JP2016070125A - Internal combustion engine control engine - Google Patents

Internal combustion engine control engine Download PDF

Info

Publication number
JP2016070125A
JP2016070125A JP2014198181A JP2014198181A JP2016070125A JP 2016070125 A JP2016070125 A JP 2016070125A JP 2014198181 A JP2014198181 A JP 2014198181A JP 2014198181 A JP2014198181 A JP 2014198181A JP 2016070125 A JP2016070125 A JP 2016070125A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel injection
valve
overlap period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014198181A
Other languages
Japanese (ja)
Inventor
無限 太古
Mugen Tako
無限 太古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014198181A priority Critical patent/JP2016070125A/en
Publication of JP2016070125A publication Critical patent/JP2016070125A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine control device for suppressing properly the deterioration of emission at a cold starting time of the internal combustion engine.SOLUTION: An internal combustion engine control device controls an internal combustion engine equipped with a variable valve timing mechanism capable of increasing/decreasing the length of a valve overlap period, for which both an intake valve and an exhaust valve are opened. At a cold starting time of the internal combustion engine, a fuel injection rate is corrected to increase, and a valve overlap period is provided. As the increment in the increasing correction of the fuel injection rate is the more, the upper limit of the length of the valve overlap period is set the lower, and the present warming degree of the intake port is estimated from the integration of the suction amount or the fuel injection rate from the start of the internal combustion engine and the valve overlap period, thereby to construct of the internal combustion engine to reduce the increment the more in the increasing correction of the fuel injection rate for the higher warming degree.SELECTED DRAWING: Figure 2

Description

本発明は、可変バルブタイミング(Variable Valve Timing)機構が付帯する内燃機関を制御する制御装置に関する。   The present invention relates to a control device for controlling an internal combustion engine associated with a variable valve timing (Variable Valve Timing) mechanism.

車両等に搭載される内燃機関について、吸気バルブ及び/または排気バルブの開閉タイミングを可変制御できるVVT機構を備えたものが公知である(例えば、下記特許文献を参照)。   2. Description of the Related Art An internal combustion engine mounted on a vehicle or the like is known that includes a VVT mechanism that can variably control the opening / closing timing of an intake valve and / or an exhaust valve (see, for example, the following patent document).

特開2014−031763号公報JP 2014-031763 A

インジェクタを吸気ポートに配置したポート噴射式の内燃機関の冷間始動時には、吸気ポート周辺の温度が低い状態にあることから、インジェクタから噴射された燃料が液状となって吸気ポートの壁面に付着するポートウェットが発生しやすい。このポートウェット分の燃料は適切に気筒に吸引されないため、混合気の空燃比の乱れを招き、燃焼が不安定化するとともに有害物質の排出量が増大する懸念がある。   At the time of cold start of the port injection type internal combustion engine in which the injector is disposed in the intake port, the temperature around the intake port is low, so the fuel injected from the injector becomes liquid and adheres to the wall surface of the intake port Port wet easily occurs. Since the fuel for the port wet is not properly drawn into the cylinder, the air-fuel ratio of the air-fuel mixture is disturbed, the combustion may become unstable, and the emission of harmful substances may increase.

現状では、内燃機関の冷間始動時及び冷間始動直後の時期に燃料噴射量の増量補正を行うことで、ポートウェットに起因する混合気の燃焼の不安定化及び有害物質の排出量の増大を回避している。   At present, by correcting the increase in the fuel injection amount at the time of cold start of the internal combustion engine and immediately after the cold start, the instability of combustion of the air-fuel mixture caused by port wet and the increase of emission of harmful substances Is avoiding.

他方、内燃機関の始動直後からVVT機構を介して吸気バルブ及び/または排気バルブの開閉タイミングを操作し、吸気バルブ及び排気バルブがともに開いているバルブオーバラップ期間を設けることで、燃焼室から排出される排気を一部吸気ポートに流出させて液状燃料の霧化を促進することも考えられる。   On the other hand, immediately after starting the internal combustion engine, the intake valve and / or exhaust valve opening / closing timing is operated via the VVT mechanism to provide a valve overlap period in which both the intake valve and the exhaust valve are open, thereby exhausting from the combustion chamber. It is also conceivable to promote the atomization of the liquid fuel by causing a part of the exhaust to be discharged to the intake port.

しかしながら、単純にバルブオーバラップ期間を設けると、燃料噴射量の増量補正にポートウェットの燃料の霧化が重なり、混合気の空燃比が過剰にリッチとなって、却って有害物質の排出量が増大することになりかねない。   However, if a valve overlap period is simply provided, the fuel injection amount increase correction is overlapped with the atomization of the port wet fuel, the air-fuel ratio of the air-fuel mixture becomes excessively rich, and the discharge amount of harmful substances increases. Could end up.

本発明は、内燃機関の冷間始動時におけるエミッションの悪化を好適に抑制することを所期の目的としている。   An object of the present invention is to suitably suppress deterioration of emissions during cold start of an internal combustion engine.

本発明では、吸気バルブ及び排気バルブがともに開弁するバルブオーバラップ期間の長さを増減させることができる可変バルブタイミング機構が付帯した内燃機関を制御するものであって、内燃機関の冷間始動時、燃料噴射量を増量補正するとともにバルブオーバラップ期間を設けることとし、その燃料噴射量の増量補正における増分が多いほどバルブオーバラップ期間の長さの上限を低く設定し、さらに、内燃機関の始動からの吸気量または燃料噴射量の積算とバルブオーバラップ期間とから現在の吸気ポートの暖まり度合いを推測し、その暖まり度合いが大きいほど燃料噴射量の増量補正における増分を減らす内燃機関の制御装置を構成した。   The present invention controls an internal combustion engine with a variable valve timing mechanism that can increase or decrease the length of a valve overlap period in which both an intake valve and an exhaust valve are opened. When the fuel injection amount is increased and corrected, a valve overlap period is provided, and as the increase in the fuel injection amount increase is increased, the upper limit of the valve overlap period is set lower. A control device for an internal combustion engine that estimates the current warming degree of the intake port from the integration of the intake air amount or fuel injection amount from the start and the valve overlap period, and decreases the increment in the fuel injection amount increase correction as the warming degree increases Configured.

本発明によれば、内燃機関の冷間始動時におけるエミッションの悪化を好適に抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration of the emission at the time of the cold start of an internal combustion engine can be suppressed suitably.

本発明の一実施形態における内燃機関及び制御装置の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine and control apparatus in one Embodiment of this invention. 内燃機関の冷間始動直後の時期における、燃料噴射量の増量補正の増分とバルブオーバラップ期間の長さの上限との関係を例示する図。The figure which illustrates the relationship between the increment of the increase correction of fuel injection quantity, and the upper limit of the length of a valve overlap period in the time immediately after the cold start of an internal combustion engine. 内燃機関の冷間始動直後の時期における、吸気ポートの暖まり度合いと燃料噴射量の増量補正の増分との関係を例示する図。The figure which illustrates the relationship between the warming degree of an intake port and the increment of the increase correction of fuel injection quantity in the time immediately after the cold start of an internal combustion engine. 内燃機関の冷間始動直後の時期における、始動からの累積の吸気量(または、累積の燃料噴射量)及びバルブオーバラップ期間の長さと吸気ポートの暖まり度合いとの関係を例示する図。The figure which illustrates the relationship between the length of the cumulative intake amount (or cumulative fuel injection amount) from the start and the valve overlap period and the degree of warming of the intake port at the time immediately after the cold start of the internal combustion engine.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition type four-stroke engine and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated as a result of burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、特にサージタンク33に接続している。   The exhaust gas recirculation device 2 realizes a so-called high pressure loop EGR, and an external EGR that communicates the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3. The passage 21, an EGR cooler 22 provided on the EGR passage 21, and an EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of EGR gas flowing through the EGR passage 21 are used as elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, particularly to the surge tank 33.

本実施形態における内燃機関には、吸気バルブの開閉タイミングを可変制御できるVVT機構6が付随している。VVT機構6は、各気筒1の吸気バルブを開閉させる吸気カムシャフトのクランクシャフトに対する回転位相を電動機によって変化させる既知のもの(モータドライブVVT)である。   The internal combustion engine in the present embodiment is accompanied by a VVT mechanism 6 that can variably control the opening / closing timing of the intake valve. The VVT mechanism 6 is a known one (motor drive VVT) in which the rotation phase of the intake camshaft that opens and closes the intake valve of each cylinder 1 with respect to the crankshaft is changed by an electric motor.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 serving as a control device for an internal combustion engine according to the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求負荷)として検出するセンサから出力されるアクセル開度信号c、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号d、車載のバッテリ17の電流及び/または電圧を検出する電流/電圧センサから出力されるバッテリ電流/電圧信号e、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号f、吸気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号g、ブレーキペダルが踏まれていることまたはブレーキペダルの踏込量を検出するセンサ(ブレーキスイッチやマスタシリンダ圧センサ等)から出力されるブレーキ信号h等が入力される。   The input interface includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle and engine speed of the crankshaft, and depression of an accelerator pedal. An accelerator opening signal c output from a sensor that detects the amount or the opening of the throttle valve 32 as an accelerator opening (in other words, a required load), and a water temperature sensor that detects a cooling water temperature indicating the temperature of the internal combustion engine. Cooling water temperature signal d, battery current / voltage signal e output from a current / voltage sensor that detects the current and / or voltage of the on-vehicle battery 17, intake temperature and intake pressure in the intake passage 3 (especially, the surge tank 33) The intake air temperature / intake pressure signal f output from the temperature / pressure sensor for detecting the intake air and the cam angle of the intake camshaft A cam angle signal g output from the cam angle sensor, a brake signal h output from a sensor (such as a brake switch or a master cylinder pressure sensor) for detecting that the brake pedal is depressed or the amount of depression of the brake pedal are input. Is done.

出力インタフェースからは、イグナイタ13に対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、VVT機構6に対して吸気バルブタイミングの制御信号n等を出力する。   From the output interface, the ignition signal i for the igniter 13, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, the opening operation signal l for the EGR valve 23, and the VVT mechanism 6, the control signal n for the intake valve timing is output.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGR量)、吸気バルブの開閉タイミング等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、nを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1. Estimate the intake volume. Based on the engine speed, the intake air amount, etc., the required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR rate) Volume), opening / closing timing of the intake valve, and the like. The ECU 0 applies various control signals i, j, k, l, and n corresponding to the operation parameters via the output interface.

また、ECU0は、内燃機関の始動(冷間始動であることもあれば、アイドリングストップからの復帰であることもある)時において、電動機(スタータモータまたはISG(Integrated Starter Generator)。図示せず)に制御信号oを入力し、当該電動機によりクランクシャフトを回転させるクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数即ちクランクシャフトの回転速度が冷却水温等に応じて定まる判定値を超えたときに(完爆したものと見なして)終了する。   Further, the ECU 0 controls an electric motor (starter motor or ISG (Integrated Starter Generator), not shown) at the time of starting the internal combustion engine (a cold start or a return from an idling stop). The signal o is input and cranking is performed by rotating the crankshaft by the electric motor. Cranking ends when the internal combustion engine starts from the first explosion to a continuous explosion and the engine speed, that is, the rotation speed of the crankshaft, exceeds a judgment value determined according to the coolant temperature, etc. (assuming that the explosion has been completed) To do.

しかして、本実施形態のECU0は、内燃機関の冷間始動直後から、VVT機構6の操作を通じて吸気ポート及び排気ポートがともに開弁するバルブオーバラップ期間を設け、気筒1の燃焼室から排出される排気を一部吸気ポートに流出させることにより、吸気ポートを暖めて液状燃料の霧化を促進する。   Thus, the ECU 0 of the present embodiment provides a valve overlap period in which both the intake port and the exhaust port are opened through the operation of the VVT mechanism 6 immediately after the cold start of the internal combustion engine, and is discharged from the combustion chamber of the cylinder 1. The exhaust gas is partially discharged to the intake port to warm the intake port and promote atomization of the liquid fuel.

但し、内燃機関の冷間始動時におけるクランキング中及び完爆直後の時期(アイドリング中を含む)には、燃料噴射量を基本噴射量よりも増量する補正を行っている。ここに言う基本噴射量とは、混合気の空燃比を理論空燃比またはその近傍に設定される目標空燃比とするために必要となる、気筒1に充填される吸気(新気)の量に比例した噴射量のことである。冷間始動時及び冷間始動直後の時期の燃料噴射量の増量補正により、混合気の空燃比は目標空燃比よりもリッチになる。   However, during the cranking at the time of cold start of the internal combustion engine and the timing immediately after the complete explosion (including during idling), correction is performed to increase the fuel injection amount from the basic injection amount. The basic injection amount referred to here is the amount of intake air (fresh air) charged in the cylinder 1 that is necessary for setting the air-fuel ratio of the air-fuel mixture to the stoichiometric air-fuel ratio or a target air-fuel ratio set in the vicinity thereof. It is a proportional injection amount. The air-fuel ratio of the air-fuel mixture becomes richer than the target air-fuel ratio due to the increase correction of the fuel injection amount at the time of cold start and immediately after the cold start.

そして、冷間始動直後の時期に単純にバルブオーバラップ期間を設けると、燃料噴射量の増量補正にポートウェットの燃料の霧化が重なり、混合気の空燃比が過剰にリッチとなってしまうおそれがある。そこで、本実施形態では、図2に示すように、冷間始動直後の時期の燃料噴射量の増量補正による基本噴射量からの増分が多いほど、バルブオーバラップ期間の長さの上限を低く設定する。つまり、燃料噴射量の増量補正が比較的大きいときにはバルブオーバラップ期間を短くし、増量補正が比較的小さいときにバルブオーバラップ期間を長くすることで、空燃比が過リッチとなることを予防する。   If a valve overlap period is simply provided immediately after the cold start, the fuel injection amount increase correction overlaps with the atomization of the port wet fuel, and the air-fuel ratio of the air-fuel mixture may become excessively rich. There is. Therefore, in the present embodiment, as shown in FIG. 2, the upper limit of the length of the valve overlap period is set lower as the increment from the basic injection amount by the increase correction of the fuel injection amount at the time immediately after the cold start increases. To do. That is, when the fuel injection amount increase correction is relatively large, the valve overlap period is shortened, and when the increase correction is relatively small, the valve overlap period is lengthened to prevent the air-fuel ratio from becoming excessively rich. .

図3に示すように、冷間始動直後の時期の燃料噴射量の増量補正における基本噴射量からの増分は、吸気ポートの暖まり度合いが大きくなるほど減少させる。これは、吸気ポートが昇温するにつれて、ポートウェットとして吸気ポートの壁面に付着する液状燃料の量が減少することに基づく。   As shown in FIG. 3, the increase from the basic injection amount in the fuel injection amount increase correction at the time immediately after the cold start is reduced as the degree of warming of the intake port increases. This is based on the fact that the amount of liquid fuel adhering to the wall surface of the intake port as port wet decreases as the temperature of the intake port rises.

現在の吸気ポートの暖まり度合いは、内燃機関の始動開始から計数される、気筒1に充填された吸気量または燃料噴射量の積算(累積)量、及びバルブオーバラップ期間の長さを基に推測することができる。図4に、内燃機関の始動からの吸気量または燃料噴射量の積算値(いわば、時間積分)及びバルブオーバラップ期間の長さと、吸気ポートの暖まり度合いとの関係を示す。図4中、実線はバルブオーバラップ期間が比較的短い場合の吸気ポートの温度上昇の推移を表し、破線はバルブオーバラップ期間が比較的長い場合の吸気ポートの温度上昇の推移を表し、鎖線はバルブオーバラップ期間が中程度の場合の吸気ポートの温度上昇の推移を表している。当然ながら、内燃機関の始動からの累積の総吸気量または総燃料噴射量が増加するほど、内燃機関の暖機が進行し、吸気ポートの温度も上昇する。また、バルブオーバラップ期間が長いほど、内部EGRにより吸気ポートが暖められてその温度が上昇する。   The current degree of warming of the intake port is estimated based on the accumulated amount of the intake amount or fuel injection amount filled in the cylinder 1 counted from the start of the internal combustion engine and the length of the valve overlap period. can do. FIG. 4 shows the relationship between the integrated value (so-called time integration) of the intake amount or fuel injection amount from the start of the internal combustion engine, the length of the valve overlap period, and the degree of warming of the intake port. In FIG. 4, the solid line represents the transition of the intake port temperature rise when the valve overlap period is relatively short, the broken line represents the transition of the intake port temperature rise when the valve overlap period is relatively long, It shows the transition of the temperature rise of the intake port when the valve overlap period is medium. Naturally, as the cumulative total intake amount or total fuel injection amount from the start of the internal combustion engine increases, the warm-up of the internal combustion engine proceeds and the temperature of the intake port also rises. Further, as the valve overlap period is longer, the intake port is warmed by the internal EGR and its temperature rises.

ECU0のメモリには予め、内燃機関の始動からの吸気量または燃料噴射量の積算値及びバルブオーバラップ期間の長さ(現在までのバルブオーバラップ期間の積算(時間積分)または時間平均であることがある)と吸気ポートの暖まり度合いとの関係を規定したマップデータ(または、関数式)、吸気ポートの暖まり度合いと燃料噴射量の増量補正における基本噴射量からの増分との関係を規定したマップデータ(または、関数式)、並びに、燃料噴射量の増量補正における基本噴射量からの増分とバルブオーバラップ期間の上限との関係を規定したマップデータ(または、関数式)がそれぞれ格納されている。   In the memory of the ECU 0, the integrated value of the intake amount or the fuel injection amount from the start of the internal combustion engine and the length of the valve overlap period (the accumulated valve overlap period up to the present (time integration) or the time average) Map data (or function equation) that defines the relationship between the intake port warming degree and the intake port warming degree, and a map that defines the relationship between the intake port warming degree and the increment from the basic injection amount in the fuel injection amount increase correction Data (or function formula) and map data (or function formula) defining the relationship between the increment from the basic injection amount in the fuel injection amount increase correction and the upper limit of the valve overlap period are stored. .

内燃機関の冷間始動直後の時期にあって、ECUは、始動から現在までの吸気量または燃料噴射量の積算値及びバルブオーバラップ期間の長さ(現在までのバルブオーバラップ期間の積算または時間平均であることがある)をキーとしてマップを検索し(または、関数式に代入して演算し)、現在の吸気ポートの暖まり度合いを知得する。次いで、現在の吸気ポートの暖まり度合いをキーとしてマップを検索し(または、関数式に代入して演算し)、燃料噴射量の増量補正における現在設定するべき増分を知得する。さらに、現在の燃料噴射量の増量補正における増分をキーとしてマップを検索し(または、関数式に代入して演算し)、現在設定するべきバルブオーバラップ期間の長さの上限を知得する。その上で、燃料噴射量の増量補正及びVVT機構6を介した吸気バルブタイミングの操作を実行する。吸気バルブタイミングの操作では、上記のマップから知得した上限の範囲内で、現在のエンジン回転数に応じて定まる本来のバルブオーバラップ期間に補正量を加増し、バルブオーバラップ期間を本来の期間よりも拡大する。   At the time immediately after the cold start of the internal combustion engine, the ECU performs the integrated value of the intake air amount or the fuel injection amount from the start to the present time and the length of the valve overlap period (the accumulated time or the valve overlap period up to the present time). The map is searched using the key (which may be an average) as a key (or calculated by substituting it into a function expression), and the current warming degree of the intake port is obtained. Next, the map is searched using the current degree of warming of the intake port as a key (or calculated by substituting it into a function equation), and the increment to be set at present in the increase correction of the fuel injection amount is obtained. Further, the map is searched using the increment in the increase correction of the current fuel injection amount as a key (or calculated by substituting it into the function formula), and the upper limit of the length of the valve overlap period to be set is obtained. After that, the fuel injection amount increase correction and the intake valve timing operation via the VVT mechanism 6 are executed. In the intake valve timing operation, the correction amount is added to the original valve overlap period determined according to the current engine speed within the upper limit range obtained from the above map, and the valve overlap period is set to the original period. Than to expand.

気筒1に充填された吸気量(または、燃料噴射量)の積算値が所定値に到達したならば、内燃機関の各所がある程度以上暖機されたと考えられることから、以後、バルブオーバラップ期間の補正量を逓減させる。   If the integrated value of the intake air amount (or fuel injection amount) filled in the cylinder 1 reaches a predetermined value, it is considered that each part of the internal combustion engine has been warmed up to some extent. Decrease the correction amount.

上述したバルブオーバラップ期間の長さを拡大させる補正は、冷間始動時、即ち内燃機関の温度が所定値以下の低温状態での始動時にのみ実行する。内燃機関の温度は、冷却水温信号dを参照して知得できる。アイドルストップのような内燃機関の停止期間が短い場合において、始動時の内燃機関の温度が既に所定値以上であるならば、ポートウェットの発生量が少なく、バルブオーバラップ期間の拡大補正は不要である。よって、バルブオーバラップ期間の補正量を0のままとする。   The above-described correction for increasing the length of the valve overlap period is executed only at the cold start, that is, at the start in a low temperature state where the temperature of the internal combustion engine is equal to or lower than a predetermined value. The temperature of the internal combustion engine can be obtained by referring to the coolant temperature signal d. When the internal combustion engine is stopped for a short time, such as when the engine is idle, if the internal combustion engine temperature at the start is already equal to or higher than the predetermined value, the amount of port wet generation is small and correction for expansion of the valve overlap period is unnecessary. is there. Therefore, the correction amount for the valve overlap period remains 0.

本実施形態では、吸気バルブ及び排気バルブがともに開弁するバルブオーバラップ期間の長さを増減させることができるVVT機構6が付帯した内燃機関を制御するものであって、内燃機関の冷間始動時、燃料噴射量を増量補正するとともにバルブオーバラップ期間を設けることとし、その燃料噴射量の増量補正における増分が多いほどバルブオーバラップ期間の長さの上限を低く設定し、さらに、内燃機関の始動からの吸気量または燃料噴射量の積算とバルブオーバラップ期間とから現在の吸気ポートの暖まり度合いを推測し、その暖まり度合いが大きいほど燃料噴射量の増量補正における増分を減らす内燃機関の制御装置0を構成した。   In the present embodiment, the internal combustion engine attached with the VVT mechanism 6 capable of increasing or decreasing the length of the valve overlap period in which both the intake valve and the exhaust valve are opened is controlled. When the fuel injection amount is increased and corrected, a valve overlap period is provided, and as the increase in the fuel injection amount increase is increased, the upper limit of the valve overlap period is set lower. A control device for an internal combustion engine that estimates the current warming degree of the intake port from the integration of the intake air amount or fuel injection amount from the start and the valve overlap period, and decreases the increment in the fuel injection amount increase correction as the warming degree increases 0 was configured.

本実施形態によれば、ポートウェットが発生して燃焼状態が悪化するときに、バルブオーバラップ期間を拡大することで気筒1の燃焼室から排出される排気を一部吸気ポートに流出させ、吸気ポートの壁面に付着した液状燃料の霧化を促進することが可能となる。従って、内燃機関の冷間始動時における有害物質の排出量の増加を好適に抑止できる。のみならず、冷間始動直後の時期の燃料噴射量の増量補正とバルブオーバラップ期間の拡大補正とが相まって混合気の空燃比が過剰にリッチ化する問題を回避できる上、燃料噴射量の増分を可及的に削減して不必要な燃料消費を減らすことができ、燃費性能の向上に寄与する。加えて、冷間始動時のエミッションの悪化に備えて触媒41に使用していた貴金属の量を削減することが許容されるようになるので、コストの低廉化に資する。   According to the present embodiment, when port wet occurs and the combustion state deteriorates, a part of the exhaust discharged from the combustion chamber of the cylinder 1 is caused to flow out to the intake port by extending the valve overlap period. It becomes possible to promote atomization of the liquid fuel adhering to the wall surface of the port. Therefore, an increase in the emission amount of harmful substances at the time of cold start of the internal combustion engine can be suitably suppressed. In addition to avoiding the problem that the air-fuel ratio of the air-fuel mixture becomes excessively rich due to the increase correction of the fuel injection amount at the time immediately after the cold start and the expansion correction of the valve overlap period, the increase in the fuel injection amount can be avoided. Can be reduced as much as possible to reduce unnecessary fuel consumption, which contributes to improved fuel efficiency. In addition, it is allowed to reduce the amount of noble metal used in the catalyst 41 in preparation for deterioration of emissions during cold start, which contributes to cost reduction.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、バルブオーバラップ期間を増減させるためのVVT機構の具体的態様は任意であり、一意に限定されない。吸気カムシャフトのクランクシャフトに対する回転位相を進角/遅角させるもの以外にも、排気バルブを開閉させる排気カムシャフトのクランクシャフトに対する回転位相を進角/遅角させるもの、吸気バルブまたは排気バルブを開弁駆動するカムを複数用意しておきそれらカムを適宜使い分けるもの、ロッカーアームのレバー比を電動機を介して変化させるもの、吸気バルブまたは排気バルブを電磁ソレノイドバルブとしたもの等が知られており、それら種々の機構の中から選択して採用することが許される。   The present invention is not limited to the embodiment described in detail above. For example, the specific mode of the VVT mechanism for increasing / decreasing the valve overlap period is arbitrary and not uniquely limited. In addition to those that advance / retard the rotation phase of the intake camshaft with respect to the crankshaft, those that advance / retard the rotation phase of the exhaust camshaft that opens and closes the exhaust valve with respect to the crankshaft, intake valves or exhaust valves There are several known cams that use multiple cams to open the valve and use them appropriately, those that change the lever ratio of the rocker arm via an electric motor, and those that use an intake or exhaust valve as an electromagnetic solenoid valve. These various mechanisms are allowed to be selected and adopted.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
11…インジェクタ
6…可変バルブタイミング(VVT)機構
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 1 ... Cylinder 11 ... Injector 6 ... Variable valve timing (VVT) mechanism

Claims (1)

吸気バルブ及び排気バルブがともに開弁するバルブオーバラップ期間の長さを増減させることができる可変バルブタイミング機構が付帯した内燃機関を制御するものであって、
内燃機関の冷間始動時、燃料噴射量を増量補正するとともにバルブオーバラップ期間を設けることとし、その燃料噴射量の増量補正における増分が多いほどバルブオーバラップ期間の長さの上限を低く設定し、
さらに、内燃機関の始動からの吸気量または燃料噴射量の積算とバルブオーバラップ期間とから現在の吸気ポートの暖まり度合いを推測し、その暖まり度合いが大きいほど燃料噴射量の増量補正における増分を減らす内燃機関の制御装置。
Controlling an internal combustion engine with a variable valve timing mechanism that can increase or decrease the length of the valve overlap period in which both the intake valve and the exhaust valve are opened,
When the internal combustion engine is cold started, the fuel injection amount is corrected to be increased and a valve overlap period is provided.The larger the increment in the fuel injection amount increase correction, the lower the upper limit of the valve overlap period. ,
Furthermore, the current warming degree of the intake port is estimated from the sum of the intake air amount or fuel injection amount from the start of the internal combustion engine and the valve overlap period, and the increase in the fuel injection amount increase correction decreases as the warming degree increases. Control device for internal combustion engine.
JP2014198181A 2014-09-29 2014-09-29 Internal combustion engine control engine Pending JP2016070125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198181A JP2016070125A (en) 2014-09-29 2014-09-29 Internal combustion engine control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198181A JP2016070125A (en) 2014-09-29 2014-09-29 Internal combustion engine control engine

Publications (1)

Publication Number Publication Date
JP2016070125A true JP2016070125A (en) 2016-05-09

Family

ID=55866339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198181A Pending JP2016070125A (en) 2014-09-29 2014-09-29 Internal combustion engine control engine

Country Status (1)

Country Link
JP (1) JP2016070125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216292A1 (en) * 2017-05-23 2018-11-29 アイシン精機株式会社 Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216292A1 (en) * 2017-05-23 2018-11-29 アイシン精機株式会社 Control device for internal combustion engine
CN110662891A (en) * 2017-05-23 2020-01-07 爱信精机株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5310733B2 (en) Control device for internal combustion engine
JP6565875B2 (en) Control device for internal combustion engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
US11313296B2 (en) Control device for internal combustion engine
JP2016217286A (en) Control device of engine system
JP2019132196A (en) Controller of internal combustion engine
JP2016070125A (en) Internal combustion engine control engine
JP2014227937A (en) Controller of internal combustion engine
JP2018105164A (en) Device for controlling internal combustion engine
JP7047597B2 (en) Internal combustion engine
JP2020139449A (en) Internal combustion engine
WO2016104733A1 (en) Control device for internal combustion engine
JP6896331B2 (en) Internal combustion engine control device
JP4415803B2 (en) Control device for internal combustion engine
JP6261326B2 (en) Control device for internal combustion engine
JP6914592B2 (en) Internal combustion engine control device
JP6210744B2 (en) Control device for internal combustion engine
JP7555677B2 (en) Control device for internal combustion engine
JP7218054B2 (en) Control device for internal combustion engine
JP4816264B2 (en) Fuel injection control device for internal combustion engine
JP4978322B2 (en) Fuel supply device
JP2010248965A (en) Starting control system of internal combustion engine
JP6108758B2 (en) Control device
JP2019007464A (en) Control device of internal combustion engine
JP2020084838A (en) Control device of internal combustion engine