JP2016069589A - Method for producing aqueous dispersion of cellulose nanofibers - Google Patents

Method for producing aqueous dispersion of cellulose nanofibers Download PDF

Info

Publication number
JP2016069589A
JP2016069589A JP2014202762A JP2014202762A JP2016069589A JP 2016069589 A JP2016069589 A JP 2016069589A JP 2014202762 A JP2014202762 A JP 2014202762A JP 2014202762 A JP2014202762 A JP 2014202762A JP 2016069589 A JP2016069589 A JP 2016069589A
Authority
JP
Japan
Prior art keywords
cmc
salt
aqueous dispersion
cellulose
cellulose nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202762A
Other languages
Japanese (ja)
Other versions
JP5727660B1 (en
Inventor
橋本 賀之
Yoshiyuki Hashimoto
賀之 橋本
祐輔 花木
Yusuke Hanaki
祐輔 花木
太一 後藤
Taichi Goto
太一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53437889&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016069589(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2014202762A priority Critical patent/JP5727660B1/en
Application granted granted Critical
Publication of JP5727660B1 publication Critical patent/JP5727660B1/en
Publication of JP2016069589A publication Critical patent/JP2016069589A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Seasonings (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Dairy Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aqueous dispersion of cellulose nanofibers derived from a partially acidified CMC salt, which suppresses temporal changes in appearance and gel properties of the aqueous dispersion of cellulose nanofibers derived from a partially acidified CMC salt, and which can suppress temporal changes in thickening property, gelling property, shape retention property, emulsion stability, and dispersion stability of a product containing the aqueous dispersion of cellulose nanofibers derived from a partially acidified CMC salt.SOLUTION: The method for producing an aqueous dispersion of cellulose nanofibers derived from a partially acidified CMC salt, comprises the steps of: (i) converting raw material pulp into alkali cellulose, followed further by carboxymethylation to produce a carboxymethylcellulose (CMC) salt, (ii)converting the CMC salt into a partially acidified CMC, and (v) subjecting the obtained partially acidified CMC salt to a fibrillation and dispersion treatment.SELECTED DRAWING: None

Description

本発明は、部分酸型カルボキシメチルセルロース(CMC)塩セルロースナノファイバー水分散体の製造方法、並びに該製造方法によって得られる食品および化粧料に関する。   The present invention relates to a method for producing a partial acid carboxymethylcellulose (CMC) salt cellulose nanofiber aqueous dispersion, and a food and a cosmetic obtained by the production method.

従来、有限な資源である石油由来の高分子材料が多用されていたが、近年、環境に対する負荷の少ない技術が脚光を浴びるようになり、かかる技術背景の下、天然に多量に存在するバイオマスであるセルロース繊維を使った材料が注目されている。例えば、セルロース繊維を使った材料として、ナノサイズの繊維径をもったセルロース繊維(セルロースナノファイバー)に関する技術が注目されている。特許文献1には、アニオン変性されたセルロースが高圧ホモジナイザーで処理されることを特徴とするカルボキシメチル置換度の低いセルロースナノファイバーの製造方法が開示されている。   Conventionally, petroleum-derived polymer materials, which are finite resources, have been widely used, but in recent years, technologies with low environmental impact have come to the spotlight. A material using a certain cellulose fiber has attracted attention. For example, as a material using cellulose fibers, a technique related to cellulose fibers (cellulose nanofibers) having a nano-sized fiber diameter has attracted attention. Patent Document 1 discloses a method for producing cellulose nanofibers having a low degree of carboxymethyl substitution, characterized in that anion-modified cellulose is treated with a high-pressure homogenizer.

また、部分酸型カルボキシメチルセルロースは、カルボキシメチルセルロース塩(以下、CMC塩という)のアルカリ塩の部分を部分的に酸型に変換したものである。従来技術によれば、CMC塩はアルカリ塩では水溶性であるのに対し、酸型では水に不溶となるので、酸型の置換基数の増大により、水への膨潤度を小さくすることができるため、この特徴が注目されている。特許文献2には、部分酸型CMCの製造方法が開示されている。   Moreover, the partial acid type carboxymethyl cellulose is obtained by partially converting an alkali salt portion of a carboxymethyl cellulose salt (hereinafter referred to as CMC salt) to an acid type. According to the prior art, CMC salt is water-soluble in alkali salt, but insoluble in water in acid form, so that the degree of swelling in water can be reduced by increasing the number of substituents in acid form. Therefore, this feature is attracting attention. Patent Document 2 discloses a method for producing a partial acid type CMC.

特開2013−185122号公報JP 2013-185122 A 特開2008−19344号公報JP 2008-19344 A

近年の要求性能の向上に伴い、セルロースナノファイバー水分散体外観の変化、ゲル性の変化の経時安定性が求められるようになった。また、セルロースナノファイバーを使用した増粘剤等についても、増粘性等の経時変化が小さいことが求められるようになった。   Along with the improvement in required performance in recent years, a change in appearance of cellulose nanofiber aqueous dispersion and a change in gel property over time have been required. In addition, thickeners using cellulose nanofibers are also required to have little change over time such as thickening.

本発明は、上記問題点に鑑みて為されたものであり、本発明によれば、部分酸型CMC塩セルロースナノファイバー水分散体の経時的な外観の変化、ゲル性の変化を抑制し、かつ部分酸型CMC塩セルロースナノファイバー水分散体含有品の増粘性、ゲル化性、保形性、乳化安定性、分散安定性の経時変化を抑制しうる部分酸型CMC塩セルロースナノファイバー水分散体の製造方法を提供することを課題とする。   The present invention has been made in view of the above problems, and according to the present invention, the change in appearance over time of the partial acid CMC salt cellulose nanofiber aqueous dispersion, the change in gel properties, And partial acid type CMC salt cellulose nanofiber aqueous dispersion that can suppress changes in viscosity, gelation, shape retention, emulsification stability, dispersion stability over time of products containing aqueous dispersions of partial acid type CMC salt cellulose nanofibers It is an object to provide a method for manufacturing a body.

発明者らは、上記課題を解決するために鋭意検討を行ったところ、特許文献1記載の方法では、置換度が0.30より大きくなると一部成分が溶解して、増粘剤やゲル化剤として機能が大きく損なわれるといった問題があることが分かった。また、当該技術では、酸性条件下、例えば、pH5.0を下回る条件下で使用をする際、いわゆるpHショックによってセルロースナノファイバーの沈降、凝集物の発生、粘度の急激な低下、ゲルの崩壊などの現象が見られ、耐酸性に問題があることが分かった。セルロースナノファイバー水分散体は、前記の如く、幅広い用途分野での応用が期待されているが、その本来の機能を保持しながら好適に使用できるpH領域が狭いという課題を抱えており、特に、酸性領域では増粘、ゲル化、保形性、乳化安定化、分散安定化などの機能が著しく低下する問題があった。例えば、人の皮膚表面のpHは通常4.5〜6.0の弱酸性であり、スキンケア製品や化粧品、トイレタリー製品などでは弱酸性の商品設計となっているものが多い。また、食品や飲料、調味液類、等において、その成分である、醗酵乳のpHは通常pH3.0〜4.5の範囲にあり、果汁としては、 レモン果汁でpH3.3〜4.0、リンゴ果汁でpH3.9〜4.5、グレープフルーツ果汁でpH3程度、トマト果汁でpH4程度であり、クエン酸やリンゴ酸、酢酸などの有機酸も同様のpH値を示し、味噌でpH4.5〜5.0、醤油でpH4.0〜5.0である。これら成分からなる、乳酸菌飲料やヨーグルト、酸性乳飲料、スポーツドリンク(pH3.0〜3.6)、乳幼児用イオン飲料(pH3.6〜3.9)、機能型ドリンク、ゼリー飲料、カロリー摂取型ドリンク、デザートドリンク、ベビーフード、更に、ジャム、ドレッシング、マヨネーズ、ケチャップ、ウスターソース、バーベキューソース、焼肉ソース、各種食用タレ、つゆ、ジュレ状調味料、等は概ねpH3.0〜6.5の範囲にあり、これら用途で添加剤として使用される増粘剤、ゲル化剤、保形剤、乳化安定化剤、分散安定化剤、等は、弱酸性領域でpHショックを生じることなく、性能が保持され、その性能の経時変化が小さいものが好ましい。一方、特許文献2に記載の方法は、水に不溶性の部分酸型CMC塩を平均粒子径10〜100μm程度の粉末状、或いは、粉末を水に一部膨潤させた状態で使用するものであり、ナノファイバー由来の性能が得られるものではない。   The inventors have conducted intensive studies in order to solve the above problems. As a result, in the method described in Patent Document 1, when the degree of substitution is greater than 0.30, some components are dissolved, resulting in a thickener or gelation. It has been found that there is a problem that the function is greatly impaired as an agent. In addition, in this technique, when used under acidic conditions, for example, below pH 5.0, so-called pH shock causes precipitation of cellulose nanofibers, generation of aggregates, rapid decrease in viscosity, gel collapse, etc. It was found that there was a problem with acid resistance. As described above, the cellulose nanofiber aqueous dispersion is expected to be applied in a wide range of application fields, but has a problem that the pH range that can be suitably used while maintaining its original function is narrow, In the acidic region, there is a problem that functions such as thickening, gelation, shape retention, emulsification stabilization and dispersion stabilization remarkably deteriorate. For example, the pH of the human skin surface is usually weakly acidic, 4.5 to 6.0, and many skin care products, cosmetics, toiletries, etc. are designed to be weakly acidic. Moreover, in foods, beverages, seasonings, etc., the pH of the fermented milk, which is a component thereof, is usually in the range of pH 3.0 to 4.5, and the fruit juice is pH 3.3 to 4.0 with lemon juice. PH 3.9 to 4.5 for apple juice, pH 3 for grapefruit juice, pH 4 for tomato juice, and organic acids such as citric acid, malic acid and acetic acid show similar pH values, and pH 4.5 for miso -5.0, soy sauce and pH 4.0-5.0. Containing lactic acid bacteria beverages and yogurts, acidic milk beverages, sports drinks (pH 3.0 to 3.6), infant ion beverages (pH 3.6 to 3.9), functional drinks, jelly beverages, calorie intake type Drinks, dessert drinks, baby food, jams, dressings, mayonnaise, ketchup, Worcester sauce, barbecue sauce, grilled meat sauce, various edible sauces, soy sauce, jelly-like seasonings, etc. are generally in the range of pH 3.0 to 6.5. Yes, thickeners, gelling agents, shape-retaining agents, emulsion stabilizers, dispersion stabilizers, etc. used as additives in these applications retain their performance without causing pH shock in weakly acidic regions It is preferable that the performance change with time is small. On the other hand, the method described in Patent Document 2 uses a partial acid type CMC salt insoluble in water in the form of a powder having an average particle size of about 10 to 100 μm, or in a state where the powder is partially swollen in water. The performance derived from nanofiber is not obtained.

発明者らは、上記課題を解決するために鋭意検討を行い、セルロースナノファイバー水分散体を調製する原料として、部分的にアニオン変性されたセルロース、即ち、カルボキシメチル置換度を特に限定した低置換度カルボキシメチルセルロース塩(低置換度CMC塩)から、更に、そのアルカリ金属塩である低置換度CMC塩の一部を酸型に変換して得た部分酸型CMC塩を用いることで、より広いpH領域、特に、弱酸性領域でpHショックを生じることなく、増粘剤、ゲル化剤、保形剤、乳化安定化剤、分散安定化剤、等としての性能を発揮し、その性能の経時変化が小さいことを見出し、本発明を完成させるに至った。   The inventors have conducted extensive studies to solve the above-mentioned problems, and as a raw material for preparing a cellulose nanofiber aqueous dispersion, partially anion-modified cellulose, that is, a low substitution with a particularly limited degree of carboxymethyl substitution By using a partial acid type CMC salt obtained by converting a part of the low substitution CMC salt, which is an alkali metal salt thereof, into an acid form from the carboxymethyl cellulose salt (low substitution CMC salt). Demonstrates performance as a thickener, gelling agent, shape-retaining agent, emulsion stabilizer, dispersion stabilizer, etc. without causing pH shock in the pH region, particularly weakly acidic region. The present inventors have found that the change is small and have completed the present invention.

すなわち、本発明は下記に掲げる発明に関する。
(1)(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化してカルボキシメチルセルロース(CMC)塩を製造する工程、
(ii)前記CMC塩を部分酸型CMCに変換する工程、
(v)得られた部分酸型CMC塩を解繊分散処理する工程、
を有する部分酸型CMC塩セルロースナノファイバー水分散体の製造方法。
(2)(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化してカルボキシメチルセルロース(CMC)塩を製造する工程、
(ii)前記CMC塩を部分酸型CMCに変換する工程、
(iii)前記部分酸型CMCを洗浄する工程、
(iv)洗浄した部分酸型CMCと、所定量のアルカリを反応させる工程、
(v)得られた部分酸型CMC塩を解繊分散処理する工程、
を有する部分酸型CMC塩セルロースナノファイバー水分散体の製造方法。
(3)前記、部分酸型CMC塩が、グルコース単位当たりのカルボキシメチル置換度が0.02〜0.80であり、かつ、酸型置換基が全置換基の1.0〜80.0%である、(1)または(2)記載のセルロースナノファイバー水分散体の製造方法。
(4)(1)〜(3)いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体の溶媒を除去する工程、を有するセルロースナノファイバーの製造方法。
(5)(1)〜(3)いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体。
(6)(1)〜(3)いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体を含有する食品。
(7)20℃におけるpHが3.0〜5.5である、(6)記載の食品。
(8)(1)〜(3)いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体を含有する、20℃におけるpHが3.0〜5.5化粧料。
That is, this invention relates to the invention hung up below.
(1) (i) Step of producing raw material pulp into alkali cellulose and further carboxymethylating to produce carboxymethyl cellulose (CMC) salt,
(Ii) converting the CMC salt into a partial acid CMC;
(V) a step of defibrating and dispersing the obtained partial acid CMC salt;
The manufacturing method of the partial acid type CMC salt cellulose nanofiber aqueous dispersion which has NO.
(2) (i) converting the raw material pulp to alkali cellulose and further carboxymethylating to produce a carboxymethylcellulose (CMC) salt;
(Ii) converting the CMC salt into a partial acid CMC;
(Iii) washing the partial acid type CMC;
(Iv) reacting the washed partial acid type CMC with a predetermined amount of alkali,
(V) a step of defibrating and dispersing the obtained partial acid CMC salt;
The manufacturing method of the partial acid type CMC salt cellulose nanofiber aqueous dispersion which has NO.
(3) In the partial acid type CMC salt, the degree of carboxymethyl substitution per glucose unit is 0.02 to 0.80, and the acid type substituent is 1.0 to 80.0% of the total substituents. The method for producing an aqueous dispersion of cellulose nanofibers according to (1) or (2).
(4) A method for producing cellulose nanofibers, comprising a step of removing the solvent of the cellulose nanofiber aqueous dispersion obtained by the production method according to any one of (1) to (3).
(5) A cellulose nanofiber aqueous dispersion obtained by the production method according to any one of (1) to (3).
(6) Foodstuff containing the cellulose nanofiber aqueous dispersion obtained by the manufacturing method in any one of (1)-(3).
(7) The food according to (6), wherein the pH at 20 ° C. is 3.0 to 5.5.
(8) A cosmetic having a pH of 3.0 to 5.5 at 20 ° C. containing the aqueous dispersion of cellulose nanofibers obtained by the production method according to any one of (1) to (3).

本発明によれば、部分酸型CMC塩セルロースナノファイバー水分散体の経時的な外観の変化、ゲル性の変化を抑制し、かつ部分酸型CMC塩セルロースナノファイバー水分散体含有品の増粘性、ゲル化性、保形性、乳化安定性、分散安定性の経時変化を抑制しうる部分酸型CMC塩セルロースナノファイバー水分散体の製造方法を提供することができる。   According to the present invention, the change in the appearance of the partial acid type CMC salt cellulose nanofiber aqueous dispersion over time, the change in gel property is suppressed, and the viscosity increase of the product containing the partial acid type CMC salt cellulose nanofiber aqueous dispersion In addition, it is possible to provide a method for producing an aqueous dispersion of partially acid CMC salt cellulose nanofibers that can suppress changes over time in gelling properties, shape retention properties, emulsion stability, and dispersion stability.

本発明の部分酸型CMC塩セルロースナノファイバー水分散体の製造方法は、(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化(以下、エーテル化と記する場合がある)してカルボキシメチルセルロース(CMC)塩を製造する工程、(ii)前記CMC塩を部分酸型CMCに変換する工程、(v)得られた部分酸型CMC塩を解繊分散処理する工程、を有する。   The method for producing a partial acid CMC salt cellulose nanofiber aqueous dispersion of the present invention comprises: (i) alkali pulping a raw material pulp, and further carboxymethylating (hereinafter sometimes referred to as etherification) to carboxymethylcellulose. (CMC) a step of producing a salt, (ii) a step of converting the CMC salt into a partial acid type CMC, and (v) a step of defibrating and dispersing the obtained partial acid type CMC salt.

本発明において、部分酸型CMCとは、CMC塩を酸によって部分的に遊離酸に変換したCMCをいう。   In the present invention, the partial acid type CMC refers to CMC obtained by partially converting a CMC salt into a free acid with an acid.

本発明におけるセルロースナノファイバーは、数平均繊維径が2nm以上200nm以下の状態まで解繊されていることが好ましい。   The cellulose nanofibers in the present invention are preferably defibrated to a state where the number average fiber diameter is 2 nm or more and 200 nm or less.

<工程(i)>
工程(i)で使用する原料パルプとしては、特に限定されないが、例えば、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ、バガスパルプ等の非木材系パルプなどが挙げられる。これらのうち、針葉樹系パルプ、広葉樹系パルプが好ましい。これらは1種又は2種以上を使用することができる。上記原料パルプは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができるため好ましい。また、上記原料パルプとして、単離、精製の後、乾燥させない(ネバードライ)で保存していたものを使用すると、ミクロフィブリルの集束体が膨潤しやすい状態であるため、反応効率を高め、微細化処理後の数平均繊維径を小さくすることができるため好ましい。
<Process (i)>
The raw material pulp used in step (i) is not particularly limited, and examples thereof include cotton pulp such as softwood pulp, hardwood pulp, cotton linter and cotton lint, and non-wood pulp such as straw pulp and bagasse pulp. Can be mentioned. Of these, softwood pulp and hardwood pulp are preferred. These can use 1 type (s) or 2 or more types. The raw material pulp is preferably subjected to a treatment for increasing the surface area, such as beating, because reaction efficiency can be increased and productivity can be increased. In addition, if the pulp that has been stored after being isolated and purified and not dried (never dry) is used as the raw material pulp, since the microfibril bundles are likely to swell, the reaction efficiency is improved, This is preferable because the number average fiber diameter after the crystallization treatment can be reduced.

工程(i)において、アルカリセルロース化に用いるアルカリとしては、特に限定されないが、例えば、アルカリ金属水酸化物が使用することができる。アルカリ金属水酸化物としては、特に限定されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、等の1 価の金属の水酸化物などが挙げられる。これらの中で、価格および得られるCMC塩の特性の点から水酸化ナトリウムが好ましい。これらは1種又は2種以上を使用することができる。   Although it does not specifically limit as an alkali used for alkali cellulose conversion in process (i), For example, an alkali metal hydroxide can be used. Although it does not specifically limit as an alkali metal hydroxide, For example, the hydroxide of monovalent metals, such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. are mentioned. Among these, sodium hydroxide is preferable from the viewpoint of the price and the properties of the obtained CMC salt. These can use 1 type (s) or 2 or more types.

工程(i)において、前記アルカリの使用量は、原料パルプ中のセルロースのグルコース単位量に対して、モル比で0.2〜6.0倍が好ましく、0.4〜4.0倍がより好ましい。これらの範囲であれば、アルカリセルロースを効率良く得ることができエーテル化が充分となる、また、アルカリの使用量が効率的であり粘度の観点からも好ましい。   In the step (i), the amount of the alkali used is preferably 0.2 to 6.0 times, more preferably 0.4 to 4.0 times in terms of molar ratio with respect to the glucose unit amount of cellulose in the raw pulp. preferable. Within these ranges, alkali cellulose can be obtained efficiently and etherification is sufficient, and the amount of alkali used is efficient, which is preferable from the viewpoint of viscosity.

前記アルカリセルロース化を行うときの反応温度は、20〜60℃が好ましく、30〜50℃がより好ましい。アルカリセルロース化の反応温度がこれらの範囲であれば、アルカリセルロースを充分に生成させることができ、粘度の観点からも好ましい。また、前記アルカリセルロース化を行うときの反応時間は、30〜90分間が好ましく、40〜80分間がより好ましい。反応時間がこれらの範囲であれば、アルカリセルロースを充分に生成させることができ、粘度の観点からも好ましい。   20-60 degreeC is preferable and, as for the reaction temperature when performing the said alkali cellulose conversion, 30-50 degreeC is more preferable. If the reaction temperature for alkali cellulose formation is within these ranges, alkali cellulose can be sufficiently produced, which is preferable from the viewpoint of viscosity. Moreover, 30 to 90 minutes are preferable and, as for the reaction time when performing the said alkali cellulose conversion, 40 to 80 minutes are more preferable. If reaction time is these ranges, alkali cellulose can fully be produced | generated and it is preferable also from a viscosity viewpoint.

工程(i)において、アルカリセルロース化に用いる溶媒としては、特に限定されないが、例えば、含水有機溶媒を使用することができる。含水有機溶媒は、アルカリとの相溶性の観点から好ましい。含水有機溶媒の水と有機溶媒の質量比は、特に限定されないが、水:有機溶媒が10:90〜40:60が好ましく、15:85〜20:80がより好ましい。これらの範囲であれば、反応系中のアルカリ濃度を充分に高濃度に保つことができる。有機溶媒としては、特に限定されないが、例えば、エタノール、メタノール、n−プロピルアルコール、イソプロピルアルコール( 以下、I PA という) 、n−ブチルアルコール、イソブチルアルコールなどの炭素数1〜4のアルコール類、アセトン、ジエチルケトン、メチルエチルケトンなどのケトン類、ジオキサン、ジエチルエーテルなどが挙げられる。これらは1種又は2種以上を使用することができる。入手の容易さ、低価格、取り扱いやすさの点で、I PA 、エタノール、メタノールが好ましい。また、エタノール−トルエン混合溶媒など、アルコール系溶剤と芳香族系溶媒の混合溶媒も使用可能である。   Although it does not specifically limit as a solvent used for alkali cellulose conversion in process (i), For example, a water-containing organic solvent can be used. The water-containing organic solvent is preferable from the viewpoint of compatibility with alkali. The mass ratio of the water-containing organic solvent water to the organic solvent is not particularly limited, but water: organic solvent is preferably 10:90 to 40:60, and more preferably 15:85 to 20:80. Within these ranges, the alkali concentration in the reaction system can be kept sufficiently high. Although it does not specifically limit as an organic solvent, For example, C1-C4 alcohols, such as ethanol, methanol, n-propyl alcohol, isopropyl alcohol (henceforth IPA), n-butyl alcohol, isobutyl alcohol, acetone , Ketones such as diethyl ketone and methyl ethyl ketone, dioxane, diethyl ether and the like. These can use 1 type (s) or 2 or more types. IPA, ethanol, and methanol are preferable in terms of availability, low cost, and ease of handling. A mixed solvent of an alcohol solvent and an aromatic solvent such as an ethanol-toluene mixed solvent can also be used.

前記含水有機溶媒の配合量は、原料パルプに対して、重量比で2.0〜10倍が好ましく、2.5〜8倍がより好ましい。これらの範囲であれば、含水有機溶媒と原料パルプ中のセルロースとが充分に撹拌混合されるため、撹拌時の反応機に対する負荷が大きくならず、また均一反応の観点からも好ましい。さらに原料経費の観点からも好ましい。   The blending amount of the water-containing organic solvent is preferably 2.0 to 10 times by weight and more preferably 2.5 to 8 times the raw material pulp. Within these ranges, the water-containing organic solvent and the cellulose in the raw pulp are sufficiently stirred and mixed, so that the load on the reactor during stirring does not increase, and is also preferable from the viewpoint of uniform reaction. Furthermore, it is preferable from the viewpoint of raw material costs.

工程(i)においては、次に得られたアルカリセルロースにエーテル化剤を反応させてエーテル化を行なう。エーテル化は、アルカリ過剰下で進行させることが好ましい。エーテル化剤としては、特に限定されないが、例えば、モノクロル酢酸、モノクロル酢酸ナトリウム、モノクロル酢酸メチル、モノクロル酢酸エチルなどが挙げられる。これらのうち、モノクロル酢酸が好ましい。これらは1種又は2種以上を使用することができる。   In step (i), etherification is carried out by reacting the obtained alkali cellulose with an etherifying agent. The etherification is preferably allowed to proceed under an excess of alkali. The etherifying agent is not particularly limited, and examples thereof include monochloroacetic acid, monochlorosodium acetate, monochloromethyl acetate, monochloroethyl acetate and the like. Of these, monochloroacetic acid is preferred. These can use 1 type (s) or 2 or more types.

前記エーテル化剤の使用量は、目的のエーテル化度によって決定されるため、特に制限はないが、原料パルプ中のグルコース単位量に対して、モル比で0.5〜6倍が好ましく、2〜4倍がより好ましい。エーテル化剤の配合量が、0.5倍以上であれば、CMC塩のエーテル化度が十分であり、目的とするエーテル化度が得られやすい。一方、エーテル化剤の配合量が6倍以下であると、高価なエーテル化剤を無駄に使用することがなく、好ましい。   The amount of the etherifying agent used is determined according to the desired degree of etherification, and is not particularly limited. However, the molar ratio is preferably 0.5 to 6 times the glucose unit amount in the raw pulp. ~ 4 times is more preferable. If the blending amount of the etherifying agent is 0.5 times or more, the degree of etherification of the CMC salt is sufficient, and the desired degree of etherification is easily obtained. On the other hand, when the blending amount of the etherifying agent is 6 times or less, an expensive etherifying agent is not wasted, which is preferable.

前記エーテル化における反応温度は特に限定されないが、75〜100℃が好ましく、80〜90℃がより好ましい。反応温度が75℃以上であれば、エーテル化が充分である。一方、反応温度が100℃以下であれば、反応溶媒の沸点を超えず、溶媒が揮発しないことから作業性の観点から好ましい。また、反応時間は特に限定されないが、50〜120分間が好ましく、50〜90分間がより好ましい。反応時間が50分間以上であればエーテル化が充分である。一方、反応時間が90分間以下であれば、作業性が良好であり、得られるCMC塩の粘度の観点からも好ましい。   Although the reaction temperature in the said etherification is not specifically limited, 75-100 degreeC is preferable and 80-90 degreeC is more preferable. If the reaction temperature is 75 ° C. or higher, etherification is sufficient. On the other hand, if the reaction temperature is 100 ° C. or lower, the boiling point of the reaction solvent is not exceeded and the solvent does not volatilize, which is preferable from the viewpoint of workability. The reaction time is not particularly limited, but is preferably 50 to 120 minutes, more preferably 50 to 90 minutes. If the reaction time is 50 minutes or longer, etherification is sufficient. On the other hand, if reaction time is 90 minutes or less, workability | operativity will be favorable and it is preferable also from a viewpoint of the viscosity of the CMC salt obtained.

前記エーテル化反応終了後、反応溶媒として用いた有機溶媒を一部除去する。有機溶媒を一部除去したCMC塩の固形分濃度は、特に限定されないが、30〜80重量%が好ましく、40〜70重量%がより好ましく、50〜60重量%がさらに好ましい。CMC塩の固形分濃度が30重量%より以上であれば、CMC塩はスラリー状態とならず、以降の撹拌効率の観点から好ましい。一方、CMC塩の固形分濃度が80重量%以下であれば、CMC塩固形分が高くならず、撹拌時の負荷が大きくならないため、作業性が良好である。   After completion of the etherification reaction, part of the organic solvent used as the reaction solvent is removed. The solid content concentration of the CMC salt from which a part of the organic solvent has been removed is not particularly limited, but is preferably 30 to 80% by weight, more preferably 40 to 70% by weight, and further preferably 50 to 60% by weight. If the solid content concentration of the CMC salt is more than 30% by weight, the CMC salt is not in a slurry state and is preferable from the viewpoint of the subsequent stirring efficiency. On the other hand, when the solid content concentration of the CMC salt is 80% by weight or less, the CMC salt solid content does not increase and the load during stirring does not increase, so that workability is good.

<工程(ii)>
工程(i)で得られたCMC塩は、酸を添加することにより、部分酸型CMCに変換する工程である。酸としては、特に限定されないが、例えば、硫酸、塩酸、クエン酸、リンゴ酸、モノクロル酢酸などが挙げられる。これらは1種又は2種以上を使用することができる。
これらの中で、酸型CMCに変換する効率が高い点で、硫酸、塩酸が好ましい。
<Step (ii)>
The CMC salt obtained in the step (i) is a step of converting to a partial acid type CMC by adding an acid. Although it does not specifically limit as an acid, For example, a sulfuric acid, hydrochloric acid, a citric acid, malic acid, a monochloroacetic acid etc. are mentioned. These can use 1 type (s) or 2 or more types.
Of these, sulfuric acid and hydrochloric acid are preferred because of their high efficiency of conversion to acid type CMC.

前記酸の添加量は、理論エーテル化度に対して、モル比で0.2〜3.0倍が好ましく、0.3〜2.5倍がより好ましい。これらの範囲であれば、酸置換度が好適となる。   The addition amount of the acid is preferably 0.2 to 3.0 times, more preferably 0.3 to 2.5 times in terms of molar ratio with respect to the theoretical degree of etherification. Within these ranges, the acid substitution degree is suitable.

前記酸を添加後の反応温度は、特に限定されないが、50〜110℃が好ましく、65〜105℃がより好ましく、60〜80℃がさらに好ましい。反応温度が、これらの範囲であれば、酸置換が充分となり、酸置換の反応時間が好適となることから酸置換の均一性の観点から好ましい。また、撹拌時間は、特に限定されないが、20〜80分間が好ましく、40〜60分間がより好ましい。撹拌時間が、これらの範囲であれば、酸置換が充分であり、作業性の観点からも好ましい。   The reaction temperature after addition of the acid is not particularly limited, but is preferably 50 to 110 ° C, more preferably 65 to 105 ° C, and further preferably 60 to 80 ° C. When the reaction temperature is within these ranges, acid substitution is sufficient and the reaction time for acid substitution is suitable, which is preferable from the viewpoint of uniformity of acid substitution. Moreover, although stirring time is not specifically limited, 20-80 minutes are preferable and 40-60 minutes are more preferable. When the stirring time is within these ranges, acid substitution is sufficient, which is preferable from the viewpoint of workability.

<工程(v)>
工程(ii)、または後述する工程(iv)で得られた部分酸型CMCを、解繊分散処理することで、部分酸型CMC塩セルロースナノファイバー水分散体を得る工程である。
<Process (v)>
This is a step of obtaining a partial acid type CMC salt cellulose nanofiber aqueous dispersion by subjecting the partial acid type CMC obtained in the step (ii) or the step (iv) described later to defibration dispersion treatment.

工程(v)においては、特に限定されないが、例えば、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダー等の強力で叩解能力のある装置が好適に使用される。これらを使用することによりナノ粒子状に微細化することが可能となり、より効率的かつ高度なダウンサイジングが可能となる。これらのうち、高圧ホモジナイザーは、コンタミネーションが少ない、処理時間が短い、連続処理が可能、粒度分布がシャープで目的物の歩留まりが向上する、装置内の原料残留量が少なく回収率が向上するといった理由から、高圧ホモジナイザーが好適に使用される。本発明において、高圧ホモジナイザーとは、ポンプにより流体に加圧(高圧)し、流路に設けた非常に繊細な間隙より噴出させることにより、粒子間の衝突、圧力差による剪断力等の総合エネルギーによって乳化・分散・解細・粉砕・超微細化を行う装置をいう。なお、上記分散機としては、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー等を用いても差し支えない。   In the step (v), although not particularly limited, for example, a homomixer, a high-pressure homogenizer, an ultra-high pressure homogenizer, an ultrasonic dispersion treatment, a beater, a disc type refiner, a conical type refiner, a double disc type refiner, and a grinder A device having a strong and beating ability such as the above is preferably used. By using these, it becomes possible to make the particles finer, and more efficient and advanced downsizing becomes possible. Among these, the high-pressure homogenizer has low contamination, short processing time, continuous processing is possible, sharp particle size distribution improves the yield of the target product, and there is little residual amount of raw material in the apparatus and the recovery rate is improved. For this reason, a high pressure homogenizer is preferably used. In the present invention, the high-pressure homogenizer is a total energy such as a collision between particles and a shearing force due to a pressure difference by pressurizing (high-pressure) the fluid with a pump and ejecting it from a very delicate gap provided in the flow path. Refers to a device that performs emulsification, dispersion, pulverization, pulverization, and ultrafine processing. As the disperser, for example, a screw mixer, a paddle mixer, a disper mixer, a turbine mixer, or the like may be used.

本発明におけるホモジナイザーによる処理条件としては、特に限定されるものではないが、圧力条件としては、例えば70MPa以上、好ましくは90MPa以上、さらに好ましくは100MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、アニオン変性セルロースに予備処理を施すことも可能である。   The treatment condition with the homogenizer in the present invention is not particularly limited, but the pressure condition is, for example, 70 MPa or more, preferably 90 MPa or more, and more preferably 100 MPa or more. In addition, prior to defibration / dispersion with a high-pressure homogenizer, anion-modified cellulose can be pretreated using known mixing, stirring, emulsifying, and dispersing equipment such as a high-speed shear mixer as necessary. It is.

処理前の液の20℃におけるpHは特に限定されないが、約3〜7の範囲で維持されることが好ましい。水溶液の温度は約4〜40℃において任意であるが、反応は室温(20℃)で行うことも可能であり、温度制御を行なわないことも可能である。   The pH at 20 ° C. of the liquid before treatment is not particularly limited, but is preferably maintained in the range of about 3 to 7. The temperature of the aqueous solution is arbitrary at about 4 to 40 ° C., but the reaction can be performed at room temperature (20 ° C.) or temperature control can be omitted.

本発明の部分酸型CMC塩セルロースナノファイバー水分散体の製造方法では、前記工程(ii)の後、前記工程(v)の前に、(iii)前記部分酸型CMCを洗浄する工程、(iv)洗浄した部分酸型CMCと、所定量のアルカリを反応させる工程、を有することも好ましい態様である。   In the method for producing a partial acid type CMC salt cellulose nanofiber aqueous dispersion of the present invention, after the step (ii) and before the step (v), (iii) a step of washing the partial acid type CMC, iv) It is also a preferred embodiment to have a step of reacting the washed partial acid type CMC with a predetermined amount of alkali.

<工程(iii)>
工程(ii)で得られた部分酸型CMCを洗浄する工程である。洗浄溶媒としては、特に限定されないが、例えば、含水有機溶媒を使用することができる。含水有機溶媒の水と有機溶媒の質量比は、特に限定されないが、水:有機溶媒が10:90〜30:70が好ましく、15:85〜25:75がより好ましい。これらの範囲であれば、作業性の観点から好ましい。有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、n−プロピルアルコール、IPA、n−ブチルアルコール、イソブチルアルコールなどの炭素数1〜4のアルコール類、アセトン、ジエチルケトン、メチルエチルケトンなどのケトン類、ジオキサン、ジエチルエーテルなどが挙げられる。これらは1種又は2種以上を使用することができる。これらの中で、メタノールが入手の容易さ、低価格、蒸留・再生の操作の容易さの観点から好ましい。
<Step (iii)>
This is a step of washing the partial acid type CMC obtained in the step (ii). Although it does not specifically limit as a washing | cleaning solvent, For example, a water-containing organic solvent can be used. The mass ratio of the water-containing organic solvent water to the organic solvent is not particularly limited, but water: organic solvent is preferably 10:90 to 30:70, and more preferably 15:85 to 25:75. These ranges are preferable from the viewpoint of workability. Examples of the organic solvent include, but are not limited to, alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propyl alcohol, IPA, n-butyl alcohol, and isobutyl alcohol, and ketones such as acetone, diethyl ketone, and methyl ethyl ketone. , Dioxane, diethyl ether and the like. These can use 1 type (s) or 2 or more types. Among these, methanol is preferable from the viewpoints of availability, low cost, and ease of distillation / regeneration operation.

工程(iii)において、洗浄溶媒を分離する方法としては、公知の方法であれば、特に限定されない。例えば、遠心分離法が挙げられる。洗浄工程は1回または複数回行なうことができ、3〜5回繰り返すことが好ましい。分離された洗浄液中の遊離酸量は、特に限定されないが、0.05重量%以下が好ましく、検出限界以下であることがより好ましい。   In the step (iii), the method for separating the washing solvent is not particularly limited as long as it is a known method. For example, a centrifugation method is mentioned. The washing step can be performed once or a plurality of times, and is preferably repeated 3 to 5 times. The amount of free acid in the separated washing liquid is not particularly limited, but is preferably 0.05% by weight or less, and more preferably below the detection limit.

洗浄液の添加量は、工程(ii)で得られた部分酸型CMCの固形分に対して重量比で10〜30倍が好ましく、15〜25倍がより好ましい。洗浄液の添加量が、これらの範囲であれば、副生塩溶出量の点から、高純度化が可能となり、原材料使用量の点から、生産効率も良好となる。   The addition amount of the cleaning liquid is preferably 10 to 30 times by weight and more preferably 15 to 25 times the solid content of the partial acid type CMC obtained in the step (ii). If the addition amount of the cleaning liquid is within these ranges, high purity can be achieved in terms of the amount of by-product salt elution, and the production efficiency is also good in terms of the amount of raw material used.

洗浄する際の温度は、10〜50℃が好ましく、20〜40℃がより好ましい。洗浄する際の温度がこれらの範囲であれば、副生塩溶出量の点から、高純度化が可能となり、溶媒気化量の点から、作業環境上も好ましい。また、撹拌時間は、30〜60分間が好ましい。撹拌時間がこれらの範囲であれば、副生塩の溶出量が好適であり、作業性も良好である。   10-50 degreeC is preferable and the temperature at the time of washing | cleaning has more preferable 20-40 degreeC. If the temperature at the time of washing is within these ranges, high purity can be achieved from the viewpoint of the amount of by-product salt elution, and this is preferable from the viewpoint of the working environment from the viewpoint of the amount of solvent vaporization. Further, the stirring time is preferably 30 to 60 minutes. When the stirring time is within these ranges, the amount of by-product salt eluted is suitable, and the workability is also good.

工程(c)で洗浄した後の酸型CMCの固形分濃度は、30〜70重量%が好ましく、40〜60重量%がより好ましい。固形分濃度がこれらの範囲であれば、酸置換度が充分かつ均一となることから好ましい。   The solid content concentration of the acid type CMC after washing in the step (c) is preferably 30 to 70% by weight, more preferably 40 to 60% by weight. If the solid content concentration is within these ranges, it is preferable because the degree of acid substitution is sufficient and uniform.

<工程(iv)>
工程(iii)で得られた洗浄した部分酸型CMCと、所定量のアルカリを反応させる工程である。特に限定されないが、例えば、アルカリを含む含水有機溶媒に添加してスラリー状にし、適宜攪拌操作を行いながら、部分酸型CMCとアルカリを反応させる方法が挙げられる。
<Process (iv)>
In this step, the washed partial acid type CMC obtained in the step (iii) is reacted with a predetermined amount of alkali. Although not particularly limited, for example, there is a method of adding a hydrous organic solvent containing an alkali to form a slurry and reacting the partially acid CMC with the alkali while appropriately performing a stirring operation.

工程(iv)において使用するアルカリとしては、特に限定されないが、例えば、前記工程(i)のアルカリ金属の水酸化物を用いることができる。これらの中で、価格および得られるCMC塩の特性の点から水酸化ナトリウム、水酸化カリウムが好ましい。アルカリの添加量としては、質量比で理論酸型置換度にするために必要な量の5〜10倍が好ましく、6〜8倍がより好ましい。   Although it does not specifically limit as an alkali used in process (iv), For example, the hydroxide of the alkali metal of the said process (i) can be used. Among these, sodium hydroxide and potassium hydroxide are preferable from the viewpoint of cost and characteristics of the obtained CMC salt. The addition amount of the alkali is preferably 5 to 10 times, more preferably 6 to 8 times the amount necessary to obtain the theoretical acid type substitution degree by mass ratio.

工程(iv)において使用する含水有機溶媒の水と有機溶媒の重量比としては、特に限定されないが、水:有機溶媒が5:95〜20:80が好ましく、10:90〜15:85がより好ましい。これらの範囲であれば、反応系中のアルカリ濃度を充分に高濃度に保つことができる。工程(iv)において使用する有機溶媒としては、特に限定されないが、例えば、前記工程(i)の有機溶媒を用いることができる。入手の容易さ、低価格、取り扱いやすさの点で、I PA 、エタノール、メタノールが好ましい。   The weight ratio of the water-containing organic solvent used in step (iv) to the organic solvent is not particularly limited, but water: organic solvent is preferably 5: 95-20: 80, more preferably 10: 90-15: 85. preferable. Within these ranges, the alkali concentration in the reaction system can be kept sufficiently high. Although it does not specifically limit as an organic solvent used in process (iv), For example, the organic solvent of the said process (i) can be used. IPA, ethanol, and methanol are preferable in terms of availability, low cost, and ease of handling.

工程(iv)における温度は、10〜80℃が好ましく、20〜70℃がより好ましい。反応温度がこれらの範囲であれば、反応が充分かつ均一となることから好ましい。また、反応時間は、30〜70分間が好ましく、40〜60分間がより好ましい。反応時間がこれらの範囲であれば、反応が充分かつ作業効率も良好となる。   10-80 degreeC is preferable and, as for the temperature in process (iv), 20-70 degreeC is more preferable. A reaction temperature within these ranges is preferable because the reaction is sufficient and uniform. The reaction time is preferably 30 to 70 minutes, more preferably 40 to 60 minutes. When the reaction time is within these ranges, the reaction is sufficient and the working efficiency is good.

本発明におけるセルロースナノファイバーの製造方法は、前記工程(v)で得られたセルロースナノファイバー水分散体の溶媒を除去する工程を有する。溶媒を除去する方法としては、特に限定されないが、例えば、濾別、濃縮操作などが挙げられる。溶媒除去には、特に限定されないが、例えば、有機溶剤、或いは、水と有機溶剤の混合溶媒を用いることができる。   The manufacturing method of the cellulose nanofiber in this invention has the process of removing the solvent of the cellulose nanofiber aqueous dispersion obtained at the said process (v). Although it does not specifically limit as a method of removing a solvent, For example, filtration separation, concentration operation, etc. are mentioned. Although it does not specifically limit for solvent removal, For example, the organic solvent or the mixed solvent of water and an organic solvent can be used.

本発明におけるセルロースナノファイバー水分散体の製造方法、セルロースナノファイバーの製造方法としては前記(i)〜(iv)の各工程において、その工程終了後に、必要に応じて、精製の目的で反応粗製物を水、或いは、有機溶剤、或いは、水と有機溶剤の混合溶媒を用いて洗浄し、遠心分離、減圧蒸留などの手法を用いて、溶媒除去し、セルロースナノファイバーの濾別、或いは、濃縮操作を伴ってもよい。また、必要に応じて他の処理を行っても良い。   As the method for producing an aqueous dispersion of cellulose nanofibers and the method for producing cellulose nanofibers in the present invention, in each of the steps (i) to (iv), after completion of the steps, reaction crude for purification purposes, if necessary. The product is washed with water, an organic solvent, or a mixed solvent of water and an organic solvent, and the solvent is removed by using a method such as centrifugation or distillation under reduced pressure, and cellulose nanofibers are filtered or concentrated. It may be accompanied by an operation. Moreover, you may perform another process as needed.

前記工程(i)〜(v)によって得られる部分酸型CMC塩の全置換度(エーテル化度)は、0.02〜0.80であることが好ましく、0.1〜0.75がより好ましい。これらの範囲であれば、水への膨潤あるいは溶解を抑制することができる。なお、CMC塩の全置換度(エーテル化度)は、実施例に記載の方法で算出することができる。   The total substitution degree (etherification degree) of the partial acid type CMC salt obtained by the steps (i) to (v) is preferably 0.02 to 0.80, more preferably 0.1 to 0.75. preferable. Within these ranges, swelling or dissolution in water can be suppressed. The total substitution degree (etherification degree) of the CMC salt can be calculated by the method described in the examples.

前記工程(i)〜(v)によって得られる部分酸型CMC塩の酸型置換度は全置換度(エーテル化度)の1.0〜80.0%が好ましく、10.0〜65.0%がより好ましい。酸型置換度が1.0%以上であれば、酸型置換基の効果を得ることができ、一方、酸型置換度が80.0%以下であれば、セルロースナノファイバーの解繊が容易になる。   The acid type substitution degree of the partial acid type CMC salt obtained by the steps (i) to (v) is preferably 1.0 to 80.0% of the total substitution degree (etherification degree), and 10.0 to 65.0. % Is more preferable. If the acid type substitution degree is 1.0% or more, the effect of the acid type substituent can be obtained. On the other hand, if the acid type substitution degree is 80.0% or less, the cellulose nanofibers are easily defibrated. become.

また、解繊工程中において、或いは、水分散体として保管する場合において、水中のpHが低下して品質を劣化させる懸念も抑制される。この観点からは、得られる部分酸型CMC塩セルロースナノファイバー、及び、その水分散体の20℃におけるpHは、pH6.0以上とするのが好ましい。なお、CMC塩の酸型置換度は、実施例に記載の方法で算出することができる。pHショック抑制の効果の観点からは、20℃におけるpHを、pH3.0〜6.0とすることも好ましい態様である。   Moreover, in the case of storing as a water dispersion during a defibrating process, the concern that the pH in water decreases and the quality deteriorates is also suppressed. From this viewpoint, the pH of the obtained partial acid CMC salt cellulose nanofiber and the aqueous dispersion thereof at 20 ° C. is preferably pH 6.0 or more. The acid type substitution degree of the CMC salt can be calculated by the method described in the examples. From the viewpoint of the effect of suppressing the pH shock, it is also a preferable aspect that the pH at 20 ° C. is set to pH 3.0 to 6.0.

部分酸型CMCにおける残余カルボキシメチル基は、前記の工程(i)で用いられたアルカリ金属の水酸化物により得られるアルカリ塩があげられ、具体的には、ナトリウム塩、カリウム塩、リチウム塩、ルビジウム塩およびセシウム塩等があげられる。これらの中で、ナトリウム塩、カリウム塩が、一般的に好ましく用いられる。   Examples of the residual carboxymethyl group in the partial acid type CMC include alkali salts obtained from the alkali metal hydroxide used in the step (i), specifically, sodium salts, potassium salts, lithium salts, Examples thereof include a rubidium salt and a cesium salt. Of these, sodium salts and potassium salts are generally preferably used.

本発明のセルロースナノファイバー、およびその水分散体は、増粘剤、ゲル化剤、保形剤、乳化安定化剤、分散安定化剤などに利用できる。具体的には、食品、化粧品、医薬品、医療、農薬、トイレタリー用品、スプレー剤、塗料、等の用途で幅広く使用することができる。また、弱酸性領域でpHショックを生じることがないことから、特に、20℃におけるpHが3.0〜5.5の領域において好ましく使用できる。具体的には、乳酸菌飲料やヨーグルト、酸性乳飲料、スポーツドリンク、乳幼児用イオン飲料、機能型ドリンク、ゼリー飲料、カロリー摂取型ドリンク、デザートドリンク、ベビーフード、ジャム、ドレッシング、マヨネーズ、ケチャップ、ウスターソース、バーベキューソース、焼肉ソース、各種食用タレ、つゆ、ジュレ状調味料等に好適に使用できる。また、セルロースナノファイバー水分散体を中間原料として更に化学修飾や加工して利用することもできる。   The cellulose nanofiber of the present invention and an aqueous dispersion thereof can be used as a thickener, a gelling agent, a shape retention agent, an emulsion stabilizer, a dispersion stabilizer, and the like. Specifically, it can be widely used in applications such as foods, cosmetics, pharmaceuticals, medical care, agricultural chemicals, toiletries, sprays, and paints. Moreover, since a pH shock does not occur in a weakly acidic region, it can be preferably used particularly in a region where the pH at 20 ° C. is 3.0 to 5.5. Specifically, lactic acid bacteria beverages and yogurt, acidic milk beverages, sports drinks, infant ion beverages, functional drinks, jelly drinks, calorie intake drinks, dessert drinks, baby food, jams, dressings, mayonnaise, ketchup, Worcester sauce, It can be suitably used for barbecue sauce, grilled meat sauce, various edible sauces, soup sauce, jelly-like seasonings and the like. Further, the cellulose nanofiber aqueous dispersion can be further used as an intermediate material after further chemical modification or processing.

本発明のセルロースナノファイバー、およびその水分散体を含有する前記用途(食品、化粧料等)においては、任意成分として、pH調整のためのpH調整剤、或いは、pH緩衝剤、防腐剤を含有してもよい。また、乳化、分散、食感改良、テキスチャー改良、粘性改良、油脂改質など目的で、本発明の効果を損なわない範囲で界面活性剤や水溶性高分子などを含有してもよい。   In the said use (foodstuffs, cosmetics, etc.) containing the cellulose nanofiber of this invention, and its water dispersion, the pH adjuster for pH adjustment, or a pH buffer agent and a preservative is contained as an arbitrary component. May be. In addition, for the purpose of emulsification, dispersion, texture improvement, texture improvement, viscosity improvement, oil and fat modification, a surfactant or a water-soluble polymer may be contained within a range not impairing the effects of the present invention.

以下、実施例及び比較例に基づいて、本発明について詳細に説明するが、本発明はもちろんこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, of course this invention is not limited to these.

カルボキシメチル化の全置換度(エーテル化度)、塩型置換度および酸型置換度は以下の方法により測定した。   The total substitution degree (etherification degree), salt type substitution degree, and acid type substitution degree of carboxymethylation were measured by the following methods.

<(1)工程(i)で得られたCMCの全置換度(エーテル化度) ※Na塩の場合>
試料1g(純分換算)を磁性ルツボに入れて600℃で灰化し、灰化によって生成した酸化ナトリウムをN/10のHSO100mlを添加して中和した。次に、過剰のHSOをN/10のNaOHでフェノールフタレインを指示薬として滴定し、その滴下量A(ml)から下記式にて全置換度(エーテル化度)を求めた。なお、このとき、f=N/10のHSOの力価、f=N/10のNaOHの力価である。

Figure 2016069589
<(1) Total substitution degree of CMC obtained in step (i) (degree of etherification) * In the case of Na salt>
A sample 1 g (in terms of pure content) was put into a magnetic crucible and incinerated at 600 ° C., and sodium oxide produced by incineration was neutralized by adding 100 ml of N / 10 H 2 SO 4 . Next, excess H 2 SO 4 was titrated with N / 10 NaOH using phenolphthalein as an indicator, and the total degree of substitution (degree of etherification) was determined from the amount A (ml) added by the following formula. At this time, f 1 = the titer of H 2 SO 4 with N / 10, and f 2 = the titer of NaOH with N / 10.
Figure 2016069589

<(2)工程(iv)で得られた部分酸型CMCの塩型置換度および酸型置換度>
試料1g(純分換算)を純水200mlとN/10のNaOH100mlが入っているフラスコ中に入れて溶解した。次に、過剰のN/10のNaOHをN/10のHSOでフェノールフタレインを指示薬として滴定し、その滴下量B(ml)を得た。次に、別の試料1g(純分換算)を磁性ルツボに入れて600℃で灰化し、灰化によって生成した酸化ナトリウムをN/10のHSO100mlを添加して中和した。次に、過剰のHSOをN/10のNaOHでフェノールフタレインを指示薬として滴定し、その滴下量C(ml)を得た。次に、次式によって塩型置換度および酸型置換度を求めた。なお、このとき、f=N/10のHSOの力価、f=N/10のNaOHの力価である。

Figure 2016069589
Figure 2016069589
<(2) Degree of salt type substitution and acid type substitution of partial acid type CMC obtained in step (iv)>
1 g of sample (in terms of pure content) was dissolved in a flask containing 200 ml of pure water and 100 ml of N / 10 NaOH. Next, excess N / 10 NaOH was titrated with N / 10 H 2 SO 4 using phenolphthalein as an indicator to obtain a dripping amount B (ml). Next, another sample 1 g (in terms of pure content) was put in a magnetic crucible and incinerated at 600 ° C., and sodium oxide produced by incineration was neutralized by adding 100 ml of N / 10 H 2 SO 4 . Next, excess H 2 SO 4 was titrated with N / 10 NaOH using phenolphthalein as an indicator to obtain a dripping amount C (ml). Next, the salt type substitution degree and the acid type substitution degree were determined by the following equations. At this time, f 1 = the titer of H 2 SO 4 with N / 10, and f 2 = the titer of NaOH with N / 10.
Figure 2016069589
Figure 2016069589

<実施例1>
工程(i)
2軸の撹拌翼と溶剤の揮散を抑えるためのコンデンサーを備えた容量3リットルのニーダー型反応機に、表1記載の原料パルプを選択し、更に家庭用ミキサーで粉砕したパルプ100g(乾燥重量)を仕込み、IPA:水=280g:120gで調製した混合溶媒400gに、表1記載の所定量の水酸化ナトリウムを溶解させて40℃に調整した溶液を反応機内に仕込み、60分間撹拌してアルカリセルロースを調製した。そののち、表1記載の所定量のモノクロル酢酸を等重量のIPAに溶解させた溶液を、反応熱を抑えながら30〜50℃で60分間かけて仕込んだ。次いで、30分間かけて85℃に昇温し、75〜90℃でカルボキシルメチル化反応を60分間行った。次いで、スラリー状の中和物を反応機より取り出し、遠心分離操作にてIPA−水混合溶媒を除去して固形分濃度50重量%のCMC-Na塩粗製物(表1−1の実施例(A)〜(D))を得た。
<Example 1>
Process (i)
100 g (dry weight) of the pulp selected from the raw pulp listed in Table 1 in a kneader reactor with a capacity of 3 liters equipped with a biaxial stirring blade and a condenser for suppressing the volatilization of the solvent, and further pulverized with a household mixer A solution prepared by dissolving a predetermined amount of sodium hydroxide described in Table 1 in 40 g of a mixed solvent prepared at IPA: water = 280 g: 120 g and adjusted to 40 ° C. was added to the reactor, and the mixture was stirred for 60 minutes for alkali. Cellulose was prepared. After that, a solution prepared by dissolving a predetermined amount of monochloroacetic acid shown in Table 1 in an equal weight of IPA was charged at 30 to 50 ° C. over 60 minutes while suppressing the heat of reaction. Subsequently, it heated up to 85 degreeC over 30 minutes, and carboxylmethylation reaction was performed for 60 minutes at 75-90 degreeC. Next, the slurry-like neutralized product was taken out from the reactor, and the IPA-water mixed solvent was removed by a centrifugal operation to obtain a CMC-Na salt crude product having a solid concentration of 50% by weight (Examples in Table 1-1). A) to (D)) were obtained.

工程(ii)〜(iii)
前記工程により得られたCMC-Na塩粗製物に対して、表1に示す20%硫酸を添加し、30分間撹拌後、更に、70℃で50分間攪拌して部分酸型CMC粗製物を得た。得られた部分酸型CMCに対して、重量比で20倍となるように80%メタノール水溶液を添加し、30℃で50分間撹拌した。撹拌後、遠心分離機でメタノール水溶液を遠心分離により除去し、この80%メタノール水溶液による洗浄と溶媒除去の操作を4回繰り返し、遠心分離回収液の遊離液から遊離酸が検出されないことを確認して、固形分濃度50重量%の部分酸型CMCを得た(表1−1の実施例(A)〜(D))。
Steps (ii) to (iii)
20% sulfuric acid shown in Table 1 is added to the crude CMC-Na salt obtained in the above step, stirred for 30 minutes, and further stirred at 70 ° C. for 50 minutes to obtain a partially acid CMC crude product. It was. An 80% aqueous methanol solution was added to the obtained partial acid CMC so that the weight ratio was 20 times, and the mixture was stirred at 30 ° C. for 50 minutes. After stirring, the aqueous methanol solution was removed by centrifugation using a centrifuge, and the operations of washing with 80% aqueous methanol solution and removing the solvent were repeated four times to confirm that no free acid was detected from the free liquid of the centrifugally recovered liquid. Thus, a partial acid type CMC having a solid content concentration of 50% by weight was obtained (Examples (A) to (D) in Table 1-1).

工程(iv)
表1記載の通り、前記工程により得られた部分酸型CMCを秤取し、更に、所定の水酸化ナトリウムを含む80%メタノール水溶液を添加し、スラリー状の溶液を30℃で50分間撹拌させて部分酸型CMC粗製物を得た。その後、遠心分離機で溶媒除去を行い、更に、80%メタノール水溶液による洗浄と溶媒除去の操作を2回繰り返し、固形分濃度50重量%にて部分酸型CMCを取り出した。得られた部分酸型CMCの全置換度(エーテル化度)、塩型置換度および酸型置換度を測定し、その測定結果を表1に示した。
Step (iv)
As shown in Table 1, the partial acid type CMC obtained by the above step was weighed, and further an 80% aqueous methanol solution containing predetermined sodium hydroxide was added, and the slurry solution was stirred at 30 ° C. for 50 minutes. In this way, a crude product of partial acid type CMC was obtained. Thereafter, the solvent was removed with a centrifuge, and the operation of washing with 80% methanol aqueous solution and the removal of the solvent were repeated twice, and the partial acid type CMC was taken out at a solid concentration of 50% by weight. The total substitution degree (etherification degree), salt substitution degree and acid substitution degree of the obtained partial acid type CMC were measured, and the measurement results are shown in Table 1.

工程(v)
前記工程により得られた部分酸型CMCに対して、固形分濃度3%となるよう水を添加し、更に、高圧ホモジナイザー処理の前に処理液のpHを水酸化ナトリウム、酢酸ナトリウム、酢酸を用いてpH5.0±0.3の範囲内となるよう調整した後、高圧ホモジナイザーにより、液温20℃から冷却操作を伴いながら140MPaの圧力で5回処理して目的のセルロースナノファイバー水分散液を調製した(表1−1の実施例(A)〜(D))。
Process (v)
Water is added to the partial acid type CMC obtained by the above process so that the solid content concentration becomes 3%, and the pH of the treatment solution is adjusted with sodium hydroxide, sodium acetate, acetic acid before the high-pressure homogenizer treatment. After adjusting the pH to be within the range of 5.0 ± 0.3, the target cellulose nanofiber aqueous dispersion is treated with a high-pressure homogenizer five times at a pressure of 140 MPa while being cooled from a liquid temperature of 20 ° C. (Examples (A) to (D) in Table 1-1).

<実施例2>
実施例1、及び、表1−1に記載の実施例(D)において、工程(iv)で使用する中和剤を水酸化ナトリウムから水酸化カリウムに変更し、工程(iv)で使用するpH調整剤を水酸化ナトリウムから水酸化カリウムに、酢酸ナトリウムから酢酸カリウムに、変更した以外は前記操作と同様にしてセルロースナノファイバー水分散液(表1の実施例(E))を得た。
<Example 2>
In Example 1 and Example (D) described in Table 1-1, the neutralizing agent used in step (iv) was changed from sodium hydroxide to potassium hydroxide, and the pH used in step (iv). A cellulose nanofiber aqueous dispersion (Example (E) in Table 1) was obtained in the same manner as in the above operation except that the modifier was changed from sodium hydroxide to potassium hydroxide and from sodium acetate to potassium acetate.

<実施例3>
実施例1、及び、表1−1に記載の実施例(A)において、工程(i)で使用するパルプ種を広葉樹パルプから針葉樹パルプに変更し、更に、工程(i)終了後、IPA−水混合溶媒による洗浄と溶媒除去の操作を2回繰り返し、その後、工程(ii)として、硫酸を用いてpH5となるよう攪拌しながら注意深く酸を添加し、必要に応じて、工程中で水酸化ナトリウム、酢酸ナトリウムと酢酸を用いてpH調整しながらが、70℃で50分間攪拌した以外は前記操作と同様にしてセルロースナノファイバー水分散液(表1−1の実施例(F))を得た。
<Example 3>
In Example 1 and Example (A) described in Table 1-1, the pulp type used in step (i) is changed from hardwood pulp to softwood pulp, and after step (i), IPA- Washing with a mixed solvent of water and removal of the solvent were repeated twice, and then as step (ii), acid was carefully added with stirring to pH 5 with sulfuric acid, and hydroxylation was carried out during the process if necessary. While adjusting pH using sodium, sodium acetate and acetic acid, an aqueous cellulose nanofiber dispersion (Example (F) in Table 1-1) was obtained in the same manner as above except that the mixture was stirred at 70 ° C. for 50 minutes. It was.

<比較例1>
実施例1、及び、表1−1に記載の工程(i)〜(v)において、各成分の仕込み量を表1−1の比較例(X)、及び、比較例(Y)のように変更した以外は、前記操作と同様にしてセルロースナノファイバー水分散液(表1−1の比較例(X)、(Y))を調製した。しかしながら、比較例(Y)については、高圧ホモジナイザー処理中に処理液回収タンク内不均一の発生と高圧ホモジナイザーの詰まりが生じ、やむを得ず、工程(v)をした中断した。
<Comparative Example 1>
In the steps (i) to (v) described in Example 1 and Table 1-1, the charged amounts of the respective components are set as in Comparative Example (X) and Comparative Example (Y) in Table 1-1. A cellulose nanofiber aqueous dispersion (Comparative Examples (X) and (Y) in Table 1-1) was prepared in the same manner as in the above operation except that the change was made. However, in Comparative Example (Y), non-uniformity in the treatment liquid recovery tank and clogging of the high-pressure homogenizer occurred during the high-pressure homogenizer treatment, and the process (v) was interrupted.

<比較例2>
実施例1、及び、表1−1に記載の実施例(A)において、工程(i)の操作に従ってカルボキシメチル化を行った後、IPA−水混合溶媒による洗浄と溶媒除去の操作を2回繰り返し、工程(ii)〜(iv)を省略して、続いて、前記工程(v)の操作に従って高圧ホモジナイザー処理を行い、不均一状粘稠液体(表1−1の比較例(Z))を得た。比較例(Z)については、酸型置換未実施の為、工程(v)にてpH未調整(pH7.4)とした。
<Comparative Example 2>
In Example 1 and Example (A) described in Table 1-1, carboxymethylation was performed according to the operation of step (i), and then washing with an IPA-water mixed solvent and solvent removal were performed twice. Repeatedly, the steps (ii) to (iv) were omitted, and subsequently, a high-pressure homogenizer treatment was performed according to the operation of the step (v) to obtain a heterogeneous viscous liquid (Comparative Example (Z) in Table 1-1). Got. About comparative example (Z), since acid type substitution was not implemented, it was set as pH unadjusted (pH 7.4) at the process (v).

Figure 2016069589
※1: 固形分換算、 ※2: 対全置換度、 ※3: 工程中断の為、測定未実施、 ※4: pH未調整
Figure 2016069589
* 1: Converted to solid content, * 2: Degree of total substitution, * 3: Not measured due to process interruption, * 4: pH not adjusted

実施例1〜3、及び、比較例1、2にて得られたセルロースナノファイバー水分散体、実施例(A)〜(F)、比較例(X)、(Z)について、その性状(透明性、ゲル化の有無、曳糸性の有無)について調べた結果を表2に示す。なお、測定前に必要に応じて前記操作に準じて、pH5±0.3の範囲内となるようpH調整後、各種評価を実施した。また、比較例(Z*)は、比較例(Z)(pH7.4)について以下評価を実施するに当り、pH5.0±0.3に調整したものであり、供試した比較例(Z*)のpHはpH5.0であった。   About the cellulose nanofiber aqueous dispersion obtained in Examples 1 to 3 and Comparative Examples 1 and 2, Examples (A) to (F), and Comparative Examples (X) and (Z), the properties (transparent Table 2 shows the results of examining the properties, the presence or absence of gelation, and the presence or absence of spinnability. In addition, according to the said operation as needed before measurement, various evaluation was implemented after adjusting pH so that it might become in the range of pH5 +/- 0.3. Further, Comparative Example (Z *) was adjusted to pH 5.0 ± 0.3 for the following evaluation of Comparative Example (Z) (pH 7.4). *) The pH was 5.0.

<透明性>
一定光源下、固形分濃度0.5%のセルロースナノファイバー水分散体を30mmの光路長を持つ透明ガラスセルに入れ、白色上質紙に印字された12ポイントの文字(ゴシック体)をセルの向こう側に接するように配置し、その文字を判別できたものを「○」、判別できなかったものを「×」、部分的な不均一状態が認められるものを「△」と評価した。これら結果を表1−2に示した。なお、表中の「1D」は1日後、「1W」は7日後を表す。
<Transparency>
Place a cellulose nanofiber aqueous dispersion with a solid content of 0.5% in a transparent glass cell with an optical path length of 30 mm under a constant light source, and put 12-point characters (gothic) printed on white fine paper over the cell. It was arranged so as to be in contact with the side, and “◯” indicates that the character could be identified, “×” indicates that the character could not be identified, and “Δ” indicates that a partial non-uniform state was recognized. These results are shown in Table 1-2. In the table, “1D” represents one day later, and “1W” represents seven days later.

<ゲル化性>
固形分濃度3.0%で調製された実施例(A)〜(F)、比較例(X)、(Z)を所定の固形分濃度になるよう水を添加して、ディスパー型ミキサーを用いて回転数8,000rpmで10分間微細化処理を行って、200mlねじ口付きガラス製サンプル瓶に流し込み、評価用の試料を得た。各試料について、所定日数経過後のゲルの状態を目視で観察し、ゲル状態のものを「○」、液状(流動性あり)のものを「×」、ゲルから離水が見られたものを「△」と評価した。これら結果を表1−2に示した。なお、表中の「1D」は1日後、「1W」は7日後を表す。
<Gelability>
Add water so that Examples (A) to (F) and Comparative Examples (X) and (Z) prepared at a solid content concentration of 3.0% have a predetermined solid content concentration, and use a Disper mixer. The sample was refined for 10 minutes at a rotational speed of 8,000 rpm and poured into a 200 ml glass sample bottle with a screw cap to obtain a sample for evaluation. For each sample, the state of the gel after the lapse of a predetermined number of days was visually observed, “○” for the gel state, “×” for the liquid (with fluidity), "". These results are shown in Table 1-2. In the table, “1D” represents one day later, and “1W” represents seven days later.

<曳糸性>
固形分濃度3.0%で調製された実施例(A)〜(F)、比較例(X)、(Z)を所定の固形分濃度になるよう水を添加して、ディスパー型ミキサーを用いて回転数8,000rpmで10分間微細化処理を行って、200mlねじ口付きガラス製サンプル瓶に流し込み、評価用の試料を得た。各試料について、所定日数経過後に外径10mmの表面平滑なガラス棒をサンプル瓶中央に垂直に立て、その状態からガラス棒を約1秒間で引き抜き、その際のガラス棒先端における曳糸状態を目視で観察し、曳糸性が認められないものを「○」、曳糸性が認められないものを「×」、僅かな曳糸性、或いは、ガラス棒へのゲル付着などが認められるものを「△」と評価した。これら結果を表1−2に示した。なお、表中の「1D」は1日後、「1W」は7日後を表す。
<Spinning>
Add water so that Examples (A) to (F) and Comparative Examples (X) and (Z) prepared at a solid content concentration of 3.0% have a predetermined solid content concentration, and use a Disper mixer. The sample was refined for 10 minutes at a rotational speed of 8,000 rpm and poured into a 200 ml glass sample bottle with a screw cap to obtain a sample for evaluation. For each sample, a smooth glass rod with an outer diameter of 10 mm is set up vertically in the center of the sample bottle after a predetermined number of days, and the glass rod is pulled out in about 1 second from that state, and the state of the string at the tip of the glass rod at that time is visually observed. Observed with `` ○ '' if the spinnability is not recognized, `` X '' if the spinnability is not recognized, and those that show slight spinnability or gel adhesion to the glass rod Evaluated as “△”. These results are shown in Table 1-2. In the table, “1D” represents one day later, and “1W” represents seven days later.

Figure 2016069589
※5: 評価時のpH、pH5±0.3の範囲外の場合にはpH調整実施。
※6: 比較例(Z)(pH7.4)を評価直前にpH5±0.3に調整実施。
Figure 2016069589
* 5: The pH at the time of evaluation is outside the range of pH 5 ± 0.3.
* 6: Comparative Example (Z) (pH 7.4) was adjusted to pH 5 ± 0.3 immediately before evaluation.

《製造例:酸性乳飲料、及び、乳酸菌飲料》
弱酸性領域での分散安定性が必要とされる酸性飲料、乳酸菌飲料組成物の製造処方について、本発明の前記実施例、及び、比較例で示したセルロースナノファイバー水分散体を用いて、下記処方に従って飲料組成物を調製し、以下記載の評価方法に従って評価を行った。
<< Production Example: Acidic Milk Beverage and Lactic Acid Beverage Beverage >>
With respect to the production formulation of acidic beverages and lactic acid bacteria beverage compositions that require dispersion stability in a weakly acidic region, using the cellulose nanofiber aqueous dispersions shown in the Examples and Comparative Examples of the present invention, the following Beverage compositions were prepared according to the prescription and evaluated according to the evaluation methods described below.

<製造例1:酸性乳飲料>
表3記載の処方に従い、2Lサイズの円形ステンレス製取手付容器に固形分濃度3%で調製された本発明のセルロースナノファイバー水分散体200g(固形分換算6g)を仕込み、幅広翼を装着した攪拌装置で攪拌しながら、液温を30℃とし、ついで、脱脂粉乳40gを水500gとともに少しずつ投入して、攪拌、混合して均一分散させ、続いて、30℃の温度で、10分間かけて30℃に調整した3%クエン酸水溶液100gを徐々に滴下して脱脂粉乳混合液を得た。次に、調整水を用いてホモジナイザー通液の準備を行い、その後、脱脂粉乳混合液を15MPaにてホモジナイザーに1回通液し、更に、その脱脂粉乳混合液を90℃まで昇温して加熱殺菌を行い、その後、水浴中で10℃まで冷却して目的の酸性乳飲料組成物を得た。このとき、得られた酸性乳飲料組成物は、無脂乳固形分は4.0%、セルロースナノファイバー(固形分換算)0.6%を含み、20℃におけるpHは4.6〜4.9であった。
<Production Example 1: Acidic milk beverage>
In accordance with the formulation shown in Table 3, 200 g of cellulose nanofiber aqueous dispersion of the present invention prepared at a solid content concentration of 3% (6 g in terms of solid content) was charged into a 2 L circular stainless steel handle container, and wide wings were mounted. While stirring with a stirrer, the liquid temperature is set to 30 ° C., and then 40 g of skim milk powder is added little by little together with 500 g of water, stirred, mixed and uniformly dispersed, and then at a temperature of 30 ° C. for 10 minutes. 100 g of 3% aqueous citric acid solution adjusted to 30 ° C. was gradually added dropwise to obtain a skim milk powder mixture. Next, preparation of homogenizer flow is performed using adjusted water, and then the skim milk powder mixture is passed once through the homogenizer at 15 MPa, and the skim milk powder mixture is heated to 90 ° C. and heated. Sterilization was performed, and then the mixture was cooled to 10 ° C. in a water bath to obtain a target acidic milk beverage composition. At this time, the obtained acidic milk beverage composition contains 4.0% non-fat milk solids and 0.6% cellulose nanofibers (solid content conversion), and the pH at 20 ° C. is 4.6 to 4. It was 9.

Figure 2016069589
Figure 2016069589

<製造例2:乳酸菌飲料>
表4記載の処方に従い、2Lサイズの円形ステンレス製取手付容器に固形分濃度3%で調製された本発明のセルロースナノファイバー水分散体200g(固形分換算6g)を仕込み、幅広翼を装着した攪拌装置で攪拌しながら、液温を20℃とし、別に調製した水400g、グラニュー糖15g、70%異性化液糖95gを溶解させた糖混合液を徐々に加え、攪拌を継続しながら、80℃まで昇温して10分間加熱殺菌を行い、その後、水浴中で20℃まで冷却して、醗酵乳(カード)30gを少量ずつ投入して、攪拌、混合して均一分散させて醗酵乳混合液を得た。次に、調整水の一部を用いてホモジナイザー通液の準備を行い、残りの調整水は醗酵乳混合液に加え、その後、醗酵乳混合液を15MPaにてホモジナイザーに1回通液し、更に、その醗酵乳混合液を90℃まで昇温して加熱殺菌を行い、その後、水浴中で20℃まで冷却して目的の乳酸菌飲料組成物を得た。このとき、得られた乳酸菌飲料組成物は、醗酵乳固形分は3.0%、セルロースナノファイバー(固形分換算)0.6%を含み、20℃におけるpHは3.7〜4.0であった。
<Production Example 2: Lactic acid bacteria beverage>
In accordance with the formulation described in Table 4, a cellulose nanofiber aqueous dispersion 200 g (solid content conversion 6 g) of the present invention prepared at a solid content concentration of 3% was charged into a 2 L circular stainless steel handle-equipped container, and wide wings were attached. While stirring with a stirrer, the liquid temperature was set to 20 ° C., and a sugar mixture solution in which 400 g of separately prepared water, 15 g of granulated sugar, and 95 g of 70% isomerized liquid sugar were dissolved was gradually added. The temperature is raised to ℃ and sterilized by heating for 10 minutes, then cooled to 20 ℃ in a water bath, 30 g of fermented milk (curd) is added little by little, stirred, mixed and uniformly dispersed to mix the fermented milk A liquid was obtained. Next, a part of the adjusted water is used to prepare the homogenizer flow, the remaining adjusted water is added to the fermented milk mixture, and then the fermented milk mixture is passed once through the homogenizer at 15 MPa, and further The fermented milk mixture was heated to 90 ° C. and sterilized by heating, and then cooled to 20 ° C. in a water bath to obtain the intended lactic acid bacteria beverage composition. At this time, the obtained lactic acid bacteria beverage composition contains 3.0% fermented milk solids, 0.6% cellulose nanofibers (solid content conversion), and the pH at 20 ° C is 3.7 to 4.0. there were.

Figure 2016069589
Figure 2016069589

製造例1、2において得られた酸性乳飲料、及び、乳酸菌飲料について、以下の方法によって、乳蛋白沈澱量、及び、乳蛋白再分散性評価からセルロースナノファイバーの分散安定性を評価した。   With respect to the acidic milk beverages and lactic acid bacteria beverages obtained in Production Examples 1 and 2, the dispersion stability of cellulose nanofibers was evaluated from the milk protein precipitation amount and milk protein redispersibility evaluation by the following methods.

<乳蛋白沈澱量>
得られた酸性乳飲料、及び、乳酸菌飲料を、長さ250mm、100ml容のガラス製円筒管に充填し、密栓して5℃にて2週間静置した。2週間後、円筒管を静かに取り出し、円筒管底部の乳蛋白沈澱量を計測した。なお、当該評価において、乳蛋白沈澱量はその数値が小さいほど乳蛋白に対する分散安定性に優れていることを示す。これら結果を表5に示した。
<Milk protein precipitation amount>
The obtained acidic milk beverage and lactic acid bacteria beverage were filled in a glass cylindrical tube having a length of 250 mm and a volume of 100 ml, sealed, and allowed to stand at 5 ° C. for 2 weeks. Two weeks later, the cylindrical tube was gently taken out, and the milk protein precipitation amount at the bottom of the cylindrical tube was measured. In addition, in the said evaluation, it shows that the milk protein precipitation amount is excellent in the dispersion stability with respect to milk protein, so that the numerical value is small. These results are shown in Table 5.

<乳蛋白再分散性>
上記乳蛋白沈澱量測定の後、密栓された円筒管を一旦静かに180°回転させて逆さにし、その後、乳蛋白の沈澱再分散性を記録しながら、円筒管を静かに360°回転させる操作を準じ行い、円筒管底部に付着している沈澱が再分散するまでの円筒管の回転回数を計測した。なお、当該評価において、この円筒管の回転回数が少ないほど、乳蛋白の分散性に優れていることを示す。これら結果を表5に示した。
<Milk protein redispersibility>
After measuring the milk protein precipitation amount, the sealed tube is gently rotated 180 ° and turned upside down, and then the cylinder tube is gently rotated 360 ° while recording the milk protein precipitation redispersibility. And the number of rotations of the cylindrical tube until the precipitate adhering to the bottom of the cylindrical tube was redispersed was measured. In this evaluation, the smaller the number of rotations of the cylindrical tube, the better the milk protein dispersibility. These results are shown in Table 5.

Figure 2016069589
※1: 従来技術の一例として、CMC‐Na塩を利用した場合の対照実験を合わせて行った。CMC‐Na塩としては、汎用されている第一工業製薬(株)製のセロゲンF−SB(2%水溶液粘度:150〜250mPa・s、エーテル化度: 0.85〜0.95)を用いた。
Figure 2016069589
* 1: As an example of the prior art, a control experiment using CMC-Na salt was also performed. As CMC-Na salt, the widely used Serogen F-SB (2% aqueous solution viscosity: 150 to 250 mPa · s, degree of etherification: 0.85 to 0.95) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. is used. It was.

本発明のセルロースナノファイバーは、表5に示す通り、供試した実施例(A)、(C)、(D)、(F)は、比較例(X)、(Z)、対照例(CMC‐Na塩)に比較して、酸性乳飲料、及び、乳酸菌飲料における2週間後の乳蛋白沈殿量を大きく低減している点において分散安定性に大きな差異があることが分かる。また、実施例(A)、(C)、(D)、(F)は、一旦沈降した乳蛋白を容易に再分散性できる点で実用上極めて重要な性能を有している。本発明の実施例(A)、(C)、(D)、(F)は、従来技術である低置換CMC-Na塩からのセルロースナノファイバーと異なり、Na塩の一部が酸型に変換されており、弱酸性条件下での使用に際してpHショックを生じ難く、そのpH適用範囲が広く、上記実施例の結果の如く、本発明の技術の根幹となるセルロースナノファイバーからなる増粘、分散安定化作用が保持される結果となった。一方、比較例(X)、(Z)は弱酸性条件下でpHショックを生じ、水中におけるセルロースナノファイバー自体の分散安定性が低下し、その結果として乳蛋白の分散安定性の悪化を招き、更に乳蛋白の再分散性を大きく低下させる結果となった。   As shown in Table 5, the cellulose nanofibers of the present invention were tested in Examples (A), (C), (D), and (F) in Comparative Examples (X), (Z), and Control Examples (CMC). It can be seen that there is a large difference in dispersion stability in that the amount of milk protein precipitated after 2 weeks in the acidic milk beverage and the lactic acid bacteria beverage is greatly reduced as compared with the -Na salt). Examples (A), (C), (D), and (F) have practically extremely important performance in that milk proteins that have once settled can be easily redispersed. In Examples (A), (C), (D), and (F) of the present invention, unlike cellulose nanofibers from a low-substituted CMC-Na salt, which is a conventional technique, a part of the Na salt is converted to an acid form. It is difficult to cause pH shock when used under weakly acidic conditions, and its pH application range is wide, and as shown in the results of the above examples, thickening and dispersion of cellulose nanofibers that are the basis of the technology of the present invention. As a result, the stabilizing effect was maintained. On the other hand, Comparative Examples (X) and (Z) cause a pH shock under weakly acidic conditions, and the dispersion stability of cellulose nanofibers itself in water is lowered, resulting in deterioration of the milk protein dispersion stability. Furthermore, the redispersibility of milk protein was greatly reduced.

《製造例:食用タレ、ゲル状(ジュレ状)調味料、ディップソース》
弱酸性領域での増粘性、並びにゲル形成能、更に、調味液組成物のチクソトロピー性が必要とされる食用タレ、ゲル状(ジュレ状)調味料、ディップソースの製造処方において、本発明の前記実施例、及び、比較例で示したセルロースナノファイバー水分散体を用いて、下記処方に従って調味液組成物を調製し、以下記載の評価方法に従って評価を行った。
<< Manufacturing examples: edible sauce, gel-like seasoning, dip sauce >>
In the preparation formulation of edible sauce, gel-like (jelly-like) seasoning, and dip sauce that require thickening in a weakly acidic region, gel forming ability, and thixotropy of the seasoning liquid composition, Using the cellulose nanofiber aqueous dispersions shown in Examples and Comparative Examples, seasoning liquid compositions were prepared according to the following formulation, and evaluated according to the evaluation methods described below.

<製造例3:食用タレ>
表6記載の処方に従い、2Lサイズの円形ステンレス製取手付容器に固形分濃度3%で調製された本発明のセルロースナノファイバー水分散体400g(固形分換算12g)を仕込み、幅広翼を装着した攪拌装置で攪拌しながら、液温を40℃とし、ここに別途調製した砂糖180g、粉末醤油60g、みりん200g、化学調味料20gの混合溶液を調製水とともに徐々に加え、攪拌しながら、80℃まで昇温して、更に30分間攪拌を継続した。その後、水浴中で20℃まで冷却して、目的の食用タレを得た。このとき、得られた食用タレ組成物は、セルロースナノファイバー(固形分換算)1.2%を含み、20℃におけるpHは4.8〜5.1であった。
<Production Example 3: Edible Sauce>
In accordance with the formulation shown in Table 6, a cellulose nanofiber aqueous dispersion 400 g (12 g in terms of solid content) of the present invention prepared at a solid content concentration of 3% was charged into a 2 L circular stainless steel handle-equipped container, and wide wings were mounted. While stirring with a stirrer, the liquid temperature was set to 40 ° C., and a separately prepared mixed solution of 180 g of sugar, 60 g of powdered soy sauce, 200 g of mirin, and 20 g of chemical seasoning was gradually added with prepared water, and the mixture was stirred at 80 ° C. The temperature was raised to 30 minutes and stirring was continued for another 30 minutes. Then, it cooled to 20 degreeC in the water bath, and obtained the target edible sauce. At this time, the obtained edible sauce composition contained 1.2% of cellulose nanofiber (solid content conversion), and pH at 20 ° C. was 4.8 to 5.1.

Figure 2016069589
Figure 2016069589

<製造例4:ゲル状(ジュレ状)調味料>
表7記載の処方に従い、2Lサイズの円形ステンレス製取手付容器に固形分濃度3%で調製された本発明のセルロースナノファイバー水分散体300g(固形分換算9g)を仕込み、幅広翼を装着した攪拌装置で攪拌しながら、液温を20℃とし、ここに別途調製した砂糖50g、ソルビトール90gと調整水の一部からなる混合溶液を、徐々に加え、更に、攪拌しながら、醤油130g、食酢100g、みりん30g、ゆず果汁30g、残りの調整水を徐々に加え、80℃まで昇温して、10分間攪拌を継続し、その後、60℃まで冷却して、蓋付きポリエチレン製パック包材に充填し、水流中に30分間投入して目的のゲル状(ジュレ状)調味料を得た。このとき、得られたゲル状(ジュレ状)調味料組成物は、セルロースナノファイバー(固形分換算)0.9%を含み、20℃におけるpHは4.4〜4.6であった。
<Production Example 4: Gel (sealed) seasoning>
According to the prescription in Table 7, 300 g of cellulose nanofiber aqueous dispersion of the present invention prepared at a solid content concentration of 3% (9 g in terms of solid content) was charged into a 2 L size circular stainless steel handle container, and wide wings were mounted. While stirring with a stirrer, the liquid temperature was set to 20 ° C., and a mixed solution consisting of 50 g of sugar and 90 g of sorbitol separately prepared here and a part of the conditioned water was gradually added. Gradually add 100 g, 30 g mirin, 30 g yuzu fruit juice, and the rest of the adjusted water, raise the temperature to 80 ° C., continue stirring for 10 minutes, then cool to 60 ° C. to make a polyethylene pack packaging with lid Filled and put into a water stream for 30 minutes to obtain the desired gel (jelly) seasoning. At this time, the obtained gel-like (jelly-like) seasoning composition contained 0.9% of cellulose nanofibers (in terms of solid content), and the pH at 20 ° C was 4.4 to 4.6.

Figure 2016069589
Figure 2016069589

<製造例5:ディップソース>
表8記載の処方に従い、2Lサイズの円形ステンレス製取手付容器に固形分濃度3%で調製された本発明のセルロースナノファイバー水分散体300g(固形分換算9g)を仕込み、幅広翼を装着した攪拌装置で攪拌しながら、液温を40℃とし、ここに別途調製したレモン粉末果汁10g、食塩8g、全粉乳4g、調味配合物8gと調製水からなる混合溶液を、徐々に加え、40℃を維持しながら、更に30分間攪拌を継続した。更に、ボディ剤30gを徐々に加えて、強攪拌下で5分間攪拌した後、攪拌を低速とし、水浴中で20℃まで冷却して、目的のディップソースを得た。このとき、得られたディップソース組成物は、セルロースナノファイバー(固形分換算)0.9%を含み、20℃におけるpHは4.3〜4.6であった。
<Production Example 5: Dip sauce>
In accordance with the formulation shown in Table 8, 300 g of cellulose nanofiber aqueous dispersion of the present invention prepared at a solid content concentration of 3% (9 g in terms of solid content) was charged into a 2 L circular stainless steel handle container, and wide wings were mounted. While stirring with a stirrer, the liquid temperature was adjusted to 40 ° C., and a mixed solution consisting of 10 g of lemon powder juice separately prepared here, 8 g of salt, 4 g of whole milk powder, 8 g of seasoning blend and prepared water was gradually added to 40 ° C. While maintaining the above, stirring was continued for another 30 minutes. Further, 30 g of the body agent was gradually added, and after stirring for 5 minutes under strong stirring, stirring was slowed down and cooled to 20 ° C. in a water bath to obtain the desired dip sauce. At this time, the obtained dip source composition contained 0.9% of cellulose nanofiber (solid content conversion), and pH at 20 ° C was 4.3 to 4.6.

Figure 2016069589
※肉エキス、酸味料、アミノ酸類、粉末香料からなる調味配合物
Figure 2016069589
* Seasoning composition consisting of meat extract, acidulant, amino acids and powdered flavor

製造例3、4、5において得られた食用タレ、ゲル状(ジュレ状)調味料、ディップソース、等、調味液組成物について、以下の方法によって、調味液組成物の光沢、透明性、粘度、付着量、液だれの有無、スプレー塗布可否、等から、セルロースナノファイバーの弱酸性領域における増粘性、ゲル形成能、更に、調味液組成物のチクソトロピー性を評価した。   About the seasoning liquid compositions such as the edible sauce, gel-like (jelly-like) seasoning, dip sauce, etc. obtained in Production Examples 3, 4, and 5, the gloss, transparency, and viscosity of the seasoning liquid composition are as follows. From the adhesion amount, presence / absence of liquid dripping, applicability of spray application, etc., thickening in a weakly acidic region of cellulose nanofiber, gel-forming ability, and thixotropy of the seasoning liquid composition were evaluated.

<調味液組成物の光沢、透明性>
得られた調味液組成物の光沢、透明性、均一性を目視にて評価した。これら結果を表9に示した。なお、各試料について、調味液組成物の光沢、透明性、滑らかさがよいものを「○」、やや劣るものを「△」、劣るものを「×」と評価した。
<Gloss and transparency of seasoning liquid composition>
The gloss, transparency, and uniformity of the obtained seasoning liquid composition were visually evaluated. These results are shown in Table 9. In addition, about each sample, the glossiness, transparency, and smoothness of the seasoning liquid composition were evaluated as “◯”, the slightly inferior one as “Δ”, and the inferior one as “x”.

<調味液組成物の粘度>
得られた調味液組成物の20℃における粘度をBH型粘度計、回転数20rpmにて測定し、これら結果を表9に示した。
<Viscosity of seasoning liquid composition>
The viscosity of the obtained seasoning liquid composition at 20 ° C. was measured with a BH viscometer and a rotation speed of 20 rpm, and these results are shown in Table 9.

<調味液組成物の付着量>
得られた調味液組成物の付着量、液垂れの有無について、「食用タレ」の場合は、串刺しの三連単団子を対象食品として、タレに三連単団子を定速(上下各1秒目処)で浸漬、引き上げする操作を2回行った後、15秒後の調味液付着量(g)を操作前後の重量差から求め、その結果を表9に示した。
また、「ゲル状(ジュレ状)調味料」の場合は、水切りした刺身用の白髭大根の「けん」を対象食品として、ステンレス製の小型のざるを透明容器の上に置き、そのざるに「けん」を盛り、その上に20gのゲル状(ジュレ状)調味料をかけ、30秒後にざるから滴り落ちる調味液の有無を目視で確認した。各試料について、ざるの下に置かれた透明容器に調味液が見られない場合を「○」、わずかに調味液が見られる場合を「△」、多量の調味液が見られる場合を「×」と評価し、その結果を表9に示した。
また、「ディップソース」の場合は、市販のプレーンクラッカー(4.5cm×4.5cm)を対象食品として、ディップソースにクラッカーの下部2.5cmを定速(上下各1秒目処)で浸漬、引き上げを行い、15秒後の調味液付着量(g)を操作前後の重量差から求めた。この操作を3枚のクラッカーで3回行い、3回の調味料付着量の合計値を表9に示した。
<Adhesion amount of seasoning liquid composition>
Regarding the amount of seasoning liquid composition attached and the presence or absence of dripping, in the case of “edible sauce”, the triple-single dumplings with skewers were used as the target food, and the triple-single dumplings were fixed at a constant speed (up and down for 1 second each) After performing the operation of immersing and pulling up twice at the target), the adhesion amount (g) of the seasoning liquid after 15 seconds was determined from the weight difference before and after the operation, and the results are shown in Table 9.
In addition, in the case of “gel (seasoning) seasoning”, a small stainless steel vine is placed on a transparent container with “Ken” of sashimi white radish for draining sashimi as the target food. “Ken” was added, and 20 g of a gel-like (jelly-like) seasoning was applied thereon, and the presence or absence of a seasoning liquid that dripped after 30 seconds was visually confirmed. For each sample, “○” indicates that the seasoning liquid is not seen in the transparent container placed under the sieve, “△” indicates that the seasoning liquid is slightly seen, and “×” indicates that a large amount of seasoning liquid is seen. The results are shown in Table 9.
In the case of “dip sauce”, a commercially available plain cracker (4.5 cm × 4.5 cm) is used as a target food, and the lower part of the cracker is immersed in a dip sauce at a constant speed (up and down each 1 second). It pulled up and calculated | required the seasoning liquid adhesion amount (g) 15 seconds after from the weight difference before and behind operation. This operation was performed three times with three crackers, and the total value of the three seasonings deposits is shown in Table 9.

<調味液組成物のスプレー塗布可否、液垂れの有無>
得られた調味液組成物を市販のトリガー式スプレーボトルに入れ、遠心から半径1cm、4cm、8cmの3つの円を記した白色光沢紙をスプレーノズルから15cm離れた場所に垂直に置き、その遠心に向って調味液組成物を噴霧し、その後、直ちに白色光沢紙上の着滴形状と大きさからスプレー塗布の適合性を評価した。 なお、各試料について、着滴形状が概ね円状で半径8cmの円を超えて着滴がある場合を「○」、着滴が概ね円状で半径4cmの円を超えて、8cmの円を超えていない場合を「△」、着滴が半径4cmの円の内側にある場合を「×」と評価し、その結果を表9に示した。
また、液垂れの有無については、噴霧操作後、直ちに前記白色光沢紙を45°の傾斜をつけた板の上に置き、1分経過後に着敵からの液垂れの状態を評価した。なお、各試料について、液垂れが見られない場合を「○」、前記半径8cmの円内において、着滴から僅かに液垂れが認められる場合を「△」、前記半径8cmの円内において、多くの着滴からの液垂れが見られる場合を「×」と評価し、その結果を表9に示した。
<Presence of spray application of seasoning liquid composition, presence or absence of dripping>
Place the obtained seasoning liquid composition into a commercially available trigger spray bottle, place white glossy paper with 3 circles with a radius of 1cm, 4cm and 8cm from the centrifuge and place it vertically 15cm away from the spray nozzle. Then, the seasoning liquid composition was sprayed toward the surface, and then the suitability of spray application was immediately evaluated from the shape and size of droplets deposited on white glossy paper. For each sample, “○” indicates that the droplet shape is approximately circular and exceeds a circle with a radius of 8 cm, and the droplet is approximately circular and exceeds a circle with a radius of 4 cm. The case where it did not exceed was evaluated as “Δ”, and the case where the droplet was inside the circle having a radius of 4 cm was evaluated as “x”. The results are shown in Table 9.
Regarding the presence or absence of liquid dripping, immediately after the spraying operation, the white glossy paper was immediately placed on a plate inclined at 45 °, and the state of liquid dripping from the enemy was evaluated after 1 minute. For each sample, the case where no dripping was observed was “◯”, in the circle with the radius of 8 cm, and the case where dripping was slightly observed from the landing “Δ”, in the circle with the radius of 8 cm, The case where dripping from many droplets was observed was evaluated as “×”, and the results are shown in Table 9.

Figure 2016069589
※1: 従来技術の一例として、CMC‐Na塩を利用した場合(対照例)の評価を合わせて行った。CMC‐Na塩としては、汎用されている第一工業製薬(株)製のセロゲンF−SH(1%水溶液粘度: 350〜500、エーテル化度: 0.60〜0.70)を用いた。
Figure 2016069589
* 1: As an example of the prior art, evaluation was performed together with the case of using CMC-Na salt (control example). As the CMC-Na salt, widely used Serogen F-SH (1% aqueous solution viscosity: 350 to 500, degree of etherification: 0.60 to 0.70) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was used.

本発明のセルロースナノファイバーは、表9に示す通り、供試した実施例(A)、(B)、(D)、(F)は、比較例(X)、(Z)、対照例(CMC‐Na塩)に比較して、食用タレ、ゲル状(ジュレ状)調味料、ディップソース、等、様々な様態の酸性〜弱酸性の調味液組成物において、実用上所望される好適な増粘性、ゲル形成能を示し、更には組成物のレオロジー特性を改良し得る点で、産業上の利用価値は大きい。例えば、本発明技術の食用タレにおける利用において、食品産業において特に重要視される外観上の優位性から商品価値を高め得るばかりか、本発明のセルロースナノファイバーの高い増粘効果から、食品への食用タレの付着量を比較例、対照例に対して2倍以上高めるとともに、食用タレのスプレー噴霧を可能とせしめ、更に、調味液でしばしば問題となる液垂れの改善、調味液の歩留りの大幅改善を可能とせしめる点において、本発明は食品の生産効率向上に寄与できる点で極めて有用な技術である。
ゲル状(ジュレ状)調味料は、近年、市場要求の高い調味液の様態であって、調味液の付加価値向上の観点から、差別化製品として注目をあびている。本発明技術のゲル状(ジュレ状)調味料における利用において、比較例、並びに、対照例に比較して、外観上で目新しい商品様態の構築(商品差別化)に寄与するのみならず、食品に対する調味液の付着量を増大させ、本質的な要求である調味効率(調味液の有効利用率)を大きく増大せしめた点で産業上の利用価値は大きい。
ディップソースも前記ゲル状(ジュレ状)調味料同様に、消費者ニーズの多様化から、利用が広がっている調味液の利用形態の一つである。本利用形態においても、本発明技術は、外観上の商品差別化、調味効率(調味液の有効利用率)に関する評価項目において、比較例、並びに、対照例を上回る好適な結果を示し、本発明技術の有用性を明示している。
As shown in Table 9, the cellulose nanofibers of the present invention were tested in Examples (A), (B), (D), and (F) in Comparative Examples (X), (Z), and Control Examples (CMC). Compared to (Na salt), edible sauce, gel-like (jelly-like) seasoning, dip sauce, etc., in various forms of acidic to weakly acidic seasoning liquid compositions suitable for practical use Industrial applicability is great in that it exhibits gel-forming ability and can further improve the rheological properties of the composition. For example, in the use of the technique of the present invention in an edible sauce, not only can the commercial value be enhanced due to the superiority of appearance that is particularly important in the food industry, but also due to the high thickening effect of the cellulose nanofibers of the present invention, Increase the amount of edible sauce on the comparative example and control example more than twice, make it possible to spray edible sauce, and improve dripping, which is often a problem with seasoning liquids, and increase the yield of seasoning liquids In terms of enabling improvement, the present invention is a very useful technique in that it can contribute to the improvement of food production efficiency.
In recent years, gel-like (jelly-like) seasonings are in the form of seasoning liquids with high market demand, and are attracting attention as differentiated products from the viewpoint of improving the added value of seasoning liquids. Compared to the comparative example and the control example, the use of the technology of the present invention in the gel-like (jelly-like) seasoning not only contributes to the construction of a new product form (product differentiation), but also to food. Industrial application value is great in that the amount of seasoning liquid deposited is increased and the seasoning efficiency (effective utilization rate of seasoning liquid), which is an essential requirement, is greatly increased.
Dip sauce, like the gel (jelly) seasoning, is one of the usage forms of seasoning liquids that are widely used due to diversification of consumer needs. Also in the present usage mode, the present technology shows favorable results over the comparative example and the control example in the evaluation items regarding the product differentiation on the appearance and the seasoning efficiency (effective utilization rate of the seasoning liquid). Clarifies the usefulness of the technology.

<製造例6:弱酸性ゲル状化粧水>
弱酸性領域での増粘性、並びにゲル形成能、チクソトロピー性が必要とされる弱酸性ゲル状化粧水のモデル処方において、本発明の前記実施例、及び、比較例で示したセルロースナノファイバー水分散体を用いて、下記処方に従って化粧水組成物を調製し、以下記載の評価方法に従って評価を行った。
表10記載の処方に従い、200mlのビーカーに固形分濃度3%で調製された本発明のセルロースナノファイバー水分散体20g(固形分換算0.6g)を仕込み、幅広翼を装着した攪拌装置で攪拌しながら、室温でグリセリン20.0g、エタノール5gを徐々に加え、更に、攪拌しながら、別にクエン酸0.6g、クエン酸三ナトリウム0.6gを調整水50gに溶解させたクエン酸‐クエン酸三ナトリウム水溶液を徐々に滴下して仕込んだ。次いで、低速で撹拌しながら、残りの調整水とローズマリーエキス0.3gを加えて、撹拌を10分間継続した後、市販のトリガー式スプレーボトルに組成液を充填して、目的の弱酸性ゲル状化粧水を得た。このとき、得られた各弱酸性ゲル状化粧水は、セルロースナノファイバー(固形分換算)0.6%を含み、20℃におけるpHは4.4〜4.7であった。
<Production Example 6: Weakly acidic gel lotion>
In the model formulation of weak acid gel lotion that requires thickening, gel forming ability and thixotropy in weak acid region, cellulose nanofiber aqueous dispersion shown in the above-mentioned examples of the present invention and comparative examples Using the body, a lotion composition was prepared according to the following formulation, and evaluated according to the evaluation method described below.
In accordance with the formulation shown in Table 10, 20 g of cellulose nanofiber aqueous dispersion of the present invention prepared at a solid content concentration of 3% (0.6 g in terms of solid content) was charged into a 200 ml beaker and stirred with a stirrer equipped with wide blades. Then, 20.0 g of glycerin and 5 g of ethanol were gradually added at room temperature, and 0.6 g of citric acid and 0.6 g of trisodium citrate were separately dissolved in 50 g of adjusted water while stirring. A trisodium aqueous solution was gradually added dropwise. Next, while stirring at low speed, add the remaining adjusted water and 0.3 g of rosemary extract and continue stirring for 10 minutes, then fill the commercially available trigger type spray bottle with the composition liquid, and target weakly acidic gel A skin lotion was obtained. At this time, each obtained weak acidic gel lotion contained 0.6% of cellulose nanofiber (solid content conversion), and pH at 20 ° C. was 4.4 to 4.7.

Figure 2016069589
Figure 2016069589

製造例6において得られた弱酸性ゲル状化粧水について、以下の方法によって、化粧水組成物のゲル性、使用感(べたつきの有無、さっぱり感)を評価した。   About the weakly acidic gel lotion obtained in Production Example 6, the gel properties and feeling of use (presence of stickiness, refreshing feeling) of the lotion composition were evaluated by the following methods.

<化粧水組成物のゲル性>
得られた化粧水組成物が充填されたトリガー式スプレーボトルを横に倒し(90°転回)、更に逆さま(180°転回)とし、ゲル形成の有無を目視で評価した。これら結果を表4−2に示した。なお、各試料について、ボトル内充填物が室温で透明、且つ、ゲル状であるものを「○」、ゲルの一部に不均一箇所がある、或いは、僅かに離水があるものを「△」、ボトル内充填物に流動性がある、或いは、全体的に不均一であるものを「×」と評価した。
<Gel properties of lotion composition>
The trigger type spray bottle filled with the obtained lotion composition was laid down (turned 90 °) and turned upside down (turned 180 °), and the presence or absence of gel formation was visually evaluated. These results are shown in Table 4-2. For each sample, “○” indicates that the filling in the bottle is transparent and gelled at room temperature, “△” indicates that there is a non-uniform portion in the gel, or there is slight water separation. In addition, the bottle filling material was fluid or was generally non-uniform, and was evaluated as “x”.

<化粧水組成物の使用感>
得られた化粧水組成物が充填されたトリガー式スプレーボトルから手の甲に1〜2回スプレーした後、化粧水をもう一方の手の指先で軽く円を描くように伸ばした際の使用感を社内パネラー3人(20代女性、30代女性、40代女性)で評価した。これら結果を表4−2に示した。なお、各試料について、化粧水組成物の使用感はべたつきがなく、さっぱり感を感じたものを3点、僅かにべたつきがある、或いは僅かに滑らかさに劣るもの、或いは、を2点、べたつきがあり、重い感触があるもの、或いは、滑らかさに欠けるものを1点として採点し、社内パネラー3人の平均点が2.6を上回れば「○」、平均点が2.0〜2.6であれば「△」、平均点が2,0を下回れば「×」と評価した。
<Usage feeling of lotion composition>
After spraying the back of the hand once or twice from the trigger type spray bottle filled with the obtained lotion composition, the feeling of use when the lotion was extended in a light circle with the fingertip of the other hand is in-house Three panelists (20s, 30s, 40s) evaluated. These results are shown in Table 4-2. In addition, for each sample, the feeling of use of the lotion composition was not sticky, 3 points were felt refreshed, slightly sticky, or slightly inferior in smoothness, or 2 points, stickiness If the average score of three in-house panelists exceeds 2.6, “○” is given, and the average score is 2.0-2. When it was 6, it was evaluated as “Δ”, and when the average score was below 2,0, it was evaluated as “x”.

Figure 2016069589
Figure 2016069589

本発明のセルロースナノファイバーは、表11に示す通り、供試した実施例(A)、(D)、(E)は、弱酸性ゲル状化粧水の調製に有用で、且つ、その使用感も良好であり、比較例(X)、(Z)に比較してその効果は明白である。また、本発明技術は弱酸性領域において、より高い増粘性、ゲル形成能を示す一方で、化粧水組成物のレオロジー特性を改良して、ゲル状でありながらスプレー噴霧を可能とせしめ、また更に、化粧水の使用感としてしばしば問題となるべたつきを抑え、さっぱり感を発現し得る点で、化粧料向けの増粘剤、ゲル化剤、レオロジー改良剤としての産業上の利用価値は大きい。   As shown in Table 11, the cellulose nanofibers of the present invention were tested in Examples (A), (D), and (E), which are useful for the preparation of a weakly acidic gel lotion, and the feeling of use is also It is good and the effect is obvious as compared with Comparative Examples (X) and (Z). In addition, the technology of the present invention exhibits higher thickening and gel-forming ability in the weakly acidic region, while improving the rheological properties of the lotion composition to enable spray spraying while being in a gel state, and further In terms of the ability to suppress stickiness, which is often a problem as a feeling of use of lotion, and to express a refreshing feeling, the industrial utility value as a thickener, gelling agent and rheology modifier for cosmetics is great.

本発明のセルロースナノファイバー、およびその水分散体は、増粘剤、ゲル化剤、保形剤として用いることができ、食品、化粧品、医薬品、医療、農薬、トイレタリー用品、スプレー剤、塗料、等の用途で幅広く使用することができる。加えて、前記用途分野で乳化安定性や分散安定性を所望する各種製品において乳化安定化剤や分散安定化剤として利用できる。
本発明のセルロースナノファイバー、およびその水分散体は、より広いpH領域で使用可能であり、特に、弱酸性領域でpHショックを生じることなく、増粘剤、ゲル化剤、保形剤、乳化安定化剤、分散安定化剤、等としての性能を発揮し、その性能の経時変化が小さい特徴を有する。本発明のセルロースナノファイバー、およびその水分散体は、弱酸性の食品や飲料、調味液類、具体的には、乳酸菌飲料やヨーグルト、酸性乳飲料、スポーツドリンク、乳幼児用イオン飲料、機能型ドリンク、ゼリー飲料、カロリー摂取型ドリンク、デザートドリンク、ベビーフード、ジャム、ドレッシング、マヨネーズ、ケチャップ、ウスターソース、バーベキューソース、焼肉ソース、各種食用タレ、つゆ、ジュレ状調味料、等で増粘剤、ゲル化剤、保形剤、乳化安定化剤、分散安定化剤、として好適に使用できる。また、セルロースナノファイバー水分散体を中間原料として更に化学修飾や加工して利用することもできる。
The cellulose nanofiber of the present invention and the aqueous dispersion thereof can be used as a thickener, gelling agent, shape-retaining agent, food, cosmetics, pharmaceuticals, medical, agricultural chemicals, toiletries, sprays, paints, etc. It can be used widely in various applications. In addition, it can be used as an emulsion stabilizer or a dispersion stabilizer in various products for which emulsion stability or dispersion stability is desired in the application field.
The cellulose nanofiber of the present invention and the aqueous dispersion thereof can be used in a wider pH range, and in particular, thickeners, gelling agents, shape-retaining agents, and emulsifications without causing a pH shock in a weakly acidic range. It exhibits the performance as a stabilizer, a dispersion stabilizer, etc., and has the characteristic that the change with time of the performance is small. Cellulose nanofibers of the present invention and aqueous dispersions thereof are weakly acidic foods and beverages, seasonings, specifically, lactic acid bacteria beverages and yogurts, acidic milk beverages, sports drinks, ionic beverages for infants, functional drinks , Jelly drink, calorie intake drink, dessert drink, baby food, jam, dressing, mayonnaise, ketchup, Worcester sauce, barbecue sauce, grilled meat sauce, various edible sauces, soy sauce, jelly-like seasonings, etc. It can be suitably used as an agent, a shape-retaining agent, an emulsion stabilizer, and a dispersion stabilizer. Further, the cellulose nanofiber aqueous dispersion can be further used as an intermediate material after further chemical modification or processing.

すなわち、本発明は下記に掲げる発明に関する。
(1)(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化してカルボキシメチルセルロース(CMC)塩を製造する工程、
(ii)前記CMC塩を部分酸型CMCに変換する工程、
(v)得られた部分酸型CMC塩を解繊分散処理する工程、
を有する部分酸型CMC塩ナノファイバー水分散体の製造方法であって、
前記、部分酸型CMCがCMC塩のアルカリ塩の部分を部分的に酸型に変換したものであり、グルコース単位当たりのカルボキシメチル置換度が0.02〜0.80であり、かつ、酸型置換基が全置換基の1.0〜80.0%である部分酸型CMC塩ナノファイバー水分散体の製造方法。
(2)(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化してカルボキシメチルセルロース(CMC)塩を製造する工程、
(ii)前記CMC塩を部分酸型CMCに変換する工程、
(iii)前記部分酸型CMCを洗浄する工程、
(iv)洗浄した部分酸型CMCと、所定量のアルカリを反応させる工程、
(v)得られた部分酸型CMC塩を解繊分散処理する工程、
を有する部分酸型CMC塩ナノファイバー水分散体の製造方法であって、
前記、部分酸型CMC塩がCMC塩のアルカリ塩の部分を部分的に酸型に変換したものであり、グルコース単位当たりのカルボキシメチル置換度が0.02〜0.80であり、かつ、酸型置換基が全置換基の1.0〜80.0%である部分酸型CMC塩ナノファイバー水分散体の製造方法。
)(1)または(2)記載の製造方法によって得られた部分酸型CMC塩ナノファイバー水分散体の溶媒を除去する工程、を有する部分酸型CMC塩ナノファイバーの製造方法。
)(1)または(2)記載の製造方法によって得られた部分酸型CMC塩ナノファイバー水分散体。
)(1)または(2)記載の製造方法によって得られた部分酸型CMC塩ナノファイバー水分散体を含有する食品。
)20℃におけるpHが3.0〜5.5である、()記載の食品。
)(1)または(2)記載の製造方法によって得られた部分酸型CMC塩ナノファイバー水分散体を含有する、20℃におけるpHが3.0〜5.5である化粧料。
That is, this invention relates to the invention hung up below.
(1) (i) Step of producing raw material pulp into alkali cellulose and further carboxymethylating to produce carboxymethyl cellulose (CMC) salt,
(Ii) converting the CMC salt into a partial acid CMC;
(V) a step of defibrating and dispersing the obtained partial acid CMC salt;
A partial acid type CMC Siona Bruno method of manufacturing a fiber aqueous dispersion having,
The partial acid type CMC is obtained by partially converting the alkali salt portion of the CMC salt into an acid type, the degree of carboxymethyl substitution per glucose unit is 0.02 to 0.80, and the acid type The manufacturing method of the partial acid type CMC salt nanofiber aqueous dispersion whose substituent is 1.0-80.0% of all the substituents.
(2) (i) converting the raw material pulp to alkali cellulose and further carboxymethylating to produce a carboxymethylcellulose (CMC) salt;
(Ii) converting the CMC salt into a partial acid CMC;
(Iii) cleaning the partial acid type CMC;
(Iv) reacting the washed partial acid type CMC with a predetermined amount of alkali;
(V) a step of defibrating and dispersing the obtained partial acid CMC salt;
A partial acid type CMC Siona Bruno method of manufacturing a fiber aqueous dispersion having,
The partial acid type CMC salt is obtained by partially converting the alkali salt portion of the CMC salt to the acid type, the degree of carboxymethyl substitution per glucose unit is 0.02 to 0.80, and the acid The manufacturing method of the partial acid type CMC salt nanofiber aqueous dispersion whose type substituent is 1.0-80.0% of all the substituents.
(3) (1) or (2) the production method of partially acid-type CMC salt nanofibers having step, the removing the solvent of the resulting partially acid form CMC salt nanofibers aqueous dispersion by the production method described.
( 4 ) Partially acid-type CMC salt nanofiber aqueous dispersion obtained by the production method according to (1) or (2) .
( 5 ) A food containing a partial acid type CMC salt nanofiber aqueous dispersion obtained by the production method according to (1) or (2) .
( 6 ) The food according to ( 5 ), wherein the pH at 20 ° C is 3.0 to 5.5.
( 7 ) A cosmetic having a pH of 3.0 to 5.5 at 20 ° C, containing the aqueous dispersion of partial acid CMC salt nanofibers obtained by the production method according to (1) or (2) .

Claims (8)

(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化してカルボキシメチルセルロース(CMC)塩を製造する工程、
(ii)前記CMC塩を部分酸型CMCに変換する工程、
(v)得られた部分酸型CMC塩を解繊分散処理する工程、
を有する部分酸型CMC塩セルロースナノファイバー水分散体の製造方法。
(I) alkali pulping raw pulp, and further carboxymethylating to produce a carboxymethylcellulose (CMC) salt,
(Ii) converting the CMC salt into a partial acid CMC;
(V) a step of defibrating and dispersing the obtained partial acid CMC salt;
The manufacturing method of the partial acid type CMC salt cellulose nanofiber aqueous dispersion which has NO.
(i)原料パルプをアルカリセルロース化し、更に、カルボキシメチル化してカルボキシメチルセルロース(CMC)塩を製造する工程、
(ii)前記CMC塩を部分酸型CMCに変換する工程、
(iii)前記部分酸型CMCを洗浄する工程、
(iv)洗浄した部分酸型CMCと、所定量のアルカリを反応させる工程、
(v)得られた部分酸型CMC塩を解繊分散処理する工程、
を有する部分酸型CMC塩セルロースナノファイバー水分散体の製造方法。
(I) alkali pulping raw pulp, and further carboxymethylating to produce a carboxymethylcellulose (CMC) salt,
(Ii) converting the CMC salt into a partial acid CMC;
(Iii) washing the partial acid type CMC;
(Iv) reacting the washed partial acid type CMC with a predetermined amount of alkali,
(V) a step of defibrating and dispersing the obtained partial acid CMC salt;
The manufacturing method of the partial acid type CMC salt cellulose nanofiber aqueous dispersion which has NO.
前記、部分酸型CMC塩が、グルコース単位当たりのカルボキシメチル置換度が0.02〜0.80であり、かつ、酸型置換基が全置換基の1.0〜80.0%である、請求項1または2記載のセルロースナノファイバー水分散体の製造方法。   In the partial acid type CMC salt, the degree of carboxymethyl substitution per glucose unit is 0.02 to 0.80, and the acid type substituent is 1.0 to 80.0% of the total substituents. The manufacturing method of the cellulose nanofiber aqueous dispersion of Claim 1 or 2. 請求項1〜3いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体の溶媒を除去する工程、を有するセルロースナノファイバーの製造方法。   The manufacturing method of the cellulose nanofiber which has the process of removing the solvent of the cellulose nanofiber aqueous dispersion obtained by the manufacturing method in any one of Claims 1-3. 請求項1〜3いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体。   The cellulose nanofiber aqueous dispersion obtained by the manufacturing method in any one of Claims 1-3. 請求項1〜3いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体を含有する食品。   The foodstuff containing the cellulose nanofiber aqueous dispersion obtained by the manufacturing method in any one of Claims 1-3. 20℃におけるpHが3.0〜5.5である、請求項6記載の食品。   The food of Claim 6 whose pH in 20 degreeC is 3.0-5.5. 請求項1〜3いずれか記載の製造方法によって得られたセルロースナノファイバー水分散体を含有する、20℃におけるpHが3.0〜5.5である化粧料。   Cosmetics which contain the cellulose nanofiber aqueous dispersion obtained by the manufacturing method in any one of Claims 1-3 and whose pH in 20 degreeC is 3.0-5.5.
JP2014202762A 2014-10-01 2014-10-01 Method for producing cellulose nanofiber aqueous dispersion Active JP5727660B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202762A JP5727660B1 (en) 2014-10-01 2014-10-01 Method for producing cellulose nanofiber aqueous dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202762A JP5727660B1 (en) 2014-10-01 2014-10-01 Method for producing cellulose nanofiber aqueous dispersion

Publications (2)

Publication Number Publication Date
JP5727660B1 JP5727660B1 (en) 2015-06-03
JP2016069589A true JP2016069589A (en) 2016-05-09

Family

ID=53437889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202762A Active JP5727660B1 (en) 2014-10-01 2014-10-01 Method for producing cellulose nanofiber aqueous dispersion

Country Status (1)

Country Link
JP (1) JP5727660B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208946A (en) * 2015-05-13 2016-12-15 日本製紙株式会社 Additive for food product
WO2018116660A1 (en) * 2016-12-21 2018-06-28 日本製紙株式会社 Acid-type carboxymethylated cellulose nanofibers and production method therefor
WO2019064633A1 (en) * 2017-09-27 2019-04-04 第一工業製薬株式会社 Production method for carboxymethyl cellulose or salt thereof
WO2019117197A1 (en) * 2017-12-13 2019-06-20 味の素株式会社 Food product exhibiting enhanced fatty flavor
JP2020059815A (en) * 2018-10-11 2020-04-16 日本製紙株式会社 Method for producing anion modified-cellulose nanofiber
EP3521318A4 (en) * 2016-09-30 2020-04-29 Nippon Paper Industries Co., Ltd. Carboxymethyl cellulose or salt thereof, and electrode composition
JP2021010310A (en) * 2019-07-04 2021-02-04 日本製紙株式会社 Cellulose nanofiber-containing powder composition and method of producing the same
JP2021107482A (en) * 2019-12-27 2021-07-29 日揮触媒化成株式会社 Carboxymethyl cellulose particle and its manufacturing method, and cosmetic
WO2023106123A1 (en) * 2021-12-09 2023-06-15 株式会社 資生堂 Cosmetic

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048293A (en) * 2015-09-01 2017-03-09 株式会社スギノマシン Cellulose nanofiber dispersion, method for producing the same and cellulose nanofiber film
JP6675852B2 (en) * 2015-10-07 2020-04-08 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber
JP6308531B2 (en) * 2015-12-16 2018-04-11 第一工業製薬株式会社 Topical skin preparation
JP6653364B1 (en) * 2018-09-28 2020-02-26 大王製紙株式会社 Gel detergent composition and detergent product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243801A (en) * 1985-04-19 1986-10-30 Dai Ichi Kogyo Seiyaku Co Ltd Production of water-insoluble alkali metal salt of carboxyalkyl-cellulose
JPH0655112B2 (en) * 1985-10-24 1994-07-27 ダイセル化学工業株式会社 Fish feed
JP2707304B2 (en) * 1989-01-23 1998-01-28 ダイセル化学工業株式会社 Aqueous gel for cooling agent
JP2007254588A (en) * 2006-03-23 2007-10-04 Dai Ichi Kogyo Seiyaku Co Ltd Method for manufacturing partial acid carboxymethylcellulose
JP2008019344A (en) * 2006-07-13 2008-01-31 Dai Ichi Kogyo Seiyaku Co Ltd Method for manufacturing partial acid-type carboxymethyl cellulose
JP2013185122A (en) * 2012-03-09 2013-09-19 Nippon Paper Industries Co Ltd Method for producing cellulose nano-fiber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208946A (en) * 2015-05-13 2016-12-15 日本製紙株式会社 Additive for food product
EP3521318A4 (en) * 2016-09-30 2020-04-29 Nippon Paper Industries Co., Ltd. Carboxymethyl cellulose or salt thereof, and electrode composition
WO2018116660A1 (en) * 2016-12-21 2018-06-28 日本製紙株式会社 Acid-type carboxymethylated cellulose nanofibers and production method therefor
US11591721B2 (en) 2016-12-21 2023-02-28 Nippon Paper Industries Co., Ltd. Acid-type carboxymethylated cellulose nanofiber and production method thereof
JP2019059856A (en) * 2017-09-27 2019-04-18 第一工業製薬株式会社 Method for producing carboxymethyl cellulose or salt thereof
WO2019064633A1 (en) * 2017-09-27 2019-04-04 第一工業製薬株式会社 Production method for carboxymethyl cellulose or salt thereof
WO2019117197A1 (en) * 2017-12-13 2019-06-20 味の素株式会社 Food product exhibiting enhanced fatty flavor
JPWO2019117197A1 (en) * 2017-12-13 2020-12-03 味の素株式会社 Foods with enhanced oiliness
JP7322711B2 (en) 2017-12-13 2023-08-08 味の素株式会社 Foods with enhanced oiliness
JP2020059815A (en) * 2018-10-11 2020-04-16 日本製紙株式会社 Method for producing anion modified-cellulose nanofiber
JP7239294B2 (en) 2018-10-11 2023-03-14 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber
JP2021010310A (en) * 2019-07-04 2021-02-04 日本製紙株式会社 Cellulose nanofiber-containing powder composition and method of producing the same
JP2021107482A (en) * 2019-12-27 2021-07-29 日揮触媒化成株式会社 Carboxymethyl cellulose particle and its manufacturing method, and cosmetic
JP7454942B2 (en) 2019-12-27 2024-03-25 日揮触媒化成株式会社 Carboxymethyl cellulose particles, their production method, and cosmetics
WO2023106123A1 (en) * 2021-12-09 2023-06-15 株式会社 資生堂 Cosmetic

Also Published As

Publication number Publication date
JP5727660B1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5727660B1 (en) Method for producing cellulose nanofiber aqueous dispersion
JP5734436B2 (en) High-performance cellulose composite
JP7245237B2 (en) Carboxymethylated pulp pulverized product and additive containing the pulverized product
JP5953024B2 (en) Liquid food containing fruits and / or vegetables
JPWO2011125742A1 (en) Cellulose composite
JP5539748B2 (en) Crystalline cellulose composite
JP2008106178A (en) Dry composition comprising water-soluble polymer
JP2008092914A (en) Thickening gelatinizer composed of three ingredients
JP6407412B2 (en) Cellulose composite
JP5627284B2 (en) Emulsion dressing
JP6460641B2 (en) Liquid composition containing water-insoluble components
US11242446B2 (en) Cellulose composite
JP5727657B1 (en) A method for producing a cellulose nanofiber dispersion.
JP2016084397A (en) Cellulose composite
JP6457171B2 (en) Cellulose composite
JP2004248536A (en) Heat-resistant gel
JP5855386B2 (en) Cellulose composite
JP4791407B2 (en) Sauce composition
JP2018059126A (en) Cellulose composite
JP3262917B2 (en) Fine cellulose and its manufacturing method
TWI721401B (en) Cellulose composite
JP5969748B2 (en) Liquid seasoning containing water-insoluble ingredients
JP7321148B2 (en) Dispersion composition containing carboxymethylcellulose
WO2022114076A1 (en) Additive for use in production of air bubble-containing composition
TWI540142B (en) Cellulose complex

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5727660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150