JP2016067547A - 人工肺 - Google Patents

人工肺 Download PDF

Info

Publication number
JP2016067547A
JP2016067547A JP2014199115A JP2014199115A JP2016067547A JP 2016067547 A JP2016067547 A JP 2016067547A JP 2014199115 A JP2014199115 A JP 2014199115A JP 2014199115 A JP2014199115 A JP 2014199115A JP 2016067547 A JP2016067547 A JP 2016067547A
Authority
JP
Japan
Prior art keywords
gas
hollow fiber
fiber membrane
blood
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014199115A
Other languages
English (en)
Other versions
JP6364302B2 (ja
Inventor
瑛祐 佐々木
Akihiro Sasaki
瑛祐 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2014199115A priority Critical patent/JP6364302B2/ja
Publication of JP2016067547A publication Critical patent/JP2016067547A/ja
Application granted granted Critical
Publication of JP6364302B2 publication Critical patent/JP6364302B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】結露した水によって中空糸膜が部分的に閉塞されることを防止でき、長時間使用してもガス交換性能が低下しない人工肺を提供する。
【解決手段】ハウジングと、ハウジング内に収納され、気体透過性を有する中空糸膜が多数本集積された中空糸膜束と、各中空糸膜束の内腔をガス流路として、ガス流路の上流側および下流側にそれぞれ設けられたガス流入部およびガス流出部と、各中空糸膜束の外側を血液流路として、血液流路の上流側および下流側にそれぞれ設けられた血液流入部および血液流出部と、を備える人工肺であって、ガス流入部から流入するガスの流量が人工肺の最大血流量の60%の流量である場合におけるガス側圧力損失が、P・(π・d2/4)+π・d・γ・cosθ=0の式より得られるPよりも高い。
【選択図】図1

Description

本発明は、人工肺に関する。
人工肺は大別して気泡型と膜型に分類される。近年では、気泡型人工肺に比して、溶血、蛋白質変性、血液凝固等の血液損傷が少ない膜型人工肺、例えば、多孔質合成樹脂製膜を使用した中空糸膜型人工肺が多用されている。
この中空糸膜型人工肺は、中空糸膜の内側に酸素を供給し、外側に血液を供給して、中空糸膜を介して酸素と二酸化炭素とのガス交換を行うものである。
しかし、この形式の人工肺では、室温が血温より低い場合、中空糸膜内を流れたガスは血液によって加温された状態で中空糸膜端部(隔壁端面)より流出し、端部付近にて外気と接触するため、あるいは、加温されたガスが存在する中空糸膜内に、室温のガスが流入して、中空糸膜内のガスを冷やすため、ガス中の水蒸気が結露するいわゆるウェットラング現象が発生することがある。
図9に模式的に示すように、この結露した水Wは中空糸膜200を部分的に閉塞し、ガス交換性能を低下させる。そのため、臨床現場では、人工肺に送る吹送ガスを一時的に増加させて中空糸膜内の水を飛ばすガスフラッシングが、定期的に行われている。
しかしながら、このようなガスフラッシングを定期的に行うのは手間がかかり、さらに、ガスフラッシングを行うことを忘れた場合に、患者に危害がおよぶおそれもある。
上記のウェットラング現象を防止することを目的として、本件出願人は、特許文献1に記載の人工肺を提案している。
特許文献1には、ガス流出部加温機能およびガス流入部に流入するガスを加温する流入ガス加温機能を有する加温部を有し、加温部は、ガス流出部を被包するとともに、ガス流入部形成部材まで延びるものとなっており、かつ、加温部は、加熱ヒータと、加熱ヒータにより加温されるガス流路と、ガス流路の一端と連通するガス流入ポートを備え、さらに、ガス流路の他端は、ガス流入部形成部材のガス流入口と連通しており、人工肺に流入させるガスの温度を調整することで、ウェットラング現象の発生を防止する人工肺が記載されている。
特開2012−135434号公報
上記特許文献1の人工肺も、ウェットラング現象の抑制には十分な効果を有している。しかしながら、人工肺に流入させるガスを加温する加温部を設ける必要があるため、装置の大型化、複雑化や、コストの増大等の問題があった。
そのため、加温部等の装置を追加することなく、ウェットラング現象により生じた水によって、中空糸膜が部分的に閉塞されて、ガス交換性能が低下することを防止することが求められる。そこで、本発明者らが鋭意検討したところ、人工肺のガス側圧力損失を制御することで、ガス交換性能の低下を防止できることを知見した。
本発明の目的は、このような従来技術の問題点を解決することにあり、結露した水によって中空糸膜が部分的に閉塞されることを防止して、長時間使用してもガス交換性能が低下しない人工肺を提供することにある。
本発明者は、上記課題を達成すべく鋭意研究した結果、気体透過性を有する中空糸膜が多数本集積された中空糸膜束と、各中空糸膜束の内腔をガス流路として、ガス流路の上流側および下流側にそれぞれ設けられたガス流入部およびガス流出部と、各中空糸膜束の外側を血液流路として、血液流路の上流側および下流側にそれぞれ設けられた血液流入部および血液流出部と、を備える人工肺において、ガス流入部から流入するガスの流量が人工肺の最大血流量の60%の流量である場合におけるガス側圧力損失が、P・(π・d2/4)+π・d・γ・cosθ=0の式より得られるPよりも高いことにより、結露した水によって中空糸膜が部分的に閉塞されることを防止でき、長時間使用してもガス交換性能の低下を防止できることを見出し、本発明を完成させた。
すなわち、本発明は以下の構成の人工肺を提供する。
(1) ハウジングと、
ハウジング内に収納され、気体透過性を有する中空糸膜が多数本集積された中空糸膜束と、
各中空糸膜束の内腔をガス流路として、ガス流路の上流側および下流側にそれぞれ設けられたガス流入部およびガス流出部と、
各中空糸膜束の外側を血液流路として、血液流路の上流側および下流側にそれぞれ設けられた血液流入部および血液流出部と、を備える人工肺であって、
ガス流入部から流入するガスの流量が人工肺の最大血流量の60%の流量である場合におけるガス側圧力損失が、下記式(1)より得られるPよりも高い人工肺。
・(π・d2/4)+π・d・γ・cosθ=0 ・・・式(1)
d:中空糸膜の内径、γ:水の表面張力、θ:水と中空糸膜の内壁面との接触角であり180°である。
(2) ガス側圧力損失がPの1.1〜3倍である(1)に記載の人工肺。
(3) 中空糸膜の内径dと長さLとの比L/dが60〜6000である(1)または(2)に記載の人工肺。
(4) ガスの流れ方向において、中空糸膜束の下流側とガス流出部との間に、ガスの流路抵抗となる抵抗部材を有する(1)〜(3)のいずれかに記載の人工肺。
このような本発明によれば、結露した水によって中空糸膜が部分的に閉塞されることを防止でき、長時間使用してもガス交換性能が低下しない人工肺を提供することができる。
本発明の人工肺の一例を概念的に示す正面図である。 図1に示す人工肺の左側面図である。 図2に示す人工肺のA−A線断面図である。 図2に示す人工肺のB−B線断面図である。 図1に示す人工肺のC−C線断面図である。 本発明の構成を説明するための中空糸膜と水滴とを概念的に示す断面図である。 人工肺の性能評価に用いる試験装置を概念的に示す図である。 図8(A)は、実施例および比較例のガス側圧力損失と時間との関係を表すグラフであり、図8(B)は、実施例および比較例のガス側圧力損失上昇率と時間との関係を表すグラフであり、図8(C)は、実施例および比較例の酸素分圧差と時間との関係を表すグラフである。 従来の人工肺における中空糸膜の閉塞を説明するための概念図である。
以下、本発明の人工肺について、添付の図面に示される好適実施例を基に、詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明の人工肺は、ガス流入部から流入するガスの流量が人工肺の最大血流量の60%の流量である場合におけるガス側圧力損失が、下記式(1)より得られるPよりも高いというものである。
・(π・d2/4)+π・d・γ・cosθ=0 ・・・式(1)
ここで、dは中空糸膜の内径であり、γは水の表面張力であり、θは水と中空糸膜の内壁面との接触角であり、Pを求める際のθは180°である。
本発明は、このように、ガス側圧力損失を式(1)から得られるPよりも高くすることにより、結露した水を吹き飛ばすことができるので、露結した水が中空糸膜内に留まって、中空糸膜が部分的に閉塞されることを防止できる。従って、長時間使用しても人工肺のガス交換性能が低下することを防止できる。
この点については後に詳述する。
ここで、人工肺の最大血流量とは、医療機器の製造販売承認申請により承認された機器としての血液の流量の最大値である。
また、ガス側圧力損失とは、中空糸膜3aに連通するガス流入部とガス流出部との圧力差である。
図1は、本発明の人工肺の一例を概念的に示す正面図であり、図2は、図1に示す人工肺の左側面図であり、図3は、図2のA−A線断面図であり、図4は、図2のB−B線断面図であり、図5は、図1のC−C線断面図である。
図1〜図5に示す人工肺1は、筒状コア5と、筒状コア5の外表面に巻き付けられた多数のガス交換用(ガス交換機能を有する)の中空糸膜3aが多数集積された筒状(円筒状)中空糸膜束3と、筒状中空糸膜束3を収納するハウジングと、中空糸膜3aの内部(内腔)を介して互いに連通するガス流入部およびガス流出部と、中空糸膜3aの外部とハウジング内と連通する血液流入部および血液流出部と、筒状中空糸膜束3に設けられたフィルタ部材6とを備える。そして、筒状中空糸膜束3は、筒状コア5の外周面に広がる中空糸膜層(中空糸膜3a)が、多層に重なった、言い換えれば、渦巻き状に重なった、もしくは、筒状コアを芯としてリール状に巻き取られた状態となっており、さらに、中空糸膜層は、筒状コア5の長手方向中央付近に中空糸膜3aが交差する交差部3bを備えるとともに、交差部3bは、交差部3bの上に他の交差部3bが直接重なり合わないようにもしくは交差部3bの上に他の交差部3bが直接重なることが連続しないように、中空糸膜層の部位により位置が異なっている。
人工肺1は、図に示すように、ハウジング2と、このハウジング2内に収納された人工肺部と、この人工肺部内に収納された筒状熱交換器部を備えており、この人工肺は、熱交換機能内蔵人工肺である。
人工肺1は、筒状コア5と、筒状コア5の外表面に巻き付けられた多数のガス交換用中空糸膜からなる筒状中空糸膜束3と、フィルタ部材6とからなる人工肺部と、筒状コア5内に収納された筒状熱交換器部と、人工肺部および筒状熱交換器部を収納するハウジング2とを備える。
筒状コア5は、筒状コア5の外表面と筒状中空糸膜束3の内面間に血液流路を形成する溝51と、筒状コア5と筒状熱交換器部間に形成された第1の血液室11と溝51とを連通する血液流通用開口52を有する。
人工肺1は、筒状コア5と筒状熱交換器部間に形成された第1の血液室11(筒状中空糸膜束3の内周部側)と連通する血液流入ポート(血液流入部)24と、筒状中空糸膜外面とハウジング2内面間に形成された第2の血液室12(筒状中空糸膜束3の外周部側)と連通する血液流出ポート(血液流出部)25を備えている。
また、この血液流入ポート24には、第1の血液室11に開口する流入開口部40が設けられている。これにより、血液流入ポート24からの血液が第1の血液室11へ確実に流入する。この第1の血液室11内の血液は、血液流通用開口52を経て、筒状中空糸膜束3の内周部15から筒状中空糸膜束3の内部16へ入り込むこととなる。また、筒状中空糸膜束3の内部16へ入り込んだ血液は、筒状中空糸膜束3の外周部17を介して第2の血液室12に流入する。
また、血液流出ポート25には、第2の血液室12に開口する流出開口部43が設けられている。これにより、第2の血液室12内の血液が血液流出ポート25へ確実に流出する。
人工肺1では、図3ないし図5に示すように、外側から、筒状ハウジング本体21、第2の血液室12、中空糸膜束3、溝51を備える筒状コア5、第1の血液室11、筒状熱交換体31、筒状熱交換体変形規制部34、35、筒状熱媒体室形成部材32の順でほぼ同心的に配置もしくは形成されている。
ハウジング2は、図1および図3ないし図5に示すように、血液流出ポート25を備える筒状ハウジング本体21、ガス流入ポート(ガス流入部)26、熱媒体流入ポート28および熱媒体流出ポート29を備える第1のヘッダー22、ガス流出ポート(ガス流出部)27および筒状コア5に設けられる血液流入ポート24の挿通口を備える第2のヘッダー23を備えている。
第1のヘッダー22の内面には、筒状に突出する熱媒体室形成部材接続部22aと、この熱媒体室形成部材接続部22aの内部を2分する仕切部22bとが設けられている。また、第2のヘッダー23の内面には、筒状に突出する熱媒体室形成部材接続部23aが設けられている。このため、図4に示すように、後述する筒状熱媒体室形成部材32は、開口端側が第1のヘッダー22に保持され、閉塞端側が第2のヘッダー23に保持されている。
人工肺部について説明する。
人工肺部は、筒状コア5と、この筒状コア5の外面に巻き付けられた多数の中空糸膜からなる筒状中空糸膜束3と、筒状中空糸膜束3の外周部17に設けられたフィルタ部材6とを備える。
図3ないし図5に示すように、筒状コア5は、筒状体であり一端には、所定幅にて内側に延びるドーナツ板状突出部55が形成されており、このドーナツ板状突出部55の平面部の外面に血液流入ポート24が筒状コア5の中心軸と平行にかつ外方に突出するように形成されている。筒状コア5の外面には、筒状コア5の外表面と筒状中空糸膜束3の内面間に血液流路を形成する多数の溝51が形成されている。
また、筒状コア5は、この溝51と筒状コア5と筒状熱交換器部間に形成された第1の血液室11とを連通する血液流通用開口52を有している。筒状コア5としては、外径が20〜100mm程度が好適であり、有効長(全長のうち隔壁に埋もれていない部分の長さ)は、10〜730mm程度が好適である。具体的には、筒状コア5は、その両端部分を除き、平行にかつ連続しない複数の溝51を有しており、溝51間は、環状リブ53となっている。
筒状コア5の溝は、中空糸膜束3のガス交換に寄与する部分(有効長、隔壁に埋もれない部分)のほぼ全域に渡るように形成されている。ここで使用する筒状コア5は、血液流入ポート24のほぼ延長線上であり、かつ筒状コア5の溝51形成部分のほぼ全体に延びる平坦面状の溝非形成部54を備えている。このため、筒状コア5の溝51およびリブ53は、始端および終端を有する環状溝51(円弧状溝51)ならびに環状リブ53(円弧状リブ)となっている。筒状コア5として、上記の筒状コア5の溝51形成部分のほぼ全体に延び平坦面状の溝非形成部54を備えることにより、筒状コア5の外面に形成される筒状中空糸膜束3の形状安定性が向上する。
しかし、この溝非形成部54は必ずしも設ける必要はなく、筒状コア5の溝51およびリブ53は、無端の完全環状溝51および無端の完全環状リブ53となっていてもよい。
筒状コア5は、中空糸膜束3の有効長(隔壁に埋もれていない部分)のほぼ全域に渡る多数の溝51を備えるため、血液を中空糸膜束3の全体に分散させることができ、中空糸膜全体を有効に利用でき、ガス交換能も高いものとなる。
さらに、筒状コア5の溝51間に形成される山部(リブ53)の頂点は平坦面となっていることが好ましい。このように、リブ53の頂点を平坦面とすることにより、筒状コア5の外面に形成される筒状中空糸膜束3の形状安定性が向上する。
さらに、溝51は、断面形状がリブ53の頂点に向かって広がる形状(例えば、断面台形状)となっている。このため、溝51(血液流路)は、中空糸膜束内面に向かって広がるため中空糸膜束3内への血液流入を良好なものとしている。
また、血液流入ポート24は、筒状コア5の一方の端部側に設けられており、血液流通用開口52は、血液流入ポート24の中心線を延長した領域と向かい合う領域に形成されている。このようにすることにより、筒状コア5と筒状熱交換器部間に形成された第1の血液室11内における血液流通形態が均等なものとなりやすく、熱交換効率も高いものとなる。具体的には、図5に示すように、筒状コア5は上述した血液流入ポート24のほぼ延長線上であり、かつ筒状コア5の溝形成部分のほぼ全体に延びる溝非形成部54を備える。この溝非形成部54は、溝を形成しないことにより可能となった肉薄部となっており、これにより、筒状コア5内部に血液流入ポート24のほぼ延長線上に位置する血液誘導部56が形成されている。血液誘導部56部分は、他の溝形成部より内径が大きくなっている。このような血液誘導部56を設けることにより、筒状コアと筒状熱交換器部間に形成された第1の血液室11の軸方向の全体に血液を確実に流入させることができる。
そして、この溝非形成部54(血液誘導部56)と向かい合う領域(位置)に血液流通用開口52が形成されている。この筒状コア5では、血液流通用開口52は、複数の環状溝51の個々と連通する複数の血液流通用開口52を備えている。つまり、溝非形成部54(血液誘導部)と向かい合う位置の筒状コア5の溝51部分を欠損させることにより、開口52が形成されている。このため、隣り合う開口52間には、リブ53が存在している。
図4に示すように、筒状コア5の外面に中空糸膜束3が巻き付けられている。中空糸膜束3を形成する中空糸膜3aは、図1に示すように、筒状コア5に順次巻き付けられることにより、筒状コア5の外周面に広がる中空糸膜層が、多層に重なった、言い換えれば、渦巻き状に重なった、もしくは、筒状コアを芯としてリール状に巻き取られた状態となっている。
中空糸膜束3は、筒状コア5に中空糸膜を巻き付けた後、両端を隔壁8、9により筒状ハウジング本体21に固定し、そして、中空糸膜束3の両端が切断される。空糸膜束3が外面に巻き付けられた筒状コア5の両端は、隔壁8、9により、筒状ハウジング本体21の両端部に液密に固定され、筒状中空糸膜外面と筒状ハウジング本体21内面間に環状空間(筒状空間)である第2の血液室12が形成される。
筒状ハウジング本体21の側面に形成された血液流出ポート25は、第2の血液室12と連通する。隔壁8、9は、ポリウレタン、シリコーンゴムなどのポッティング剤で形成される。
また、中空糸膜層は、筒状コア5の長手方向中央付近に中空糸膜3aが交差する交差部3bを備えるとともに、交差部(クロスワインド部)3bは、中空糸膜層の部位により位置が異なっている。このように、交差部の位置を変化させることにより、図1に示すように、重なり合う層における交差部が重ならず、交差部の重なりによる血液の短絡を防止できる。交差部は、例えば、ほぼ平行に巻き付けられた2〜6本の中空糸膜が、交互に交差することにより連続して形成されている。
中空糸膜3aとしては、多孔質ガス交換膜が使用される。多孔質中空糸膜としては、内径dが100〜1000μm、肉厚は5〜200μm、好ましくは10〜100μm、空孔率は20〜80%、好ましくは30〜60%、また細孔径は0.01〜5μm、好ましくは0.01〜1μmのものが好ましく使用できる。
また、中空糸膜3aの長さLは特に限定はないが、30〜600mのものが好ましく使用できる。
ここで、本発明においては、前述のように、ガス側圧力損失をPよりも高くするために、中空糸膜3aの長さLを長くするのが好ましい。具体的には、中空糸膜3aの内径dと長さLとの比L/dが60〜6000であるのが好ましい。
また、中空糸膜3aの内腔の断面形状は、円形状に限定はされず、四角形状等の多角形状等であってもよい。
また、多孔質膜に使用される材質としては、ポリプロピレン、ポリエチレン、ポリスルホン、ポリアクリロニトリル、ポリテトラフルオロエチレン、セルロースアセテート等の疎水性高分子材料が用いられる。好ましくは、ポリオレフィン系樹脂であり、特に好ましくは、ポリプロピレンであり、延伸法または固液相分離法により壁に微細孔が形成されたものがより好ましい。
中空糸膜束3の外径(全体形状)は、30〜162mmが好適であり、中空糸膜束3の厚さは、3mm〜28mmであることが好ましい。
図3および図4に示すように、筒状中空糸膜束3の外周部17には、フィルタ部材6が設けられている。
このフィルタ部材6は、人工肺1(筒状中空糸膜束3)に流入した血液中の気泡を捕捉する機能を有している。
また、フィルタ部材6は、筒状中空糸膜束3と同様に、全体形状が円筒状をなしている。このような形状のフィルタ部材6は、その内周部(内周面)61が筒状中空糸膜束3の外周部(外周面)17に接して設けられている。
また、フィルタ部材6は、筒状中空糸膜束3の外周部17のほぼ全部を覆うように設けられている。
このようにフィルタ部材6が設けられていることにより、フィルタ部材6(内周部61)の面積を大きくすることができ、よって、より確実に気泡を捕捉することができる。また、フィルタ部材6の面積が大きいことにより、たとえフィルタ部材6の一部に目詰まり(例えば血液の凝集塊など)が生じたとしても、血液の流れを妨げるのを抑制することができる。
図3に示すように、フィルタ部材6とハウジング2との間には、第2の血液室12(間隙)が形成されている。これにより、フィルタ部材6がハウジング2の内周面に接するのが防止され、フィルタ部材6の外周部62から流出した血液が第2の血液室12内を通過することができ、よって、血液流出ポート25へ確実に到達(流入)することができる。
また、フィルタ部材6は、親水性を有するのが好ましい。すなわち、フィルタ部材6は、それ自体が親水性を有する材料で構成されているか、または、その表面に親水化処理(例えば、プラズマ処理等)が施されていることが好ましい。これにより、プライミング時の気泡除去が容易になるだけでなく、気泡が混入した血液が通過する際には、気泡の通過がより困難となるため、フィルタ部材6からの気泡の流出を効果的に抑制することができる。
また、フィルタ部材6の構成材料としては、特に限定されず、例えば、メッシュ状をなすもの(スクリーンフィルタ)が好ましい。これにより、気泡をより確実に捕捉することができるとともに、血液が容易に通過することができる。
また、フィルタ部材6の目開きは、特に限定されず、例えば、50μm以下であるのが好ましく、20〜45μmであるのがより好ましい。これにより、気泡をより確実に捕捉することができる。
以上のような構成のフィルタ部材6により、第1の血液室11から筒状中空糸膜束3へ流入する血液中の気泡を確実に捕捉することができ、よって、この気泡が血液流出ポート25から流出するのを確実に防止することができる。
また、フィルタ部材6により捕捉された気泡は、中空糸膜3a(筒状中空糸膜束3)の外表面に形成されている多数の孔に入り込む(流入する)こととなり、よって、中空糸膜3aの内腔を経て、ガス流出ポート27から排出(流出)される。これにより、気泡をプライミングする時間を短縮することができるとともに、筒状中空糸膜束3(人工肺1)内に気泡が滞留するのを防止することができる。
また、フィルタ部材6は、筒状中空糸膜束3の外周部17のほぼ全部を覆うように設けられているのに限定されず、例えば、筒状中空糸膜束3の外周部17の一部を覆うように設けられていてもよい。
図3ないし図5に示すように、上述のように形成された人工肺部の筒状コア5内部に、熱交換器部が収納される。
次に、熱交換器部について説明する。
筒状コア5と筒状熱交換器部間に環状の第1の血液室11が形成され、血液流入ポート24はこの血液室11と連通する。図3ないし図5に示すように、筒状熱交換器部は、筒状熱交換体31と、この熱交換体31内に収納される筒状熱媒体室形成部材32と、筒状熱交換体31と筒状熱媒体室形成部材32間に挿入される2つの筒状熱交換体変形規制部34、35を備えている。
筒状熱交換体31としては、いわゆるベローズ型熱交換体が使用される。図4に示すように、ベローズ型熱交換体31(蛇腹管)は、中央側面にほぼ平行に形成された多数の中空環状突起を備える蛇腹形成部と、その両端に形成され、蛇腹形成部の内径とほぼ等しい円筒部とを備えている。熱交換体31の円筒部の一方は、中空筒状コア5の血液流入ポート24側端部内面と第2のヘッダー23間により挟持され、熱交換体31の円筒部の他方は、中空筒状コア5の一端内に挿入されたリング状熱交換体固定用部材48とこのリング状熱交換体固定用部材48と第1のヘッダー22間に挿入された筒状熱交換体固定用部材49と第1のヘッダー22間により挟持されている。
ベローズ型熱交換体31は、ステンレス、アルミ等の金属もしくはポリエチレン、ポリカーボネート等の樹脂材料によりいわゆる細かな蛇腹状に形成されている。強度、熱交換効率の面からステンレス、アルミ等の金属が好ましい。特に、筒状熱交換体31の軸方向(中心軸)に対してほぼ直交する凹凸が多数繰り返された波状となっているベローズ管からなっている。
図3ないし図5に示すように、筒状熱媒体室形成部材32は、一端(第1のヘッダー22側)が開口した筒状体であり、内部を流入側熱媒体室41と流出側熱媒体室42に区分する区画壁32aと、流入側熱媒体室41と連通し軸方向に延びる第1の開口33aと、流入側熱媒体室42と連通し軸方向に延びる第2の開口33bと、向かい合いかつ、第1の開口33aおよび第2の開口33bと約90度ずれた位置の側面に形成され外方に突出する軸方向に延びる突起36a、36bを備えている。突起36aは、熱交換体変形規制部34の内面中央に形成された軸方向に延びる溝内に侵入することにより熱交換体変形規制部34の移動を規制する。同様に、突起36bは、熱交換体変形規制部35の内面中央に形成された軸方向に延びる溝内に侵入することにより熱交換体変形規制部35の移動を規制する。
筒状熱媒体室形成部材32は、開口端側を第1のヘッダー22の熱媒体室形成部材接続部22aに嵌合させたとき、図4に示すように、筒状熱媒体室形成部材32の区画壁32aの先端部の一方の面(本実施形態では下面)に、筒状接続部22aの内部を2分する仕切部22bが密接する。これにより、筒状熱媒体室形成部材32内の流入側熱媒体室41は、熱媒体流入ポート28と連通し、流出側熱媒体室42は熱媒体流出ポート29と連通する。
また、2つの熱交換体変形規制部34、35は、付き合わされるそれぞれの端部部分に軸方向に延びる切り欠き部を備えており、2つの規制部34、35が付き合わされることにより、図5に示すように、媒体流入側通路37および媒体流出側通路38が形成されている。また、2つの熱交換体変形規制部34、35は、一体に形成してもよい。
この実施形態の人工肺1の熱交換器部における熱媒体の流れを図3ないし図5を用いて説明する。熱媒体流入ポート28より人工肺内部に流入した熱媒体は、第1のヘッダー22内部を通り流入側熱媒体室41内に流入する。そして、筒状熱媒体室形成部材32の流入室側開口33aおよびの熱交換体変形規制部34、35の当接部により形成された媒体流入側通路37を通過して、熱交換体31と熱交換体変形規制部34、35間を流れる。この際に、熱媒体により熱交換体31は加温もしくは冷却される。
そして、熱媒体は、熱交換体変形規制部34、35の当接部により形成された媒体流出側通路38および筒状熱媒体室形成部材32の流出室側開口33bを通過することにより、筒状熱媒体室形成部材32内の流出側熱媒体室42内に流出する。そして、第1のヘッダー22内部を通過して熱媒体流出ポート29より流出する。
なお、筒状ハウジング本体21、筒状コア5、第1および第2のヘッダー22、23などの熱交換体31を除く部材の形成材料としては、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン)、エステル系樹脂(例えば、ポリエチレンテレフタレート)、スチレン系樹脂(例えば、ポリスチレン、MS樹脂、MBS樹脂)、ポリカーボネートなどが使用することができる。
また、人工肺1の血液接触面は、抗血栓性表面となっていることが好ましい。抗血栓性表面は、抗血栓性材料を表面に被覆、さらには固定することにより形成できる。抗血栓性材料としては、ヘパリン、ウロキナーゼ、HEMA−St−HEMAコポリマー、ポリHEMAなどが使用することができる。
次に、人工肺1における血液の流れについて説明する。
この人工肺1では、血液流入ポート24から流入(流通)した血液は、筒状コア5と筒状熱交換器部間である第1の血液室11の一部を構成する血液誘導部56内に流入し、筒状コア5と筒状熱交換体間を流れた後、第1の血液誘導部56と向かい合う位置に形成された開口52を通り筒状コア5より流出する。
筒状コア5より流出した血液は、中空糸膜束3内面(内周部15)と筒状コア5間に位置する筒状コア5の外面に形成された複数の溝51内に流入した後、中空糸膜束3間に流入する。人工肺1では、中空糸膜束3のガス交換に寄与する部分(有効長、隔壁に埋もれない部分)のほぼ全域に渡るように多数の溝51が形成されているため、血液を中空糸膜束3の全体に分散させることができ、中空糸膜全体を有効に利用でき、ガス交換能も高いものとなる。
そして、血液は、中空糸膜に接触し、ガス交換がなされた後、筒状ハウジング本体21と中空糸膜外面(中空糸膜束3外面)間により形成された第2の血液室12に流入する。このとき、血液中の気泡は、前述したように、フィルタ部材6により捕捉され、遂には、中空糸膜3aの内腔に入り込む。
第2の血液室12に流入した血液は、血液流出ポート25より流出(流通)する。また、ガス流入ポート26より流入した酸素含有ガスは、第1のヘッダー22内を通り隔壁端面より中空糸膜内に流入し、第2のヘッダー23内を通過してガス流出ポート27より流出する。
人工肺1は、このようにして、血液と酸素含有ガスとの間でガス交換を行い、血液中の炭酸ガスを放出し、血液中に酸素ガスを取り込む。
ここで、前述のとおり、本発明の人工肺は、中空糸膜3aに連通するガス流入部から流入するガスの流量が人工肺1の最大血流量の60%の流量である場合におけるガス側圧力損失が、下記式(1)より得られるPよりも高いというものである。
・(π・d2/4)+π・d・γ・cosθ=0 ・・・式(1)
なお、ガス側圧力損失とは、中空糸膜3aに連通するガス流入部とガス流出部との圧力差であり、dは中空糸膜の内径であり、γは水の表面張力であり、θは水と中空糸膜の内壁面との接触角であり、Pを求める際のθは180°である。
上記のような本発明の構成の作用について、図6を用いて説明する。
図6は、中空糸膜3aを概念的に示す断面図であり、中空糸膜3aの内部を結露した水滴Wが閉塞した状態を表している。
図6のように中空糸膜3aの内部を水滴Wが閉塞した場合に、この水滴Wを吹き飛ばすために必要な力は、この水滴Wと中空糸膜3aの内壁面との接触角θと、水の表面張力γと、中空糸膜3aの内径dから、「π・d・γ・cosθ」以上である。
一方、中空糸膜3a内を流れるガスの圧力Pによる力は、「P・(π・d2/4)」である。このガスの圧力Pは、中空糸膜3aに連通するガス流入部とガス流出部との圧力差であり、すなわち、ガス側圧力損失である。
ここで、本発明の人工肺は、中空糸膜3aに連通するガス流入部から流入するガスの流量が人工肺1の最大血流量の60%の流量である場合におけるガス側圧力損失Pが、上記式(1)より得られるPよりも大きい。
前述のとおり、従来の人工肺において、ウェットラング現象によりガス中の水蒸気が結露して、露結した水が中空糸膜を閉塞してガス交換性能を低下させるという問題があった。
そのため、臨床現場では、人工肺に送る吹送ガスを一時的に増加させて中空糸膜内の水を飛ばすガスフラッシングが定期的に行われている。しかしながら、このようなガスフラッシングを定期的に行うのは手間がかかり、ガスフラッシングを行うことを忘れた場合に、患者に危害がおよぶおそれもあるという問題があった。
そこで、ウェットラング現象を防止するために、中空糸膜内に流入するガスを加温する加温部を有する構成も提案されている。しかしながら、加温部等の装置を設けると、装置の大型化、複雑化や、コストの増大等の問題があった。
ところで、従来の人工肺においては、中空糸膜内をガスが流れやすいように、流路抵抗、すなわち、ガスの圧力損失が少なくなるように設計されていた。
これに対して、本発明の人工肺においては、中空糸膜3aに連通するガス流入部から流入するガスの流量が人工肺1の最大血流量の60%の流量である場合におけるガス側圧力損失Pが、上記式(1)より得られるPよりも大きい。
従って、式(1)から、ガスの圧力Pによる力「P・(π・d2/4)」が、表面張力による力「π・d・γ・cosθ」よりも大きくなるため、水滴Wをガスの圧力により吹き飛ばすことができるので、結露した水によって中空糸膜が閉塞されることを防止できる。従って、長時間使用してもガス交換性能が低下することを防止することができ、また、定期的にガスフラッシングを行う必要がないので、手間を削減することができる。また、ウェットラング現象を抑制するための、ガスを加温する加温部等を設ける必要がないため、装置の大型化、複雑化、コストの増大等も抑制できる。
なお、人工肺のガスの流量は、静脈側の酸素飽和度等のパラメータに応じて適宜設定されるものであるが、人工肺の通常使用域におけるガスの流量は、最大血流量の50%〜70%程度の流量である。従って、最大血流量の60%のガス流量におけるガス側圧力損失をPよりも大きくすることで、通常使用域において、中空糸膜内で結露した水を吹き飛ばすことができる。
ここで、ガスの流量が人工肺1の最大血流量の60%の流量である場合におけるガス側圧力損失Pを、上記式(1)より得られるPよりも大きくするための具体的な構成としては、例えば、筒状中空糸膜束3全体における中空糸膜3aの表面積が一定とした場合に、中空糸膜3aの本数をより少なくして、中空糸膜3aの長さLをより長くする構成、中空糸膜3aの巻き付けの角度をより大きくする構成(筒状中空糸膜束3の軸に対する角度をより大きくする構成)、ガスの流路抵抗となる抵抗部材をガスの流出部側に設ける構成等がある。
前述のとおり、ガス側圧力損失をPよりも高くするために、中空糸膜3aの長さLを長くする場合には、中空糸膜3aの内径dと長さLとの比L/dを30〜6000とするのが好ましく、60〜6000がより好ましい。
また、中空糸膜3aの巻き付けの角度は、30〜85°とするのが好ましく、45〜70°とするのがより好ましい。
また、中空糸膜3aの本数は、3000〜80000とするのが好ましく、5000〜50000とするのがより好ましい。
また、ガスの流路抵抗となる抵抗部材を設ける場合には、筒状中空糸膜束3のガス流出側とガス流出ポートとの間に、抵抗部材を設ければよい。また、抵抗部材の形状、大きさ等には特に限定はなく、ガス側圧力損失PをPよりも大きくできる形状、大きさを適宜設計すればよい。
また、ガス側圧力損失Pは、Pの1.1〜3倍の範囲とするのが好ましい。これにより、より確実に中空糸膜内で結露した水を吹き飛ばすことができ、長時間使用した場合でもガス交換性能が低下することを防止できる。
以上、本発明の人工肺について詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
例えば、上記実施形態においては、人工肺1は、筒状熱交換器部と、フィルタ部材6とを有する構成としたが、これに限定はされず、筒状熱交換器部および/またはフィルタ部材6を有さない構成であってもよい。
以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。
[実施例1]
実施例1として、図1に示す人工肺を作製し、図7に示す試験装置に接続して性能評価を行った。
<人工肺>
人工肺1として、市販の人工肺(テルモ株式会社製 キャピオックスFX25)の筒状中空糸膜束を以下に示す筒状中空糸膜束3に変更した人工肺を作製した。この人工肺の最大血流量は、7L/minである。
筒状中空糸膜束3は、外径は105mmとし、厚さは10mmとし、形成する中空糸膜3の本数は8600本とした。
また、中空糸膜3の内径dは200μm、肉厚は50μm、長さLは400mmとした。
すなわち、P・(π・d2/4)+π・d・γ・cosθ=0の式(1)から求められるPは、150(mmH2O)である。
作製した人工肺1を、図7に示すような試験装置に接続して、ガス側圧力損失の時間変化およびガス側圧力損失の上昇率を測定した。
図7に示す試験装置100は、評価サンプルである人工肺1と、人工肺1の血液流入ポート24に接続されるポンプ104と、ポンプ104に接続されるリザーバ102と、人工肺1の血液流出ポート25に接続され、リザーバ102に接続されるコントロール人工肺110と、コントロール人工肺110に接続される熱交換器108と、人工肺1のガス流入ポート26から窒素ガスを流入させるガス吹送器(図示せず)と、コントロール人工肺110のガス流入ポートから酸素ガスを流入させるガス吹送器(図示せず)とを有するものである。
リザーバ102は、ソフトバックタイプのリザーバ(テルモ株式会社製)である。
ポンプ104は、ローラポンプ(サーンズ社製8000ポンプ)である。
コントロール人工肺110は、市販の人工肺(テルモ株式会社製 キャピオックスFX25)で、熱交換器108を内蔵している。
この試験装置100は、血液に代えて水を作動流体として循環させるものであり、リザーバ102、ポンプ104、人工肺1およびコントロール人工肺110をこの順に循環する。水の循環回路はいずれにおいても大気に開放されていない閉鎖回路となっている。水はポンプ104によって回路内を循環されて、コントロール人工肺110に接続される熱交換器108によって温度制御される。
このような試験装置100において、コントロール人工肺110に酸素ガスを吹送することで、循環する水の酸素分圧が上昇し、評価サンプルである人工肺1には、酸素分圧600〜650mmHg程度の高酸素分圧の水が流入される。
一方、人工肺1にはガス流入ポートから窒素ガスを吹送することで、人工肺1内でガス交換が行われる。そのため、人工肺1の出口では、入口側と比較して水の酸素分圧が低下する。従って、人工肺1の入口側および出口側の水の酸素分圧を測定することで、人工肺1のガス交換性能を評価する。
酸素分圧の測定は、ラジオメーター株式会社製 ABL800を用いて行った。測定位置は、人工肺1にガスが流入する直前の圧力と、人工肺1から流出した直後の圧力をそれぞれ測定した。なお、本実施例では、人工肺1の流出側は大気圧としたので、人工肺1にガスが流入する直前の圧力の測定値をガス側圧力損失とした。
人工肺1のガス流入ポート26から流入させるガスとしては、窒素100%のガスを用い、ガス流量は6L/minとした。すなわち、ガス流量は人工肺1の最大血流量の85%の流量である。
コントロール人工肺に流入させるガスとしては、酸素100%のガスを用い、ガス流量は6L/minとした。
ポンプ104による循環する水の流量は6L/minとして、試験装置100を稼働して、稼働中の人工肺1のガス流入部およびガス流出部における圧力を測定してガス側圧力損失および酸素分圧を測定した。
図8(A)に、稼働時間とガス側圧力損失との関係を表すグラフを示す。また、図8(B)に、ガス側圧力損失の初期値に対するガス側圧力損失の上昇率(%)と稼働時間との関係を示す。
図8(B)に示すガス側圧力損失上昇率が大きいほど、稼働中に、水蒸気が結露して、徐々に、中空糸膜3内を閉塞していることを表している。
また、図8(C)に、人工肺1の入口側と出口側での酸素分圧の差とガス側圧力損失との関係を表すグラフを示す。
図8(C)に示す人工肺1の入口側と出口側での酸素分圧の差が大きいほど、人工肺1のガス交換性能が高いことを表している。
[比較例1]
比較例1として、以下の筒状中空糸膜を用いた以外は実施例1と同様にして、ガス側圧力損失およびガス側圧力損失上昇率を求めた。
比較例1の人工肺の筒状中空糸膜束は、外径は105mm、厚さは10mmであり、中空糸膜の本数は14000本である。
また、中空糸膜の内径dは200μm、肉厚は50μm、長さLは240mmである。
すなわち、比較例1のPは実施例1と同じ、150(mmH2O)であり、長さLおよび本数が異なる。
ガス側圧力損失の測定結果を図8(A)に、ガス側圧力損失上昇率を図8(B)に、酸素分圧の差を図8(C)に示す。
[比較例2]
比較例2として、以下の筒状中空糸膜を用いた以外は実施例1と同様にして、ガス側圧力損失およびガス側圧力損失上昇率を求めた。
なお、比較例2の人工肺の筒状中空糸膜束は、外径は90mm、厚さは25mmであり、中空糸膜の本数は21000本である。
また、中空糸膜の内径dは200μm、肉厚は50μm、長さLは110mmである。
すなわち、比較例2のPは実施例1と同じ、150(mmH2O)であり、長さLおよび本数等が異なる。
ガス側圧力損失の測定結果を図8(A)に、ガス側圧力損失上昇率を図8(B)に、酸素分圧の差を図8(C)に示す。
図8(A)に示されるように、実施例1の人工肺のガス側圧力損失の初期値は、式(1)から求められるPよりも大きい。また、図8(B)に示すように、ガス側圧力損失がほとんど変化していない。これは、結露した水蒸気を吹き飛ばし、稼働から時間が経過しても、中空糸膜3内が水によって閉塞されることがないため、ガス側圧力損失が上昇しないためである。従って、図8(C)に示すように、稼働から時間が経過しても、人工肺1の入口側と出口側での酸素分圧の差が低下しておらず、高いガス交換性能を有していることがわかる。
一方、図8(A)に示されるように、比較例1および比較例2の人工肺のガス側圧力損失の初期値は、式(1)から求められるPよりも小さい。このように人工肺のガス側圧力損失小さいと、稼働からの時間経過に伴って、結露した水蒸気によって、中空糸膜内が閉塞されてしまうため、図8(B)に示すように、時間経過と共に、ガス側圧力損失が上昇するのがわかる。そのため、図8(C)に示すように、時間経過と共に、人工肺の入口側と出口側での酸素分圧の差が低下しており、ガス交換性能が低下することがわかる。
以上の結果より、本発明の効果は明らかである。
1 人工肺
2 ハウジング
3 筒状中空糸膜束
3a 中空糸膜
3b 交差部
5 筒状コア
6 フィルタ部材
8、9 隔壁
11 第1の血液室
12 第2の血液室
15 内周部
16 内部
17 外周部
18 外層
19 内層
21 筒状ハウジング本体
22 第1のヘッダー
22a 熱媒体室形成部材接続部
22b 仕切部
23 第2のヘッダー
24 血液流入ポート
25 血液流出ポート
26 ガス流入ポート
27 ガス流出ポート
28 熱媒体流入ポート
29 熱媒体流出ポート
31 筒状熱交換体
32 筒状熱媒体室形成部材
32a 区画壁
33a 第1の開口
33b 第2の開口
34 筒状熱交換体変形規制部
35 筒状熱交換体変形規制部
36a、36b 突起
37 媒体流入側通路
38 媒体流出側通路
40 流入開口部
41 流入側熱媒体室
42 流出側熱媒体室
43 流出開口部
48 リング状熱交換体固定用部材
49 筒状熱交換体固定部材
51 溝
52 血液流通用開口
53 環状リブ
54 溝非形成部
55 ドーナツ板状突出部
56 血液誘導部
61 内周部
62 外周部
100 試験装置
102 リザーバ
104 ポンプ
108 熱交換器
110 コントロール人工肺

Claims (4)

  1. ハウジングと、
    前記ハウジング内に収納され、気体透過性を有する中空糸膜が多数本集積された中空糸膜束と、
    前記各中空糸膜束の内腔をガス流路として、当該ガス流路の上流側および下流側にそれぞれ設けられたガス流入部およびガス流出部と、
    前記各中空糸膜束の外側を血液流路として、当該血液流路の上流側および下流側にそれぞれ設けられた血液流入部および血液流出部と、を備える人工肺であって、
    前記ガス流入部から流入するガスの流量が前記人工肺の最大血流量の60%の流量である場合におけるガス側圧力損失が、下記式(1)より得られるPよりも高いことを特徴とする人工肺。
    ・(π・d2/4)+π・d・γ・cosθ=0 ・・・式(1)
    d:中空糸膜の内径
    γ:水の表面張力
    θ:水と中空糸膜の内壁面との接触角であり180°である。
  2. 前記ガス側圧力損失が前記Pの1.1〜3倍である請求項1に記載の人工肺。
  3. 前記中空糸膜の内径dと長さLとの比L/dが60〜6000である請求項1または2に記載の人工肺。
  4. ガスの流れ方向において、中空糸膜束の下流側とガス流出部との間に、ガスの流路抵抗となる抵抗部材を有する請求項1〜3のいずれか1項に記載の人工肺。
JP2014199115A 2014-09-29 2014-09-29 人工肺 Active JP6364302B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014199115A JP6364302B2 (ja) 2014-09-29 2014-09-29 人工肺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014199115A JP6364302B2 (ja) 2014-09-29 2014-09-29 人工肺

Publications (2)

Publication Number Publication Date
JP2016067547A true JP2016067547A (ja) 2016-05-09
JP6364302B2 JP6364302B2 (ja) 2018-07-25

Family

ID=55865418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014199115A Active JP6364302B2 (ja) 2014-09-29 2014-09-29 人工肺

Country Status (1)

Country Link
JP (1) JP6364302B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316461A (zh) * 2019-01-29 2021-08-27 尼普洛株式会社 人工肺装置
CN117339043A (zh) * 2023-12-06 2024-01-05 北京航天长峰股份有限公司 一种膜式氧合器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141073A (ja) * 1994-11-17 1996-06-04 Terumo Corp 加温装置及びそれを備えた中空糸膜型人工肺
WO2012133372A1 (ja) * 2011-03-31 2012-10-04 テルモ株式会社 人工肺
JP2013509238A (ja) * 2009-10-29 2013-03-14 アラング、テクノロジーズ、インコーポレイテッド 酸素供給器からの水分をパージするための方法及びシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141073A (ja) * 1994-11-17 1996-06-04 Terumo Corp 加温装置及びそれを備えた中空糸膜型人工肺
JP2013509238A (ja) * 2009-10-29 2013-03-14 アラング、テクノロジーズ、インコーポレイテッド 酸素供給器からの水分をパージするための方法及びシステム
WO2012133372A1 (ja) * 2011-03-31 2012-10-04 テルモ株式会社 人工肺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316461A (zh) * 2019-01-29 2021-08-27 尼普洛株式会社 人工肺装置
CN117339043A (zh) * 2023-12-06 2024-01-05 北京航天长峰股份有限公司 一种膜式氧合器
CN117339043B (zh) * 2023-12-06 2024-03-12 北京航天长峰股份有限公司 一种膜式氧合器

Also Published As

Publication number Publication date
JP6364302B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
JP4366268B2 (ja) 人工肺
US20220023519A1 (en) Blood processing unit with modified flow path
EP2147691B1 (en) Oxygenator
JP6002272B2 (ja) 血液クロスフローを有する血液処理ユニット
CN103458938A (zh) 人工肺及体外循环装置
CN103491993A (zh) 人工肺
US10098994B2 (en) Blood processing unit with heat exchanger core for providing modified flow path
JP6364302B2 (ja) 人工肺
JP4892589B2 (ja) 人工肺
JP4874088B2 (ja) 人工肺
US10814056B2 (en) Elastic protection tube for a hollow fiber blood processing apparatus
JP5674456B2 (ja) 人工肺
JP5922360B2 (ja) 血液酸素加装置
TR2023000248A1 (tr) Basinç kaybi azaltilmiş bi̇r kan oksi̇jenatörü
JP2003010323A (ja) 人工肺
JP2001178818A (ja) 中空糸膜型人工肺
JPH0763592B2 (ja) 中空糸膜及びこれを用いた中空糸膜型人工肺

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250