JP2016068346A - Flexographic printing plate for testing and method for manufacturing the same, and method for manufacturing liquid crystal display element - Google Patents

Flexographic printing plate for testing and method for manufacturing the same, and method for manufacturing liquid crystal display element Download PDF

Info

Publication number
JP2016068346A
JP2016068346A JP2014199138A JP2014199138A JP2016068346A JP 2016068346 A JP2016068346 A JP 2016068346A JP 2014199138 A JP2014199138 A JP 2014199138A JP 2014199138 A JP2014199138 A JP 2014199138A JP 2016068346 A JP2016068346 A JP 2016068346A
Authority
JP
Japan
Prior art keywords
flexographic printing
printing plate
plate
liquid crystal
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014199138A
Other languages
Japanese (ja)
Other versions
JP6395301B2 (en
Inventor
山本 勝志
Katsushi Yamamoto
勝志 山本
信彦 田所
Nobuhiko Tadokoro
信彦 田所
武文 中下
Takefumi Nakashita
武文 中下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014199138A priority Critical patent/JP6395301B2/en
Publication of JP2016068346A publication Critical patent/JP2016068346A/en
Application granted granted Critical
Publication of JP6395301B2 publication Critical patent/JP6395301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexographic printing plate for testing and a method for manufacturing the flexographic printing plate, by which a flexographic printing plate with an optimal specific surface area can be selected while requiring energy, time and cost as little as possible, and a liquid crystal display element and a method for manufacturing the liquid crystal display element using the selected flexographic printing plate.SOLUTION: A flexographic printing plate 1 for testing has a plate surface 3 roughened in such a manner that a specific surface area with respect to a flat plane is continuously varied from one side of the plate surface to the other side. The method for manufacturing the flexographic printing plate for testing includes a step of forming a photosensitive resin composition layer on a mold surface that is an original of the above plate surface 3 and irradiating the composition layer with active rays to cure. The method for manufacturing a liquid crystal display element includes: selecting a flexographic printing plate on the basis of the results of test printing using the above flexographic printing plate for testing; and forming a liquid crystal alignment film by flexography using the selected flexographic printing plate.SELECTED DRAWING: Figure 1

Description

本発明は、例えば液晶表示素子の液晶配向膜等をフレキソ印刷によって形成するためのフレキソ印刷版の選定に使用するテスト用フレキソ印刷版とその製造方法、ならびに選定したフレキソ印刷版を用いた液晶表示素子の製造方法に関するものである。   The present invention relates to a test flexographic printing plate used for selection of a flexographic printing plate for forming, for example, a liquid crystal alignment film of a liquid crystal display element by flexographic printing, a manufacturing method thereof, and a liquid crystal display using the selected flexographic printing plate The present invention relates to a method for manufacturing an element.

液晶表示素子を構成する基板の電極形成面上に、できるだけ厚みが均一でピンホール等がなくしかも薄いという、高い塗膜品質が要求される液晶配向膜を形成するために、良好な印刷特性を有するフレキソ印刷法が利用される。
フレキソ印刷法には、柔軟な樹脂のシートからなり、その片面が液晶配向膜等のもとになるインキを担持した状態で上記電極形成面等の被印刷面に接触して、かかるインキを上記被印刷面に転写させる面、すなわち版表面とされたフレキソ印刷版が用いられる。
In order to form a liquid crystal alignment film that requires high coating quality, that is, as thin as possible, without pinholes, etc., on the electrode forming surface of the substrate constituting the liquid crystal display element, it has good printing characteristics. The flexographic printing method is used.
The flexographic printing method consists of a flexible resin sheet, one side of which is in contact with the surface to be printed such as the electrode forming surface while carrying the ink that is the basis of the liquid crystal alignment film, etc. A flexographic printing plate having a surface to be transferred to a printing surface, that is, a plate surface is used.

上記版表面は、インキに対する親和性を向上して当該インキを良好に保持するとともに保持したインキを上記被印刷面に良好に転写できるようにするために、所定の表面粗さの粗面とされるのが一般的である。
また単なる粗面ではなく、所定の平面形状を有する微小な凸部を規則的に配列するとともに、その凸部の配列間隔を印刷領域ごとに違えたり、凸部の面積を違えたりするといった工夫がされる場合もある(特許文献1、2等参照)。
The plate surface is a rough surface having a predetermined surface roughness in order to improve the affinity for the ink so as to hold the ink well and to transfer the held ink to the printing surface. It is common.
In addition, the arrangement is such that not only a rough surface but also minute protrusions having a predetermined planar shape are regularly arranged, and the arrangement interval of the protrusions is different for each print region, or the area of the protrusions is different. In some cases (see Patent Documents 1 and 2, etc.).

しかし、特に近年普及が著しい高精細の液晶表示素子の基板はその表面が高度に微細凹凸化されており、しかもその微細凹凸形状は液晶表示素子の製造メーカーごとに、あるいは同じ製造メーカーでも液晶表示素子の製品ごとに異なるのが一般的であるため、フレキソ印刷版との相性を完全に一致させるのは難しく、少しでも相性がずれると印刷のムラやはじき等を生じやすくなるという問題がある。   However, the substrate of high-definition liquid crystal display elements, which have been particularly popular in recent years, has a highly minute surface on the surface, and the fine uneven shape is not different for each liquid crystal display device manufacturer or even in the same manufacturer. Since it is generally different for each element product, it is difficult to completely match the compatibility with the flexographic printing plate, and there is a problem that uneven printing or repellency is likely to occur if the compatibility is slightly shifted.

そこで液晶表示素子の製造メーカーは、例えば新たな液晶表示素子の開発に伴って新たな微細凹凸形状を有する基板を開発するごとに、それに相性が一致する最適なフレキソ印刷版を選定するべく多大な労力とコストを払っているのが現状である。
すなわち版表面の粗面の状態を規定する、平面に対する比表面積の異なる複数のサンプルのフレキソ印刷版を作製し、それぞれのフレキソ印刷版を用いてテスト印刷を繰り返して最適な比表面積を有するフレキソ印刷版を選定するのであるが、
(1) 1枚造るだけでも多大なエネルギー、時間およびコストを要するフレキソ印刷版を複数枚用意しなければならない上、
(2) 例えば2つのサンプルのフレキソ印刷版の間に比表面積の適正値があることが判った場合には、比表面積を決定するためさらにサンプルのフレキソ印刷版を新たに作って再テストをしなければならずより一層エネルギー、時間およびコストが嵩む、
といった問題がある。
Therefore, every time a manufacturer of a liquid crystal display element develops a substrate having a new fine concavo-convex shape with the development of a new liquid crystal display element, for example, it is a great deal to select an optimal flexographic printing plate that matches the compatibility. The current situation is that labor and cost are paid.
That is, a flexographic printing plate having a plurality of samples having different specific surface areas with respect to a flat surface, which defines the state of the rough surface of the plate surface, is prepared, and test printing is repeated using each flexographic printing plate to have an optimal specific surface area. The version is selected,
(1) A lot of flexographic printing plates that require a great deal of energy, time and cost even if only one sheet is made.
(2) For example, if it is found that there is an appropriate value for the specific surface area between two sample flexographic printing plates, a new sample flexographic printing plate is made and retested to determine the specific surface area. More energy, time and cost,
There is a problem.

特開2002−293049号公報JP 2002-293049 A 特許第2933790号公報Japanese Patent No. 2933790

本発明の目的は、最適な比表面積を有するフレキソ印刷版を、できるだけ少ないエネルギー、時間およびコストを要するだけで選定できるテスト用フレキソ印刷版とその製造方法、および選定したフレキソ印刷版を用いた液晶表示素子の製造方法を提供することにある。   An object of the present invention is to provide a flexographic printing plate for testing which can select a flexographic printing plate having an optimum specific surface area with as little energy, time and cost as possible, a method for producing the same, and a liquid crystal using the selected flexographic printing plate. The object is to provide a method for manufacturing a display element.

本発明は、片面が版表面とされた平板状に形成された樹脂の層を備え、前記版表面は粗面化されているとともにその平面に対する比表面積が、前記版表面の一辺側から他辺側へかけて連続的に変化されているテスト用フレキソ印刷版である。
また本発明は、前記テスト用フレキソ印刷版のもとになる感光性樹脂組成物の層の片面を、前記感光性樹脂組成物を硬化反応させることができる活性光線に対する透過性を有する材料からなり片面が前記フレキソ印刷版の版表面に対応した、平面に対する比表面積が連続的に変化された粗面状の型面とされた粗面化シートの前記型面に接触させた状態で、前記層を前記粗面化シートを通して前記活性光線の照射によって硬化反応させたのち前記型面から剥離することにより、前記層の片面を粗面化された版表面とする工程を含む前記本発明のテスト用フレキソ印刷版の製造方法である。
The present invention comprises a resin layer formed in a flat plate shape with one side being a plate surface, the plate surface is roughened, and the specific surface area relative to the plane is from one side of the plate surface to the other side It is a flexographic printing plate for testing that is continuously changed from side to side.
The present invention also comprises a material having transparency to actinic rays capable of curing the photosensitive resin composition on one side of the layer of the photosensitive resin composition that is the basis of the test flexographic printing plate. In a state where one surface corresponds to the plate surface of the flexographic printing plate and is in contact with the mold surface of the roughened sheet which is a rough mold surface whose specific surface area with respect to the plane is continuously changed, the layer For the test of the present invention, comprising a step of making the surface of the layer roughened by peeling off from the mold surface after curing reaction by irradiation of the actinic ray through the roughened sheet It is a manufacturing method of a flexographic printing plate.

さらに本発明は、前記本発明のテスト用フレキソ印刷版を用いてテスト印刷した結果をもとに、平面に対する比表面積が一定値である最適なフレキソ印刷版を選定する工程、および選定したフレキソ印刷版を用いて、フレキソ印刷によって液晶配向膜を形成する工程を含む液晶表示素子の製造方法である。   Furthermore, the present invention provides a process for selecting an optimal flexographic printing plate having a specific surface area with respect to a plane based on the result of test printing using the test flexographic printing plate of the present invention, and the selected flexographic printing It is a method for manufacturing a liquid crystal display element including a step of forming a liquid crystal alignment film by flexographic printing using a plate.

本発明のテスト用フレキソ印刷版は、上記のように版表面の平面に対する比表面積がその一辺側から他辺側へかけて連続的に変化させて形成されているため、かかるテスト用フレキソ印刷版1枚のみを使用してテスト印刷をするだけで、相性が一致する最適な比表面積を有するフレキソ印刷版を直ちに選定でき、当該フレキソ印刷版選定に要するエネルギー、時間およびコストをできるだけ低減することができる。   The test flexographic printing plate of the present invention is formed by continuously changing the specific surface area with respect to the plane of the plate surface from one side to the other side as described above. Just by performing test printing using only one sheet, it is possible to immediately select a flexographic printing plate having an optimal specific surface area that matches the compatibility, and to reduce energy, time and cost required for the selection of the flexographic printing plate as much as possible. it can.

また本発明のテスト用フレキソ印刷版の製造方法によれば、平面に対する比表面積が連続的に変化された粗面状の型面とされた粗面化シートを用いるだけで、他は従来と同様にして上記本発明のテスト用フレキソ印刷版をコスト安価に効率よく製造することができる。
さらに本発明の液晶表示素子の製造方法によれば、上記のようにフレキソ印刷版を選定する際のエネルギー、時間およびコストを省略できる分、よりコスト安価に液晶表示素子を製造することが可能となる。
Further, according to the method for producing a test flexographic printing plate of the present invention, a roughened sheet having a rough mold surface whose specific surface area with respect to a plane is continuously changed is used, and the rest is the same as in the prior art. Thus, the test flexographic printing plate of the present invention can be efficiently produced at low cost.
Furthermore, according to the method for manufacturing a liquid crystal display element of the present invention, it is possible to manufacture a liquid crystal display element at a lower cost because energy, time and cost when selecting a flexographic printing plate can be omitted as described above. Become.

本発明のテスト用フレキソ印刷版の、実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of embodiment of the flexographic printing plate for a test of this invention. 上記テスト用フレキソ印刷版の製造方法に使用する粗面化シートの作製方法の一例を説明する図である。It is a figure explaining an example of the preparation methods of the roughening sheet used for the manufacturing method of the said flexographic printing plate for a test. 図(a)〜(c)は、上記テスト用フレキソ印刷版の製造工程の一例を示す断面図である。FIGS. 3A to 3C are cross-sectional views showing an example of a manufacturing process of the test flexographic printing plate. 図(a)〜(c)は、図3(a)〜(c)の続きの製造工程の一例を示す断面図である。FIGS. 3A to 3C are cross-sectional views showing an example of a manufacturing process subsequent to FIGS. 3A to 3C.

〈テスト用フレキソ印刷版〉
図1は、本発明のテスト用フレキソ印刷版の、実施の形態の一例を示す斜視図である。
図1を参照して、この例のテスト用フレキソ印刷版1は柔軟な樹脂の層2を備え、当該層2の片面(図では上面)が版表面3とされているとともに、反対面(図では下面)に補強フィルム4が積層されてなり、全体が矩形平板状に形成されている。
<Flexographic printing plate for testing>
FIG. 1 is a perspective view showing an example of an embodiment of a test flexographic printing plate of the present invention.
Referring to FIG. 1, a test flexographic printing plate 1 of this example includes a flexible resin layer 2, and one surface (upper surface in the drawing) of the layer 2 is a plate surface 3, and the opposite surface (FIG. Then, the reinforcing film 4 is laminated on the lower surface, and the whole is formed in a rectangular flat plate shape.

かかるテスト用フレキソ印刷版1の矩形の互いに平行な2辺の近傍で、かつ版表面3の外側には、それぞれテスト用フレキソ印刷版1をフレキソ印刷機にセットする際に図示しないバイスで把持するための一定幅の把持部5が、それぞれの辺の全幅に亘って設けられている。
また把持部5と版表面3との間には、上記把持部5と平行に一定幅の溝部6が設けられている。
The test flexographic printing plate 1 is gripped by a vise (not shown) when the test flexographic printing plate 1 is set on the flexographic printing machine in the vicinity of two parallel sides of the rectangle of the test flexographic printing plate 1 and outside the plate surface 3. A constant width gripping portion 5 is provided over the entire width of each side.
A groove 6 having a constant width is provided between the grip 5 and the plate surface 3 in parallel with the grip 5.

さらに把持部5には、その長さ方向の複数箇所(図では5箇所)に等間隔で、バイスで把持した状態の上記把持部5に固定ピン(図示せず)を挿通するためのピン穴7が形成されている。
上記版表面3は、図示していないが平面(表面積を1とする)に対する比表面積が図中に白矢印で示すように上記一方(図では手前側)の把持部5側から他方(図では奥側)の把持部5側へ向けて連続的に増加するように比表面積に傾斜を持たせた状態で粗面化されている。
Further, the holding part 5 has a pin hole for inserting a fixing pin (not shown) into the holding part 5 in a state of being held with a vise at equal intervals in a plurality of places (5 places in the figure) in the length direction. 7 is formed.
Although not shown, the plate surface 3 has a specific surface area with respect to a plane (surface area is 1) as indicated by a white arrow in the drawing from the one gripping portion 5 side to the other (in the drawing). It is roughened in a state where the specific surface area is inclined so as to continuously increase toward the grip portion 5 side on the back side.

版表面3の比表面積をどの程度の範囲で変化させるかは特に限定されないが、例えば先述した高精細の液晶表示素子用の基板に対する相性を評価する場合は、上記のように平面を1として手前の把持部5側から奥の把持部5側へ向けて例えば比表面積を2.8から4.1の間で連続的に変化させるのが好ましい。
これにより、当該比表面積の範囲での基板との相性を1枚のテスト用フレキソ印刷版1を用いてテスト印刷するだけで、上記高精細の液晶表示素子の液晶配向膜印刷用として最適な比表面積を備えたフレキソ印刷版を選定できる。
The range in which the specific surface area of the plate surface 3 is changed is not particularly limited. For example, when evaluating compatibility with the substrate for a high-definition liquid crystal display element described above, the plane is set to 1 as described above. For example, the specific surface area is preferably continuously changed from 2.8 to 4.1 from the grip portion 5 side toward the back grip portion 5 side.
As a result, the optimum ratio for printing the liquid crystal alignment film of the high-definition liquid crystal display element can be obtained simply by test printing the compatibility with the substrate in the range of the specific surface area using one test flexographic printing plate 1. A flexographic printing plate with a surface area can be selected.

テスト印刷は、相性を見る基板をフレキソ印刷機にセットするとともに上記テスト用フレキソ印刷版を上記フレキソ印刷機の版胴にセットして実際に液晶配向膜のモデルを印刷したのち、基板上での印刷状態を観察して最も良好な印刷が得られた部分の比表面積を求めればよい。
どの比表面積が最適化を見極めるには、例えば印刷した液晶配向膜にムラやはじき、あるいはモアレ縞その他の乱れが発生しているか否かを確認すればよい。
In the test printing, the substrate for compatibility is set on the flexographic printing machine, the test flexographic printing plate is set on the plate cylinder of the flexographic printing machine, and the model of the liquid crystal alignment film is actually printed. What is necessary is just to obtain | require the specific surface area of the part from which the best printing was obtained by observing a printing state.
To determine which specific surface area is to be optimized, for example, it may be confirmed whether or not the printed liquid crystal alignment film has unevenness, repellency, moire fringes, or other disturbances.

〈テスト用フレキソ印刷版の製造方法〉
上記本発明のテスト用フレキソ印刷版は、先述のように平面に対する比表面積が連続的に変化された粗面とされた型面を有する粗面化シートを用いるだけで、他は従来と同様にして製造できる。
図2は、上記粗面化シートの作製方法の一例を説明する図である。
<Method for producing test flexographic printing plate>
As described above, the test flexographic printing plate of the present invention uses only a roughened sheet having a roughened mold surface whose specific surface area with respect to a flat surface is continuously changed as described above. Can be manufactured.
FIG. 2 is a diagram for explaining an example of a method for producing the roughened sheet.

図2を参照して、この例の作製方法では、まず粗面化シート8のもとになる溶融樹脂を、図示しない押出機のノズル9を通して上記シート状に押出成形し、次いで冷却されて固化する前の前駆シート10を、外周面11に微細凹凸加工が施されたゴムロール12と、対ロール13との間を連続的に挿通させる。
この際、ゴムロール12は図中に白矢印で示すように対ロール13の方向に所定のニップ圧が加えられて前駆シート10の図では左側の面に圧接されており、それによって当該面に上記ゴムロール12の外周面11の微細凹凸が連続的に転写される。
With reference to FIG. 2, in the manufacturing method of this example, first, the molten resin that becomes the roughened sheet 8 is extruded into a sheet shape through a nozzle 9 of an extruder (not shown), and then cooled and solidified. The precursor sheet 10 before being inserted is continuously inserted between the rubber roll 12 whose outer peripheral surface 11 is subjected to fine unevenness processing and the counter roll 13.
At this time, the rubber roll 12 is applied with a predetermined nip pressure in the direction of the opposite roll 13 as indicated by a white arrow in the drawing, and is pressed against the left side surface in the figure of the precursor sheet 10, whereby the surface is in contact with the above surface. Fine irregularities on the outer peripheral surface 11 of the rubber roll 12 are continuously transferred.

そしてその後の冷却によってかかる微細凹凸が固定されて上記面が粗面化された型面14とされた粗面化シート8が連続的に作製される。
転写された微細凹凸は、その高さや形成間隔等と、それに基づく型面14の比表面積が、上記ゴムロール12のニップ圧に応じて変化する。すなわちニップ圧が高いほど比表面積は大きくなり、低いほど比表面積は小さくなる。
And the roughening sheet | seat 8 used as the type | mold surface 14 by which the said fine unevenness | corrugation was fixed by the subsequent cooling and the said surface was roughened is produced continuously.
The transferred fine irregularities vary in height, formation interval, and the specific surface area of the mold surface 14 based on the height and formation interval according to the nip pressure of the rubber roll 12. That is, the specific surface area increases as the nip pressure increases, and the specific surface area decreases as the nip pressure decreases.

通常の粗面化シートを作製する場合は上記ニップ圧を一定にすることで型面の比表面積は一定にされる。
しかし本発明の場合は、上記の工程を経て粗面化シート8を連続的に長尺状に作製する際に、上記ニップ圧を、例えば1枚の粗面化シート分の長さごとに繰り返し連続的に変化させたのち、1枚分の長さにカットすることにより、当該1枚の粗面化シート8中で、型面14の比表面積を上記ニップ圧の変化に応じて、例えば一端側で小さく他端側で大きく形成できる。
In the case of producing a normal roughened sheet, the specific surface area of the mold surface is made constant by keeping the nip pressure constant.
However, in the case of the present invention, when the roughened sheet 8 is continuously formed in a long shape through the above steps, the nip pressure is repeated for each length of the roughened sheet, for example. After continuously changing, the specific surface area of the mold surface 14 in the one roughened sheet 8 is cut according to the change in the nip pressure, for example, by cutting it to one sheet length. It can be formed small on the side and large on the other end side.

粗面化シート8のもとになる樹脂としては、上記のように押出成形と粗面化が可能であり、なおかつ活性光線に対する透過性を有する種々の樹脂がいずれも使用可能である。
上記樹脂としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、熱可塑性ポリウレタンエラストマ(TPU)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)等の熱可塑性樹脂の1種または2種以上が挙げられる。
As the resin that becomes the basis of the roughened sheet 8, extrusion molding and roughening are possible as described above, and any of various resins having transparency to actinic rays can be used.
Examples of the resin include thermoplastic resins such as polyethylene (PE), polypropylene (PP), thermoplastic polyurethane elastomer (TPU), polyethylene terephthalate (PET), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). A seed | species or 2 or more types is mentioned.

なおこれらの中でもPE、PP、TPU等の比較的軟質の熱可塑性樹脂からなり、かつ比較的薄手(例えば150μm以下程度)の粗面化シート8はそれ自体のコシが弱く取り扱いが難しい。
その場合には粗面化シート8の反対面15に、例えばPET等からなり活性光線に対する透過性を有する補強シートを貼り合わせる等すればよい。
Of these, the roughened sheet 8 made of a relatively soft thermoplastic resin such as PE, PP, TPU and the like, and relatively thin (for example, about 150 μm or less) is weak in itself and difficult to handle.
In that case, a reinforcing sheet made of, for example, PET and having transparency to actinic rays may be bonded to the opposite surface 15 of the roughened sheet 8.

図3(a)〜(c)、図4(a)〜(c)は、上記粗面化シートを用いた、本発明のテスト用フレキソ印刷版の製造工程の一例を示す断面図である。
図3(a)を参照して、この例の製造方法においてはまずガラスや、あるいはアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂等の硬質樹脂などの硬質材料からなり、なおかつ紫外線等の活性光線に対する透過性を有する支持基板16を用意する。
3 (a) to 3 (c) and 4 (a) to 4 (c) are cross-sectional views showing an example of the manufacturing process of the test flexographic printing plate of the present invention using the roughened sheet.
Referring to FIG. 3 (a), in the manufacturing method of this example, first, it is made of a hard material such as glass or a hard resin such as an acrylic resin, a polycarbonate resin, or a polyester resin, and is also transmissive to actinic rays such as ultraviolet rays. A support substrate 16 having the above is prepared.

そして支持基板16の図において上側の表面17に、上記粗面化シート8を型面14が上、反対面15が下になるように当該反対面15を表面17に接触させながら、例えば図3(a)に一点鎖線の矢印で示すようにその一端から他端へかけて順に重ねる等して着脱自在に固定する。
なお図では型面14を構成する凹凸をわかり易いように大きめに強調して描いているが、実際の凹凸は印刷する液晶配向膜の形状等に影響を及ぼさないために、図に示した粗面化シート8の大きさと比較すると判別できない程度の微小なものである。また図では凹凸を型面14の全面でほぼ一定に描いているが、実際は先に説明したように比表面積が粗面化シート8の例えば図において左端から右端へ連続して変化するように、その高さや形成間隔等を変化させて形成している。比表面積を変化させる方法は先に説明したとおりである。
In the figure of the support substrate 16, the roughened sheet 8 is brought into contact with the surface 17 such that the roughened sheet 8 faces the mold surface 14 and the opposite surface 15 faces downward, for example, FIG. As indicated by the one-dot chain line arrow in (a), it is fixed detachably by overlapping one on the other from the other end.
In the drawing, the unevenness constituting the mold surface 14 is drawn with a large emphasis so as to be easy to understand. However, since the actual unevenness does not affect the shape of the liquid crystal alignment film to be printed, the rough surface shown in the drawing is used. It is a minute one that cannot be determined by comparison with the size of the plasticized sheet 8. Further, in the drawing, the irregularities are drawn almost uniformly on the entire surface of the mold surface 14, but actually, as explained above, the specific surface area of the roughened sheet 8 continuously changes from the left end to the right end in the drawing, for example, It is formed by changing its height, formation interval and the like. The method for changing the specific surface area is as described above.

粗面化シート8は、当該粗面化シート8上に液状の感光性樹脂組成物を塗り拡げる際のせん断力や、あるいは感光性樹脂組成物の硬化時の収縮力等によって支持基板16に対して位置ずれするのを防止するとともに、使用後の粗面化シート8の交換を容易にするため、例えば下記(i)〜(iii)のいずれかの方法によって支持基板16の表面17に着脱自在に固定するのが好ましい。   The roughened sheet 8 is applied to the support substrate 16 by a shearing force when a liquid photosensitive resin composition is spread on the roughened sheet 8 or a shrinkage force when the photosensitive resin composition is cured. In order to prevent misalignment and to facilitate replacement of the roughened sheet 8 after use, it can be detachably attached to the surface 17 of the support substrate 16 by any of the following methods (i) to (iii), for example. It is preferable to fix to.

(i) 活性光線に対する透過性を有する材料からなる弱粘着層を介して着脱自在に粘着固定。
(ii) 支持基板16の表面に吸引溝を形成し、当該吸引溝を介して真空吸引することによって着脱自在に吸着固定。
(iii) 支持基板16の面方向の寸法よりも間隔を隔てた一対のチャック治具間に展張させた状態で着脱自在に圧接固定。
(i) Removably attached and fixed through a weak adhesive layer made of a material having transparency to actinic rays.
(ii) A suction groove is formed on the surface of the support substrate 16, and vacuum suction is performed through the suction groove to detachably adsorb and fix.
(iii) Removably press-fixed in a state of being stretched between a pair of chuck jigs spaced apart from the dimension in the surface direction of the support substrate 16.

このうち(i)の粘着固定に用いる弱粘着層としては、支持基板16および粗面化シート8の形成材料に対して弱粘着性を有し、かつ活性光線に対する透過性を有する種々の粘着剤からなる層がいずれも採用可能である。弱粘着層は、支持基板16の表面17および粗面化シート8の反対面15のうちの少なくとも一方に、粘着剤を例えばスプレー塗布等の種々の塗布方法によって塗布することで形成される。   Among these, as the weak adhesive layer used for the adhesive fixation of (i), various adhesives having weak adhesiveness to the forming material of the support substrate 16 and the roughened sheet 8 and having transparency to actinic rays. Any of these layers can be used. The weak adhesive layer is formed by applying an adhesive to at least one of the surface 17 of the support substrate 16 and the opposite surface 15 of the roughened sheet 8 by various application methods such as spray application.

かかる弱粘着層を支持基板16の表面17および/または粗面化シート8の反対面15に形成したのち、図3(a)に一点鎖線の矢印で示すように粗面化シート8を支持基板16の表面17の一端から他端へかけて間に空気が入らないように注意しながら順に重ねると、弱粘着層の粘着力によって粗面化シート8を表面17上に固定できる。
また固定した粗面化シート8を表面17から取り外すには、当該粗面化シート8を例えば図3(a)の矢印とは逆に支持基板16の他端から一端へかけて弱粘着層の粘着力に抗しながら順に引き剥がす等すればよい。
After forming such a weak adhesive layer on the surface 17 of the support substrate 16 and / or the opposite surface 15 of the roughened sheet 8, the roughened sheet 8 is supported on the support substrate as indicated by the dashed line arrow in FIG. When the layers are sequentially stacked with care so that air does not enter between one end and the other end of the surface 17 of the surface 16, the roughened sheet 8 can be fixed on the surface 17 by the adhesive force of the weak adhesive layer.
Further, in order to remove the fixed roughened sheet 8 from the surface 17, for example, the roughened sheet 8 is formed on the weak adhesive layer from the other end to the one end of the support substrate 16 opposite to the arrow in FIG. What is necessary is just to peel off in order, resisting adhesive force.

(ii)の吸着固定をするには、支持基板16の表面17を平滑に仕上げるとともにかかる表面17の略全面に吸引溝を形成する。吸引溝は真空ポンプ等を含む真空系に接続する。
そして粗面化シート8を、反対面15を下にして支持基板16の表面17に重ねた状態で真空系を作動させるか、あるいは先に作動させておいた真空系を吸引溝と接続する等して当該吸引溝を介して真空吸引することにより、粗面化シート8を表面17上に固定できる。
In order to perform the adsorption fixation of (ii), the surface 17 of the support substrate 16 is finished smoothly and suction grooves are formed on substantially the entire surface 17. The suction groove is connected to a vacuum system including a vacuum pump.
Then, the vacuum system is operated in a state where the roughened sheet 8 is overlapped on the surface 17 of the support substrate 16 with the opposite surface 15 facing down, or the previously operated vacuum system is connected to the suction groove, etc. The roughened sheet 8 can be fixed on the surface 17 by vacuum suction through the suction groove.

固定した粗面化シート8を表面17から取り外すには真空系を停止させるか、あるいは真空系と吸引溝との接続を遮断すればよい。
図3(b)を参照して、次にこの例の製造方法では支持基板16の表面17上に固定した粗面化シート8の型面14上に、所定量の液状の感光性樹脂組成物18を供給する。
そして感光性樹脂組成物18を粗面化シート8と補強フィルム4との間に挟んで、図3(b)に一点鎖線の矢印で示すように支持基板16の表面17の一端から他端へかけて間に空気が入らないように注意しながら順に、粗面化シート8の型面14上に塗り拡げて感光性樹脂組成物の層19を形成するとともに、その上に補強フィルム4を積層する。
In order to remove the fixed roughened sheet 8 from the surface 17, the vacuum system may be stopped or the connection between the vacuum system and the suction groove may be interrupted.
Next, referring to FIG. 3B, in the manufacturing method of this example, a predetermined amount of liquid photosensitive resin composition is formed on the mold surface 14 of the roughened sheet 8 fixed on the surface 17 of the support substrate 16. 18 is supplied.
Then, the photosensitive resin composition 18 is sandwiched between the roughened sheet 8 and the reinforcing film 4, and from one end to the other end of the surface 17 of the support substrate 16 as shown by a dashed line arrow in FIG. A layer 19 of the photosensitive resin composition is formed by spreading on the mold surface 14 of the roughened sheet 8 in order so that air does not enter between the layers, and the reinforcing film 4 is laminated thereon. To do.

次いで図3(c)を参照して、補強フィルム4上に対向基板20の対向面21を接触させる。
そして対向基板20の対向面21を、支持基板16の表面17との間に一定の間隔を隔てて平行に維持しながら図3(c)に黒矢印で示すように対向基板20を支持基板16の方向に押圧することで層19を粗面化シート8の型面14に圧着させる。
Next, referring to FIG. 3C, the facing surface 21 of the facing substrate 20 is brought into contact with the reinforcing film 4.
Then, while maintaining the opposing surface 21 of the opposing substrate 20 parallel to the surface 17 of the supporting substrate 16 with a certain distance therebetween, the opposing substrate 20 is supported by the supporting substrate 16 as indicated by a black arrow in FIG. The layer 19 is pressed against the mold surface 14 of the roughened sheet 8 by pressing in the direction of.

そしてこの状態で層19を、図3(c)に実線の矢印で示すように支持基板16および粗面化シート8を通して活性光線によって露光して、当該層19を形成する感光性樹脂組成物18を硬化反応させる。
この際、支持基板16の表面17と対向基板20の対向面21との間の間隔は、製造するテスト用フレキソ印刷版1の厚みに粗面化シート8の厚みを加えた寸法を維持するようにする。
In this state, the layer 19 is exposed with actinic rays through the support substrate 16 and the roughened sheet 8 as indicated by solid arrows in FIG. 3C, and the photosensitive resin composition 18 forming the layer 19 is exposed. Is cured.
At this time, the distance between the surface 17 of the support substrate 16 and the facing surface 21 of the counter substrate 20 is maintained at a size obtained by adding the thickness of the roughened sheet 8 to the thickness of the test flexographic printing plate 1 to be manufactured. To.

なお対向基板20は金属、ガラス、硬質樹脂等の任意の材料によって形成できる。
特に対向基板20を支持基板16と同様の、活性光線に対する透過性を有する材料によって形成し、また補強フィルム4も粗面化シート8と同様の、活性光線に対する透過性を有する材料によって形成して、当該対向基板20の側からも感光性樹脂組成物の層19を活性光線によって露光して硬化反応させるようにしてもよい。
The counter substrate 20 can be formed of any material such as metal, glass, and hard resin.
In particular, the counter substrate 20 is formed of a material having transparency to active light similar to the support substrate 16, and the reinforcing film 4 is also formed of a material having transparency to active light similar to the roughened sheet 8. The photosensitive resin composition layer 19 may be exposed to actinic rays from the side of the counter substrate 20 to cause a curing reaction.

次いで図4(a)(b)を参照して、補強フィルム4、感光性樹脂組成物18の硬化反応によって形成された層2、および粗面化シート8の積層体22を支持基板16と対向基板20の間から取り出し、上下逆転させて補強フィルム4を下にして作業台23の上に載置する。
そして図4(b)に一点鎖線の矢印で示すように粗面化シート8を、積層体22の一端から他端へかけて順に引き剥がすと層2の図において上面側が粗面化シート8の型面14の凹凸形状が転写されて粗面化された版表面3とされて、図4(c)に示すテスト用フレキソ印刷版1の前駆体としての版シート24が完成する。
4 (a) and 4 (b), the laminate 22 of the reinforcing film 4, the layer 2 formed by the curing reaction of the photosensitive resin composition 18, and the roughened sheet 8 is opposed to the support substrate 16. The substrate is taken out from between the substrates 20, is turned upside down, and placed on the work table 23 with the reinforcing film 4 facing downward.
4B, when the roughened sheet 8 is peeled in order from one end to the other end of the laminate 22, the upper surface side of the roughened sheet 8 is the surface of the roughened sheet 8. The plate surface 24 as a precursor of the test flexographic printing plate 1 shown in FIG. 4C is completed by forming the roughened plate surface 3 by transferring the uneven shape of the mold surface 14.

このあと、図示していないが版シート24の4辺をカットして全体の平面形状を矩形に整えるとともに、互いに平行な2辺の近傍の層2を例えばレーザー加工等して把持部5、溝部6およびピン穴7を形成し、さらに必要に応じて版表面3に所定の印刷パターンを形成することにより、図1に示すテスト用フレキソ印刷版が完成する。
層2のもとになる感光性樹脂組成物としては、紫外線等の活性光線によって硬化させることができ、しかも硬化後は例えばフレキソ印刷等に使用するのに適した適度な柔軟性やゴム弾性を有するとともに、印刷に使用するインキ中に含まれたり印刷版の清掃に使用したりする溶剤に対する耐溶剤性に優れた硬化物を形成しうる種々の樹脂組成物がいずれも使用可能である。
Thereafter, although not shown, the four sides of the plate sheet 24 are cut to adjust the entire planar shape to a rectangle, and the layer 2 in the vicinity of the two sides parallel to each other is subjected to, for example, laser processing to hold the grip portion 5 and the groove portion. 6 and pin holes 7 are formed, and a predetermined printing pattern is formed on the plate surface 3 as necessary, whereby the test flexographic printing plate shown in FIG. 1 is completed.
The photosensitive resin composition that is the basis of the layer 2 can be cured by actinic rays such as ultraviolet rays, and after curing, it has suitable flexibility and rubber elasticity suitable for use in, for example, flexographic printing. Any of various resin compositions capable of forming a cured product having excellent solvent resistance against a solvent contained in an ink used for printing or used for cleaning a printing plate can be used.

かかる感光性樹脂組成物としては、これに限定されないが、例えば1,2−ブタジエン構造を有し、かつ末端にエチレン性二重結合を有するプレポリマ、エチレン性不飽和単量体、および光重合開始剤を含むもの等が挙げられる。
光重合開始剤としては、ベンゾインアルキルエーテルが好ましく、特に蛍光灯等からの可視光によって反応して印刷用樹脂原版を黄変させる原因となるベンゾインの含有割合が、感光性樹脂組成物の総量の500ppm以下であるものが好適に使用される。これにより、短期間で黄変しない耐光性に優れた印刷用樹脂原版を得ることができる。
Examples of such a photosensitive resin composition include, but are not limited to, a prepolymer having a 1,2-butadiene structure and having an ethylenic double bond at the terminal, an ethylenically unsaturated monomer, and initiation of photopolymerization. The thing containing an agent etc. are mentioned.
As the photopolymerization initiator, benzoin alkyl ether is preferable, and the content of benzoin that causes yellowing of the printing resin original plate by reacting with visible light from a fluorescent lamp or the like is the total amount of the photosensitive resin composition. What is 500 ppm or less is used suitably. As a result, it is possible to obtain a printing resin original plate excellent in light resistance that does not yellow in a short period of time.

補強フィルム4としては、粗面化シート8と同様に、例えばポリエチレン(PE)、ポリプロピレン(PP)、熱可塑性ポリウレタン(TPU)、ポリエチレンテレフタレート(PET)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)等の熱可塑性樹脂からなり、なおかつ活性光線に対する透過性を有するシートが使用可能である。   As the reinforcing film 4, as with the roughened sheet 8, for example, polyethylene (PE), polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate (PET), tetrafluoroethylene / hexafluoropropylene copolymer ( A sheet made of a thermoplastic resin such as FEP) and having transparency to actinic rays can be used.

〈液晶表示素子の製造方法〉
本発明は、上記テスト用フレキソ印刷版を用いてテスト印刷した結果をもとに、平面に対する比表面積が一定値である最適なフレキソ印刷版を選定する工程、および選定したフレキソ印刷版を用いて、フレキソ印刷によって液晶配向膜を形成する工程を含む液晶表示素子の製造方法である。
<Manufacturing method of liquid crystal display element>
The present invention provides a process for selecting an optimal flexographic printing plate having a specific surface area with respect to a plane based on the result of test printing using the test flexographic printing plate, and the selected flexographic printing plate. And a method of manufacturing a liquid crystal display element including a step of forming a liquid crystal alignment film by flexographic printing.

テスト印刷→選定の工程では、先述したように相性を見る基板をフレキソ印刷機にセットするとともに上記テスト用フレキソ印刷版を上記フレキソ印刷機の版胴にセットして実際に液晶配向膜のモデルを印刷したのち、基板上での印刷状態を観察して最も良好な印刷が得られた部分の比表面積を求める。
これにより、所定の比表面積の範囲での基板との相性を1枚のテスト用フレキソ印刷版を用いてテスト印刷するだけで、高精細の液晶表示素子の液晶配向膜印刷用として最適な比表面積を備えたフレキソ印刷版を選定できる。
In the process of test printing → selection, as described above, the compatible substrate is set on the flexographic printing machine, and the test flexographic printing plate is set on the plate cylinder of the flexographic printing machine to actually form a model of the liquid crystal alignment film. After printing, the specific surface area of the portion where the best printing is obtained is determined by observing the printed state on the substrate.
This makes it possible to test the compatibility with a substrate within a specified specific surface area using a single test flexographic printing plate, and the optimal specific surface area for printing a liquid crystal alignment film of a high-definition liquid crystal display element. Flexographic printing plates with can be selected.

そのため本発明の製造方法によれば、フレキソ印刷版を選定する際のエネルギー、時間およびコストを省略できる分、よりコスト安価に液晶表示素子を製造することが可能となる。
本発明の製造方法のその他の工程は、従来同様に実施できる。
すなわち、ソーダライムガラス基板等の透明基板の片面に所定のマトリクスパターン等に対応した透明電極層を形成した上に、先の工程で選定したフレキソ印刷版を用いたフレキソ印刷により液晶配向膜を形成し、さらに液晶配向膜の表面を必要に応じてラビング等によって配向処理することで基板が作製される。
Therefore, according to the manufacturing method of the present invention, it is possible to manufacture a liquid crystal display element at a lower cost because energy, time and cost for selecting a flexographic printing plate can be omitted.
Other steps of the production method of the present invention can be carried out in the same manner as in the prior art.
That is, after forming a transparent electrode layer corresponding to a predetermined matrix pattern on one side of a transparent substrate such as a soda lime glass substrate, a liquid crystal alignment film is formed by flexographic printing using the flexographic printing plate selected in the previous step Further, the substrate is manufactured by subjecting the surface of the liquid crystal alignment film to alignment treatment by rubbing or the like as necessary.

そしてこの基板を2枚用意し、それぞれの透明電極層を位置合わせした状態で、間に液晶材料を挟みこんで互いに固定するとともに、さらに必要に応じて積層体の両外側に偏光板を配設することによって液晶表示素子が製造される。
本発明は、以上で説明した図の例には限定されない。例えば本発明のテスト用フレキソ印刷版1においては、補強フィルム4は省略しても良い。また製造方法では、感光性樹脂組成物の層を対向基板によって支持基板の方向に押圧する代わりに、粗面化シートのローラ等によって塗り拡げて厚みを一定にするとともに、その表面を粗面化してもよい。
Then, two substrates are prepared, and the transparent electrode layers are aligned with each other, and a liquid crystal material is sandwiched between them and fixed to each other. If necessary, polarizing plates are disposed on both outer sides of the laminate. By doing so, a liquid crystal display element is manufactured.
The present invention is not limited to the examples of the drawings described above. For example, the reinforcing film 4 may be omitted in the test flexographic printing plate 1 of the present invention. Further, in the manufacturing method, instead of pressing the photosensitive resin composition layer in the direction of the support substrate by the counter substrate, the surface is roughened by spreading the surface by a roller of a roughened sheet to make the thickness constant. May be.

その他、本発明の要旨を逸脱しない範囲で、種々の変更を施すことができる。   In addition, various changes can be made without departing from the scope of the present invention.

〈実施例1〉
先述した図2の方法により、型面14の比表面積が矩形の一端側から他端側へかけて連続的に変化した粗面化シート8を作製し、かかる粗面化シート8を用いて図3(a)〜(c)、図4(a)〜(c)の工程を経て、版表面3の比表面積がその一辺側から他辺側へかけて2.8から4.1の間で連続的に変化した、図1に示すテスト用フレキソ印刷版1を製造した。
<Example 1>
A roughened sheet 8 in which the specific surface area of the mold surface 14 is continuously changed from one end side to the other end side of the rectangle is prepared by the method of FIG. 2 described above, and the roughened sheet 8 is used to create a roughened sheet 8. 3 (a) to (c), and after passing through the steps of FIGS. 4 (a) to (c), the specific surface area of the plate surface 3 is between 2.8 and 4.1 from one side to the other side. The test flexographic printing plate 1 shown in FIG. 1, which was continuously changed, was produced.

そしてこのテスト用フレキソ印刷版1を用いて、新たに設計された基板上に液晶配向膜のモデルをテスト印刷したのち、液晶配向膜にムラやはじき、あるいはモアレ縞その他の乱れが発生しているか否かを確認したところ、最適な比表面積は3.7〜3.8であることが確認された。
ここまでの工程に要した時間は12時間、再テストはなし、要したテスト用フレキソ印刷版は1枚のみで済み、作製費用は200万円であった。
Then, after test printing a liquid crystal alignment film model on a newly designed substrate using this test flexographic printing plate 1, are there any irregularities, repellency, moire fringes, or other disturbances in the liquid crystal alignment film? As a result, it was confirmed that the optimum specific surface area was 3.7 to 3.8.
The time required for the process so far was 12 hours, no retest was performed, only one flexographic printing plate for testing was required, and the production cost was 2 million yen.

〈比較例1〉
従来通り版表面の比表面積が2.8、3.4および4.1で一定である3枚のテスト用フレキソ印刷版を製造し、それぞれのテスト用フレキソ印刷版を用いて上記基板上に液晶配向膜のモデルをテスト印刷したのち、液晶配向膜にムラやはじき、あるいはモアレ縞その他の乱れが発生しているか否かを確認したところ、最適な比表面積は3.4と4.1の間にあることが判ったが、結論は出なかった。
<Comparative example 1>
Conventionally, three test flexographic printing plates having a specific surface area of 2.8, 3.4, and 4.1 are constant, and liquid crystals are formed on the substrate using the test flexographic printing plates. After test-printing the alignment film model, it was confirmed whether the liquid crystal alignment film had irregularities, repellency, moire fringes or other disturbances. The optimum specific surface area was between 3.4 and 4.1. However, no conclusion was reached.

そこでさらに版表面の比表面積が3.6および3.8で一定である2枚のテスト用フレキソ印刷版を製造して追試をしたところ、3.6よりも3.8の方がよりベターであることまでは確認できた。
しかしここまでの工程に要した時間は60時間、テスト用フレキソ印刷版は5枚で、その作製費用は1000万円に達した。
Therefore, we made two test flexographic printing plates whose specific surface area was constant at 3.6 and 3.8 and made a follow-up test, and 3.8 was better than 3.6. I was able to confirm that there was.
However, the time required for the process so far was 60 hours, the number of test flexographic printing plates was 5, and the production cost reached 10 million yen.

以上の結果より、本発明のテスト用フレキソ印刷版を用いることで、最適な比表面積を有するフレキソ印刷版を従来に比べてできるだけ少ないエネルギー、時間およびコストを要するだけで確実に選定できることが確認された。   From the above results, it was confirmed that by using the test flexographic printing plate of the present invention, a flexographic printing plate having an optimal specific surface area can be reliably selected with as little energy, time and cost as possible compared with the conventional one. It was.

1 テスト用フレキソ印刷版
2 層
3 版表面
4 補強フィルム
5 把持部
6 溝部
7 ピン穴
8 粗面化シート
9 ノズル
10 前駆シート
11 外周面
12 ゴムロール
13 対ロール
14 型面
15 反対面
16 支持基板
17 表面
18 感光性樹脂組成物
19 層
20 対向基板
21 対向面
22 積層体
23 作業台
24 版シート
DESCRIPTION OF SYMBOLS 1 Test flexographic printing plate 2 Layer 3 Plate surface 4 Reinforcing film 5 Holding part 6 Groove part 7 Pin hole 8 Roughening sheet 9 Nozzle 10 Precursor sheet 11 Outer peripheral surface 12 Rubber roll 13 Pair roll 14 Mold surface 15 Opposite surface 16 Support substrate 17 Surface 18 Photosensitive resin composition 19 Layer 20 Counter substrate 21 Counter surface 22 Laminate 23 Work table 24 Plate sheet

Claims (5)

片面が版表面とされた平板状に形成された樹脂の層を備え、前記版表面は粗面化されているとともにその平面に対する比表面積が、前記版表面の一辺側から他辺側へかけて連続的に変化されているテスト用フレキソ印刷版。   It comprises a resin layer formed in a plate shape with one side being a plate surface, the plate surface is roughened, and the specific surface area relative to the plane is from one side of the plate surface to the other side Flexographic printing plates for testing that are continuously changing. 前記比表面積は平面を1として2.8から4.1の間で変化されている請求項1に記載のテスト用フレキソ印刷版。   2. The test flexographic printing plate according to claim 1, wherein the specific surface area is changed between 2.8 and 4.1, with the plane being 1. 3. 前記テスト用フレキソ印刷版のもとになる感光性樹脂組成物の層の片面を、前記感光性樹脂組成物を硬化反応させることができる活性光線に対する透過性を有する材料からなり片面が前記フレキソ印刷版の版表面に対応した、平面に対する比表面積が連続的に変化された粗面状の型面とされた粗面化シートの前記型面に接触させた状態で、前記層を前記粗面化シートを通して前記活性光線の照射によって硬化反応させたのち前記型面から剥離することにより、前記層の片面を粗面化された版表面とする工程を含む請求項1または2に記載のテスト用フレキソ印刷版の製造方法。   One side of the layer of the photosensitive resin composition that is the basis of the test flexographic printing plate is made of a material having transparency to actinic rays that can cure the photosensitive resin composition, and one side of the layer is the flexographic printing The layer is roughened in a state in which the surface of the roughened sheet corresponding to the plate surface of the plate is in contact with the die surface of the roughened sheet whose surface area is continuously changed. The test flexo according to claim 1, further comprising a step of forming a roughened plate surface on one side of the layer by causing a curing reaction by irradiation of the actinic ray through a sheet and then peeling from the mold surface. A method for producing a printing plate. 前記粗面化シートは、外周面に微細凹凸加工がされたゴムロールを、溶融樹脂を押出成形して形成した樹脂シートの片面に圧接させることによって片面が粗面化された型面とされているとともに、前記ゴムロールの圧接力を連続的に変化させることで、前記型面の、平面に対する比表面積が連続的に変化されている請求項3に記載のフレキソ印刷版の製造方法。   The roughened sheet is a mold surface whose one surface is roughened by pressing a rubber roll having fine irregularities on its outer peripheral surface against one surface of a resin sheet formed by extruding a molten resin. The method for producing a flexographic printing plate according to claim 3, wherein the specific surface area of the mold surface is continuously changed by continuously changing the pressure contact force of the rubber roll. 請求項1または2に記載のテスト用フレキソ印刷版を用いてテスト印刷した結果をもとに、平面に対する比表面積が一定値である最適なフレキソ印刷版を選定する工程、および選定したフレキソ印刷版を用いて、フレキソ印刷によって液晶配向膜を形成する工程を含む液晶表示素子の製造方法。   A step of selecting an optimum flexographic printing plate having a constant specific surface area with respect to a plane based on the result of test printing using the test flexographic printing plate according to claim 1 or 2, and the selected flexographic printing plate The manufacturing method of the liquid crystal display element including the process of forming a liquid crystal aligning film by flexographic printing using.
JP2014199138A 2014-09-29 2014-09-29 Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element Expired - Fee Related JP6395301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014199138A JP6395301B2 (en) 2014-09-29 2014-09-29 Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014199138A JP6395301B2 (en) 2014-09-29 2014-09-29 Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2016068346A true JP2016068346A (en) 2016-05-09
JP6395301B2 JP6395301B2 (en) 2018-09-26

Family

ID=55865625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014199138A Expired - Fee Related JP6395301B2 (en) 2014-09-29 2014-09-29 Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element

Country Status (1)

Country Link
JP (1) JP6395301B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051834A (en) * 2016-09-27 2018-04-05 住友ゴム工業株式会社 Method for manufacturing resin original plate for printing, method for manufacturing flexographic printing plate, and method for manufacturing liquid crystal display element
CN114324011A (en) * 2022-01-04 2022-04-12 星恒电源股份有限公司 Pole piece flexibility testing device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084278A1 (en) * 2007-10-02 2009-04-02 R Tape Corporation Process for making metalized micro-embossed films
JP2010100019A (en) * 2008-10-27 2010-05-06 National Printing Bureau Gradation resin printing plate and method of manufacturing the same, and printed matter using gradation resin printing plate
JP2014133335A (en) * 2013-01-09 2014-07-24 Sumitomo Rubber Ind Ltd Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084278A1 (en) * 2007-10-02 2009-04-02 R Tape Corporation Process for making metalized micro-embossed films
JP2010100019A (en) * 2008-10-27 2010-05-06 National Printing Bureau Gradation resin printing plate and method of manufacturing the same, and printed matter using gradation resin printing plate
JP2014133335A (en) * 2013-01-09 2014-07-24 Sumitomo Rubber Ind Ltd Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051834A (en) * 2016-09-27 2018-04-05 住友ゴム工業株式会社 Method for manufacturing resin original plate for printing, method for manufacturing flexographic printing plate, and method for manufacturing liquid crystal display element
CN114324011A (en) * 2022-01-04 2022-04-12 星恒电源股份有限公司 Pole piece flexibility testing device and method

Also Published As

Publication number Publication date
JP6395301B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
KR102008531B1 (en) Flexographic printing plate and method for producing the same, and method for producing substrate for liquid crystal panel
JP6322871B2 (en) Flexographic printing plate and manufacturing method thereof, and manufacturing method of liquid crystal display element
JP5427225B2 (en) Manufacturing method of printing resin original plate
JP6551737B2 (en) Method for producing flexographic printing plate and method for producing liquid crystal display element
JP2014133336A (en) Flexographic printing plate and method for manufacturing the same, and method for manufacturing substrate for liquid crystal panel
JP6395301B2 (en) Flexographic printing plate for testing, manufacturing method thereof, and manufacturing method of liquid crystal display element
KR20080052996A (en) Apparatus for fabricationg optical sheet, method for fabricating optical sheet, and optical sheet fabricated using the same
JP6660568B2 (en) Roughened sheet, method for producing printing resin original plate using the same, and method for producing flexographic printing plate
JP6802973B2 (en) Manufacturing method of resin original plate for printing, manufacturing method of flexographic printing plate, and manufacturing method of liquid crystal display element
JP6306715B2 (en) Method for producing flexographic printing plate and method for producing liquid crystal display element
TWI729465B (en) Flexographic printing plate and method for manufacturing liquid crystal display element using the same
CN108454254B (en) Roughened sheet and use thereof
TW201625422A (en) Manufacture method of resin original plate for printing and flexible printing plate
TW201800255A (en) Surface-roughened sheet and use thereof
TW201722710A (en) Roughened surface sheet material and manufacturing method thereof, manufacturing method of raw resin board for printing, manufacturing method of flexible printed board, and manufacturing method of liquid-crystal display device to coat a surface layer made of thermoplastic elastomer having silicone rubber affinity on a base material film made of PET, with the middle layer made of thermoplastic Polyurethane disposed therebetween
JP2018051835A (en) Rough-surfaced sheet and manufacturing method therefor
JP2018086807A (en) Manufacturing method for printing resin original plate, manufacturing method for flexographic printing plate, and manufacturing method for liquid crystal display element
KR20170004609A (en) A functional reflection sheet having embedded micropattern and a process for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6395301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees