって移送されて機器分析などの分析に提供される。   On the other hand, the molten metal moved toward the collection chamber 18 is solidified in the collection container 23 and provided as a solidified sample for analysis such as instrumental analysis. When an impact is applied to the probe main body 1 drawn up from the molten metal bath, the shell container 107 is collapsed by the impact, and the collection chamber 18 can be destroyed and the collection container 23 can be easily separated. Next, the collection container 23 is transferred by a transfer device and provided for analysis such as instrument analysis.

本発明を好ましい実施形態を介して詳細に説明したが,それとは異なる実施形態ないし実施例も可能である。よって,後述する特許請求範囲の技術的思想と範囲は好ましい実施形態に限定されない。   Although the present invention has been described in detail through the preferred embodiments, other embodiments or examples are possible. Therefore, the technical idea and scope of the claims to be described later are not limited to the preferred embodiments.

1:プローブ本体
2:メイン枝管
3a,3b:導入口(3a:受鋼湯口,3b:採取湯口)
4:外部枝管
10:受鋼室
11:採取湯道
14:設置空間
17:締結間
18:採取室
20:収容空間
107:シェルコンテナ
22,24:温度センサ
23:採取容器
1: Probe body 2: Main branch pipes 3a, 3b: introduction port (3a: receiving steel gate, 3b: sampling gate)
4: External branch pipe 10: Steel receiving room 11: Collection runway 14: Installation space 17: Between fastening 18: Collection room 20: Storage space 107: Shell container 22, 24: Temperature sensor 23: Collection container

Claims (14)

溶融金属に浸漬して内部に前記溶融金属が導入可能な複合プローブ用シェルコンテナにおいて,
前記シェルコンテナは,
側面に形成されて前記溶融金属が導入される導入口と,
前記導入口を介して導入されて前記溶融金属が充填される受鋼室及び採取室と,
前記導入口と前記受鋼室を連結する受鋼湯道と,
前記導入口と前記採取室を連結する採取湯道と,を含み,
前記溶融金属プローブは前記受鋼室に配置された測温部を有する第1温度センサを更に含み,
前記受鋼室の内壁面に凹凸形状のパターンが形成される複合プローブ用シェルコンテナ。
In a shell container for a composite probe in which the molten metal can be introduced by being immersed in the molten metal,
The shell container is
An inlet formed on a side surface through which the molten metal is introduced;
A steel receiving chamber and a sampling chamber which are introduced through the inlet and are filled with the molten metal;
A receiving steel runner connecting the inlet and the receiving steel chamber;
A collecting runner connecting the inlet and the collection chamber;
The molten metal probe further includes a first temperature sensor having a temperature measuring unit disposed in the steel receiving chamber,
A shell container for a composite probe, wherein an uneven pattern is formed on an inner wall surface of the steel receiving chamber.
前記受鋼室は直方体であり,
前記パターンは前記受鋼室の長さ方向に沿って形成された内壁面のうち前記受鋼室の中心部から離間した長手方向に短い表面に形成される請求項1記載の複合プローブ用シェルコンテナ。
The steel receiving chamber is a rectangular parallelepiped,
2. The composite probe shell container according to claim 1, wherein the pattern is formed on a short surface in a longitudinal direction spaced from a central portion of the steel receiving chamber among inner wall surfaces formed along a length direction of the steel receiving chamber. .
前記受鋼室は容積を表面積で割った体積比が4乃至4.5である請求項1又は請求項2記載の複合プローブ用シェルコンテナ。   The composite container shell container according to claim 1 or 2, wherein the steel receiving chamber has a volume ratio of 4 to 4.5 obtained by dividing the volume by the surface area. 前記採取室は前記シェルコンテナの縦方向に沿って配置され,
前記採取湯道の角部は湾曲した形状である請求項1記載の複合プローブ用シェルコンテナ。
The collection chamber is disposed along the longitudinal direction of the shell container;
The shell container for a composite probe according to claim 1, wherein a corner portion of the sampling runner has a curved shape.
前記受鋼湯道は前記導入口から前記第1温度センサから遠くなる方向に傾斜し,
前記シェルコンテナの横断面と前記受鋼湯道が成す傾斜角度が20乃至60度である請求項1記載の複合プローブ用シェルコンテナ。
The receiving steel runner is inclined in a direction away from the first temperature sensor from the inlet,
The shell container for a composite probe according to claim 1, wherein an inclination angle formed by a cross section of the shell container and the steel receiving runner is 20 to 60 degrees.
前記導入口は前記受鋼室と連通する受鋼湯口及び前記採取室と連通する採取湯口を有し,
前記受鋼湯口と前記採取湯口は隔離される請求項1記載の複合プローブ用シェルコンテナ。
The introduction port has a receiving steel spout communicating with the receiving steel chamber and a sampling spout communicating with the sampling chamber,
The shell container for a composite probe according to claim 1, wherein the steel receiving gate and the sampling gate are isolated.
前記受鋼湯口の直径は20乃至25mmである請求項6記載の複合プローブ用シェルコンテナ。   The shell container for a composite probe according to claim 6, wherein the diameter of the steel receiving gate is 20 to 25 mm. 前記溶融金属プローブは前記シェルコンテナの先端に設置され,前記溶融金属の温度を測定する第2温度センサを更に含む請求項6記載の複合プローブ用シェルコンテナ。   The shell container for a composite probe according to claim 6, further comprising a second temperature sensor that is installed at a tip of the shell container and measures the temperature of the molten metal. 前記採取室及び前記受鋼室は前記シェルコンテナの縦方向及び横方向に沿って重ならないように配置される請求項7又は請求項8記載の複合プローブ用シェルコンテナ。   The shell container for a composite probe according to claim 7 or 8, wherein the collection chamber and the steel receiving chamber are arranged so as not to overlap along a vertical direction and a horizontal direction of the shell container. 前記溶融金属プローブは前記シェルコンテナの先端に設置されて前記溶融金属の温度を測定する第2温度センサを更に含み,
前記導入口は前記シェルコンテナの先端から縦方向に沿って200mm以内に位置する請求項1記載の複合プローブ用シェルコンテナ。
The molten metal probe further includes a second temperature sensor installed at a tip of the shell container to measure the temperature of the molten metal,
2. The composite probe shell container according to claim 1, wherein the introduction port is located within 200 mm along a longitudinal direction from a tip of the shell container.
溶融金属に浸漬された状態で測部に形成された開口を介して前記溶融金属を内部に導入可能なメイン枝管と,
前記メイン枝管の外部に設置されて前記開口を閉鎖可能な外部枝管と,
前記メイン枝管の内部に内装されるシェルコンテナと,
前記シェルコンテナに装着される第1及び第2温度センサと,
前記第1及び第2温度センサと電気的にアクセスされるコネクタと,を含み,
前記シェルコンテナは,
側面に形成されて前記開口と連通されて前記溶融金属が導入される導入口と,
前記導入口を介して導入された前記溶融金属が充填される受鋼室及び採取室と,
前記導入口と前記受鋼室を連結する受鋼湯道と,
前記導入口と前記採取室を連結する採取湯道と,を含み,
前記第1温度センサの測温部は前記受鋼室に配置され,前記第2温度センサは前記シェルコンテナの先端に設置され,
前記受鋼室の内壁面に凹凸形状のパターンが形成される複合プローブ。
A main branch pipe capable of introducing the molten metal into the inside through an opening formed in the measuring portion while being immersed in the molten metal;
An external branch pipe installed outside the main branch pipe and capable of closing the opening;
A shell container installed inside the main branch pipe;
First and second temperature sensors mounted on the shell container;
A connector that is electrically accessed with the first and second temperature sensors;
The shell container is
An introduction port formed on a side surface and communicated with the opening to introduce the molten metal;
A steel receiving chamber and a sampling chamber filled with the molten metal introduced through the inlet,
A receiving steel runner connecting the inlet and the receiving steel chamber;
A collecting runner connecting the inlet and the collection chamber;
The temperature measuring part of the first temperature sensor is arranged in the steel receiving chamber, the second temperature sensor is installed at the tip of the shell container,
A composite probe in which an uneven pattern is formed on an inner wall surface of the steel receiving chamber.
前記受鋼室は直方体であり,
前記パターンは前記受鋼室の長さ方向に沿って形成された内壁面のうち前記受鋼室の中心部から離間した長手方向に短い表面に形成される請求項11記載の複合プローブ。
The steel receiving chamber is a rectangular parallelepiped,
The composite probe according to claim 11, wherein the pattern is formed on a short surface in a longitudinal direction spaced apart from a central portion of the steel receiving chamber among inner wall surfaces formed along a length direction of the steel receiving chamber.
前記受鋼室は容積を表面積で割った体積比が4乃至4.5である請求項11又は請求項12記載の複合プローブ。   The composite probe according to claim 11 or 12, wherein the steel receiving chamber has a volume ratio of 4 to 4.5 obtained by dividing the volume by the surface area. 前記採取室は前記シェルコンテナの縦方向に沿って配置され,
前記採取湯道の角部は湾曲した形状である請求項11記載の複合プローブ。
The collection chamber is disposed along the longitudinal direction of the shell container;
The composite probe according to claim 11, wherein a corner portion of the sampling runner has a curved shape.
JP2015176971A 2014-09-23 2015-09-08 Shell container for composite probe and composite probe Active JP6141373B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140126912A KR20160035387A (en) 2014-09-23 2014-09-23 Shell container for complex probe and complex probe
KR10-2014-0126912 2014-09-23

Publications (2)

Publication Number Publication Date
JP2016070923A true JP2016070923A (en) 2016-05-09
JP6141373B2 JP6141373B2 (en) 2017-06-07

Family

ID=55555759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176971A Active JP6141373B2 (en) 2014-09-23 2015-09-08 Shell container for composite probe and composite probe

Country Status (4)

Country Link
JP (1) JP6141373B2 (en)
KR (1) KR20160035387A (en)
CN (1) CN105445315B (en)
TW (1) TWI620924B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018167916A1 (en) * 2017-03-16 2018-09-20 川惣電機工業株式会社 Molten metal probe
CN115298333A (en) * 2020-01-09 2022-11-04 维苏威耐火材料有限公司 Long lance for metal production and casting plants

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336511B1 (en) * 2016-12-13 2019-06-12 Heraeus Electro-Nite International N.V. Direct analysis sampler
CN106969872B (en) * 2017-04-18 2020-01-10 北京航空航天大学 Pressure probe adopting double-row-hole air film cooling
CN108695005A (en) * 2018-04-27 2018-10-23 西安交通大学 A kind of dynamic measurement device and method of fusant hard shell thickness and boundary temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374286U (en) * 1976-11-24 1978-06-21
JPH02135860U (en) * 1989-04-17 1990-11-13
JP2001004617A (en) * 1999-06-23 2001-01-12 Kawaso Denki Kogyo Kk Molten metal probe
JP2008245375A (en) * 2007-03-26 2008-10-09 Jtekt Corp Electric motor and air compressor
WO2010119696A1 (en) * 2009-04-16 2010-10-21 株式会社フジクラ Method for manufacturing optical fiber wire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098884B2 (en) * 1993-02-08 2000-10-16 川惣電機工業株式会社 Molten metal sampling equipment
KR100661538B1 (en) * 2004-09-08 2006-12-27 주식회사 우진 Sampling device for Complex Probe for obtaining the sample with high purity
KR100668079B1 (en) * 2004-12-28 2007-01-11 주식회사 포스코 Hybrid single combination probe
DE102012016697B3 (en) * 2012-08-24 2013-07-25 Heraeus Electro-Nite International N.V. Measuring probe for sampling in molten metals
DE102013208679A1 (en) * 2012-10-31 2014-04-30 Heraeus Electro-Nite International N.V. Measuring probe for measurement in metal or slag melts
KR101277773B1 (en) * 2012-12-28 2013-06-24 우진 일렉트로나이트(주) Replacement device for holder and holder assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374286U (en) * 1976-11-24 1978-06-21
JPH02135860U (en) * 1989-04-17 1990-11-13
JP2001004617A (en) * 1999-06-23 2001-01-12 Kawaso Denki Kogyo Kk Molten metal probe
JP2008245375A (en) * 2007-03-26 2008-10-09 Jtekt Corp Electric motor and air compressor
WO2010119696A1 (en) * 2009-04-16 2010-10-21 株式会社フジクラ Method for manufacturing optical fiber wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018167916A1 (en) * 2017-03-16 2018-09-20 川惣電機工業株式会社 Molten metal probe
CN115298333A (en) * 2020-01-09 2022-11-04 维苏威耐火材料有限公司 Long lance for metal production and casting plants
CN115298333B (en) * 2020-01-09 2024-05-03 维苏威耐火材料有限公司 Long gun for metal production and casting equipment

Also Published As

Publication number Publication date
TWI620924B (en) 2018-04-11
CN105445315A (en) 2016-03-30
JP6141373B2 (en) 2017-06-07
KR20160035387A (en) 2016-03-31
TW201617594A (en) 2016-05-16
CN105445315B (en) 2018-04-06

Similar Documents

Publication Publication Date Title
JP6141373B2 (en) Shell container for composite probe and composite probe
US3463005A (en) Immersion molten metal sampler device
JP6465984B2 (en) Reverse filled carbon and temperature drop-in sensor
RU2005120921A (en) CAPACITY FOR METAL MELT, APPLICATION OF CAPACITY AND METHOD FOR DETERMINING SECTION SURFACE
KR102445005B1 (en) Molten metal samplers for high and low oxygen applications
Kuzmanov et al. Investigation the effect of modification with nanopowders on crystallization process and microstructure of some alloys
JP2015528905A (en) Method and apparatus for measuring cast iron and slag levels in a blast furnace
SE511376C2 (en) Sampling device for thermal analysis of solidifying metal
CN107817127B (en) Immersion device for slag sample collection
EP3640614A1 (en) Temperature measurement device and temperature measurement method for measuring temperature of molten metal
CN201210148Y (en) Thermal analysis sample cup using armored thermocouple temperature sensor
CN104359935A (en) Melting point detector
KR101740959B1 (en) Shell container for complex probe and complex probe
CN105865837A (en) Sampling cup used for thermal analysis
JP6465985B2 (en) Reverse filled carbon and temperature drop-in sensor
US20100000303A1 (en) Apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
CN101140138A (en) Copple and temperature sensor protecting equipment
US10126286B2 (en) Lance and method for determining reaction data of the course of a reaction
JP5025811B1 (en) Metal melt measuring cup, and molten metal property determination device equipped with the metal molten measuring cup
CN212748077U (en) Continuous temperature measuring device for casting ladle
KR101261422B1 (en) Molten metal level measuring sensor unit
CN201062995Y (en) Device for measuring continuously temperature of hyperthermia cuprum liquid
US20100220764A1 (en) Differential scanning calorimeter
JP2021038446A (en) Temperature measurement tool
JP2005221402A (en) Sample charging type specific heat measuring instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160805

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6141373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250