JP2016066812A - Power reception coil, power reception device and non-contact power transmission system - Google Patents

Power reception coil, power reception device and non-contact power transmission system Download PDF

Info

Publication number
JP2016066812A
JP2016066812A JP2015239214A JP2015239214A JP2016066812A JP 2016066812 A JP2016066812 A JP 2016066812A JP 2015239214 A JP2015239214 A JP 2015239214A JP 2015239214 A JP2015239214 A JP 2015239214A JP 2016066812 A JP2016066812 A JP 2016066812A
Authority
JP
Japan
Prior art keywords
coil
power
core
power transmission
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015239214A
Other languages
Japanese (ja)
Other versions
JP6135748B2 (en
Inventor
功高 吉野
Yoshitaka Yoshino
功高 吉野
知倫 村上
Tomomichi MURAKAMI
知倫 村上
義寛 加藤
Yoshihiro Kato
義寛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2015239214A priority Critical patent/JP6135748B2/en
Publication of JP2016066812A publication Critical patent/JP2016066812A/en
Application granted granted Critical
Publication of JP6135748B2 publication Critical patent/JP6135748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable increase of a Q-value of a power reception coil used for a power reception device and suppression of degradation of the Q-value of the power reception coil when the power reception coil is put in a housing.SOLUTION: A power reception coil has a coil portion which is obtained by winding a wire around a core formed of a magnetic material and electromagnetically coupled with an external coil through electromagnetic resonance, a resin part having a core and a coil portion, and a side surface being formed in the resin portion so as to be away from the side surface of the coil portion by a predetermined distance, and a non-magnetic body disposed on the side surface of the resin portion so as to be parallel to the center axis of the core thereof. The core has a shaft core portion, a first flange portion provided to an end portion of the shaft core portion, and a second flange portion provided to an end portion at the opposite side to the first flange portion. The outer diameter of the winding of the wire around the shaft core portion of the core of the coil portion is smaller than the outer diameter of the winding of a power transmission coil.SELECTED DRAWING: Figure 1

Description

本開示は、電磁的に結合した送電コイルから電力が伝送される受電コイル、該受電コイルを備える受電装置、該受電装置を用いた非接触電力伝送システムに関する。   The present disclosure relates to a power receiving coil in which power is transmitted from an electromagnetically coupled power transmitting coil, a power receiving device including the power receiving coil, and a non-contact power transmission system using the power receiving device.

近年、送電コイルと受電コイルを用いて非接触で電力の伝送を行う非接触電力伝送システムが提案されている(例えば、特許文献1参照)。   In recent years, a non-contact power transmission system that performs non-contact power transmission using a power transmission coil and a power reception coil has been proposed (see, for example, Patent Document 1).

非接触電力伝送システムの送電コイルがスパイラル形状であり、受電コイルもスパイラル形状で電力を送る場合には、受電装置に内蔵される受電コイルは、装置内部にある金属(例えば筐体や回路において使用)の影響を大きく受けて、Q値が大きく劣化する。Q値は、エネルギーの保持と損失の関係、あるいは共振回路の共振の強さを示す指標である。   When the power transmission coil of the non-contact power transmission system has a spiral shape and the power reception coil also sends power in a spiral shape, the power reception coil built in the power reception device is used in the metal inside the device (for example, in a case or circuit) ) Greatly deteriorates the Q value. The Q value is an index indicating the relationship between energy retention and loss, or the strength of resonance of the resonance circuit.

この金属の影響を防ぐことを目的として、スパイラル形状の送電コイル及び受電コイルの背面に、磁性シートを貼ることが行われている。この磁性シートは、装置内部の金属の影響を防ぐために、一定の厚みが必要である。また、装置内部の金属の影響を完全に防ぐためには、コイルよりも非常に大きなサイズの磁性シートが必要となる。この磁性シートは、一般的にフェライト(焼結体)で作られる。したがって、磁性シートを薄く作るのにフェライトのシートを薄く作成し、それを上下薄い樹脂シートでラミネートした後に、細かく切断して形成したりするので、非常に高価であった。このフェライトの磁性シートは、上記のとおりコイルに合わせるので面積が大きく、厚み等のバラツキが大きいので、それに起因するコイルの定数のバラツキがQ値の劣化の大きな原因となっていた。   In order to prevent the influence of this metal, a magnetic sheet is pasted on the backs of the spiral-shaped power transmission coil and power reception coil. This magnetic sheet needs a certain thickness in order to prevent the influence of the metal inside the apparatus. In order to completely prevent the influence of the metal inside the apparatus, a magnetic sheet having a size much larger than that of the coil is required. This magnetic sheet is generally made of ferrite (sintered body). Therefore, to make a magnetic sheet thin, a ferrite sheet is thinly formed, laminated with thin resin sheets on the upper and lower sides, and then cut into fine pieces, which is very expensive. Since this ferrite magnetic sheet is matched to the coil as described above, it has a large area and a large variation in thickness and the like, and the variation in the constant of the coil resulting therefrom has caused a large deterioration in the Q value.

また、非接触に電力を伝送する場合、その電力伝送効率(「コイル間効率」ともいう)(ηrf)は、送電コイルと受電コイルの結合の度合いである結合係数kと、それぞれ無負荷時の送電コイルのQ値(Q)と、受電コイルのQ値(Q)から理論的に一意に求められる。コイル間効率(ηrf)を求めるために用いられる計算式を、式(1)〜式(3)に示す。

Figure 2016066812
Figure 2016066812
Figure 2016066812
上記のとおり、式(1)のコイル間効率(ηrf)は、式(2)のS=k*√(Q*Q)の値に応じて決まる。 When power is transmitted in a non-contact manner, the power transmission efficiency (also referred to as “coil efficiency”) (η rf ) is the coupling coefficient k, which is the degree of coupling between the power transmission coil and the power reception coil, and Q values of the power transmission coil (Q 1), theoretically can be uniquely determined from the Q-value of the receiving coil (Q 2). Formulas (1) to (3) are used to calculate the inter-coil efficiency (η rf ).
Figure 2016066812
Figure 2016066812
Figure 2016066812
As described above, the inter-coil efficiency (η rf ) in Expression (1) is determined according to the value of S = k * √ (Q 1 * Q 2 ) in Expression (2).

送電コイルと受電コイル間の結合係数kが大きく得られる場合、つまり電磁誘導の場合は、送電コイルと受電コイルの巻回の径などのサイズがほぼ同じであり、Q値(Q,Q)が小さい場合でも電力の伝送は可能となる。しかし、電磁誘導の場合におけるコイル間効率(ηrf)は、結合係数kに依存しているために、送電コイルと受電コイル間の位置精度が非常に重要であり、位置ずれが許されない。そのため、電磁誘導の場合において充電する際は、送電コイルと受電コイルが1対1の対応となっている。また携帯電話端末やデジタルカメラ等の金属の使用率が高い電子機器を、スパイラル形状の送電コイルの上に置くと、電子機器に内蔵されている受電コイルのQ値が大きく劣化してしまうので、その劣化分を結合係数kで補う必要がある。 When the coupling coefficient k between the power transmission coil and the power reception coil is large, that is, in the case of electromagnetic induction, the sizes of the power transmission coil and the power reception coil, such as the winding diameter, are substantially the same, and the Q values (Q 1 , Q 2 ) Is small, power can be transmitted. However, since the inter-coil efficiency (η rf ) in the case of electromagnetic induction depends on the coupling coefficient k, the positional accuracy between the power transmitting coil and the power receiving coil is very important, and positional deviation is not allowed. Therefore, when charging in the case of electromagnetic induction, the power transmission coil and the power reception coil have a one-to-one correspondence. Also, if an electronic device with a high metal usage rate, such as a mobile phone terminal or a digital camera, is placed on a spiral shaped power transmission coil, the Q value of the power receiving coil built into the electronic device will greatly deteriorate. It is necessary to compensate for the deterioration with the coupling coefficient k.

一方では、電磁共鳴方式として、送電コイルと受電コイル間の結合係数kを小さくして、共振器としてのQ値を高めて複数の電子機器に電力を伝送し、かつ送電コイルに対して受電コイルを自由に配置する方法が、提唱されている。   On the other hand, as an electromagnetic resonance method, the coupling coefficient k between the power transmission coil and the power reception coil is reduced, the Q value as a resonator is increased to transmit power to a plurality of electronic devices, and the power reception coil A method for arranging the symbols freely has been proposed.

特許第4413236号(特開2008−206231号公報)Japanese Patent No. 4413236 (Japanese Patent Laid-Open No. 2008-206231)

しかしながら、携帯電話端末やデジタルカメラ等の金属の使用率が高い電子器機器に格納された受電コイルを平面状のスパイラル形状の送電コイルの上に置くと、送電コイルのQ値(Q)及び受電コイルのQ値(Q)が劣化してしまい、電力を伝送できない。よって、用途が電子機器の持つ金属の影響を受けないものに限定されていた。 However, when a power receiving coil stored in an electronic device having a high metal usage rate, such as a mobile phone terminal or a digital camera, is placed on a planar spiral power transmission coil, the Q value (Q 1 ) of the power transmission coil and The Q value (Q 2 ) of the power receiving coil deteriorates, and power cannot be transmitted. Therefore, the application is limited to those not affected by the metal of the electronic device.

また、電子機器に搭載される受電コイルは、送電コイルに対する配置の自由度を高めるために、送電コイルのサイズより小さく、Q値も50程度と大きくなく、かつ劣化するので、良好な電力伝送を行う非接触電力伝送システムの実現が難しかった。   In addition, the power receiving coil mounted on the electronic device is smaller than the size of the power transmission coil, the Q value is not as large as about 50, and deteriorates in order to increase the degree of freedom of arrangement with respect to the power transmission coil. It was difficult to realize a contactless power transmission system.

本開示は、上記の状況を考慮してなされたものであり、受電装置に用いられる受電コイルのQ値を大きくし、また筐体内部に入れたときの受電コイルのQ値の劣化を少なくするものである。   The present disclosure has been made in consideration of the above situation, and increases the Q value of the power receiving coil used in the power receiving apparatus, and reduces deterioration of the Q value of the power receiving coil when the power receiving coil is placed inside the housing. Is.

本開示の受電コイルは、磁性材料からなるコアに線材が巻きつけられた、送電コイルと電磁共鳴により電磁的に結合して電力が伝送されるコイル部と、そのコイル部の側面から一定の距離離れて配置された非磁性体と、を備える。
一例として、非磁性体の厚さが、0.3mm以上である。また、上記磁性体を有するコアとコイル部を内蔵する樹脂部を備え、その樹脂部の側面に非磁性体が配置されている。また、コアの形状が軸心部と該軸心部の両端にフランジ部を有するH型である。
The power receiving coil according to the present disclosure includes a coil portion in which a wire is wound around a core made of a magnetic material, the coil portion being electromagnetically coupled to the power transmission coil by electromagnetic resonance, and power being transmitted, and a certain distance from a side surface of the coil portion. And a non-magnetic material disposed apart from each other.
As an example, the thickness of the nonmagnetic material is 0.3 mm or more. Moreover, the resin part which incorporates the core which has the said magnetic body, and a coil part is provided, and the nonmagnetic body is arrange | positioned at the side surface of the resin part. Moreover, the shape of the core is an H shape having an axial center portion and flange portions at both ends of the axial center portion.

また本開示の受電装置は、上記受電コイルと、そのコイル部を介して上記送電コイルを有する送電装置から交流信号を受信する受電部と、を備える。   Moreover, the power receiving apparatus of this indication is provided with the said power receiving coil and the power receiving part which receives an alternating current signal from the power transmission apparatus which has the said power transmission coil via the coil part.

また本開示の非接触電力伝送システムは、交流信号を発生する送電装置と、その送電装置で発生した交流信号を受電する上記受電装置と、から構成される。
上記送電装置は、線材が平面状に巻回された送電コイル部と、その送電コイル部に交流信号を供給する送電部とを備える。
The non-contact power transmission system of the present disclosure includes a power transmission device that generates an AC signal and the power reception device that receives the AC signal generated by the power transmission device.
The power transmission device includes a power transmission coil unit in which a wire is wound in a planar shape, and a power transmission unit that supplies an AC signal to the power transmission coil unit.

本開示の構成によれば、磁性材料からなるコアに線材を巻きつけてコイル部を形成することにより、Q値を大きくすることができる。また、そのコイル部の側面から一定の距離だけ離れた位置に非磁性体を配置することにより、コイル部を金属の多い筐体内部に入れたときのQ値の劣化が抑えられる。   According to the configuration of the present disclosure, the Q value can be increased by forming a coil portion by winding a wire around a core made of a magnetic material. Further, by disposing the non-magnetic material at a position away from the side surface of the coil portion by a certain distance, deterioration of the Q value when the coil portion is placed inside a metal-rich housing can be suppressed.

本開示によれば、受電装置に用いられる受電コイルのQ値を大きくし、また筐体内部に入れたときの受電コイルのQ値の劣化を少なくすることができる。   According to the present disclosure, it is possible to increase the Q value of the power receiving coil used in the power receiving device, and to reduce the deterioration of the Q value of the power receiving coil when the power receiving coil is placed inside the housing.

本開示の一実施形態例に係る受電コイルの外観斜視図である。It is an appearance perspective view of a receiving coil concerning an example embodiment of this indication. 図1に示す受電コイルの正面図である。It is a front view of the receiving coil shown in FIG. (a)〜(d)は、図1に示す受電コイルの製造工程を示す説明図である。(A)-(d) is explanatory drawing which shows the manufacturing process of the receiving coil shown in FIG. 従来の送電コイルと受電コイルの組み合わせ例を示す説明図である。It is explanatory drawing which shows the example of a combination of the conventional power transmission coil and power receiving coil. 従来の受電コイルを搭載した携帯端末電話を送電コイルの上に配置した状態の説明図である。It is explanatory drawing of the state which has arrange | positioned the portable terminal telephone carrying the conventional receiving coil on the power transmission coil. 従来の受電コイルを搭載した携帯端末電話を送電コイル上で移動させたときの一次側コイルのQ値を示すグラフである。It is a graph which shows Q value of the primary side coil when the portable terminal telephone carrying the conventional receiving coil is moved on a power transmission coil. 本開示の一実施形態例に係る受電コイルと送電コイルの組み合わせを示す説明図である。It is explanatory drawing which shows the combination of the receiving coil and power transmission coil which concern on the example embodiment of this indication. 図7の受電コイルと送電コイルの組み合わせにおける、S値−コイル間効率の特性の一例を示すグラフである。It is a graph which shows an example of the characteristic of S value-coil efficiency in the combination of the receiving coil and power transmission coil of FIG. 図7の受電コイルと送電コイルの組み合わせにおける、1次側コイルとの距離−コイル間効率の特性の一例を示すグラフである。It is a graph which shows an example of the characteristic of the distance-coil efficiency between the primary side coils in the combination of the receiving coil and power transmission coil of FIG. 本開示の一実施形態例に係る受電コイル側面に金属を近づける様子を示す説明図である。It is explanatory drawing which shows a mode that a metal is brought close to the receiving coil side surface which concerns on one example of embodiment of this indication. 金属とコイル側面の距離−Q値の特性の一例を示すグラフである。It is a graph which shows an example of the characteristic of distance -Q value of a metal and a coil side surface. 本開示の一実施形態例に係る受電コイルと送電コイルをそれぞれ備える、非接触電力伝送システムの概略構成図である。It is a schematic structure figure of a non-contact electric power transmission system provided with a receiving coil and a power transmission coil concerning one example of an embodiment of this indication, respectively.

以下、本開示を実施するための形態の例について、添付図面を参照しながら説明する。説明は下記の順序で行う。なお、各図において共通の構成要素には、同一の符号を付して重複する説明を省略する。
1.一実施形態における受電コイルの構造(H型コアに導線を巻回した例)
2.従来の送電コイルと受電コイルの組み合わせ
3.一実施形態における送電コイルと受電コイルの組み合わせ
4.その他
Hereinafter, exemplary embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings. The description will be given in the following order. In addition, in each figure, the same code | symbol is attached | subjected to the common component and the overlapping description is abbreviate | omitted.
1. Structure of power receiving coil in one embodiment (example in which a conducting wire is wound around an H-shaped core)
2. 2. Combination of conventional power transmission coil and power reception coil 3. Combination of power transmission coil and power reception coil in one embodiment Other

<1.一実施形態の受電コイルの構造>
まず、図1及び図2を参照して、本開示の一実施形態例(以下、「本例」ともいう)に係る受電コイルの構造を説明する。
図1は、本開示の一実施形態に係る受電コイルの外観斜視図である。また、図2は、図1に示す受電コイルの正面図である。この受電コイルは、2つのコイルを電磁的に結合させて電力の伝送を行う非接触電力伝送システムの受電側に用いられるコイルである。電磁結合は、「電磁界共振結合」あるいは「電磁共鳴」などとも呼ばれ、電界結合と磁界結合がある。いずれも共振(共鳴)を利用し、共振しているデバイスのみに電界もしくは磁界の結合で電力伝送を行う。以下の例では、電磁結合について説明する。
<1. Structure of Power Receiving Coil of One Embodiment>
First, a structure of a power receiving coil according to an embodiment of the present disclosure (hereinafter also referred to as “this example”) will be described with reference to FIGS. 1 and 2.
FIG. 1 is an external perspective view of a power receiving coil according to an embodiment of the present disclosure. FIG. 2 is a front view of the power receiving coil shown in FIG. This power receiving coil is a coil used on the power receiving side of a non-contact power transmission system that transmits power by electromagnetically coupling two coils. Electromagnetic coupling is also called “electromagnetic resonance coupling” or “electromagnetic resonance”, and includes electric field coupling and magnetic field coupling. In either case, resonance is used, and power is transmitted only to the resonating device by coupling of an electric field or a magnetic field. In the following example, electromagnetic coupling will be described.

本例の受電コイル1は、磁性材料(例えばフェライト)で構成される側面形状H型のコア(磁芯)2に、複数の細い軟銅が縒りあわされたリッツ線(本例では線径φ0.2mm)を一例として15本束ねた線材5(本例では線径φ1.0mm)を、所定ターン数巻き付けてある。そして、コア2ごと閉じ込めた樹脂部3に、例えば0.5mm厚のアルミニウム(Al)からなる非磁性体6を、コア2の軸芯部2aと所定の距離をおいて該コア2の軸芯部2aの軸(Z軸)と平行に貼り付けている。非磁性体6を貼り付けた状態で、受電コイル1のインダクタンス(L値)は7.61μH、Q値は180であった。   The power receiving coil 1 of this example includes a Litz wire (in this example, a wire diameter of φ0...) In which a plurality of thin soft coppers are wound on a side-shaped H-shaped core (magnetic core) 2 made of a magnetic material (for example, ferrite). As an example, 15 wire rods 5 (in this example, wire diameter φ1.0 mm) are wound around a predetermined number of turns. Then, a nonmagnetic material 6 made of, for example, 0.5 mm thick aluminum (Al) is placed on the resin portion 3 confined together with the core 2 at a predetermined distance from the shaft core portion 2 a of the core 2. It is affixed in parallel with the axis (Z axis) of the part 2a. In the state where the nonmagnetic material 6 was attached, the inductance (L value) of the power receiving coil 1 was 7.61 μH and the Q value was 180.

次に、図3(a)〜(d)を参照して、受電コイル1の製造工程を説明する。
まず、フェライトからなる軸芯部2aの両端に、フェライトからなるフランジ部2b、2cが取り付けられたような、H型のコア2を作成する(図3(a))。
続いて、H型のコア2の全体を樹脂で覆うようにして、モールド等の手法により樹脂部3を成形する(図3(b))。このとき樹脂部3の側面3aが、コア2の軸芯部2aの中心軸(Z軸)に対して所定の距離となるように成形する。この例では、樹脂部3の樹脂の使用量を減らすため、及び受電コイル1の軽量化のために、樹脂部3の側面3aとコア2の軸芯部2aに対応する部分との間に空隙部4を設けている。
そして、その成形した樹脂部3のコア2の軸芯部2aに対応する部分に、線材5を巻き付ける(コイル部の一例)(図3(c))。巻き数でL値を調整する。
最後に、樹脂部3の側面3aに、例えば0.5mm厚のアルミニウムからなる板状の非磁性体6を貼り付けて、受電コイル1が完成する。
Next, the manufacturing process of the power receiving coil 1 will be described with reference to FIGS.
First, an H-type core 2 is prepared in which flange portions 2b and 2c made of ferrite are attached to both ends of an axis portion 2a made of ferrite (FIG. 3A).
Subsequently, the entire H-shaped core 2 is covered with resin, and the resin portion 3 is formed by a technique such as molding (FIG. 3B). At this time, the resin part 3 is molded so that the side surface 3a is at a predetermined distance from the central axis (Z-axis) of the axial part 2a of the core 2. In this example, a gap is formed between the side surface 3a of the resin portion 3 and the portion corresponding to the shaft core portion 2a of the core 2 in order to reduce the amount of resin used in the resin portion 3 and to reduce the weight of the power receiving coil 1. Part 4 is provided.
And the wire 5 is wound around the part corresponding to the axial part 2a of the core 2 of the molded resin part 3 (an example of a coil part) (FIG.3 (c)). The L value is adjusted by the number of turns.
Finally, a plate-like nonmagnetic material 6 made of, for example, 0.5 mm thick aluminum is attached to the side surface 3 a of the resin portion 3 to complete the power receiving coil 1.

本例では、非磁性体としてアルミニウムを貼り付けているが、銅等の非磁性材料を用いてもよい。また、一つの板状の非磁性体を貼り付けているが、コア2を囲むように2辺、3辺に貼り付けてもよい。また、矩形の板状の非磁性材料を用いているが、非磁性体をコア2の軸芯部2a周囲に、円筒に沿うように設けてもよい。   In this example, aluminum is attached as the nonmagnetic material, but a nonmagnetic material such as copper may be used. Further, although one plate-like non-magnetic material is attached, it may be attached to two sides and three sides so as to surround the core 2. Further, although a rectangular plate-like nonmagnetic material is used, a nonmagnetic material may be provided around the shaft portion 2a of the core 2 so as to be along the cylinder.

また本例では、コアの形状はH型であるが、多少結合係数が低いT型やI型でもほぼ同様の結果が得られる。T型とは、図3(a)のコア2においてフランジ部2b,2cのいずれか一方のみが取り付けられたような形である。また、I型は、フランジ部2b,2cのいずれも取り付けられていないか、もしくはその面積がH型に比べて小さい形をいう。   In this example, the shape of the core is the H type, but a similar result can be obtained even with the T type or the I type having a somewhat low coupling coefficient. The T-type is a shape in which only one of the flange portions 2b and 2c is attached to the core 2 in FIG. Further, the I type refers to a shape in which neither of the flange portions 2b and 2c is attached, or the area thereof is smaller than that of the H type.

また本例では、成型した樹脂部3により、コア2の軸芯部2aと非磁性体6(金属等の非磁性材料)との距離を確保しているが、この方法のみではなく、成型したモールドを貼り付けたりして作成してもよい。図3(b)の例で説明すると、樹脂部3全体を一体構成とするのではなく、空隙部4から左側部分に、成型したモールドを適用することになる。   In this example, the molded resin part 3 secures the distance between the shaft core part 2a of the core 2 and the non-magnetic material 6 (non-magnetic material such as metal). You may create by sticking a mold. If it demonstrates in the example of FIG.3 (b), the molded mold will be applied to the left side part from the space | gap part 4, instead of making the resin part 3 whole integral structure.

また本例では、コア2の軸芯部2aの断面形状を矩形としているが、円形でもよい。さらに、コア2の軸芯部2a及びフランジ部2b,2cに同一の磁性材料を用いたが、フランジ部2b,2cに、透磁率の高いアモルファス合金を適用してもよい。アモルファス合金としては、例えばMg−Zn合金などのコバルト(Co)基アモルファス合金がある。アモルファス合金を用いた場合、強度が高くなるためフランジ部が薄型化され、結果としてコア2全体を小型化できる。さらにコア2全体をアモルファス合金で形成してもよい。   Moreover, in this example, although the cross-sectional shape of the axial part 2a of the core 2 is made into the rectangle, circular may be sufficient. Furthermore, although the same magnetic material is used for the shaft core portion 2a and the flange portions 2b and 2c of the core 2, an amorphous alloy having a high magnetic permeability may be applied to the flange portions 2b and 2c. As an amorphous alloy, for example, there is a cobalt (Co) based amorphous alloy such as an Mg—Zn alloy. When an amorphous alloy is used, since the strength is increased, the flange portion is reduced in thickness, and as a result, the entire core 2 can be reduced in size. Further, the entire core 2 may be formed of an amorphous alloy.

<2.従来の送電コイルと受電コイルの組み合わせ>
ここで、図4〜図6を参照して、従来の送電コイルと受電コイルの組み合わせについて説明する。
図4は、従来の送電コイルと受電コイルの組み合わせ例を示す説明図である。また図5は、従来の受電コイルを搭載した携帯端末電話を送電コイルの上に配置した状態の説明図である。また図6は、従来の受電コイルを搭載した携帯端末電話を送電コイル上で移動させたときの一次側コイルのQ値を示すグラフである。
<2. Combination of conventional power transmission coil and power reception coil>
Here, with reference to FIGS. 4-6, the combination of the conventional power transmission coil and power receiving coil is demonstrated.
FIG. 4 is an explanatory view showing a combination example of a conventional power transmission coil and power reception coil. FIG. 5 is an explanatory diagram of a state in which a mobile terminal phone equipped with a conventional power receiving coil is arranged on the power transmitting coil. FIG. 6 is a graph showing the Q value of the primary coil when a portable terminal phone equipped with a conventional power receiving coil is moved on the power transmitting coil.

図4の例では、送電側に平面状のスパイラル形状の送電コイル11を用い、送電コイル11のサイズは、一例として190×150mmとしてある。この送電コイル11は、巻き始めと終わりの線材をコイルの外周に巻回するアルファ巻きとしてある。アルファ巻きにより占積率を向上させることができる。一方、受電側に平面状のスパイラル形状の受電コイル15を用い、受電コイル15のサイズは、一例として40×30mmとしてある。また、送電コイル11及び受電コイル15それぞれの背面(対コイルと反対面)には、各々のコイルと同サイズのフェライトの磁性シート12(190×150mm)、磁性シート16(40×30mm)が貼られている。このときの送電コイル11のQ値は230.5、受電コイル15のQ値は59.5、結合係数kは0.096であった。   In the example of FIG. 4, a planar spiral power transmission coil 11 is used on the power transmission side, and the size of the power transmission coil 11 is 190 × 150 mm as an example. The power transmission coil 11 is an alpha winding that winds the wire material at the beginning and end of winding around the outer periphery of the coil. The space factor can be improved by winding with alpha. On the other hand, a planar spiral power receiving coil 15 is used on the power receiving side, and the size of the power receiving coil 15 is 40 × 30 mm as an example. Further, the magnetic sheet 12 (190 × 150 mm) and the magnetic sheet 16 (40 × 30 mm) of ferrite of the same size as the respective coils are attached to the back surfaces (opposite surfaces of the pair of coils) of the power transmission coil 11 and the power reception coil 15. It has been. At this time, the Q value of the power transmission coil 11 was 230.5, the Q value of the power reception coil 15 was 59.5, and the coupling coefficient k was 0.096.

図5に示すように、実際に受電コイル15を携帯電話端末21に組み込み、携帯電話端末21を送電コイル11上でX方向及びY方向へ動かして測定を行った。なお、矩形のコイル形状の一角を原点としている。携帯電話端末21を送電コイル11のほぼ中央(X方向へ95mm、Y方向へ75mm)に置いたとき、送電コイル11のQ値は230.5→58へ(図6参照)、受電コイル15のQ値も59.5→46.4へ劣化した。また、コイル間効率が84%だったものが54%となり、さらに結合係数kの値も0.068と劣化して、ほとんど実用に使えないレベルの値となっていた。   As shown in FIG. 5, the power reception coil 15 was actually incorporated into the mobile phone terminal 21, and the mobile phone terminal 21 was moved on the power transmission coil 11 in the X direction and the Y direction for measurement. One corner of the rectangular coil shape is the origin. When the mobile phone terminal 21 is placed at substantially the center of the power transmission coil 11 (95 mm in the X direction and 75 mm in the Y direction), the Q value of the power transmission coil 11 changes from 230.5 to 58 (see FIG. 6). The Q value also deteriorated from 59.5 to 46.4. Further, the efficiency between the coils of 84% was 54%, and the value of the coupling coefficient k deteriorated to 0.068, which was a value that could hardly be used practically.

<3.一実施形態における送電コイルと受電コイルの組み合わせ>
次に、図7〜図9を参照して、本開示の送電コイルと受電コイルの組み合わせについて説明する。
図7は、本開示の一実施形態例に係る受電コイルと、送電コイルの組み合わせを示す説明図である。また図8は、図7の受電コイルと送電コイルの組み合わせにおける、S値−コイル間効率の特性の一例を示すグラフである。また図9は、図7の受電コイルと送電コイルの組み合わせにおける、1次側コイルとの距離−コイル間効率の特性の一例を示すグラフである。
<3. Combination of power transmission coil and power reception coil in one embodiment>
Next, a combination of the power transmission coil and the power reception coil according to the present disclosure will be described with reference to FIGS.
FIG. 7 is an explanatory diagram illustrating a combination of a power reception coil and a power transmission coil according to an embodiment of the present disclosure. FIG. 8 is a graph showing an example of S value-coil efficiency characteristics in the combination of the power receiving coil and the power transmitting coil shown in FIG. FIG. 9 is a graph showing an example of the distance-coil efficiency characteristic with respect to the primary coil in the combination of the power receiving coil and the power transmitting coil shown in FIG.

図7に示す測定に用いた受電コイル1Aは、非磁性体6がないことを除けば、図1の受電コイル1と同じ構造である。実際に受電コイル1Aを携帯電話端末21に組み込み、送電コイル11に対する携帯電話端末21の位置を動かして測定を行った。受電コイル1Aは、コア2の軸芯部2aの中心軸と、平面状の送電コイル11の中心軸(Z軸)が平行となるように配置している。   The receiving coil 1A used for the measurement shown in FIG. 7 has the same structure as the receiving coil 1 of FIG. 1 except that the nonmagnetic material 6 is not provided. Actually, the power receiving coil 1 </ b> A was incorporated in the mobile phone terminal 21, and the position of the mobile phone terminal 21 relative to the power transmission coil 11 was moved for measurement. The power receiving coil 1 </ b> A is disposed so that the central axis of the shaft core portion 2 a of the core 2 is parallel to the central axis (Z axis) of the planar power transmitting coil 11.

このとき、送電コイル11のQ値(Q1)は図4の従来例と同様に劣化するが、図8に示すように、受電コイル1Aを携帯電話端末21に組み込んでも受電コイル1AのQ値(Q2)の理論値は180であり、ほとんど劣化していないことがわかる。また、実際に受電コイル1Aを携帯電話端末21に内蔵した場合、結合係数kが0.066であり、スパイラルコイルである従来の受電コイル15(図4)のものよりも小さい。しかし、受電コイル1AのQ値が従来のものに比べ非常に高く劣化せず、コイル間効率で78%を達成している。図9に示すように、受電コイル1Aと送電コイル11の間の距離を、双方のXY平面上での位置関係を変えて複数の配置で測定したが、コイル間効率に大きな劣化は見られない。したがって、コイル間効率について見れば、セット機器に組み込んでも送電コイルに対して配置の自由度が高く、かつ非常に高いレベルを実現できていると言える。   At this time, the Q value (Q1) of the power transmission coil 11 deteriorates similarly to the conventional example of FIG. 4, but as shown in FIG. 8, even if the power reception coil 1A is incorporated in the mobile phone terminal 21, the Q value ( The theoretical value of Q2) is 180, and it can be seen that there is almost no deterioration. When the power receiving coil 1A is actually built in the mobile phone terminal 21, the coupling coefficient k is 0.066, which is smaller than that of the conventional power receiving coil 15 (FIG. 4) that is a spiral coil. However, the Q value of the receiving coil 1A is not very high compared to the conventional one, and the inter-coil efficiency is 78%. As shown in FIG. 9, the distance between the power receiving coil 1A and the power transmitting coil 11 was measured in a plurality of arrangements while changing the positional relationship on both XY planes, but no significant deterioration in inter-coil efficiency was observed. . Therefore, from the viewpoint of inter-coil efficiency, it can be said that even if it is incorporated in a set device, the degree of freedom of arrangement with respect to the power transmission coil is high and a very high level can be realized.

(受電コイルと金属板間の距離)
次に、本開示の一実施形態に係る受電コイルと金属板間の距離について説明する。
図10は、コア2を内蔵した樹脂部3Aからなる受電コイル1A側面に金属板26を近づける様子を示している。また図11は、受電コイル1A(コイル側面)と金属板26間の距離に対するQ値の特性を示したグラフである。本例では、金属板として例えば0.5mm厚の、アルミニウム(Al)とステンレス鋼(SUS)を用いて測定した。
(Distance between receiving coil and metal plate)
Next, the distance between the power receiving coil and the metal plate according to an embodiment of the present disclosure will be described.
FIG. 10 shows a state in which the metal plate 26 is brought close to the side surface of the power receiving coil 1 </ b> A composed of the resin portion 3 </ b> A incorporating the core 2. FIG. 11 is a graph showing the characteristic of the Q value with respect to the distance between the power receiving coil 1 </ b> A (coil side surface) and the metal plate 26. In this example, measurement was performed using, for example, 0.5 mm thick aluminum (Al) and stainless steel (SUS) as the metal plate.

図11において、受電コイル1AのQ値は、近くに金属板26が存在すると劣化する傾向にあり、金属板の面積が大きいほどQ値が劣化している。また金属の材料でみると、アルミニウムとステンレス鋼では、アルミニウムの方がQ値の劣化が少ない。これはアルミニウム等の非磁性材料に、磁力線が溜まらないので渦電流が流れにくく、高周波信号に対する抵抗が増加するためと考えられる。アルミニウム等の非磁性材料の場合、コアに巻いたコイルから10mm程度離せば、影響が少なくなることが分かる。   In FIG. 11, the Q value of the power receiving coil 1 </ b> A tends to deteriorate when the metal plate 26 is present nearby, and the Q value deteriorates as the area of the metal plate increases. In terms of metal materials, aluminum and stainless steel have less deterioration in Q value in aluminum. This is presumably because non-magnetic material such as aluminum does not accumulate magnetic field lines, so eddy currents hardly flow and resistance to high-frequency signals increases. In the case of a non-magnetic material such as aluminum, it can be seen that the influence is reduced if it is separated from the coil wound around the core by about 10 mm.

図11の例では、板厚が0.5mmの非磁性体を用いて測定を実施したが、板厚が0.3mmのアルミニウムや銅などの非磁性体の場合でも、同様の結果が得られている。板厚が0.3mmの非磁性体は、携帯電話端末などの設計スペースに限りのある筐体内で使用するのに有利である。   In the example of FIG. 11, the measurement was performed using a non-magnetic material having a plate thickness of 0.5 mm, but the same result was obtained even in the case of a non-magnetic material such as aluminum or copper having a plate thickness of 0.3 mm. ing. A non-magnetic material having a plate thickness of 0.3 mm is advantageous for use in a housing having a limited design space such as a mobile phone terminal.

コイル設計としては、コイルを非磁性体から10mm程度離せば、非磁性体による影響が少なくなるのは分かっているが、電子機器の配置の制約により5mm程度しか離せない場合などもある。そのような場合は、あらかじめQ値の劣化分を見込んで線材の巻き数を調整し、コイルのQ値を上げて実使用に問題ないように対応することも可能である。   As for the coil design, it is known that if the coil is separated from the non-magnetic material by about 10 mm, the influence of the non-magnetic material is reduced. However, there are cases where the coil can be separated only by about 5 mm due to restrictions on the arrangement of electronic devices. In such a case, it is also possible to adjust the number of windings of the wire in advance in consideration of the deterioration of the Q value, and increase the Q value of the coil so that there is no problem in actual use.

電磁結合を利用する本例では、結合係数kが低くても、1次側及び2次側の直列共振回路のQ値を高くして、送電コイルと受電コイルの配置の自由度を高めるようにしている。一例として、送電コイルと受電コイルの結合係数kを0.2以下、1次側コイル又は2次側コイルの少なくとも一方のQ値を100以上として設計している。結合係数kは、コイルとの関係で言えば1次側コイルのサイズに依存しており、1次側コイルのサイズが小さくなると結合係数kが大きくなるので、そのことも考慮して上記の設計としている。   In this example using electromagnetic coupling, even if the coupling coefficient k is low, the Q values of the primary and secondary series resonant circuits are increased to increase the degree of freedom in the arrangement of the power transmission coil and the power reception coil. ing. As an example, the coupling coefficient k of the power transmission coil and the power reception coil is set to 0.2 or less, and the Q value of at least one of the primary side coil or the secondary side coil is set to 100 or more. The coupling coefficient k depends on the size of the primary coil in relation to the coil, and the coupling coefficient k increases as the size of the primary coil decreases. It is said.

(一実施形態の効果)
以上説明した一実施形態に係る受電コイル、及び該受電コイルと送電コイルの組み合わせによれば、送電コイルに対する受電コイルの配置の自由度があり、効率よく受電することが可能となる。すなわち、電子機器へ組み込み時の受電コイルのQ値の劣化を少なくし、送電コイル上に当該電子機器を置いたときに送電コイルのQ値が劣化する場合でも、配置自由度を確保して電力の伝送を実現できる。
(Effect of one embodiment)
According to the power receiving coil according to the embodiment described above and the combination of the power receiving coil and the power transmitting coil, there is a degree of freedom in arrangement of the power receiving coil with respect to the power transmitting coil, and power can be received efficiently. That is, the deterioration of the Q value of the power receiving coil when incorporated in an electronic device is reduced, and even when the Q value of the power transmission coil deteriorates when the electronic device is placed on the power transmission coil, the degree of freedom in arrangement is ensured and the power is reduced. Can be realized.

また、コアに線材を用いた一実施形態の受電コイルは、従来のスパイラルコイルより安価である。さらに、従来のスパイラルコイルと比較して、コイルの定数(例えばQ値)のバラツキが小さい受電コイルの製造が可能となる。   Moreover, the receiving coil of one Embodiment using a wire for a core is cheaper than the conventional spiral coil. Furthermore, it is possible to manufacture a power receiving coil with less variation in the coil constant (for example, Q value) compared to a conventional spiral coil.

なお、本開示の一実施形態例では、図7に示すに受電コイル1(1A)と送電コイル11により電力伝送を行う例を説明したが、これに限られない。例えば、送電コイル11の中に磁束を均一にするためのリピータコイルを形成し、送電コイル11からリピータコイルを介して受電コイル1(1A)に電力を伝送するようにしてもよい。   In the embodiment of the present disclosure, the example in which power is transmitted by the power receiving coil 1 (1A) and the power transmitting coil 11 as illustrated in FIG. 7 has been described, but the present invention is not limited thereto. For example, a repeater coil for making the magnetic flux uniform may be formed in the power transmission coil 11, and power may be transmitted from the power transmission coil 11 to the power receiving coil 1 (1A) via the repeater coil.

<4.その他>
(受電コイルの他の実施形態例)
本開示に係る受電コイルの他の実施形態例として、次のような製造工程を有するものも考えられる。
まず、H型のコア2に被覆された線材5を巻き付ける(図3(c)に対応)(コイル部の一例)。巻き数でL値を調整する。次に、樹脂で形成されたモールド部材のケースに線材5を巻き付けたコア2を挿入し、接着材等により固定する(図3(b)に対応)。その後、モールド部材の側面に非磁性体6を貼り付ける(図3(d)に対応)。ここで、H型のコア2のフランジ部2bの上面及びフランジ部2cの下面が、モールド部材のケースの上面及び下面と同一面となるように設計、製造する。このように受電コイルを製造した場合、H型のコア2の高さと、モールド部材のケースの高さを同じにすることができるので、樹脂でモールドする場合に比べ薄型化が可能である。
<4. Other>
(Another embodiment of the power receiving coil)
Another embodiment of the power receiving coil according to the present disclosure may have the following manufacturing process.
First, the wire 5 covered with the H-shaped core 2 is wound (corresponding to FIG. 3C) (an example of a coil portion). The L value is adjusted by the number of turns. Next, the core 2 around which the wire 5 is wound is inserted into the case of the mold member formed of resin, and is fixed with an adhesive or the like (corresponding to FIG. 3B). Thereafter, the nonmagnetic material 6 is attached to the side surface of the mold member (corresponding to FIG. 3D). Here, the upper surface of the flange portion 2b of the H-shaped core 2 and the lower surface of the flange portion 2c are designed and manufactured so as to be flush with the upper surface and the lower surface of the case of the mold member. When the power receiving coil is manufactured in this way, the height of the H-shaped core 2 and the height of the case of the mold member can be made the same, and thus the thickness can be reduced as compared with the case of molding with resin.

(本開示の受電コイルと送電コイルを用いた非接触電力伝送システム)
上述した本開示の受電コイルと送電コイルを用いた非接触電力伝送システムを説明する。
図12は、本開示の一実施形態に係る受電コイルと送電コイルをそれぞれ備える、非接触電力伝送システムの概略構成図である。この図1は、非接触電力伝送システムの最も基本的な回路構成(磁界結合の場合)の例を示している。
(Contactless power transmission system using the power receiving coil and power transmitting coil of the present disclosure)
A non-contact power transmission system using the power receiving coil and the power transmitting coil of the present disclosure described above will be described.
FIG. 12 is a schematic configuration diagram of a contactless power transmission system including a power receiving coil and a power transmitting coil according to an embodiment of the present disclosure. FIG. 1 shows an example of the most basic circuit configuration (in the case of magnetic field coupling) of a non-contact power transmission system.

本例の非接触電力供給システムは、送電装置31と受電装置41から構成される。
送電装置31は、交流信号を発生させる交流電源33及び抵抗素子34を含む信号源32と、コンデンサ35と、送電コイル(1次側コイル)15を備える。抵抗素子34は、交流電源33の内部抵抗(出力インピーダンス)を図示化したものである。信号源32に対しコンデンサ35と送電コイル11が直列共振回路(共振回路の一例)を形成するように接続されている。そして、測定したい周波数において共振するように、コンデンサ35のキャパシタンスの値(C値)、及び送電コイル11のインダクタンスの値(L値)が調整されている。信号源32とコンデンサ35で構成される送電部37は、送電コイル11を通じて受電装置41へ非接触で電力を伝送する(送電(給電))。
The non-contact power supply system of this example includes a power transmission device 31 and a power reception device 41.
The power transmission device 31 includes a signal source 32 including an AC power source 33 and a resistance element 34 that generate an AC signal, a capacitor 35, and a power transmission coil (primary coil) 15. The resistance element 34 illustrates the internal resistance (output impedance) of the AC power supply 33. The capacitor 35 and the power transmission coil 11 are connected to the signal source 32 so as to form a series resonance circuit (an example of a resonance circuit). Then, the capacitance value (C value) of the capacitor 35 and the inductance value (L value) of the power transmission coil 11 are adjusted so as to resonate at the frequency to be measured. The power transmission unit 37 including the signal source 32 and the capacitor 35 transmits power to the power receiving device 41 through the power transmission coil 11 in a non-contact manner (power transmission (power feeding)).

受電装置41は、コンデンサ43(二次電池)及び抵抗素子44を含む充電部42と、交流信号を直流信号に変換する整流部48と、コンデンサ45と、受電コイル(2次側コイル)1を備える。抵抗素子44は、コンデンサ43の内部抵抗(出力インピーダンス)を図示化したものである。充電部42に対しコンデンサ45と受電コイル1が直列共振回路を形成するように接続され、測定したい周波数において共振するように、コンデンサ45のキャパシタンスの値(C値)、及び受電コイル1のインダクタンスの値(L値)が調整されている。充電部42、整流部48及びコンデンサ45で構成される受電部47は、受電コイル1を通じて外部から非接触で電力の供給を受ける(受電)。   The power receiving device 41 includes a charging unit 42 including a capacitor 43 (secondary battery) and a resistance element 44, a rectifying unit 48 that converts an AC signal into a DC signal, a capacitor 45, and a power receiving coil (secondary coil) 1. Prepare. The resistance element 44 illustrates the internal resistance (output impedance) of the capacitor 43. The capacitor 45 and the power receiving coil 1 are connected to the charging unit 42 so as to form a series resonance circuit, and the capacitance value (C value) of the capacitor 45 and the inductance of the power receiving coil 1 are set so as to resonate at a frequency to be measured. The value (L value) is adjusted. The power receiving unit 47 including the charging unit 42, the rectifying unit 48, and the capacitor 45 is supplied with electric power from the outside through the power receiving coil 1 (power reception).

なお、送電装置31の直列共振回路を構成する送電コイル11とコンデンサ35間の電圧をV1(共振回路に掛かる電圧の一例)、送電コイル11両端の電圧をV2とすると、直列共振回路のQ値は、Q=V2/V1で表される。受電装置41側も同様である。   In addition, when the voltage between the power transmission coil 11 and the capacitor 35 constituting the series resonance circuit of the power transmission device 31 is V1 (an example of a voltage applied to the resonance circuit) and the voltage across the power transmission coil 11 is V2, the Q value of the series resonance circuit Is represented by Q = V2 / V1. The same applies to the power receiving device 41 side.

図12は直列共振回路を備える基本の回路を示したものであるから、上記回路の機能を備えていれば詳細な構成は種々の形態が考えられる。例えば図12では、受電装置41に設けた負荷の一例としてコンデンサ43を示したが、この例に限られない。また、受電装置41が信号源32(送電部37)を有し、受電コイル1を介して外部装置へ非接触で電力を伝送するようにしてもよいし、送電装置31が負荷を備え、送電コイル11を介して外部装置から非接触で電力の供給を受けるようにしてもよい。受電装置41としては、
携帯電話端末やデジタルカメラ等、種々の電子機器が適用可能である。
Since FIG. 12 shows a basic circuit including a series resonance circuit, various configurations can be considered as long as the above-described circuit function is provided. For example, in FIG. 12, the capacitor 43 is shown as an example of the load provided in the power receiving device 41, but is not limited to this example. In addition, the power receiving device 41 may include the signal source 32 (power transmission unit 37) and transmit power to the external device via the power receiving coil 1 in a non-contact manner. You may make it receive electric power supply from an external device via the coil 11 non-contactingly. As the power receiving device 41,
Various electronic devices such as a mobile phone terminal and a digital camera can be applied.

また、本例は、直列共振回路を例に説明したが、共振回路としてその他の共振回路を用いてもよい。例えば、第2のコンデンサと送電コイル11の並列共振回路に対し、第1のコンデンサを直列に接続して共振回路を構成してもよい。また、第1のコンデンサと送電コイル11の直列共振回路に対し、第2のコンデンサを並列に接続して共振回路を構成してもよい。各々の共振回路に得られる、送電コイル11及び第1のコンデンサ間の電圧V1と、送電コイル11両端の電圧V2を利用して、Q値を計算する。以上、説明した直列共振回路及びその他の共振回路は、共振回路の一例であり、これらの構成に限定されるものではない。   Moreover, although this example demonstrated the series resonance circuit as an example, you may use another resonance circuit as a resonance circuit. For example, the resonance circuit may be configured by connecting the first capacitor in series to the parallel resonance circuit of the second capacitor and the power transmission coil 11. In addition, a resonance circuit may be configured by connecting a second capacitor in parallel to the series resonance circuit of the first capacitor and the power transmission coil 11. The Q value is calculated using the voltage V1 between the power transmission coil 11 and the first capacitor and the voltage V2 across the power transmission coil 11 obtained in each resonance circuit. The series resonance circuit and other resonance circuits described above are examples of the resonance circuit, and are not limited to these configurations.

また、受電コイル側面のアルミニウムの非磁性体に、コイルのL値と共振周波数を調整するためにコンデンサを搭載した基板を貼り付けてもよい。ここで、直列共振回路用のコンデンサと並列共振回路用のコンデンサの両方を基板に貼り付けて、利用者がいずれかを選択できるようにしてもよい。このように共振回路モジュールとして、製造時に共振周波数を調整しておくことにより、利用者が周波数の調整をする必要がない。例えば、この共振回路モジュールに、該当する共振周波数の交流電圧を受電できる受電部を組み合わせることにより、受電装置としてすぐに利用することが可能である。   Moreover, you may affix the board | substrate which mounted the capacitor | condenser in order to adjust the L value and resonance frequency of a coil to the nonmagnetic material of the aluminum of the receiving coil side surface. Here, both the capacitor for the series resonance circuit and the capacitor for the parallel resonance circuit may be attached to the substrate so that the user can select one of them. Thus, by adjusting the resonance frequency at the time of manufacture as a resonance circuit module, it is not necessary for the user to adjust the frequency. For example, by combining the resonance circuit module with a power receiving unit that can receive an AC voltage of a corresponding resonance frequency, it can be used immediately as a power receiving device.

なお、本技術は以下のような構成もとることができる。
(1)
磁性体を有するコアと、
前記コアに線材が巻きつけられ、外部コイルと電磁的に結合して電力が伝送されるコイル部と、
前記コイル部の側面から一定の距離離れて配置された非磁性体と、
を備える受電コイル。
(2)
前記非磁性体の厚さが、0.3mm以上である
前記(1)に記載の受電コイル。
(3)
前記磁性体を有するコアと前記コイル部を内蔵する樹脂部を、備え、
前記樹脂部の側面に前記非磁性体が配置されている
前記(1)又は(2)に記載の受電コイル。
(4)
前記コアの形状がH型である
前記(1)〜(3)のいずれかに記載の受電コイル。
(5)
磁性体を有するコアと、
前記コアに線材が巻きつけられ、外部コイルと電磁的に結合して電力が伝送されるコイル部と、
前記コイル部の側面に対して一定の距離離れて配置された非磁性体と、
前記コイル部を介して交流信号を受信する受電部と、
を備える受電装置。
(6)
交流信号を発生する送電装置と、該送電装置で発生した交流信号を受電する受電装置と、から構成され、
前記送電装置は、
線材が平面状に巻回された送電コイル部と、
前記送電コイル部に交流信号を供給する送電部と、を備え、
前記受電装置は、
磁性体を有するコアと、
前記コアに線材が巻きつけられ、前記送電コイル部と電磁的に結合して電力が伝送される受電コイル部と、
前記受電コイル部の側面に対して一定の距離離れて配置された非磁性体と、
前記受電コイル部を介して交流信号を受信する受電部と、を備える
非接触電力伝送システム。
(7)
前記送電コイル部の、前記受電コイル部側と反対面に配置された磁性シートを有する
前記(6)に記載の非接触電力伝送システム。
In addition, this technique can also take the following structures.
(1)
A core having a magnetic material;
A coil portion in which a wire is wound around the core and electromagnetically coupled with an external coil to transmit power;
A non-magnetic material disposed at a certain distance from the side surface of the coil portion;
A power receiving coil comprising:
(2)
The power receiving coil according to (1), wherein the nonmagnetic material has a thickness of 0.3 mm or more.
(3)
Comprising a core having the magnetic body and a resin part containing the coil part;
The power receiving coil according to (1) or (2), wherein the nonmagnetic material is disposed on a side surface of the resin portion.
(4)
The power receiving coil according to any one of (1) to (3), wherein the core has an H shape.
(5)
A core having a magnetic material;
A coil portion in which a wire is wound around the core and electromagnetically coupled with an external coil to transmit power;
A non-magnetic material disposed at a certain distance from the side surface of the coil portion;
A power receiving unit that receives an AC signal via the coil unit;
A power receiving apparatus comprising:
(6)
A power transmission device that generates an AC signal, and a power reception device that receives an AC signal generated by the power transmission device,
The power transmission device is:
A power transmission coil section in which a wire is wound in a planar shape;
A power transmission unit for supplying an AC signal to the power transmission coil unit,
The power receiving device is:
A core having a magnetic material;
A power receiving coil unit in which a wire is wound around the core and electromagnetically coupled to the power transmitting coil unit to transmit electric power;
A nonmagnetic material disposed at a certain distance from the side surface of the power receiving coil portion;
A non-contact power transmission system comprising: a power receiving unit that receives an AC signal via the power receiving coil unit.
(7)
The non-contact power transmission system according to (6), further including a magnetic sheet disposed on a surface of the power transmission coil unit opposite to the power receiving coil unit side.

以上、本開示は上述した各実施の形態に限定されるものではなく、特許請求の範囲に記載された要旨を逸脱しない限りにおいて、その他種々の変形例、応用例を取り得ることは勿論である。   As described above, the present disclosure is not limited to each of the above-described embodiments, and various other modifications and application examples can be taken without departing from the gist described in the claims. .

1,1A…受電コイル、2…コア(H型)、2a…軸芯部、2b,2c…フランジ部、3,3A…樹脂部、3a…側面、4…空隙部、5…線材、6…非磁性体、11…送電コイル、12…磁性シート、15…受電コイル、16…磁性シート、21,31…携帯電話端末(電子機器)、31…送電装置、32…信号源、33…交流電源、34…抵抗素子、35…コンデンサ、15…送電コイル、37…送電部、41…受電装置、42…充電部、43…コンデンサ、44…抵抗素子、45…コンデンサ、47…受電部、48…整流部   DESCRIPTION OF SYMBOLS 1,1A ... Power receiving coil, 2 ... Core (H type), 2a ... Shaft core part, 2b, 2c ... Flange part, 3A ... Resin part, 3a ... Side face, 4 ... Air gap part, 5 ... Wire, 6 ... Nonmagnetic material, 11 ... power transmission coil, 12 ... magnetic sheet, 15 ... power reception coil, 16 ... magnetic sheet, 21, 31 ... mobile phone terminal (electronic device), 31 ... power transmission device, 32 ... signal source, 33 ... AC power supply , 34 ... resistor element, 35 ... capacitor, 15 ... power transmission coil, 37 ... power transmission unit, 41 ... power receiving device, 42 ... charging unit, 43 ... capacitor, 44 ... resistance element, 45 ... capacitor, 47 ... power receiving unit, 48 ... Rectifier

Claims (12)

送電コイルから出力される交流信号を受電する受電コイルであって、
軸芯部と、該軸芯部の端部に設けられた第1のフランジ部及び該第1のフランジ部と反対側の端部に設けられた第2のフランジ部とを有する磁性材料からなるコアの前記軸芯部に線材が巻回された、前記線材の巻回の外径が前記送電コイルの巻回の外径よりも小さく、前記送電コイルと電磁共鳴により電磁的に結合するコイル部と、
前記コアおよび前記コイル部を有し、前記コイル部の側面から所定の距離離れた側面が形成された樹脂部と、
前記樹脂部の前記側面に前記コアの前記軸芯部の中心軸と平行となるように配置された非磁性体と、
を備える受電コイル。
A power receiving coil that receives an AC signal output from a power transmitting coil,
It consists of a magnetic material which has a shaft core part, the 1st flange part provided in the edge part of this shaft core part, and the 2nd flange part provided in the edge part on the opposite side to this 1st flange part. A coil portion in which a wire rod is wound around the shaft core portion of the core, and an outer diameter of the winding of the wire rod is smaller than an outer diameter of the winding of the power transmission coil, and is electromagnetically coupled to the power transmission coil by electromagnetic resonance When,
A resin part having the core and the coil part, and having a side surface separated from the side surface of the coil part by a predetermined distance;
A non-magnetic material disposed on the side surface of the resin portion so as to be parallel to the central axis of the shaft core portion of the core;
A power receiving coil comprising:
前記コイル部の側面と前記非磁性体との距離が5mm以上である
請求項1に記載の受電コイル。
The power receiving coil according to claim 1, wherein a distance between a side surface of the coil portion and the nonmagnetic material is 5 mm or more.
前記コイル部の側面と前記非磁性体との距離が5mm〜10mmである
請求項2に記載の受電コイル。
The power receiving coil according to claim 2, wherein a distance between a side surface of the coil portion and the nonmagnetic material is 5 mm to 10 mm.
前記樹脂部は、前記コアおよび前記コイル部が挿入されるモールド部材のケースであり、
前記コアの前記第1のフランジ部の上面及び前記第2のフランジ部の下面が、前記ケースの上面及び下面とそれぞれ同一面となるように構成されている
請求項1乃至3のいずれかに記載の受電コイル。
The resin part is a case of a mold member into which the core and the coil part are inserted,
The upper surface of the first flange portion and the lower surface of the second flange portion of the core are configured to be flush with the upper surface and the lower surface of the case, respectively. Power receiving coil.
前記非磁性体の材質はアルミニウムである
請求項1に記載の受電コイル。
The power receiving coil according to claim 1, wherein a material of the nonmagnetic material is aluminum.
前記非磁性体の厚さは0.3mm以上である
請求項1に記載の受電コイル。
The power receiving coil according to claim 1, wherein the nonmagnetic material has a thickness of 0.3 mm or more.
前記コアのうち少なくとも前記第1のフランジ部及び前記第2のフランジ部に前記磁性材料としてアモルファス合金が用いられている
請求項1に記載の受電コイル。
The power receiving coil according to claim 1, wherein an amorphous alloy is used as the magnetic material in at least the first flange portion and the second flange portion of the core.
前記非磁性体に、少なくとも直列共振回路用のコンデンサ又は並列共振回路用のコンデンサを搭載した基板が取り付けられる
請求項1に記載の受電コイル。
The power receiving coil according to claim 1, wherein a substrate on which at least a capacitor for a series resonance circuit or a capacitor for a parallel resonance circuit is mounted is attached to the nonmagnetic material.
前記送電コイルのQ値をQ、当該受電コイルのQ値をQ、前記送電コイルと前記受電コイルの結合係数をk、前記送電コイルと前記受電コイルのコイル間効率をηrfとすると、
ηrf=S/[1+√{(1+S}]
但し、S=kQ、Q=√(Q)である
請求項1乃至8のいずれかに記載の受電コイル。
When the Q value of the power transmission coil is Q 1 , the Q value of the power reception coil is Q 2 , the coupling coefficient between the power transmission coil and the power reception coil is k, and the inter-coil efficiency between the power transmission coil and the power reception coil is η rf ,
η rf = S 2 / [1 + √ {(1 + S 2 ) 2 }]
However, S = kQ, Q = √ (Q 1 Q 2 ) The power receiving coil according to claim 1.
送電コイルから出力される交流信号を受電する受電装置であって、
軸芯部と、該軸芯部の端部に設けられた第1のフランジ部及び該第1のフランジ部と反対側の端部に設けられた第2のフランジ部とを有する磁性材料からなるコアの前記軸芯部に線材が巻回された、前記線材の巻回の外径が前記送電コイルの巻回の外径よりも小さく、前記送電コイルと電磁共鳴により電磁的に結合するコイル部と、
前記コアおよび前記コイル部を有し、前記コイル部の側面から所定の距離離れた側面が形成された樹脂部と、
前記樹脂部の前記側面に前記コアの前記軸芯部の中心軸と平行となるように配置された非磁性体と、
前記コイル部を介して交流信号を受信する受電部と、
を備える受電装置。
A power receiving device that receives an AC signal output from a power transmission coil,
It consists of a magnetic material which has a shaft core part, the 1st flange part provided in the edge part of this shaft core part, and the 2nd flange part provided in the edge part on the opposite side to this 1st flange part. A coil portion in which a wire rod is wound around the shaft core portion of the core, and an outer diameter of the winding of the wire rod is smaller than an outer diameter of the winding of the power transmission coil, and is electromagnetically coupled to the power transmission coil by electromagnetic resonance When,
A resin part having the core and the coil part, and having a side surface separated from the side surface of the coil part by a predetermined distance;
A non-magnetic material disposed on the side surface of the resin portion so as to be parallel to the central axis of the shaft core portion of the core;
A power receiving unit that receives an AC signal via the coil unit;
A power receiving apparatus comprising:
交流信号を出力する送電装置と、該送電装置で発生した交流信号を受電する受電装置と、から構成され
前記送電装置は、
線材が平面状に巻回された送電コイル部と、
前記送電コイル部に交流信号を供給する送電部と、を備え、
前記受電装置は、
磁性材料からなるコアと、
前記コアに線材が巻きつけられ、前記送電コイル部と電磁的に結合して電力が伝送される受電コイル部と、
前記コアおよび前記受電コイル部を有し、前記受電コイル部の側面から所定の距離離れた側面が形成された樹脂部と、
前記樹脂部の前記側面に前記コアの中心軸と平行となるように配置された非磁性体と、
前記受電コイル部を介して交流信号を受信する受電部と、を備える
非接触電力伝送システム。
A power transmission device that outputs an AC signal and a power reception device that receives an AC signal generated by the power transmission device.
A power transmission coil section in which a wire is wound in a planar shape;
A power transmission unit for supplying an AC signal to the power transmission coil unit,
The power receiving device is:
A core made of magnetic material;
A power receiving coil unit in which a wire is wound around the core and electromagnetically coupled to the power transmitting coil unit to transmit electric power;
A resin portion having the core and the receiving coil portion, and a side surface formed with a predetermined distance away from the side surface of the receiving coil portion;
A nonmagnetic material disposed on the side surface of the resin portion so as to be parallel to the central axis of the core;
A non-contact power transmission system comprising: a power receiving unit that receives an AC signal via the power receiving coil unit.
前記コアは、前記線材が巻きつけられる軸芯部と、該軸芯部の端部に設けられた第1のフランジ部及び該第1のフランジ部と反対側の端部に設けられた第2のフランジ部とを有し、
前記受電コイル部は、前記線材の巻回の外径が前記送電コイル部の巻回の外径よりも小さく、前記送電コイル部と電磁共鳴により電磁的に結合し、
前記非磁性体は、前記樹脂部の前記側面に前記コアの前記軸芯部の中心軸と平行となるように配置される
請求項11に記載の非接触電力伝送システム。
The core includes a shaft core portion around which the wire is wound, a first flange portion provided at an end portion of the shaft core portion, and a second portion provided at an end portion opposite to the first flange portion. And a flange portion of
The power receiving coil portion has an outer diameter of the winding of the wire smaller than an outer diameter of the winding of the power transmission coil portion, and is electromagnetically coupled to the power transmission coil portion by electromagnetic resonance,
The non-contact power transmission system according to claim 11, wherein the non-magnetic body is disposed on the side surface of the resin portion so as to be parallel to a central axis of the shaft core portion of the core.
JP2015239214A 2015-12-08 2015-12-08 Power receiving coil, power receiving device, and non-contact power transmission system Active JP6135748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015239214A JP6135748B2 (en) 2015-12-08 2015-12-08 Power receiving coil, power receiving device, and non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015239214A JP6135748B2 (en) 2015-12-08 2015-12-08 Power receiving coil, power receiving device, and non-contact power transmission system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011081016A Division JP2012216687A (en) 2011-03-31 2011-03-31 Power reception coil, power reception device, and non contact power transmission system

Publications (2)

Publication Number Publication Date
JP2016066812A true JP2016066812A (en) 2016-04-28
JP6135748B2 JP6135748B2 (en) 2017-05-31

Family

ID=55805838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239214A Active JP6135748B2 (en) 2015-12-08 2015-12-08 Power receiving coil, power receiving device, and non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP6135748B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260122A (en) * 2004-03-15 2005-09-22 Dainippon Printing Co Ltd Non-contact electric power transmission module
WO2009031639A1 (en) * 2007-09-06 2009-03-12 Showa Denko K.K. Non-contact charge type accumulator
WO2009111597A2 (en) * 2008-03-05 2009-09-11 Nigel Power Llc Packaging and details of a wireless power device
JP2011142748A (en) * 2010-01-07 2011-07-21 Sony Corp Wireless power supply system
WO2011114527A1 (en) * 2010-03-19 2011-09-22 富士通株式会社 Mobile telephone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260122A (en) * 2004-03-15 2005-09-22 Dainippon Printing Co Ltd Non-contact electric power transmission module
WO2009031639A1 (en) * 2007-09-06 2009-03-12 Showa Denko K.K. Non-contact charge type accumulator
WO2009111597A2 (en) * 2008-03-05 2009-09-11 Nigel Power Llc Packaging and details of a wireless power device
JP2011514781A (en) * 2008-03-05 2011-05-06 クゥアルコム・インコーポレイテッド Wireless Power Device Packaging and Details
JP2011142748A (en) * 2010-01-07 2011-07-21 Sony Corp Wireless power supply system
WO2011114527A1 (en) * 2010-03-19 2011-09-22 富士通株式会社 Mobile telephone

Also Published As

Publication number Publication date
JP6135748B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2012132535A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
JP6427228B2 (en) Wireless power supply system, power feeding device, and power receiving device
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
JP6095957B2 (en) Wireless power transmission device, power feeding device, and power receiving device
EP2711946A1 (en) Power supply device, power supply system, and electronic device
JP2011120470A (en) Electromagnetic wave amplifying repeater and wireless power converter using the same
TWI504097B (en) Power supply and portable equipment
JP2016086530A (en) Wireless power supply device and wireless power supply system
JP6144176B2 (en) Wireless power transmission device capable of forming magnetic field space and method for forming the same
RU2505919C1 (en) Method, system and device for wireless transmission of energy (versions)
JPWO2013111344A1 (en) Power receiving apparatus, power transmission system, and power transmission method
JPWO2010079768A1 (en) Power transmission device and non-contact power transmission system
EP2899830A2 (en) Secondary coil module
JP2013102593A (en) Magnetic coupling unit and magnetic coupling system
JP2017212880A (en) Wireless power transmission apparatus
JP5957748B2 (en) Coil AC resistance calculation method
US20150188364A1 (en) Wireless power receiving apparatus and wireless power transmitting apparatus
WO2013011907A1 (en) Secondary-side power receiving apparatus, and charging stand and secondary-side power receiving apparatus
JP6135748B2 (en) Power receiving coil, power receiving device, and non-contact power transmission system
US11735955B2 (en) Resonant circuit for transmitting electric energy
CN213661277U (en) Coil module and electric energy transmitting circuit
CN107275053B (en) Electrical converter and electrical system
JP2016004990A (en) Resonator
CN103460314B (en) Power reception coil, power receiving apparatus and non-contact electric power transmission system
US20200313461A1 (en) Resonant circuit for transmitting electric energy without a power amplifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R151 Written notification of patent or utility model registration

Ref document number: 6135748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250