JP2016069197A - Channel member - Google Patents

Channel member Download PDF

Info

Publication number
JP2016069197A
JP2016069197A JP2014196861A JP2014196861A JP2016069197A JP 2016069197 A JP2016069197 A JP 2016069197A JP 2014196861 A JP2014196861 A JP 2014196861A JP 2014196861 A JP2014196861 A JP 2014196861A JP 2016069197 A JP2016069197 A JP 2016069197A
Authority
JP
Japan
Prior art keywords
flow path
region
surrounding groove
path member
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014196861A
Other languages
Japanese (ja)
Other versions
JP6356562B2 (en
Inventor
信也 宮崎
Shinya Miyazaki
信也 宮崎
隆人 本庄
Takahito Honjo
隆人 本庄
一憲 竹之内
Kazunori Takenouchi
一憲 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014196861A priority Critical patent/JP6356562B2/en
Publication of JP2016069197A publication Critical patent/JP2016069197A/en
Application granted granted Critical
Publication of JP6356562B2 publication Critical patent/JP6356562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a channel member having less un-jointed parts, and excellent in seal ability, even when a channel member has a channel in the vicinity of a center part.SOLUTION: A channel member 1 is formed of a disk-state ceramic joint body having a channel 4 formed on a joint surface, and when radial dimension from a center on the ceramic joint body is A, the channel 4 is formed in an area 5 having radial dimension of 0.6A from the center, and on the joint surface outside of the area 5, a surrounding groove 6 which is concentric to the area 5 is provided, therefore internal stress generated on outside of the area 5 can be easily released, and there are less un-jointed parts on outside of the area 5, and excellent in seal ability.SELECTED DRAWING: Figure 1

Description

本発明は、流路部材に関するものである。   The present invention relates to a flow path member.

従来より、主面を被処理物の載置面とし、内部に形成した流路に温かい流体または冷たい流体を流すことにより、被処理物を温めたり、被処理物が持つ熱を冷却したりする温度調節に流路部材が用いられている。そして、このような流路部材は、一方の部材若しくは両方の部材に溝を形成し、これらの部材を接合することにより、流路が形成されている。   Conventionally, the main surface is used as a mounting surface for the object to be processed, and a warm fluid or a cold fluid is allowed to flow through a flow path formed inside, thereby heating the object to be processed or cooling the heat of the object to be processed. A channel member is used for temperature adjustment. And such a flow path member forms a flow path by forming a groove in one member or both members and joining these members.

例えば、特許文献1には、円盤状の第1の焼成セラミックス成形体と第2の焼成セラミックス成形体の接合面の少なくとも一方の接合面に流体通路(流路)を形成する溝を設け、該第1の焼成セラミックス成形体と第2の焼成セラミックス成形体とを接合することによって、該溝と他方の接合面とによって流体通路が設けられたセラミックス接合体からなる流路部材であるセラミックスヒータ基体が提案されている。   For example, in Patent Document 1, a groove for forming a fluid passage (flow path) is provided on at least one joint surface of the disk-shaped first fired ceramic molded body and the second fired ceramic molded body, A ceramic heater base which is a flow path member made of a ceramic joined body in which a fluid passage is provided by the groove and the other joining surface by joining the first fired ceramic formed body and the second fired ceramic formed body Has been proposed.

特開平7−272834号公報Japanese Patent Laid-Open No. 7-272834

近年、載置面の中央部、すなわち、流路部材の中心付近のみを被処理物の温度調節領域とした構成の流路部材が求められている。しかしながら、流路部材の中心付近のみを温度調節領域にすべく、中心付近のみに流路を形成し、流路の領域外を接合面として接合によって流路部材を形成した場合、流路の領域外部分に未接合箇所が多く存在し、流体の密閉性が保てないという問題があった。   In recent years, there has been a demand for a flow path member having a configuration in which only the central portion of the placement surface, that is, the vicinity of the center of the flow path member, is used as the temperature adjustment region of the object to be processed. However, when the flow path member is formed only in the vicinity of the center so that only the vicinity of the center of the flow path member is the temperature adjustment region, and the flow path member is formed by bonding with the outside of the flow channel region as the bonding surface, There were many unjoined parts in the outside and there was a problem that the fluid tightness could not be maintained.

本発明は、上記問題を解決すべく案出されたものであり、中心付近に流路が位置する構成の流路部材であっても、未接合部が少なく、密閉性に優れた流路部材を提供することを目的とする。   The present invention has been devised to solve the above problem, and even if the flow path member has a structure in which the flow path is located near the center, the flow path member has few unjoined portions and has excellent sealing performance. The purpose is to provide.

本発明の流路部材は、接合面に形成された流路を備える円盤状のセラミック接合体からなり、該セラミック接合体における中心からの半径寸法をAとしたとき、前記中心から0.6Aの半径寸法の領域内に前記流路を備え、前記領域外の接合面に、前記領域と同心円状
の囲撓溝を有していることを特徴とするものである。
The flow path member of the present invention comprises a disk-shaped ceramic joined body having a flow path formed on the joining surface, and when the radius dimension from the center of the ceramic joined body is A, the radius is 0.6 A from the center. The flow path is provided in a region having dimensions, and a surrounding groove is concentric with the region on a joint surface outside the region.

本発明の流路部材によれば、接合面に形成された流路を備える円盤状のセラミック接合体からなり、該セラミック接合体における中心からの半径寸法をAとしたとき、前記中心から0.6Aの半径寸法の領域内に前記流路を備え、前記領域外の接合面に、前記領域と同
心円状の囲撓溝を有したものであることにより、領域外における未接合部が少なく、密閉性に優れる。
According to the flow path member of the present invention, it is composed of a disk-shaped ceramic joined body having a flow path formed on the joining surface, and when the radial dimension from the center of the ceramic joined body is A, 0.6 A from the center. The flow path is provided in a region having a radial dimension of, and the joint surface outside the region has a surrounding groove concentric with the region, so that there are few unjoined portions outside the region, and sealing performance Excellent.

本実施形態の流路部材の一例を示す、(a)は斜視図であり、(b)は平面透過図である。An example of the flow path member of this embodiment is shown, (a) is a perspective view, (b) is a plane transparent view. 本実施形態の流路部材の他の例を示す、平面透過図である。It is a plane permeation | transmission figure which shows the other example of the flow-path member of this embodiment.

以下、本実施形態の流路部材について図面を用いて詳細に説明する。   Hereinafter, the flow path member of the present embodiment will be described in detail with reference to the drawings.

図1は、本実施形態の流路部材の一例を示す、(a)は斜視図であり、(b)は平面透過図である。図1に示す例の流路部材1は、第1部材2と第2部材3とが接合された接合体からなり、第1部材2の主面に開口した流入口7および流出口8を有している。なお、本実施形態の流路部材1は、第1部材2および第2部材3のいずれもセラミックスからなるものであるため、セラミック接合体である。   1A and 1B show an example of a flow path member of the present embodiment, in which FIG. 1A is a perspective view, and FIG. The flow path member 1 of the example shown in FIG. 1 is composed of a joined body in which a first member 2 and a second member 3 are joined, and has an inlet 7 and an outlet 8 that are open on the main surface of the first member 2. doing. The flow path member 1 of the present embodiment is a ceramic joined body because both the first member 2 and the second member 3 are made of ceramics.

そして、図1(b)に示すように、流入口7および流出口8は、流路4にそれぞれ繋がっており、本実施形態の流路部材1は、流路部材1(セラミック接合体)における中心からの距離をAとしたとき、中心から0.6Aの半径寸法の領域5(以下、単に領域5とも言
う。)内に流路4を備えるものである。なお、流路4の外周の内接円が領域5であり、図1においては、色調を異ならせて示している。
And as shown in FIG.1 (b), the inflow port 7 and the outflow port 8 are each connected with the flow path 4, and the flow path member 1 of this embodiment is in the flow path member 1 (ceramic joining body). When the distance from the center is A, the flow path 4 is provided in a region 5 (hereinafter, also simply referred to as region 5) having a radial dimension of 0.6 A from the center. In addition, the inscribed circle on the outer periphery of the flow path 4 is a region 5, and in FIG.

そして、本実施形態の流路部材1は、図1(b)に示すように、領域5外の接合面に、領域5と同心円状の囲繞溝6を有している。このような構成を満たしていることにより、領域5外における未接合部が少なく、密閉性に優れた流路部材1となる。このように、領域5外における未接合部が少なく、密閉性に優れた流路部材1とすることができるのは、領域5外の接合面に、領域5と同心円状の囲繞溝6を有していることにより、接合時の膨張や収縮による第1部材および第2部材の挙動のズレに伴って領域5外に生じる内部応力を解放することができるからである。   And the flow-path member 1 of this embodiment has the surrounding groove | channel 6 concentric with the area | region 5 in the joint surface outside the area | region 5, as shown in FIG.1 (b). By satisfying such a configuration, there are few unjoined portions outside the region 5, and the flow path member 1 is excellent in hermeticity. As described above, the flow path member 1 having few unjoined portions outside the region 5 and having excellent airtightness can be obtained by having the surrounding groove 6 concentric with the region 5 on the joint surface outside the region 5. By doing so, it is possible to release internal stress generated outside the region 5 due to a deviation in the behavior of the first member and the second member due to expansion and contraction during joining.

なお、囲撓溝6とは、領域5と同じ中心の同心円の円周と70%以上重なるもののことを指す。また、囲繞溝6は、連続したものでなければならないものではなく、短い溝が同心円状に並んで設けられていてもよい。また、流路4の形状や、流入口7および流出口8の形成位置等は、図1に示す例に限られるものでないことは言うまでもない。   The surrounding groove 6 refers to a groove that overlaps the circumference of a concentric circle having the same center as that of the region 5 by 70% or more. The surrounding groove 6 does not have to be continuous, and short grooves may be provided concentrically. Moreover, it cannot be overemphasized that the shape of the flow path 4, the formation position of the inflow port 7 and the outflow port 8, etc. are not restricted to the example shown in FIG.

また、流路4および囲繞溝6は、第1部材2側または第2部材3側の一方のみに設けてもよいし、流路4を第1部材2側、囲繞溝6を第2部材3側、または、囲繞溝6を第1部材2側、流路4を第2部材3側に設けてもよい。さらに、流路4に関しては、第1部材2と第2部材3とにそれぞれ溝を形成し、これらを接合によって合わせることで形成するものであってもよい。   The flow path 4 and the surrounding groove 6 may be provided only on one side of the first member 2 side or the second member 3 side, or the flow path 4 is provided on the first member 2 side and the surrounding groove 6 is provided on the second member 3 side. Alternatively, the surrounding groove 6 may be provided on the first member 2 side, and the flow path 4 may be provided on the second member 3 side. Further, the flow path 4 may be formed by forming grooves in the first member 2 and the second member 3 and joining them together by bonding.

次に、図2は、本実施形態の流路部材の他の例を示す、平面透過図である。この図2に示すように、異なる同心円状の囲繞溝6を複数有していることが好適である。上記構成を満たすときには、領域5外に生じる内部応力をより解放しやすくなることから、未接合部がさらに少なくなるため、密閉性にさらに優れた流路部材10となる。   Next, FIG. 2 is a plan transparent view showing another example of the flow path member of the present embodiment. As shown in FIG. 2, it is preferable to have a plurality of different concentric surrounding grooves 6. When the above configuration is satisfied, the internal stress generated outside the region 5 can be more easily released, so that the number of unjoined portions is further reduced, so that the flow path member 10 is further excellent in sealing performance.

また、図2に示すように、半径の最も小さい囲繞溝6を第1の囲繞溝6a、半径が2番目に小さい囲繞溝6を第2の囲繞溝6bとし、領域5の外周と第1の囲繞溝6aの内周との間隔をX、第1の囲繞溝6aの外周と第2の囲繞溝6bの内周との間隔をYとしたとき、Y/Xが0.8〜1.2の範囲内であることが好適である。このような構成を満たしているときには、内部応力の解放効果を有しつつ、囲繞溝6間には接合面には接合に十分な面積を取ることができるとともに、機械的特性を低下させることの少ない囲繞溝6間のリブ厚みを有していることから、流体の密閉性や機械的特性から、さらに信頼性に優れた流路部材10とすることができる。   Further, as shown in FIG. 2, the surrounding groove 6 having the smallest radius is the first surrounding groove 6a, and the surrounding groove 6 having the second smallest radius is the second surrounding groove 6b. When the interval between the inner periphery of the surrounding groove 6a is X and the interval between the outer periphery of the first surrounding groove 6a and the inner periphery of the second surrounding groove 6b is Y, Y / X is within the range of 0.8 to 1.2. Preferably it is. When such a configuration is satisfied, while having an effect of releasing internal stress, a sufficient area can be secured on the joint surface between the surrounding grooves 6 and the mechanical characteristics can be reduced. Since the rib thickness between the surrounding grooves 6 is small, the flow path member 10 can be made more excellent in terms of fluid sealing performance and mechanical characteristics.

そして、本実施形態の流路部材1,10を構成するセラミックスとしては、アルミナ、ジルコニア、コージェライト、イットリアなどの酸化物セラミックスや炭化珪素、窒化珪素などの非酸化物セラミックスのいずれも適用可能であるが、流路4に流す流体が持つ熱を効率よく利用するには、熱伝導率の高い炭化珪素を用いることが好適である。   As the ceramics constituting the flow path members 1 and 10 of this embodiment, any of oxide ceramics such as alumina, zirconia, cordierite and yttria, and non-oxide ceramics such as silicon carbide and silicon nitride can be applied. However, in order to efficiently use the heat of the fluid flowing through the flow path 4, it is preferable to use silicon carbide having a high thermal conductivity.

次に、本実施形態の流路部材の製造方法の一例として、炭化珪素を適用した例を説明する。   Next, an example in which silicon carbide is applied will be described as an example of the method for manufacturing the flow path member of the present embodiment.

まず、出発原料として、炭化珪素粉末(平均粒径D50=0.5〜10μm)と、焼結助剤と
して炭化硼素(BC)粉末、炭素粉末あるいは酸化アルミニウム(Al)粉末、酸化イットリウム(Y)粉末を準備し、所定量秤量した後、秤量後の粉末を所定量の溶媒(水)とともにボールミルなどの粉砕機に投入して平均粒径2μm以下となるように整粒する。その後さらにポリエチレングリコール,ポリエチレンオキサイド等のバインダーを適量添加してスラリーとした後、このスラリーをスプレードライヤーを用いて噴霧造粒することにより炭化珪素質顆粒を得る。
First, silicon carbide powder (average particle size D50 = 0.5 to 10 μm) as a starting material, boron carbide (B 4 C) powder, carbon powder or aluminum oxide (Al 2 O 3 ) powder, yttrium oxide as a sintering aid After preparing (Y 2 O 3 ) powder and weighing a predetermined amount, the weighed powder together with a predetermined amount of solvent (water) is put into a pulverizer such as a ball mill to adjust the average particle size to 2 μm or less. To do. Thereafter, a suitable amount of a binder such as polyethylene glycol and polyethylene oxide is added to form a slurry, and the slurry is spray granulated using a spray dryer to obtain silicon carbide granules.

次に、炭化珪素質顆粒を静水圧プレス成形法(ラバープレス)や粉末プレス成形法にて所定形状に成形し、切削加工により第1部材2となる成形体および第2部材3となる成形体を得る。そして、さらに切削加工を施すことにより、第1部材2となる成形体または第2部材3となる成形体に、流路4、囲撓溝6、流入口7、流出口8等を設ける。   Next, the silicon carbide granule is formed into a predetermined shape by a hydrostatic press molding method (rubber press) or a powder press molding method, and a molded body that becomes the first member 2 and a molded body that becomes the second member 3 by cutting. Get. Further, by further cutting, the flow path 4, the surrounding groove 6, the inflow port 7, the outflow port 8, and the like are provided in the formed body that becomes the first member 2 or the formed body that becomes the second member 3.

次に、第1部材2となる成形体および第2部材3となる成形体の少なくともいずれかの接合面に接合剤を塗布する。このときに用いる接合剤として、炭化珪素質顆粒の作製時のスラリーを用いれば、接合も兼ねた焼成時において、第1部材2となる成形体および第2部材3となる成形体と同様の収縮挙動を示すため好適である。なお、第1部材2となる成形体および第2部材3となる成形体への接合剤の塗布は、刷毛などを用いてもよいが、塗布厚さをより均一とするためには、接合部のみに接合剤を塗布可能なようにマスキングされたスクリーンを使用して塗布することが好適である。   Next, a bonding agent is applied to at least one of the bonding surfaces of the molded body to be the first member 2 and the molded body to be the second member 3. If the slurry at the time of producing the silicon carbide granule is used as the bonding agent used at this time, the same shrinkage as that of the molded body serving as the first member 2 and the molded body serving as the second member 3 during firing also serving as bonding. This is preferable because it shows a behavior. In addition, although application | coating of the bonding agent to the molded object used as the 1st member 2 and the molded object used as the 2nd member 3 may use a brush etc., in order to make application | coating thickness more uniform, it is a junction part. It is preferable to apply using a screen masked so that the bonding agent can only be applied.

そして、接合剤塗布後に、第1部材2となる成形体および第2部材3となる成形体の接合面同士を貼り合わせ、所定の圧力で加圧した後、これを焼成炉にて非酸化雰囲気中1800〜2100℃の最高温度で焼成し、焼成後の焼結体に研削加工により最終仕上げを施すことで本実施形態の流路部材1を得ることができる。なお、成形体の切削加工において、囲繞溝6を複数有するものとし、その後の工程を上述した方法により作製すれば、図2に示すような、流路部材10を得ることができる。   Then, after the bonding agent is applied, the bonding surfaces of the molded body to be the first member 2 and the molded body to be the second member 3 are bonded together and pressed at a predetermined pressure, and then this is non-oxidizing atmosphere in a firing furnace. The flow path member 1 of the present embodiment can be obtained by firing at a maximum temperature of 1800 to 2100 ° C. and subjecting the sintered body after firing to final finishing by grinding. In the cutting process of the molded body, if a plurality of surrounding grooves 6 are provided and the subsequent steps are produced by the method described above, a flow path member 10 as shown in FIG. 2 can be obtained.

また、本実施形態の流路部材の他の製造方法について説明する。まず、流路4、囲撓溝6、流入口7、流出口8等を切削加工により形成済みの第1部材2となる成形体および第2部材3となる成形体を得るところまでは、上述した方法と同様であり、その後これらを焼成し、炭化珪素質焼結体からなる第1部材2および第2部材3を得た後、少なくとも一方の接合面にガラスからなる接合剤を塗布し、熱処理する。以下に接合に関し、詳細を説明する。   Moreover, the other manufacturing method of the flow-path member of this embodiment is demonstrated. First, until the molded body that becomes the first member 2 and the molded body that becomes the second member 3 in which the flow path 4, the surrounding groove 6, the inflow port 7, the outflow port 8, and the like are already formed by cutting are obtained. After firing these to obtain the first member 2 and the second member 3 made of a silicon carbide sintered body, a bonding agent made of glass is applied to at least one of the bonding surfaces, Heat treatment. Details of the bonding will be described below.

ガラス接合剤としては、Y−Al−SiO2、Yb−Al−SiO,Lu−Al−SiO等のガラスを適用可能であり、ここではY−Al−SiOを用いた例を説明する。まず、酸化イットリウム粉末(平均粒径0.5〜1.5μm)、アルミナ粉末(平均粒径0.5〜2μm)、酸化珪素粉末(平均粒
径1μm以下)を準備し、所定量秤量した後、攪拌ミルを用いて混合粉末とする。そして、この混合粉末にアルミナボール、有機溶剤(イソプロピルアルコールなど)を適量加えたものを円筒プラスチック容器中に入れ、回転装置を用いて8時間以上回転させ混合する
As the glass bonding agent, glass such as Y 2 O 3 —Al 2 O 3 —SiO 2, Yb 2 O 3 —Al 2 O 3 —SiO 2 , Lu 2 O 3 —Al 2 O 3 —SiO 2 can be applied. Here, an example using Y 2 O 3 —Al 2 O 3 —SiO 2 will be described. First, prepare yttrium oxide powder (average particle size 0.5 to 1.5 μm), alumina powder (average particle size 0.5 to 2 μm), and silicon oxide powder (average particle size 1 μm or less), weigh a predetermined amount, and then use a stirring mill. To make a mixed powder. Then, an appropriate amount of alumina powder and an organic solvent (such as isopropyl alcohol) added to the mixed powder is placed in a cylindrical plastic container, and mixed by rotating for 8 hours or more using a rotating device.

その後、円筒プラスチック容器から金属製容器内にスラリーを排出し、排出後、金属製容器にスラリーを入れたまま乾燥機内で所定の温度で8時間以上乾燥し、乾燥後に得られた粉体の固まりを解砕して接合剤用原料とする。   Thereafter, the slurry is discharged from the cylindrical plastic container into the metal container, and after discharging, the slurry is dried in the dryer at a predetermined temperature for 8 hours or more while the slurry is put in the metal container. Is crushed into a raw material for a bonding agent.

次に、接合剤用原料と溶媒と分散剤とを調合する。なお、調合量としては、接合剤用原料100質量%に対し、溶媒を10〜20質量%、分散剤を0.5〜2質量%の割合で秤量する。ここで、前記溶媒としては、疎水性有機溶媒、例えばパラフィン系等の溶媒を使用することが好適である。また、分散剤については、前記疎水性溶媒に適した非イオン界面活性剤を用いるのが良く、例えば、しょ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド等を用いるのがよい。そして、秤量後に円筒プラスチック容器内に投入して、回転装置にて回転させながら8時間以上混合する。   Next, a bonding material, a solvent, and a dispersant are prepared. In addition, as preparation amount, a solvent is 10-20 mass% and a dispersing agent is weighed in the ratio of 0.5-2 mass% with respect to 100 mass% of raw materials for bonding agents. Here, as the solvent, it is preferable to use a hydrophobic organic solvent, for example, a paraffin-based solvent. As the dispersant, a nonionic surfactant suitable for the hydrophobic solvent is preferably used. For example, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide and the like are preferably used. Then, after weighing, it is put into a cylindrical plastic container and mixed for 8 hours or more while being rotated by a rotating device.

次に、炭化珪素質焼結体からなる第1部材2および第2部材3の少なくとも一方の接合面に接合剤を塗布する。接合剤の塗布は、接合部のみが目開きし、その他は目封止したスクリーンを準備し、そのスクリーンの目開き部分を接合部に合わせ、スクリーン上に接合剤を垂らし、樹脂性のスキージでスクリーンを介して接合剤を塗布する。このとき、接合剤の塗布厚みは例えば、10〜500μmの範囲内とする。その後は、第1部材2および第2
部材3の接合面同士を貼り合わせ、所定の圧力で加圧した後、窒素雰囲気中1200〜1500℃にて0.5〜3時間保持して熱処理することで本実施形態の流路部材1,10を得ることがで
きる。
Next, a bonding agent is applied to at least one bonding surface of the first member 2 and the second member 3 made of the silicon carbide sintered body. To apply the bonding agent, prepare a screen where only the bonding portion is opened, and the others are plugged, align the opening portion of the screen with the bonding portion, hang the bonding agent on the screen, and use a resin squeegee. A bonding agent is applied through a screen. At this time, the application thickness of the bonding agent is, for example, in the range of 10 to 500 μm. Thereafter, the first member 2 and the second member
After bonding the joining surfaces of the members 3 and pressurizing them with a predetermined pressure, the flow path members 1 and 10 of the present embodiment are heat-treated by holding them at 1200 to 1500 ° C. for 0.5 to 3 hours in a nitrogen atmosphere. Can be obtained.

次に、未接合部の有無の確認方法について説明する。まず、装置として、超音波探傷装置(株式会社ジーネス社製)を用い、この超音波探傷装置の水槽内の所定位置に流路部材をセットし、測定距離30〜100mm、プローブ出力15MHz、走査ピッチ1mmおよび検
出周波数500MHzの条件で測定し、得られたチャートを確認することによって未接合部
を確認することができる。また、全接合面積をA、チャートによって確認された未接合部の面積をBとし、B/A×100の式により計算すれば、接合面積率を算出することができ
る。
Next, the confirmation method of the presence or absence of an unjoined part is demonstrated. First, as an apparatus, an ultrasonic flaw detector (manufactured by Jeanes Co., Ltd.) is used. A flow path member is set at a predetermined position in the water tank of the ultrasonic flaw detector, a measurement distance of 30 to 100 mm, a probe output of 15 MHz, and a scanning pitch. An unjoined part can be confirmed by measuring under the conditions of 1 mm and a detection frequency of 500 MHz and confirming the obtained chart. Further, if the total junction area is A and the area of the unjoined portion confirmed by the chart is B, the junction area ratio can be calculated by calculating B / A × 100.

図1に示す例の本実施形態の流路部材1の接合面積率は90%以上となり、図2に示す例の本実施形態の流路部材10の接合面積率は93%以上となる、この結果から明らかなように、本実施形態の流路部材は、領域5外における未接合部が少なく、密閉性に優れたものである。   The joining area rate of the flow path member 1 of the embodiment shown in FIG. 1 is 90% or more, and the joining area rate of the flow path member 10 of the embodiment shown in FIG. 2 is 93% or more. As is apparent from the results, the flow path member of the present embodiment has few unjoined portions outside the region 5 and is excellent in hermeticity.

1:流路部材
2:第1部材
3:第2部材
4:流路
5:中心から0.6Aの半径寸法の領域(領域)
6:囲繞溝
7:流入口
8:流出口
1: Channel member 2: First member 3: Second member 4: Channel 5: Area (area) having a radial dimension of 0.6 A from the center
6: Go groove 7: Inlet 8: Outlet

Claims (3)

接合面に形成された流路を備える円盤状のセラミック接合体からなり、該セラミック接合体における中心からの半径寸法をAとしたとき、前記中心から0.6Aの半径寸法の領域内に前記流路を備え、前記領域外の接合面に、前記領域と同心円状の囲繞溝を有していることを特徴とする流路部材。   It is made of a disk-shaped ceramic joined body having a flow path formed on the joining surface, and when the radial dimension from the center of the ceramic joined body is A, the flow is within a region of a radial dimension of 0.6 A from the center. A flow path member comprising a channel and having a surrounding groove concentric with the region on a joint surface outside the region. 異なる同心円状の前記囲繞溝を複数有していることを特徴とする請求項1に記載の流路部材。   The flow path member according to claim 1, comprising a plurality of different concentric surrounding grooves. 半径の最も小さい前記囲繞溝を第1の囲繞溝、半径が2番目に小さい前記囲繞溝を第2の囲繞溝とし、前記領域の外周と前記第1の囲繞溝の内周との間隔をX、前記第1の囲繞溝の外周と前記第2の囲繞溝の内周との間隔をYとしたとき、Y/Xが0.8〜1.2の範囲内であることを特徴とする請求項2に記載の流路部材。   The surrounding groove with the smallest radius is the first surrounding groove, the surrounding groove with the second smallest radius is the second surrounding groove, and the distance between the outer periphery of the region and the inner periphery of the first surrounding groove is X The Y / X is in the range of 0.8 to 1.2, where Y is the distance between the outer periphery of the first surrounding groove and the inner periphery of the second surrounding groove. Item 3. The flow path member according to Item 2.
JP2014196861A 2014-09-26 2014-09-26 Channel member Active JP6356562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196861A JP6356562B2 (en) 2014-09-26 2014-09-26 Channel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196861A JP6356562B2 (en) 2014-09-26 2014-09-26 Channel member

Publications (2)

Publication Number Publication Date
JP2016069197A true JP2016069197A (en) 2016-05-09
JP6356562B2 JP6356562B2 (en) 2018-07-11

Family

ID=55866047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196861A Active JP6356562B2 (en) 2014-09-26 2014-09-26 Channel member

Country Status (1)

Country Link
JP (1) JP6356562B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311932A (en) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The Jointed metal heat plate and manufacture of the same
JP2001160479A (en) * 1999-12-01 2001-06-12 Tokyo Electron Ltd Ceramic heating resistor and board processing device using the same
JP2005101456A (en) * 2003-09-26 2005-04-14 Canon Inc Stage base, stage device, exposure device and device manufacturing method
JP2007311613A (en) * 2006-05-19 2007-11-29 Hitachi High-Technologies Corp Sample stand and plasma processing device with it
JP2009141204A (en) * 2007-12-07 2009-06-25 Ngk Insulators Ltd Substrate holding body and its manufacturing method
JP2014165405A (en) * 2013-02-27 2014-09-08 Kyocera Corp Flow passage member, vacuum suction device employing the same, cooling device and method of manufacturing flow passage member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311932A (en) * 1999-04-28 2000-11-07 Furukawa Electric Co Ltd:The Jointed metal heat plate and manufacture of the same
JP2001160479A (en) * 1999-12-01 2001-06-12 Tokyo Electron Ltd Ceramic heating resistor and board processing device using the same
JP2005101456A (en) * 2003-09-26 2005-04-14 Canon Inc Stage base, stage device, exposure device and device manufacturing method
JP2007311613A (en) * 2006-05-19 2007-11-29 Hitachi High-Technologies Corp Sample stand and plasma processing device with it
JP2009141204A (en) * 2007-12-07 2009-06-25 Ngk Insulators Ltd Substrate holding body and its manufacturing method
JP2014165405A (en) * 2013-02-27 2014-09-08 Kyocera Corp Flow passage member, vacuum suction device employing the same, cooling device and method of manufacturing flow passage member

Also Published As

Publication number Publication date
JP6356562B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
CN102439389B (en) Ceramic heat exchanger and method for manufacturing same
CN101346184B (en) Honeycomb structure and method for manufacturing the same
JP6351084B2 (en) Honeycomb structure comprising a multilayer cement coating
JP6473830B2 (en) Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
JP2010173873A (en) Ceramic joined body and supporting member using the same
JP6356562B2 (en) Channel member
CN103596903A (en) Bonded ceramic and process for producing same
EP3575722A1 (en) Heat exchanger
SE447572B (en) PROCEDURE FOR PREPARING A FORMULA OF SILICONE CERAMICS
CN104072190B (en) A kind of preparation method of SiC porous ceramics
TWI686366B (en) Positioner for firing ceramic products and method for manufacturing ceramic plate-shaped body
JP6618409B2 (en) Substrate holding device and manufacturing method thereof
TW201638049A (en) Porous article, porous adjacent article, filter for molten metal, firing jig and method for producing porous article
JP2014131015A (en) Ceramic sintered body, flow-channel member using the same, and semiconductor inspection device and semiconductor manufacturing apparatus
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2006232576A (en) Ceramic sintered compact joining device and ceramic sintered compact joining method
JP2007250644A (en) Heating member and substrate heating device using the same
JP6279950B2 (en) Heat exchange member
JP2882996B2 (en) Jig for manufacturing ceramic joined body and method for manufacturing ceramic joined body using the jig
JP6673642B2 (en) Tubular body
CN105130505B (en) Silicon carbide ceramics surface prepares Si3N4The method of whisker reinforcement β Sialon ceramic coatings
JP2009067662A (en) Aluminum nitride sintered compact, and substrate mounting device using the same
KR101017548B1 (en) Porous member
WO2021201108A1 (en) Flow path member and method for manufacturing same
KR101477921B1 (en) Manufacturing methods of alumina ceramic adhesives and bonding method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180614

R150 Certificate of patent or registration of utility model

Ref document number: 6356562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150