JP2016066958A - 信号処理装置及び信号処理方法 - Google Patents

信号処理装置及び信号処理方法 Download PDF

Info

Publication number
JP2016066958A
JP2016066958A JP2014195757A JP2014195757A JP2016066958A JP 2016066958 A JP2016066958 A JP 2016066958A JP 2014195757 A JP2014195757 A JP 2014195757A JP 2014195757 A JP2014195757 A JP 2014195757A JP 2016066958 A JP2016066958 A JP 2016066958A
Authority
JP
Japan
Prior art keywords
signal
chromatic dispersion
waveform distortion
compensation unit
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195757A
Other languages
English (en)
Other versions
JP6405833B2 (ja
Inventor
輝 望月
Akira Mochizuki
輝 望月
剛司 星田
Goji Hoshida
剛司 星田
理 竹内
Osamu Takeuchi
理 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014195757A priority Critical patent/JP6405833B2/ja
Priority to US14/817,714 priority patent/US9686020B2/en
Publication of JP2016066958A publication Critical patent/JP2016066958A/ja
Application granted granted Critical
Publication of JP6405833B2 publication Critical patent/JP6405833B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6161Compensation of chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】位相変動が抑制された信号処理装置及び信号処理方法を提供する。
【解決手段】受信装置は、伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理装置1cにおいて、デジタル信号に対し、波長分散により生じた波形歪みを補償する第1波長分散補償部16と、第1波長分散補償部から出力される一方の信号に対し、非線形光学効果により生じた波形歪みを補償する第1非線形光学効果補償部17と、第1波長分散補償部16から出力される他方の信号の位相変動をPD18で検出し、検出した位相変動に基づいてクロック信号を生成する発振器7を制御する制御部とを有する。
【選択図】図3

Description

本件は、信号処理装置及び信号処理方法に関する。
大容量のデータ伝送の需要の増加に応じ、例えば、1つの波長光で100(Gbps)以上の伝送を可能とするデジタルコヒーレント光伝送方式の研究開発が行われている。デジタルコヒーレント光伝送方式では、強度変調方式とは異なり、信号の変調に、光の強度だけでなく、光の位相も用いられる。このような変調方式としては、例えばDP(Dual-Polarization)―QPSK(Quaternary Phase Shift Keying)が挙げられる。
デジタルコヒーレント光伝送方式の受信装置は、例えば、伝送路から受信した信号を局発光で検波し、クロック信号によりサンプリングした後、伝送路内で生じた信号の波形歪みを補償する。このような受信装置において、波形歪みが補償された信号からサンプリングの位相ずれを検出して、位相ずれに基づきクロック信号を制御することにより、位相同期が行われることが知られている(例えば特許文献1参照)。
また、受信装置に非線形効果補償回路(NLC: Nonlinear Compensator)を設けた場合、伝送路内の非線形光学効果により生じた信号の波形歪みが補償され、OSNR(Optical Signal Noise Ratio)耐力が改善されることが知られている(例えば非特許文献1参照)。
特開2011−9956号公報
T. Oyama, et al. , "Impact of Pulse Shaping and Transceiver Electrical Bandwidths on Nonlinear Compensated Transmission," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3C.2.
受信装置において、非線形効果補償回路、及び伝送路内で生じた信号の波長分散を補償する波長分散補償回路(CDC: Chromatic Dispersion Compensator)を配置すると、信号の波形歪みが効果的に補償される。しかし、非線形効果補償回路や波長分散補償回路には回路遅延が含まれるため、補償回路が増える分だけ信号の遅延(レイテンシ)が増加する。このため、サンプリングに用いるクロック信号を制御しても、クロック信号の追従性(位相同期ループの応答性)が悪く、信号の位相変動が抑制されないという問題が生ずる。
そこで本件は上記の課題に鑑みてなされたものであり、位相変動が抑制された信号処理装置及び信号処理方法を提供することを目的とする。
本明細書に記載の信号処理装置は、伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理装置において、前記デジタル信号に対し、波長分散により生じた波形歪みを補償する第1波長分散補償部と、前記第1波長分散補償部から出力される一方の信号に対し、非線形光学効果により生じた波形歪みを補償する第1非線形光学効果補償部と、前記第1波長分散補償部から出力される他方の信号の位相変動を検出し、検出した前記位相変動に基づいて前記クロック信号を制御する制御部とを有する。
本明細書に記載の信号処理方法は、伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理方法において、前記デジタル信号を2つの信号に分岐し、前記2つの信号のうち、一方の信号に対し、前記伝送路内の波長分散及び非線形光学効果により生じた波形歪みを補償し、前記2つの信号のうち、他方の信号に対し、波長分散により生じた波形歪みを補償し、前記波形歪みの補償が行われた前記他方のデジタル信号の位相変動を検出し、検出した前記位相変動に基づいて前記クロック信号を制御する方法である。
位相変動が抑制される。
第1比較例の受信装置を示す構成図である。 第2比較例の受信装置を示す構成図である。 実施例の受信装置を示す構成図である。 他の実施例の受信装置を示す構成図である。 信号処理方法を示すフローチャートである。
(第1比較例)
図1は、第1比較例の受信装置を示す構成図である。受信装置は、送信装置からデジタルコヒーレント光伝送方式に従って伝送された光信号Sを受信し、局発光Loにより検波してデジタル信号Hi,Hq,Vi,Vqに変換して、送信装置の変調方式に応じた復調方式に従って復調する。変調方式としては、一例として、DP−QPSKを挙げるが、これに限られず、PSK(Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)が用いられてもよい。また、光信号Sとしては、複数の変調信号がOFDM(Orthogonal Frequency Division Multiplexing)などの方法で多重化されたものであってもよい。
受信装置は、局発光源2と、偏波ビームスプリッタ(PBS: Polarization Beam Splitter)30,31と、90度光ハイブリッド回路40,41と、光電変換回路(O/E)50〜53とを有する。受信装置は、さらに、アナログ−デジタル変換回路(ADC: Analog-Digital Converter)60〜63と、発振器7と、デジタル信号処理回路1aとを有する。
PBS30は、送信装置から伝送路Fを介して入力された光信号Sを、H軸及びV軸(偏光軸)に分離する。H軸及びV軸の信号光成分Sh,Svは、90度光ハイブリッド回路40,41にそれぞれ入力される。なお、伝送路Fとしては、光ファイバだけでなく、自由空間、半導体基板等に形成された光導波路、及び光送受信器や光中継器で用いられる光素子などが挙げられる。
また、局発光源2は、送信装置の出力光に同期した局発光LoをPBS31に入力する。PBS31は、局発光Loを、H軸及びV軸(偏光軸)に分離する。H軸及びV軸の局発光成分Loh,Lovは、90度光ハイブリッド回路40,41にそれぞれ入力される。
90度光ハイブリッド回路40は、入力された信号光成分Sh及び局発光成分Lohを干渉させるための導波路を有し、信号光成分Shを検波する。90度光ハイブリッド回路40は、検波結果として、Iチャネル及びQチャネルの各々の振幅及び位相に応じた光成分を光電変換回路50,51にそれぞれ出力する。
90度光ハイブリッド回路41は、入力された信号光成分Sv及び局発光成分Lovを干渉させるための導波路を有し、信号光成分Svを検波する。90度光ハイブリッド回路41は、検波結果として、Iチャネル及びQチャネルの各々の振幅及び位相に応じた光成分を光電変換回路52,53にそれぞれ出力する。
光電変換回路50〜53は、入力された光成分を電気信号に変換して、電気信号をADC60〜63にそれぞれ出力する。光電変換回路50〜53としては、例えばフォトディテクタが用いられる。
ADC60〜63は、発振器7から入力されたクロック信号CLKを用いて、光電変換回路50〜53からそれぞれ入力された電気信号をサンプリングすることにより、デジタル信号Hi,Hq,Vi,Vqにそれぞれ変換する。つまり、デジタル信号Hi,Hq,Vi,Vqは、電気信号を、クロック信号CLKに同期してサンプリングすることにより生成される。デジタル信号Hi,Hq,Vi,Vqは、デジタル信号処理回路1aに入力される。
発振器7は、デジタル信号処理回路1aからの制御に従って、クロック信号CLKの周波数を変化させる。つまり、クロック信号CLKは、周波数が可変である。発振器7としては、例えばVCO(Voltage-Controlled Oscillator)が用いられる。
デジタル信号処理回路1aは、波長分散補償回路(CDC)10と、位相制御回路(PHA: Phase Adjuster)11と、適応等化型波形歪み補償回路12と、搬送波同期回路13と、復調回路14と、位相検出回路(PD: Phase Detector)15とを有する。デジタル信号処理回路1aは、例えば1以上のDSP(Digital Signal Processor)により構成される。
CDC10は、伝送路F内の波長分散により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みの補償を行う。CDC10は、高速フーリエ変換(FFT: Fast Fourier Transform)部101と、波長分散補償部102と、逆高速フーリエ変換(IFFT: Inverse FFT)部103とを有する。
FFT部101は、デジタル信号Hi,Hq,Vi,Vqを、時間領域の信号から周波数領域の信号に変換する。波長分散補償部102は、周波数ごとに分かれたデジタル信号Hi,Hq,Vi,Vqに、伝送路F内の波長分散とは逆の特性を加えることにより、波長分散により生じた波形歪みを補償する。
このように、波長分散補償部102は、デジタル信号Hi,Hq,Vi,Vqを周波数ごとに処理するため、容易に波形歪みの補償を行うことが可能となり、回路規模が低減される。IFFT部103は、波形歪みが補償されたデジタル信号Hi,Hq,Vi,Vqを、周波数領域の信号から時間領域の信号に変換する。時間領域の信号に戻ったデジタル信号Hi,Hq,Vi,Vqは、PHA11に出力される。
PHA11及びPD15は、デジタル信号Hi,Hq,Vi,Vqの位相を制御するための位相同期ループL1を構成する。PD15は、PHA11から出力されたデジタル信号Hi,Hq,Vi,Vqの位相変動を検出する。位相変動の検出手段としては、例えばGardner方式の位相検出器が用いられる。PD15は、位相検出器により検出された位相を、検出感度の劣化が補償されるように、位相を正負の各方向に同一分だけシフトして得た感度直線の傾きの変化に基づいて補正してもよい。なお、Gardner方式については、例えば、文献「F.M.Gardner, IEEE Transactions on Communications, 34, No.5, 1986」に記載されている。なお、位相検出器の方式としては、Gardner方式以外にも様々な方式が存在するが、本例での動作は、位相検出方式の選択には依存しない。
PHA11は、PD15の検出結果に基づいてデジタル信号Hi,Hq,Vi,Vqを遅延させることで、そのサンプリング位相を調整(補償)する。PHA11は、例えば周波数領域の信号に変換されたデジタル信号Hi,Hq,Vi,Vqに、位相の目標値に応じた回転子係数を乗算することにより、サンプリング位相を調整することができる。あるいは、PHA11は、時間領域のFIR(Finite Impulse Response)フィルタに適切なタップ係数を設定することで、サンプリング位相を調整することができる。これにより、受信装置内においてデジタル信号Hi,Hq,Vi,Vqに生じたジッタなどの高速な位相変動が低減される。PHA11は、位相を調整したデジタル信号Hi,Hq,Vi,Vqを、適応等化型波形歪み補償回路12に出力する。
また、ADC60〜63、CDC10、PHA11、PD15、及び発振器7は、デジタル信号Hi,Hq,Vi,Vqの位相を制御するための位相同期ループL2を構成する。発振器7は、PD15の検出結果に基づいて、クロック信号CLKの周波数を調整する。このため、ADC60〜63におけるサンプリング位相が、デジタル信号Hi,Hq,Vi,Vqの位相のずれに応じて制御される。
したがって、伝送路Fにおいてデジタル信号Hi,Hq,Vi,Vqに生じたワンダなどの低速な位相変動が低減される。また、ADC60〜63において、例えば数十GHzの高速サンプリングが、回路規模を増加させることなく、可能となる。
適応等化型波形歪み補償回路12は、デジタル信号Hi,Hq,Vi,Vqの波形歪みを補償する。適応等化型波形歪み補償回路12は、複数のフィルタ回路を有し、デジタル信号Hi,Hq,Vi,Vqの特性に応じて、フィルタ回路の特性をリアルタイムに変化させることにより、CDC10の補償対象の波形歪みより高速に変動する波形歪みを補償する。波形歪みが補償されたデジタル信号Hi,Hq,Vi,Vqは、搬送波同期回路13に出力される。
搬送波同期回路13は、デジタル信号Hi,Hq,Vi,Vqが、変調方式に応じた信号コンスタレーション(信号空間ダイヤグラム)により正常に復調処理されるように、送信装置の光源の周波数と局発光源2の間の周波数の差分及び位相の差分を補正する。信号コンスタレーションは、実軸(I)及び虚軸(Q)を有する複素平面上に、信号の振幅及び位相に応じた信号点を表したものである。
搬送波同期回路13は、デジタル信号Hi,Hq,Vi,Vqの搬送波が有する周波数差及び位相差を推定し、補正する。位相差の推定手段は、例えば、文献「M.G.Taylor, “Phase Estimation Methods for Optical Coherent Detection Using Digital Signal Processing”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.27, NO.7, APRIL 1, 901-914,2009」に記載されている。搬送波同期回路13は、補正処理を行ったデジタル信号Hi,Hq,Vi,Vqを復調回路14に出力する。
復調回路14は、変調方式に応じた信号コンスタレーションに基づいて信号点を認識することにより、デジタル信号Hi,Hq,Vi,Vqを復調処理する。
第1比較例の受信装置は、CDC10により伝送路F内の波長分散により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みを補償できるが、伝送路F内の非線形光学効果により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みを補償することができない。そこで、以下に述べる比較例では、受信装置に非線形効果補償回路(NLC)が追加されている。
(第2比較例)
図2は、第2比較例の受信装置を示す構成図である。図2において、図1と共通する構成については同一の符号を付し、その説明を省略する。
受信装置は、局発光源2と、PBS30,31と、90度光ハイブリッド回路40,41と、光電変換回路50〜53と、ADC60〜63と、発振器7と、デジタル信号処理回路1bとを有する。
デジタル信号処理回路1bは、3段のCDC16及びNLC17と、PHA11と、適応等化型波形歪み補償回路12と、搬送波同期回路13と、復調回路14と、PD15とを有する。デジタル信号処理回路1bは、伝送路Fから入力された光信号Sを変換して得られた電気信号を、発振器7のクロック信号CLKを用いてサンプリングすることにより生成されたデジタル信号Hi,Hq,Vi,Vqを処理する。デジタル信号処理回路1bは、例えば1以上のDSPにより形成される。
3段のCDC16及びNLC17は、伝送路F内の波長分散及び非線形光学効果により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みを補償する複数段の第1補償部の一例である。CDC16及びNLC17は、デジタル信号処理回路1b内において交互に配置されている。このため、デジタル信号Hi,Hq,Vi,Vqは、CDC16及びNLC17の相乗効果により波形歪みの補償が効果的に行われて、OSNR耐力が改善される。
3段のCDC16は、第1比較例のCDC10と同様に、伝送路F内の波長分散により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みを補償する。各CDC16は、デジタル信号Hi,Hq,Vi,Vqに、波長分散による波形歪みの補償のための全ての補償量を3分割した値を与える。ここで、各CDC16に与えられる補償量は、必ずしも等しくなくてもよく、伝送路の特性に応じて最適な補償量配分は変わるが、制御の簡単化のためにすべて等しくてもよい。
各CDC16は、FFT部160と、波長分散補償部161と、IFFT部162とを有する。FFT部160は、デジタル信号Hi,Hq,Vi,Vqを、時間領域の信号から周波数領域の信号に変換する。すなわち、FFT部160は、デジタル信号Hi,Hq,Vi,Vqをフーリエ変換する。波長分散補償部161は、周波数ごとに分かれたデジタル信号Hi,Hq,Vi,Vqに、伝送路F内の波長分散で生ずる位相回転と逆の位相回転特性を加えることにより、波長分散により生じた波形歪みの一部を補償する。
このように、波長分散補償部161は、デジタル信号Hi,Hq,Vi,Vqを周波数ごとに処理するため、容易に波形歪みの補償を行うことが可能となり、ある程度大きな波長分散値を補償することを前提とすると、時間領域で処理を行う回路構成と比較して、小規模な回路で構成できる。IFFT部162は、波形歪みが補償されたデジタル信号Hi,Hq,Vi,Vqを、周波数領域の信号から時間領域の信号に変換する。
3段のNLC17は、伝送路F内の非線形光学効果により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みを補償する。各NLC17は、デジタル信号Hi,Hq,Vi,Vqに、非線形光学効果による波形歪みの補償のための全ての補償量を3分割した値を与える。ここで、各NLC17に与えられる補償量は、必ずしも等しくなくてもよく、伝送路Fの特性に応じて最適な補償量配分は変わるが、制御の簡単化のためにすべて等しくてもよい。
NLC17は、例えばback propagation法に従って、フィルタの特性を決定するパラメータを調整することにより、波形歪みを補償する。なお、ここで補償する波形歪みを生ずる非線形光学効果としては、例えば相互位相変調(XPM: Cross Phase Modulation)、四光波混合(FWM: Four-Wave Mixing)、及び自己位相変調(SPM: Self Phase Modulation)が挙げられる。なお、NLC17の方式としては、back propagation法以外にも、Volterraフィルタ法などの様々な方式が存在するが、本例での動作は、NLC17の方式の選択には依存しない。
なお、第2比較例では、3段のCDC16及びNLC17が設けられた構成が示されているが、段数(個数)に限定はなく、例えば3〜20段の範囲で適切な段数のCDC16及びNLC17が設けられるとよい。段数をN(2以上の整数)とすると、各CDC16の波長分散補償部161は、デジタル信号Hi,Hq,Vi,Vqに、波長分散による波形歪みの補償のための全ての補償量をN分割した値を与える。ここで、各NLC17に与えられる補償量は、必ずしも等しくなくてもよく、伝送路Fの特性に応じて最適な補償量配分は変わるが、制御の簡単化のためにすべて等しくてもよい。
また、各NLC17は、デジタル信号Hi,Hq,Vi,Vqに、非線形光学効果による波形歪みの補償のための全ての補償量のN分割した値を与える。ここで、各分散補償部161に与えられる補償量は、必ずしも等しくなくてもよく、伝送路の特性に応じて最適な補償量配分は変わるが、制御の簡単化のためにすべて等しくてもよい。
また、ADC60〜63、3段のCDC16及びNLC17、PHA11、PD15、及び発振器7は、デジタル信号Hi,Hq,Vi,Vqの位相を制御するための位相同期ループL3を構成する。これにより、発振器7は、PD15の検出結果に基づいて、クロック信号CLKの周波数を調整する。このため、ADC60〜63におけるサンプリング位相が、デジタル信号Hi,Hq,Vi,Vqの位相のずれに応じて制御される。
しかし、上記の制御において、位相同期ループL3内の3段のCDC16及びNLC17において生ずるデジタル信号Hi,Hq,Vi,Vqの遅延(レイテンシ)が問題となる。とりわけCDC16及びNLC17の段数が大きい場合には大きな遅延を発生させる。このため、位相同期ループL3において、クロック信号CLKの追従性(応答性)が悪く、ワンダなどの位相変動が抑制されない。
(実施例)
そこで、実施例では、クロック信号CLKでサンプリングしたデジタル信号Hi,Hq,Vi,Vqに、複数段の波長分散補償と非線形光学効果の補償を行い、最終段より前の段から分岐したデジタル信号Hi,Hq,Vi,Vqの波長分散補償後の位相変動に基づきクロック信号CLKを位相制御する。これにより、位相同期ループ内の遅延時間が低減されるため、位相変動が抑制される。
図3は、実施例の受信装置を示す構成図である。図3において、図1及び図2と共通する構成については同一の符号を付し、その説明を省略する。
受信装置は、局発光源2と、PBS30,31と、90度光ハイブリッド回路40,41と、光電変換回路50〜53と、ADC60〜63と、発振器7と、デジタル信号処理回路1cとを有する。
デジタル信号処理回路1cは、信号処理装置の一例であり、3段のCDC16a,16及びNLC17と、PHA11と、適応等化型波形歪み補償回路12と、搬送波同期回路13と、復調回路14と、PD15,18とを有する。デジタル信号処理回路1cは、伝送路Fから入力された光信号Sを変換して得られた電気信号を、クロック信号CLKを用いてサンプリングすることにより生成されたデジタル信号Hi,Hq,Vi,Vqを処理する。デジタル信号処理回路1cは、例えば1以上のDSPにより形成される。
初段のCDC16aは、デジタル信号Hi,Hq,Vi,Vqに対し、波長分散により生じた波形歪みを補償する第1波長分散補償部の一例であり、FFT部160と、波長分散補償部161,164と、IFFT部162,165とを有する。このうち、FFT部160、波長分散補償部161、及びIFFT部162は、2段目及び3段目のCDC16と共通するため、初段のCDC16aは、他のCDC16の構成を含んでいる。なお、波長分散補償部161,164は、それぞれ、第1補償部及び第2補償部の一例である。
初段のCDC16aにおいて、FFT部160は、周波数ごとに分けられたデジタル信号Hi,Hq,Vi,Vqを波長分散補償部161,164にそれぞれ分岐して出力する。このため、FFT部160は、デジタル信号Hi,Hq,Vi,Vqを2つの信号に分岐する分岐部として機能する。FFT部160において、デジタル信号Hi,Hq,Vi,Vqは、例えば電気的な分岐手段により分岐される。なお、デジタル信号Hi,Hq,Vi,Vqの分岐手段は、FFT部160と波長分散補償部161,164の間に設けられてもよい。
初段のCDC16aにおいて、波長分散補償部161は、FFT部160から出力される2つの信号のうち、一方の信号に対し、波長分散により生じた波形歪みを補償し、初段のNLC17に出力する。初段のNLC17は、初段のCDC16aから出力される該一方の信号に対し、非線形光学効果により生じた波形歪みを補償する第1非線形光学効果補償部の一例である。
また、2段目のCDC16は、初段のNLC17から出力される信号に対し、波長分散により生じた波形歪みを補償する第2波長分散補償部の一例である。さらに、2段目のNLC17は、2段目のCDC16から出力される信号に対し、非線形光学効果により生じた波形歪みを補償する第2非線形光学効果補償部の一例である。この構成によると、上述したように、CDC16及びNLC17の相乗効果により波形歪みの補償が効果的に行われて、OSNR耐力が改善される。
一方、波長分散補償部164は、FFT部160により周波数ごとに分かれたデジタル信号Hi,Hq,Vi,Vqに、伝送路F内の波長分散とは逆の特性を加えることにより、波長分散により生じた波形歪みを補償する。このため、波長分散補償部164は、デジタル信号Hi,Hq,Vi,Vqを周波数ごとに処理できるので、容易に波形歪みの補償を行うことが可能となり、ある程度大きな波長分散値を補償することを前提とすると、時間領域で処理を行う回路構成と比較して、小規模な回路で構成できる。
本実施例において、波長分散補償部161,164にそれぞれ入力されるデジタル信号Hi,Hq,Vi,Vqは、共通のFFT部160によりフーリエ変換されるが、個別のFFT部によりフーリエ変換されてもよい。この場合、波長分散補償部164に入力されるデジタル信号Hi,Hq,Vi,Vqのフーリエ変換には、波長分散補償部161に入力されるデジタル信号Hi,Hq,Vi,Vqほどのビット演算精度が要求されないことが一般的である。これは、波長分散補償部164から出力されるデジタル信号Hi,Hq,Vi,Vqは、主信号の経路上にある波長分散補償部161から出力されるデジタル信号Hi,Hq,Vi,Vqと異なり、位相同期のみに利用されるためである。
このため、波長分散補償部164側のFFT部のビット演算精度を、波長分散補償部161側のFFT部のビット演算精度より低くしてもよい。もっとも、本実施例のように、共通のFFT部160を用いれば、デジタル信号処理回路1cの回路規模を、個別のFFT部を用いた場合より低減できる可能性もある。
波長分散補償部164は、初段のCDC16a内の波長分散補償部161の補償量と2段目及び3段目のCDC16の補償量に応じた補償量で、FFT部160から出力される2つの信号のうち、他方の信号に対し、波長分散により生じた波形歪みを補償する。なお、本実施例では、3段のCDC16及びNLC17を挙げているが、CDC16及びNLC17の段数が2段である場合、波長分散補償部164は、初段のCDC16a内の波長分散補償部161の補償量と2段目のCDC16の補償量に応じた補償量で波形歪みを補償する。
波長分散補償部164は、一例として、波長分散により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みに対する3段のCDC16の全ての補償量で、波長分散により生じた波形歪みの補償を行う。つまり、波長分散補償部164は、1段の回路で各CDC16内の波長分散補償部161の3個分に相当する波長分散補償量の波長分散補償を行う。ここで、波長分散補償部164から出力されるデジタル信号には、波長分散補償部161から出力されたデジタル信号ほどのビット演算精度が要求されないことが一般的である。
IFFT部165は、波形歪みが補償されたデジタル信号Hi,Hq,Vi,Vqを、周波数領域の信号から時間領域の信号に変換する。時間領域の信号に戻ったデジタル信号Hi,Hq,Vi,Vqは、PD18に出力される。
ADC60〜63、FFT部160、波長分散補償部164、IFFT部165、PD18、及び発振器7は、デジタル信号Hi,Hq,Vi,Vqの位相を制御するための位相同期ループL4を構成する。PD18は、初段のCDC16aから出力される他方の信号、つまり波長分散補償部164から出力される信号の位相変動を検出し、検出した位相変動に基づいてクロック信号CLKを制御する。
より具体的には、PD18は、例えば、上記のGardner方式の位相検出器によりデジタル信号Hi,Hq,Vi,Vqの位相変動を検出する。発振器7は、PD18の検出結果に基づいて、クロック信号CLKの周波数を調整する。
このように、初段のCDC16aから分岐したデジタル信号Hi,Hq,Vi,Vqは、波長分散補償部164により波形歪みが補償される。このため、ADC60〜63におけるサンプリング位相が、波長分散による波形歪みの影響を受けることなく、デジタル信号Hi,Hq,Vi,Vqの位相のずれに応じて高精度に制御されて、位相同期が行われる。
また、PD18は、最終段より前のCDC16、つまり初段のCDC16aから分岐したデジタル信号Hi,Hq,Vi,Vqの位相変動を検出し、検出した位相変動に基づいてクロック信号CLKを制御する。このため、位相同期ループL4内のデジタル信号Hi,Hq,Vi,Vqの遅延時間は、第2比較例の位相同期ループL3と比較すると、位相同期ループL4内のCDC16及びNLC17の段数が低減されるので、短縮される。すなわち、位相同期ループL4から1段分以上のCDC16及びNLC17が除外されることにより、遅延時間が低減される。したがって、位相同期ループL4におけるクロック信号CLKの追従性(応答性)が改善される。
よって、伝送路Fにおいてデジタル信号Hi,Hq,Vi,Vqに生じたワンダなどの低速な位相変動が抑制される。これにより、デジタル信号処理回路1cは、伝送路Fから入力された光信号Sから、高精度にデジタル信号Hi,Hq,Vi,Vqを抽出することができる。
本実施例において、波長分散補償部164は、3段のCDC16の全ての補償量で、波長分散により生じた波形歪みの補償を行うため、デジタル信号Hi,Hq,Vi,Vqの波形歪みを最も低減できるが、これに限定されない。波長分散補償部164の補償量は、ADC60〜63におけるサンプリング位相の制御に顕著な悪影響を与えない範囲で、3段のCDC16の全ての補償量より少なくてもよいし、多くてもよい。
また、本実施例において、PD18は、位相同期ループL4内のデジタル信号Hi,Hq,Vi,Vqの遅延時間が最短となるように、初段のCDC16から分岐したデジタル信号Hi,Hq,Vi,Vqの位相変動に基づいてクロック信号CLKを制御するが、これに限定されない。PD18は、例えば、以下に述べるように、2段目のCDC16から分岐したデジタル信号Hi,Hq,Vi,Vqの位相変動に基づいてクロック信号CLKを制御してもよい。
図4は、他の実施例の受信装置を示す構成図である。図4において、図1〜図3と共通する構成については同一の符号を付し、その説明を省略する。
受信装置は、局発光源2と、PBS30,31と、90度光ハイブリッド回路40,41と、光電変換回路50〜53と、ADC60〜63と、発振器7と、デジタル信号処理回路1dとを有する。
デジタル信号処理回路1dは、信号処理装置の一例であり、3段のCDC16b,16及びNLC17と、PHA11と、適応等化型波形歪み補償回路12と、搬送波同期回路13と、復調回路14と、PD15,18とを有する。デジタル信号処理回路1dは、伝送路Fから入力された光信号Sを変換して得られた電気信号を、クロック信号CLKを用いてサンプリングすることにより生成されたデジタル信号Hi,Hq,Vi,Vqを処理する。デジタル信号処理回路1dは、例えば1以上のDSPにより形成される。
3段のCDC16b,16及びNLC17のうち、2段目のCDC16bは、FFT部160と、波長分散補償部161,166と、IFFT部162,165とを有する。このうち、FFT部160、波長分散補償部161、及びIFFT部162は、初段及び3段目のCDC16と共通するため、2段目のCDC16bは、他のCDC16の構成を含んでいる。
CDC16bにおいて、FFT部160は、周波数ごとに分けられたデジタル信号Hi,Hq,Vi,Vqを波長分散補償部161,166にそれぞれ分岐して出力する。波長分散補償部166は、第2補償部の他例であり、2段目のCDC16から分岐されたデジタル信号Hi,Hq,Vi,Vqに、伝送路F内の波長分散とは逆の特性を加えることにより、波長分散により生じた波形歪みの補償を行う。なお、波長分散補償部161,166にそれぞれ入力されるデジタル信号Hi,Hq,Vi,Vqは、共通のFFT部160によりフーリエ変換されるが、個別のFFT部によりフーリエ変換されてもよい。
デジタル信号Hi,Hq,Vi,Vqは、波長分散補償部166に入力される前、初段のCDC16内の波長分散補償部161により、波長分散による波形歪みの補償のための全ての補償量の一部、例えば3分の1が与えられる。この場合、波長分散補償部166は、デジタル信号Hi,Hq,Vi,Vqに、一例として、残りの3分の2の補償量で波形歪みの補償を行えばよい。
したがって、波長分散補償部166の補償量は、2段分のCDC16、つまり、各波長分散補償部161の2個分に相当する。このように、波長分散補償部166は、2段目のCDC16b内の波長分散補償部161の補償量と3段目のCDC16の補償量に応じた補償量で、FFT部160から出力された他方の信号に対し、波長分散により生じた波形歪みを補償する。
PD18は、波長分散補償部166により波形歪みの補償が行われたデジタル信号Hi,Hq,Vi,Vqの位相変動を検出し、検出した位相変動に基づいてクロック信号CLKを制御する。このため、ADC60〜63におけるサンプリング位相が、波長分散による波形歪みの影響を受けることなく、デジタル信号Hi,Hq,Vi,Vqの位相のずれに応じて高精度に制御されて、位相同期が行われる。なお、波長分散補償部166の補償量は、ADC60〜63におけるサンプリング位相の制御に悪影響を与えなければ、2段分のCDC16の補償量より少なくても多くてもよい。
本実施例において、ADC60〜63、初段のCDC16及びNLC17、FFT部160、波長分散補償部166、IFFT部165、PD18、及び発振器7は、デジタル信号Hi,Hq,Vi,Vqの位相を制御するための位相同期ループL5を構成する。位相同期ループL5内のデジタル信号Hi,Hq,Vi,Vqの遅延時間は、第2比較例の位相同期ループL3と比較すると、CDC16及びNLC17の段数が低減されるので、短縮される。したがって、位相同期ループL5におけるクロック信号CLKの追従性が改善される。
また、上述した実施例では、3段のCDC16及びNLC17が設けられた構成が示されているが、段数(個数)に限定はなく、例えば3〜20段の範囲で適切な段数のCDC16及びNLC17が設けられるとよい。段数をN(2以上の整数)とすると、各CDC16の波長分散補償部161は、デジタル信号Hi,Hq,Vi,Vqに、波長分散による波形歪みの全ての補償量の一部、例えばN分の1を与える。また、各NLC17は、デジタル信号Hi,Hq,Vi,Vqに、非線形光学効果による波形歪みの全ての補償量の一部、例えばN分の1を与える。
さらに、図3の実施例において、波長分散補償部164の補償量は、例えば各波長分散補償部161の総和となる。図4の実施例において、波長分散補償部166の補償量は、例えば各波長分散補償部161の総和から、初段の波長分散補償部161の補償量を差し引いた値となる。すなわち、波長分散補償部164,166がM段目(M:1〜N−1の整数)のCDC16に設けられると仮定した場合、波長分散補償部164,166の補償量は、D(M)+D(M+1)+・・・D(N)となる。ここで、D(i)は、i段目の波長分散補償部161の補償量である。
(信号処理方法)
次に、実施例に係る信号処理方法を説明する。信号処理方法は、例えば、図3または図4に示された受信装置において、伝送路Fから入力された光信号Sを変換して得られた電気信号を、クロック信号CLKを用いてサンプリングすることにより生成されたデジタル信号Hi,Hq,Vi,Vqを処理する方法である。
図5は、信号処理方法を示すフローチャートである。以下の説明では、一例として、図3に示された位相同期ループL1,L4に関する処理について述べるが、図4に示された位相同期ループL1,L5に関しても同様の処理が行われる。
90度光ハイブリッド回路40,41は、局発光源2から入力された局発光Loを用いて、伝送路Fから入力された光信号Sを、PBS30,31によりH軸及びV軸ごとに分けて検波する(ステップSt1)。次に、光電変換回路50〜53は、90度光ハイブリッド回路40,41により検波された光信号Sを光電変換する(ステップSt2)。
次に、ADC60〜63は、光電変換により得られた電気信号を、クロック信号CLKを用いてサンプリングすることでデジタル信号Hi,Hq,Vi,Vqにそれぞれ変換する(ステップSt3)。次に、初段のCDC16は、デジタル信号Hi,Hq,Vi,Vqを2つの信号に分岐して波長分散補償部164に出力する(ステップSt4)。以降は、位相同期ループL4におけるステップSt5〜St7の処理及び位相同期ループL1におけるステップSt8〜St10の処理が並行して行われる。
波長分散補償部164は、上記の2つの信号の一方、つまり最終段より前の段のCDC16から分岐したデジタル信号Hi,Hq,Vi,Vqに、波長分散により生じた波形歪みの補償を行う(ステップSt5)。より具体的には、波長分散補償部164は、初段のCDC16から分岐したデジタル信号Hi,Hq,Vi,Vqに、波長分散により生じた波形歪みの補償を行う。また、波長分散補償部164は、一例として、波長分散により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みに対する3段のCDC16の全ての補償量で、波長分散により生じた波形歪みの補償を行う。
次に、PD18は、波形歪みの補償が行われたデジタル信号Hi,Hq,Vi,Vqの位相変動を検出する(ステップSt6)。次に、PD18は、検出した位相変動に基づいてクロック信号CLKの周波数を制御する(ステップSt7)。すなわち、発振器7は、PD18の検出結果に基づいて、クロック信号CLKの周波数を調整する。これにより、ADC60〜63におけるサンプリング位相が、波長分散による波形歪みの影響を受けることなく、デジタル信号Hi,Hq,Vi,Vqの位相のずれに応じて高精度に制御される。
一方、3段のCDC16及びNLC17は、デジタル信号Hi,Hq,Vi,Vqに、伝送路F内の波長分散及び非線形光学効果により生じた波形歪みの補償を交互に行う(ステップSt8)。デジタル信号Hi,Hq,Vi,Vqは、各CDC16の波長分散補償部161により、波長分散による波形歪みが補償され、NLC17により、非線形光学効果による波形歪みが補償される。すなわち、3段のCDC16及びNLC17は、上記の2つの信号の他方に対し、伝送路F内の波長分散及び非線形光学効果により生じた波形歪みを補償する。
次に、PD15は、3段のCDC16及びNLC17により波形歪みの補償が行われたデジタル信号Hi,Hq,Vi,Vqの位相変動を検出する(ステップSt9)。次に、PHA11は、PD15の検出結果に基づいてデジタル信号Hi,Hq,Vi,Vqの位相を調整する(ステップSt10)。このようにして、受信装置における信号処理は行われる。
これまで述べたように、実施例に係る信号処理装置1c,1dは、伝送路Fから入力された光信号Sを変換して得られた電気信号を、クロック信号CLKを用いてサンプリングすることにより生成されたデジタル信号Hi,Hq,Vi,Vqを処理する。信号処理装置1cは、第1波長分散補償部16a,16bと、第1非線形光学効果補償部17と、制御部18とを有する。
第1波長分散補償部16a,16bは、デジタル信号Hi,Hq,Vi,Vqに対し、波長分散により生じた波形歪みを補償する。第1非線形光学効果補償部17は、第1波長分散補償部16a,16bから出力される一方の信号に対し、非線形光学効果により生じた波形歪みを補償する。制御部18は、第1波長分散補償部16a,16bから出力される他方の信号の位相変動を検出し、検出した位相変動に基づいてクロック信号CLKを制御する。
上記の構成によると、第1波長分散補償部16a,16b及び第1非線形光学効果補償部17は、波長分散及び非線形光学効果により生じたデジタル信号Hi,Hq,Vi,Vqの波形歪みをそれぞれ補償する。このため、デジタル信号Hi,Hq,Vi,Vqは、波長分散及び非線形光学効果による波形歪みが補償される。
また、制御部18は、第1波長分散補償部16a,16bにより波形歪みの補償が行われた信号の位相変動を検出し、検出した位相変動に基づいてクロック信号CLKを制御する。このため、デジタル信号Hi,Hq,Vi,Vqのサンプリング位相が、波長分散による波形歪みの影響を受けることなく、デジタル信号Hi,Hq,Vi,Vqの位相変動に応じて高精度に制御されて、位相同期が行われる。
さらに、位相同期ループL4,L5内のデジタル信号Hi,Hq,Vi,Vqの遅延時間は、位相同期ループL4,L5から第1非線形光学効果補償部17が除外されるため、短縮される。したがって、位相同期ループL4,L5におけるクロック信号CLKの追従性(応答性)が改善される。
よって、実施例に係る信号処理装置1c,1dによると、デジタル信号Hi,Hq,Vi,Vqの位相変動が抑制される。
また、実施例に係る信号処理方法は、伝送路Fから入力された光信号Sを変換して得られた電気信号を、クロック信号CLKを用いてサンプリングすることにより生成されたデジタル信号Hi,Hq,Vi,Vqを処理する方法であり、以下の工程を有する。
工程(1):デジタル信号Hi,Hq,Vi,Vqを2つの信号に分岐する。
工程(2):2つの信号のうち、一方の信号に対し、伝送路F内の波長分散及び非線形光学効果により生じた波形歪みを補償する。
工程(3):2つの信号のうち、他方の信号に対し、波長分散により生じた波形歪みを補償する。
工程(4):波形歪みの補償が行われた他方の信号の位相変動を検出する。
工程(5):検出した位相変動に基づいてクロック信号CLKを制御する。
実施例に係る信号処理方法は、実施例に係る信号処理装置1c,1dと同様の構成を含むので、上述した内容と同様の作用効果を奏する。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理装置において、
前記デジタル信号に対し、波長分散により生じた波形歪みを補償する第1波長分散補償部と、
前記第1波長分散補償部から出力される一方の信号に対し、非線形光学効果により生じた波形歪みを補償する第1非線形光学効果補償部と、
前記第1波長分散補償部から出力される他方の信号の位相変動を検出し、検出した前記位相変動に基づいて前記クロック信号を制御する制御部とを有することを特徴とする信号処理装置。
(付記2) 前記第1非線形光学効果補償部から出力される信号に対し、波長分散により生じた波形歪みを補償する第2波長分散補償部と、
前記第2波長分散補償部から出力される信号に対し、非線形光学効果により生じた波形歪みを補償する第2非線形光学効果補償部とを、さらに有することを特徴とする付記1に記載の信号処理装置。
(付記3) 前記第1波長分散補償部は、
前記デジタル信号を前記一方の信号及び前記他方の信号に分岐する分岐部と、
前記一方の信号に対し、波長分散により生じた波形歪みを補償し、前記第1非線形光学効果補償部に出力する第1補償部と、
前記第1補償部の補償量と前記第2波長分散補償部の補償量に応じた補償量で、前記他方の信号に対し、波長分散により生じた波形歪みを補償する第2補償部とを有し、
前記制御部は、前記第2補償部から出力される前記他方の信号の位相変動を検出することを特徴とする付記2に記載の信号処理装置。
(付記4) 伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理方法において、
前記デジタル信号を2つの信号に分岐し、
前記2つの信号のうち、一方の信号に対し、前記伝送路内の波長分散及び非線形光学効果により生じた波形歪みを補償し、
前記2つの信号のうち、他方の信号に対し、波長分散により生じた波形歪みを補償し、
前記波形歪みの補償が行われた前記他方の信号の位相変動を検出し、
検出した前記位相変動に基づいて前記クロック信号を制御する、ことを特徴とする信号処理方法。
(付記5) 前記一方の信号に対する、波長分散による波形歪みの補償量に応じた補償量で、前記他方の信号に対し、波長分散により生じた波形歪みを補償することを特徴とする付記4に記載の信号処理方法。
1a〜1d デジタル信号処理回路
7 発振器
11 位相制御回路
15 位相検出回路
16 波長分散補償回路
17 非線形効果補償回路
50〜53 光電変換回路
60〜63 アナログ−デジタル変換回路
160 FET部
161,164,165 波長分散補償部

Claims (4)

  1. 伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理装置において、
    前記デジタル信号に対し、波長分散により生じた波形歪みを補償する第1波長分散補償部と、
    前記第1波長分散補償部から出力される一方の信号に対し、非線形光学効果により生じた波形歪みを補償する第1非線形光学効果補償部と、
    前記第1波長分散補償部から出力される他方の信号の位相変動を検出し、検出した前記位相変動に基づいて前記クロック信号を制御する制御部とを有することを特徴とする信号処理装置。
  2. 前記第1非線形光学効果補償部から出力される信号に対し、波長分散により生じた波形歪みを補償する第2波長分散補償部と、
    前記第2波長分散補償部から出力される信号に対し、非線形光学効果により生じた波形歪みを補償する第2非線形光学効果補償部とを、さらに有することを特徴とする請求項1に記載の信号処理装置。
  3. 前記第1波長分散補償部は、
    前記デジタル信号を前記一方の信号及び前記他方の信号に分岐する分岐部と、
    前記一方の信号に対し、波長分散により生じた波形歪みを補償し、前記第1非線形光学効果補償部に出力する第1補償部と、
    前記第1補償部の補償量と前記第2波長分散補償部の補償量に応じた補償量で、前記他方の信号に対し、波長分散により生じた波形歪みを補償する第2補償部とを有し、
    前記制御部は、前記第2補償部から出力される前記他方の信号の位相変動を検出することを特徴とする請求項2に記載の信号処理装置。
  4. 伝送路から入力された光信号を変換して得られた電気信号を、クロック信号を用いてサンプリングすることにより生成されたデジタル信号を処理する信号処理方法において、
    前記デジタル信号を2つの信号に分岐し、
    前記2つの信号のうち、一方の信号に対し、前記伝送路内の波長分散及び非線形光学効果により生じた波形歪みを補償し、
    前記2つの信号のうち、他方の信号に対し、波長分散により生じた波形歪みを補償し、
    前記波形歪みの補償が行われた前記他方の信号の位相変動を検出し、
    検出した前記位相変動に基づいて前記クロック信号を制御する、ことを特徴とする信号処理方法。
JP2014195757A 2014-09-25 2014-09-25 信号処理装置及び信号処理方法 Active JP6405833B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014195757A JP6405833B2 (ja) 2014-09-25 2014-09-25 信号処理装置及び信号処理方法
US14/817,714 US9686020B2 (en) 2014-09-25 2015-08-04 Signal processing device and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195757A JP6405833B2 (ja) 2014-09-25 2014-09-25 信号処理装置及び信号処理方法

Publications (2)

Publication Number Publication Date
JP2016066958A true JP2016066958A (ja) 2016-04-28
JP6405833B2 JP6405833B2 (ja) 2018-10-17

Family

ID=55585588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195757A Active JP6405833B2 (ja) 2014-09-25 2014-09-25 信号処理装置及び信号処理方法

Country Status (2)

Country Link
US (1) US9686020B2 (ja)
JP (1) JP6405833B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179726A1 (ja) * 2019-03-05 2020-09-10 日本電信電話株式会社 光受信装置及び係数最適化方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768884B2 (en) * 2012-10-17 2017-09-19 Acacia Communications, Inc. Multi-range frequency-domain compensation of chromatic dispersion
EP2804334A1 (en) * 2013-05-13 2014-11-19 Xieon Networks S.à.r.l. Method, device and communication system for reducing optical transmission impairments
CN105830364B (zh) * 2014-03-27 2018-04-20 华为技术有限公司 监测光性能参数的装置、方法和光传输系统
JP6405833B2 (ja) * 2014-09-25 2018-10-17 富士通株式会社 信号処理装置及び信号処理方法
US10185020B1 (en) * 2015-12-22 2019-01-22 Keysight Technologies, Inc. Method of compensating loss and dispersion of transmission line for time domain reflectometry
JP6741497B2 (ja) 2016-07-01 2020-08-19 ラピスセミコンダクタ株式会社 信号変換装置、処理装置、通信システムおよび信号変換方法
US10887022B2 (en) 2017-06-15 2021-01-05 Nokia Of America Corporation Backward propagation with compensation of some nonlinear effects of polarization mode dispersion
CN107809281A (zh) * 2017-10-23 2018-03-16 中国舰船研究设计中心 一种光通信系统非线性简化建模及模型系数自适应获取方法
US10601520B2 (en) 2018-02-07 2020-03-24 Infinera Corporation Clock recovery for digital subcarriers for optical networks
US10651947B2 (en) * 2018-02-20 2020-05-12 Futurewei Technologies, Inc. Coherent detection with remotely delivered local oscillators
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
JP7064143B2 (ja) * 2018-09-26 2022-05-10 日本電信電話株式会社 波長分散補償装置、波長分散補償方法及び光受信装置
JP7121286B2 (ja) * 2019-01-09 2022-08-18 日本電信電話株式会社 光受信装置及び波形歪み補償方法
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11018767B2 (en) * 2019-04-11 2021-05-25 Infinera Corporation Digital nonlinear phase compensator for legacy submarine cables
US11032020B2 (en) * 2019-04-19 2021-06-08 Infiriera Corporation Synchronization for subcarrier communication
US11838105B2 (en) 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11239935B2 (en) 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11095374B2 (en) 2019-05-14 2021-08-17 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
JP7311804B2 (ja) * 2019-06-06 2023-07-20 日本電信電話株式会社 波長分散補償装置、光受信装置、波長分散補償方法、及びコンピュータプログラム
US11483257B2 (en) 2019-09-05 2022-10-25 Infinera Corporation Dynamically switching queueing schemes for network switches
EP4042607A1 (en) 2019-10-10 2022-08-17 Infinera Corporation Network switches systems for optical communications networks
CA3157060A1 (en) 2019-10-10 2021-04-15 Infinera Corporation Optical subcarrier dual-path protection and restoration for optical communications networks
US11356180B2 (en) 2019-10-10 2022-06-07 Infinera Corporation Hub-leaf laser synchronization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050578A (ja) * 2008-08-19 2010-03-04 Fujitsu Ltd 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
JP2012049964A (ja) * 2010-08-30 2012-03-08 Fujitsu Ltd 光受信器、光受信方法、および光伝送システム
JP2013526152A (ja) * 2010-04-16 2013-06-20 アルカテル−ルーセント 光伝送システムの電子非線形性補償

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830485B2 (ja) * 1991-02-19 1998-12-02 日本電気株式会社 光ファイバ分散補償装置
JP3769129B2 (ja) * 1998-09-03 2006-04-19 富士通株式会社 波長分散補償機能を備えた光増幅器及び光通信システム
JP2000151507A (ja) * 1998-11-09 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP3910003B2 (ja) * 2000-05-29 2007-04-25 富士通株式会社 光受信局、光通信システム及び分散制御方法
JP4372330B2 (ja) * 2000-10-30 2009-11-25 富士通株式会社 分布型光増幅装置、光通信用の局および光通信システム
JP4083444B2 (ja) * 2001-11-29 2008-04-30 富士通株式会社 ラマン増幅を利用した光伝送システムおよび光伝送方法
JP4401626B2 (ja) * 2002-07-05 2010-01-20 富士通株式会社 光信号を処理する方法及び装置
US20060140567A1 (en) * 2002-07-08 2006-06-29 Nippon Sheet Glass Company, Limited Photonic crystal optical waveguide
JP2006186013A (ja) * 2004-12-27 2006-07-13 Fujitsu Ltd 光増幅装置および光増幅方法
JP4453737B2 (ja) * 2007-10-10 2010-04-21 住友電気工業株式会社 広帯域光源装置及び分析装置
JP5444877B2 (ja) * 2009-06-24 2014-03-19 富士通株式会社 デジタルコヒーレント受信器
WO2014126132A1 (ja) * 2013-02-13 2014-08-21 日本電信電話株式会社 光伝送システム、位相補償方法、及び光受信装置
MX2016002233A (es) * 2013-08-30 2016-06-21 Nec Corp Aparato de transmisión óptica, aparato de recepción óptica, aparato de comunicación óptica, sistema de comunicación óptica y métodos para controlarlos.
EP3101828B1 (en) * 2014-01-31 2019-05-08 Mitsubishi Electric Corporation Optical transmission apparatus and optical transmission method
JP6405833B2 (ja) * 2014-09-25 2018-10-17 富士通株式会社 信号処理装置及び信号処理方法
JP2016213701A (ja) * 2015-05-11 2016-12-15 富士通株式会社 誤り訂正方法、半導体装置、送受信モジュールおよび伝送装置
JP6593003B2 (ja) * 2015-07-21 2019-10-23 富士通株式会社 光送信装置、伝送システム、及び伝送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050578A (ja) * 2008-08-19 2010-03-04 Fujitsu Ltd 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
JP2013526152A (ja) * 2010-04-16 2013-06-20 アルカテル−ルーセント 光伝送システムの電子非線形性補償
JP2012049964A (ja) * 2010-08-30 2012-03-08 Fujitsu Ltd 光受信器、光受信方法、および光伝送システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179726A1 (ja) * 2019-03-05 2020-09-10 日本電信電話株式会社 光受信装置及び係数最適化方法
JP2020145561A (ja) * 2019-03-05 2020-09-10 日本電信電話株式会社 光受信装置及び係数最適化方法
JP7311744B2 (ja) 2019-03-05 2023-07-20 日本電信電話株式会社 光受信装置及び係数最適化方法

Also Published As

Publication number Publication date
JP6405833B2 (ja) 2018-10-17
US9686020B2 (en) 2017-06-20
US20160094292A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP6405833B2 (ja) 信号処理装置及び信号処理方法
US10110317B1 (en) Apparatus and methods for transmitter skew and bias error compensation in an optical communication system
US8670678B2 (en) Digital coherent receiver and digital coherent reception method
JP5326584B2 (ja) 遅延処理装置,信号増幅装置,光電変換装置,アナログ/デジタル変換装置,受信装置および受信方法
RU2557012C2 (ru) Модуль оценивания расфазировки, модуль компенсации расфазировки и когерентный приемник
US9100126B2 (en) Optical reception device and optical reception control method
US8831081B2 (en) Digital filter device, digital filtering method and control program for the digital filter device
US8707138B2 (en) Method and arrangement for blind demultiplexing a polarisation diversity multiplex signal
Crivelli et al. Architecture of a single-chip 50 Gb/s DP-QPSK/BPSK transceiver with electronic dispersion compensation for coherent optical channels
US8989603B2 (en) Coherent optical receiver and coherent optical receiving method
EP2221999A1 (en) Signal processing device and optical receiving device
US20090116844A1 (en) Electrical-dispersion compensating apparatus, optical receiving apparatus, and optical receiving method
US20140294387A1 (en) Method and arrangement for adaptive dispersion compensation
US20110236025A1 (en) Sub-rate sampling in coherent optical receivers
JP2016152556A (ja) 光伝送装置、光伝送システム、及び、偏波依存損失モニタ
US11646813B1 (en) Systems and methods for carrier phase recovery
US8750442B2 (en) Digital receiver and waveform compensation method
US8918444B2 (en) Method and device for filterling an input signal
WO2018213251A1 (en) Dsp-free coherent receiver
US9871596B2 (en) Optical receiver and signal processing method
US10911150B2 (en) Clock recovery for subcarrier based coherent optical systems
Raybon et al. All-ETDM 80-Gbaud (160-Gb/s) QPSK generation and coherent detection
US11303381B2 (en) Processing parameter and resource sharing architecture for superchannel based transmission systems
Kottke et al. Coherent UDWDM PON with joint subcarrier reception at OLT
US11381444B2 (en) Method and apparatus for coherent transmitter calibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6405833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150