JP2016066767A - Vapor-phase growth apparatus - Google Patents

Vapor-phase growth apparatus Download PDF

Info

Publication number
JP2016066767A
JP2016066767A JP2014196154A JP2014196154A JP2016066767A JP 2016066767 A JP2016066767 A JP 2016066767A JP 2014196154 A JP2014196154 A JP 2014196154A JP 2014196154 A JP2014196154 A JP 2014196154A JP 2016066767 A JP2016066767 A JP 2016066767A
Authority
JP
Japan
Prior art keywords
chamber
substrate
temporary
transfer
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014196154A
Other languages
Japanese (ja)
Other versions
JP6373703B2 (en
Inventor
山口 晃
Akira Yamaguchi
晃 山口
優哉 山岡
Yuya Yamaoka
優哉 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2014196154A priority Critical patent/JP6373703B2/en
Publication of JP2016066767A publication Critical patent/JP2016066767A/en
Application granted granted Critical
Publication of JP6373703B2 publication Critical patent/JP6373703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vapor-phase growth apparatus having a structure which can prevent the oxidation of a substrate surface, and including a function which enables the increase in throughput.SOLUTION: A vapor-phase growth apparatus 1 according to the present invention comprises: a reactor chamber 5; a substrate-tentative placement chamber 7 for tentatively placing a substrate 6; a substrate recovering cassette chamber 9 for recovering a processed substrate 6B; a substrate-loading cassette chamber 11 for lading an unprocessed substrate 6A; a transport chamber 13 in which a transfer robot 53 is set for transporting the substrate 6 between the reactor chamber 5 and the substrate recovering cassette chamber; and a replacement box 17 for replacing a susceptor cover 15 provided adjacently to the transport chamber 13. The chambers are structured to be airtight; the chambers are partitioned from each other by a first partitioning door 19 and the like. The transport chamber 13, the substrate recovering cassette chamber 9 and the substrate-loading cassette chamber 11 are arranged to enable vacuum replacement. The substrate-tentative placement chamber 7 includes a fan filter unit 37 serving to cause a downflow aerial current in the chamber.SELECTED DRAWING: Figure 1

Description

本発明は、主に半導体膜を基板上に成長させる気相成長装置に関し、特に反応炉室に隣接して、基板を搬送する搬送ロボットが設けられた気相成長装置に関する。   The present invention mainly relates to a vapor phase growth apparatus for growing a semiconductor film on a substrate, and more particularly, to a vapor phase growth apparatus provided with a transfer robot that transfers a substrate adjacent to a reaction chamber.

気相成長装置は、基板が載置されたサセプタを反応炉内に設置し、サセプタを回転させながら反応炉内に反応ガス(例えばトリメチルガリウムとアンモニア)を導入し、反応ガスを高温に加熱されたサセプタ上で熱分解させて、基板面に分解したガス分子を堆積させて膜形成を行う装置である。
サセプタは通常カーボン等熱の良導体で製作され、原料ガスによる腐食防止のため、SiC等のコーティングを施される。サセプタカバーはサセプタと同部材または搬送、洗浄の耐性を考慮し適宜最適部材にて製作される。
In the vapor phase growth apparatus, a susceptor on which a substrate is placed is placed in a reaction furnace, a reaction gas (for example, trimethylgallium and ammonia) is introduced into the reaction furnace while rotating the susceptor, and the reaction gas is heated to a high temperature. This is an apparatus for forming a film by thermally decomposing on a susceptor and depositing decomposed gas molecules on the substrate surface.
The susceptor is usually made of a good heat conductor such as carbon, and is coated with SiC or the like to prevent corrosion caused by the raw material gas. The susceptor cover is made of the same member as the susceptor or an optimal member as appropriate in consideration of transport and cleaning resistance.

成膜後の基板の搬送は、基板のみを反応炉室内でサセプタからすくい上げて搬送する方式、あるいはサセプタごと別室に運び、その後、手動、または自動でサセプタから基板を一度に多数枚収容できるカセット容器に移す方式などがある。   The substrate after film formation can be transported by scooping up only the substrate from the susceptor in the reaction chamber, or transported to the separate chamber together with the susceptor, and then manually or automatically a cassette container that can accommodate many substrates from the susceptor at a time. There is a method to move to.

反応炉室の隣には、サセプタ及び/又はサセプタカバーを搬送するための搬送ロボットが設置された搬送室が設けられており、基板をサセプタごと別室に搬送して、別室にて作業者又はロボットによって成膜された基板の取り出しや、未処理の基板のサセプタへの設置が行われる。   Next to the reaction furnace chamber, there is provided a transfer chamber in which a transfer robot for transferring the susceptor and / or the susceptor cover is installed. The substrate is transferred to the separate chamber together with the susceptor, and an operator or robot in the separate chamber. The substrate formed by the above is taken out and the untreated substrate is placed on the susceptor.

前記別室には、パーティクル堆積防止のため、ファンフィルターユニット(FFU)が天井に取り付けられ、大気を上空から取り入れ、HEPAやULPAの規格のフィルターでろ過され、下方にファンで送られる。この別室において基板表面が暴露した時は、特許文献1に示されるように、大気中の酸素あるいは水分による基板の酸化を防ぐ目的で、FFUを停止し、不活性ガスを導入するシステムも開発されている。   In the separate room, a fan filter unit (FFU) is attached to the ceiling in order to prevent particle accumulation, the air is taken in from the sky, filtered with a filter of HEPA or ULPA standard, and sent downward by a fan. When the substrate surface is exposed in this separate room, as shown in Patent Document 1, a system that stops the FFU and introduces an inert gas has been developed for the purpose of preventing oxidation of the substrate by atmospheric oxygen or moisture. ing.

特許第4251580号公報Japanese Patent No. 4251580 特開2005−236093号公報Japanese Patent Laid-Open No. 2005-236093

シリコン基板およびシリコン薄膜は大気暴露により、酸素、水分などにより表面に酸化膜を生成し、成膜時の性能を劣化させる場合がある。また、化合物半導体膜においては、特にアルミを含む膜は大気暴露による酸化が顕著におこるため、最表面層がアルミを含む膜の場合、酸化防止のみの目的でアルミを含まない膜を薄く積層するなどの工夫もされている。   A silicon substrate and a silicon thin film may generate an oxide film on the surface by oxygen, moisture, or the like due to exposure to the atmosphere, which may deteriorate the performance at the time of film formation. In addition, in the compound semiconductor film, the film containing aluminum particularly oxidizes due to exposure to the atmosphere. Therefore, when the outermost layer is a film containing aluminum, a film not containing aluminum is thinly laminated only for the purpose of preventing oxidation. There are also other ideas.

このように、気相成長装置においては、シリコン基板や化合物半導体膜を反応炉に搬入したり搬出したりする過程で大気暴露しないようにする必要があり、例えば特許文献1に示されるように、処理済みの基板の回収や未処理の基板の搬入を行う室では、基板表面が暴露した時はFFUを停止し、不活性ガスを導入する必要があり、室内のガスの真空引きを行い、不活性ガス導入という操作が必要となり、スループットが低下するという問題がある。   As described above, in the vapor phase growth apparatus, it is necessary not to expose to the atmosphere in the process of carrying the silicon substrate or the compound semiconductor film into or out of the reaction furnace. For example, as shown in Patent Document 1, In a room where collection of processed substrates and unprocessed substrates are carried in, it is necessary to stop the FFU when the substrate surface is exposed, and to introduce an inert gas. There is a problem that the operation of introducing an active gas is required and the throughput is lowered.

また、表面層の酸化防止のためだけなら、例えば特許文献2に開示されているように、
反応炉の開口部とパスボックスを結ぶ空間をグローブボックスなどで気密に覆い、不活性
ガスを充満させ、基板を手動またはロボット等で炉内設置部から取り出し、未処理の基板
と交換する方法も考えられる。
しかし、この方法ではロボットを用いる場合には、その動きが複雑となり、関節の多い
ロボットを使用して、細かなテーィチングをする必要があり効率が悪い。
また、基板搬送中は反応炉が使用できない、および手動の場合は作業可能な温度まで冷
却しなければならないのでスループットが落ちる。
If it is only for preventing oxidation of the surface layer, for example, as disclosed in Patent Document 2,
Cover the space between the reactor opening and the pass box with a glove box, fill it with inert gas, and remove the substrate manually or by robot, etc., and replace it with an untreated substrate. Conceivable.
However, in this method, when a robot is used, the movement becomes complicated, and it is necessary to perform fine teaching using a robot with many joints, which is inefficient.
In addition, the reactor cannot be used during substrate transfer, and in the case of manual operation, the temperature must be cooled to a workable temperature, resulting in reduced throughput.

さらに、基板面に付着するパーティクルを考えると、気相反応が成される炉内では基板
面以外にも、気相反応した堆積物が付着しており、これを巻き上げて基板面へ付着することを極力抑える必要がある。よって、反応炉内および付近でパーティクルを巻き上げることとなるような、手動またはロボットなどの動作は極力少ないことが理想である。
Furthermore, when considering particles adhering to the substrate surface, deposits that have undergone gas phase reaction are attached to the substrate surface in addition to the substrate surface in the furnace where the gas phase reaction is performed. It is necessary to suppress as much as possible. Therefore, it is ideal that the operation of a manual operation or a robot that causes particles to be rolled up in and around the reaction furnace is as small as possible.

本発明はかかる課題を解決するためになされたものであり、基板表面の酸化を防止できる構造を有し、かつ基板面に付着するパーティクルを低減させ、さらにスループットを向上させることができる気相成長装置を提供するものである。   The present invention has been made to solve such a problem, and has a structure capable of preventing the oxidation of the substrate surface, reduces the particles adhering to the substrate surface, and further improves the throughput. A device is provided.

(1)本発明に係る気相成長装置は、サセプタ上に設置されるサセプタカバー又はサセプタに保持された基板上に原料ガスを供給して前記基板上に薄膜を成長させる機能を備えた反応炉室と、成膜が行われた処理済の基板の回収又は未処理の基板をセットするために基板を仮置きする基板仮置き室と、該基板仮置き室に付随して設けられて処理済み基板を回収するための基板回収用カセット室と、前記基板仮置き室に付随して設けられて未処理の基板を搬入するための基板搬入用カセット室と、前記基板仮置き室と前記反応炉室との間に介在して前記反応炉室と前記基板仮置き室との間で前記基板の搬送を行う搬送ロボットが設置されている搬送室と、該搬送室に隣接して設けられ前記サセプタカバー又はサセプタを交換するための交換ボックスと、を有し、
前記反応炉室、前記搬送室、前記基板仮置き室、前記基板搬入用カセット室、前記基板回収用カセット室及び前記交換ボックスは気密構造になっており、かつ前記各室の間が仕切り扉によって仕切られており、
前記搬送室、前記基板回収用カセット室及び前記基板搬入用カセット室は真空引きができるように構成され、
前記基板仮置き室は、室内にダウンフローの気流を生じさせるファンフィルターユニットと、部屋の側壁部に設けられて気流が通流できる気流通流部とを有し、前記ダウンフローした気流が前記気流通流部を上昇してさらにダウンフローする循環流が形成できるようにしたことを特徴とするものである。
(1) A vapor phase growth apparatus according to the present invention has a function of supplying a source gas to a susceptor cover installed on a susceptor or a substrate held by the susceptor to grow a thin film on the substrate. A chamber, a substrate temporary storage chamber for temporarily placing the substrate in order to collect a processed substrate subjected to film formation or set an unprocessed substrate, and a substrate temporary storage chamber attached to the substrate temporary storage chamber A substrate collecting cassette chamber for collecting the substrate, a substrate carrying cassette chamber provided in association with the temporary substrate placement chamber for carrying an unprocessed substrate, the temporary substrate placement chamber, and the reaction furnace A transfer chamber in which a transfer robot for transferring the substrate between the reaction furnace chamber and the temporary substrate storage chamber is installed, and the susceptor provided adjacent to the transfer chamber Replacement box for replacing cover or susceptor A scan and, the,
The reaction chamber, the transfer chamber, the temporary substrate storage chamber, the substrate carry-in cassette chamber, the substrate recovery cassette chamber, and the exchange box have an airtight structure, and a partition door is provided between the chambers. Is partitioned,
The transfer chamber, the substrate collection cassette chamber and the substrate carry-in cassette chamber are configured to be evacuated,
The substrate temporary storage chamber includes a fan filter unit that generates a downflow airflow in the room, and an air circulation flow portion that is provided on a side wall portion of the room and through which the airflow can flow. It is characterized in that a circulating flow can be formed in which the air flow portion is raised and further downflowed.

(2)また、上記(1)に記載のものにおいて、前記反応炉室、前記搬送室及び前記基板仮置き室の各室に不活性ガスを供給するガス供給管と、前記反応炉室と前記搬送室の間、前記搬送室と前記基板仮置き室の間で気流の通流を可能にして均圧する均圧管と、該均圧管及び前記ガス供給管に設けられた開閉バルブとを備えたことを特徴とするものである。 (2) Further, in the above (1), a gas supply pipe for supplying an inert gas to each of the reaction chamber, the transfer chamber, and the temporary substrate storage chamber, the reaction chamber, Between the transfer chambers, a pressure equalizing pipe that allows airflow to flow between the transfer chamber and the temporary substrate holding chamber, and an open / close valve provided in the pressure equalizing pipe and the gas supply pipe. It is characterized by.

(3)また、上記(2)に記載のものにおいて、前記反応炉室、前記搬送室及び前記基板仮置き室の各室の気圧を計測する気圧計と、該気圧計の測定値に基づいて前記開閉バルブの開閉制御を行って各室の気圧を調整する制御部とを備えたことを特徴とするものである。 (3) Further, in the above described (2), based on the barometer for measuring the pressure in each chamber of the reaction furnace chamber, the transfer chamber, and the temporary substrate storage chamber, and the measured value of the barometer And a controller that controls the opening / closing of the opening / closing valve to adjust the pressure in each chamber.

(4)また、上記(3)に記載のものにおいて、前記制御部は、前記仕切り扉の開閉制御を行う機能を有し、前記気圧計により各室に所定値以上の差圧があることが検出された場合には、前記仕切り扉を開ける前に前記開閉バルブの開閉制御を行って各室の差圧を所定値より小さくする均圧処理を行うことを特徴とするものである。 (4) Moreover, in the thing as described in said (3), the said control part has a function which performs the opening / closing control of the said partition door, and there exists a differential pressure more than predetermined value in each chamber by the said barometer. If detected, before opening the partition door, the opening and closing valve is controlled to perform pressure equalization processing for making the differential pressure in each chamber smaller than a predetermined value.

(5)また、上記(1)乃至(4)に記載のものにおいて、前記反応炉室は、反応炉が設置された室を有し、該室内にダウンフローの気流を生じさせるファンフィルターユニットと、部屋の側壁部に設けられて気流が通流できる気流通流部とを有し、前記ダウンフローした気流が前記気流通流部を上昇してさらにダウンフローする循環流が形成できるようにしたことを特徴とするものである。 (5) In the above (1) to (4), the reaction furnace chamber includes a chamber in which a reaction furnace is installed, and a fan filter unit that generates a downflow airflow in the chamber. And an air circulation flow portion that is provided on the side wall portion of the room and through which an air flow can flow, so that a circulation flow can be formed in which the downflowed air flows up the air circulation flow portion and further flows down. It is characterized by this.

本発明においては、反応炉室、搬送室、基板仮置き室、基板搬入用カセット室、基板回収用カセット室及び交換ボックスは気密構造になっており、かつ各室の間が仕切り扉によって仕切られており、搬送室、基板回収用カセット室及び基板搬入用カセット室は真空引きができるように構成され、基板仮置き室は、室内にダウンフローの気流を生じさせるファンフィルターユニットと、部屋の側壁部に設けられて気流が通流できる気流通流部とを有し、ダウンフローした気流が前記気流通流部を上昇してさらにダウンフローする循環流が形成できるようにしたことにより、基板仮置き室を大気暴露する必要がなく、それ故に基板仮置き室に真空引きを行うことなく基板の回収や搬入の際に基板表面の酸化を確実に防止することができ、スループットの向上を図ることができる。   In the present invention, the reaction chamber, the transfer chamber, the temporary substrate storage chamber, the substrate loading cassette chamber, the substrate recovery cassette chamber and the exchange box have an airtight structure, and each chamber is partitioned by a partition door. The transfer chamber, the substrate recovery cassette chamber, and the substrate carry-in cassette chamber are configured to be evacuated, and the temporary substrate storage chamber includes a fan filter unit that generates a downflow airflow in the chamber, and a side wall of the room And an air circulation flow portion through which the airflow can flow, and a circulation flow in which the downflowed air flows up the gas circulation flow portion and further flows down can be formed. There is no need to expose the storage chamber to the atmosphere, and therefore it is possible to reliably prevent oxidation of the substrate surface during substrate collection and loading without evacuating the temporary substrate storage chamber. It is possible to bet improve.

本発明の一実施の形態に係る気相成長装置を説明する説明図である。It is explanatory drawing explaining the vapor phase growth apparatus which concerns on one embodiment of this invention. 図1に示した気相成長装置を構成する基板仮置き室の内部を平面視した図である。It is the figure which planarly viewed the inside of the substrate temporary storage chamber which comprises the vapor phase growth apparatus shown in FIG. 図2の矢視A−A線に沿う断面図である。It is sectional drawing which follows the arrow AA line of FIG. 図2の矢視B−B線に沿う断面図である。It is sectional drawing which follows the arrow BB line of FIG. 本発明の一実施の形態に係る気相成長装置の動作説明図である(その1)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 1). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その2)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 2). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その3)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 3). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その4)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 4). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その5)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 5). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その6)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 6). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その7)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 7). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その8)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 8). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その9)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 9). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その10)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 10). 本発明の一実施の形態に係る気相成長装置の動作説明図である(その11)。It is operation | movement explanatory drawing of the vapor phase growth apparatus which concerns on one embodiment of this invention (the 11). 本発明の効果を確認する実験結果を示す図である。It is a figure which shows the experimental result which confirms the effect of this invention.

本発明の一実施の形態に係る気相成長装置1は、図1に示すように、反応炉3が設置される反応炉室5と、成膜が行われた処理済の基板6Bの回収及び未処理の基板6Aをセットするための基板仮置き室7と、基板仮置き室7に付随して設けられて処理済み基板6Bを回収するための基板回収用カセット室9と、基板仮置き室7に付随して設けられて未処理の基板6Aを搬入するための基板搬入用カセット室11と、基板仮置き室7と反応炉室5との間に介在して基板6を反応炉室5と基板仮置き室7との間で搬送を行うロボットが設置されている搬送室13と、搬送室13に隣接して設けられサセプタカバー15又はサセプタ(図示なし)等を交換するための交換ボックス17と、各機器の動作を制御する制御部18とを備えている。   As shown in FIG. 1, a vapor phase growth apparatus 1 according to an embodiment of the present invention includes a reaction furnace chamber 5 in which a reaction furnace 3 is installed, a recovery of a processed substrate 6B on which film formation has been performed, Substrate temporary storage chamber 7 for setting unprocessed substrate 6A, substrate recovery cassette chamber 9 for recovering processed substrate 6B provided in association with temporary substrate storage chamber 7, and temporary substrate storage chamber 7 is provided with a substrate loading cassette chamber 11 for loading an unprocessed substrate 6A, and the substrate temporary storage chamber 7 and the reaction chamber 5 are interposed between the substrate 6 and the reaction chamber 5. And an exchange box for exchanging a susceptor cover 15 or a susceptor (not shown) provided adjacent to the transfer chamber 13. 17 and a control unit 18 that controls the operation of each device.

そして、反応炉室5と搬送室13との間は開閉可能な第1仕切り扉19で、また搬送室13と基板仮置き室7との間は開閉可能な第2仕切り扉21で、さらに搬送室13と交換ボックス17との間は開閉可能な第3仕切り扉23でそれぞれ仕切られている。
また、基板仮置き室7と基板回収用カセット室9との間は第1ゲートバルブ25で、基板仮置き室7と基板搬入用カセット室11との間は第2ゲートバルブ27で、それぞれ仕切られている。
Further, a first partition door 19 that can be opened and closed is provided between the reactor chamber 5 and the transfer chamber 13, and a second partition door 21 that can be opened and closed between the transfer chamber 13 and the temporary substrate storage chamber 7 is further transferred. The chamber 13 and the exchange box 17 are partitioned by a third partition door 23 that can be opened and closed.
Further, a partition between the substrate temporary storage chamber 7 and the substrate collection cassette chamber 9 is partitioned by a first gate valve 25, and a space between the substrate temporary storage chamber 7 and the substrate carry-in cassette chamber 11 is partitioned by a second gate valve 27, respectively. It has been.

以下、各室及び各室に設置されている機器類について説明する。
なお、基板を載置する方法としては、サセプタカバーにトレイを設け、該トレイに基板を載置する方法と、サセプタに基板プレートを設け、該基板プレートに基板を載置する方法があるが、以下の説明では、サセプタカバーに設けたトレイに基板を載置する方法を前提に説明する。
また、本明細書において、基板のうち処理済みのものには基板6B、未処理のものには基板6Aとし、基板6Bと基板6Aの両方を含む場合には基板6と表記する。
Hereinafter, each room and devices installed in each room will be described.
In addition, as a method of placing a substrate, there are a method of placing a tray on a susceptor cover and placing a substrate on the tray, and a method of placing a substrate plate on a susceptor and placing a substrate on the substrate plate. The following description is based on the premise that the substrate is placed on a tray provided on the susceptor cover.
Further, in this specification, a substrate that has been processed is referred to as a substrate 6B, an unprocessed substrate is referred to as a substrate 6A, and a substrate 6 is described when both the substrate 6B and the substrate 6A are included.

<反応炉室>
反応炉室5は反応炉3が設置される室であり、反応炉3ではサセプタカバー15に保持された基板6A上に原料ガスを供給して前記基板6A上に薄膜を成長させる反応が行われる。薄膜の種類としては、一般式AlxInyGa1−x−yN(ただしx、yは0≦x<1、0≦y<1、0≦x+y<1である。)で表記される窒化物半導体が挙げられる。
反応炉室5には、室内に窒素ガスを供給する第1窒素ガス供給管29と供給された窒素ガスを排気する窒素ガス排気管31が設けられ、室内を常時窒素ガス雰囲気に維持している。第1窒素ガス供給管29と窒素ガス排気管31にはそれぞれバルブV1、V2が設けられている。
さらに、反応炉室5には、室内の気圧を測定する気圧計P1が設置されている。
なお、反応炉室5も、後述する基板仮置き室7と同様に、ファンフィルターユニットを設置して反応炉室5の内部にダウンフローの循環気流を形成するようにしてもよい。
<Reactor chamber>
The reaction furnace chamber 5 is a chamber in which the reaction furnace 3 is installed. In the reaction furnace 3, a raw material gas is supplied onto the substrate 6A held by the susceptor cover 15, and a reaction for growing a thin film on the substrate 6A is performed. . The type of thin film is a nitride semiconductor represented by the general formula AlxInyGa1 - xyN (where x and y are 0 ≦ x <1, 0 ≦ y <1, and 0 ≦ x + y <1). Can be mentioned.
The reactor chamber 5 is provided with a first nitrogen gas supply pipe 29 for supplying nitrogen gas into the room and a nitrogen gas exhaust pipe 31 for exhausting the supplied nitrogen gas, and the room is always maintained in a nitrogen gas atmosphere. . The first nitrogen gas supply pipe 29 and the nitrogen gas exhaust pipe 31 are provided with valves V1 and V2, respectively.
Furthermore, the reaction furnace chamber 5 is provided with a barometer P1 for measuring the atmospheric pressure in the chamber.
The reaction furnace chamber 5 may also be provided with a fan filter unit to form a downflow circulating airflow inside the reaction furnace chamber 5 in the same manner as the substrate temporary storage chamber 7 described later.

<基板仮置き室>
基板仮置き室7は、サセプタカバー15と共に搬送されてきた成膜が行われた処理済の基板6Bの回収するため、あるいは未処理の基板6Aをサセプタカバー15と共に仮置きするための室である。基板仮置き室7には、サセプタカバー15を保持して、サセプタカバー15に載置された処理済みの基板6Bを基板回収用カセット室9に搬送し、また基板搬入用カセット室11から未処理の基板6Aを取り出してサセプタカバー15に載置する基板搬送装置33(図3、図4参照)が設置されている。
<Temporary substrate storage room>
The substrate temporary storage chamber 7 is a chamber for collecting the processed substrate 6B that has been transported along with the susceptor cover 15 and for temporarily storing the unprocessed substrate 6A together with the susceptor cover 15. . In the temporary substrate storage chamber 7, a susceptor cover 15 is held, and the processed substrate 6B placed on the susceptor cover 15 is transferred to the substrate recovery cassette chamber 9 and unprocessed from the substrate carry-in cassette chamber 11. A substrate transfer device 33 (see FIGS. 3 and 4) for taking out the substrate 6A and placing it on the susceptor cover 15 is installed.

基板仮置き室7には、室内に窒素ガスを供給するための第2窒素ガス供給管35が接続されている。また、基板仮置き室7には、室内の気圧を測定する気圧計P2が設置されている。   The substrate temporary storage chamber 7 is connected to a second nitrogen gas supply pipe 35 for supplying nitrogen gas into the chamber. The temporary substrate chamber 7 is provided with a barometer P2 for measuring the atmospheric pressure in the room.

基板仮置き室7は、室内にダウンフローの気流を生じさせるファンフィルターユニット37(以下、「FFU37」という)と、部屋の側壁部に設けられて気流が通流できる気流通流部39(図2、図3参照)とを有し、ダウンフローした気流が気流通流部39を上昇してさらにダウンフローする循環流が形成できるようになっている。
基板仮置き室7内を気密にし、水分、酸素の混入を防止しつつ、基板6上空より下方へダウンフローの流れを作ることで、基板6に落下するパーティクルの量を減らすことができる。
なお、基板仮置き室7は大気暴露されることがなく、真空引きを行って不活性ガスに置換するいわゆる真空置換が不要なので、ダウンフローの気流を常時生じさせることができ、基板6へのパーティクルの付着を確実に防止できる。
The substrate temporary storage chamber 7 includes a fan filter unit 37 (hereinafter referred to as “FFU 37”) that generates a downflow airflow in the room, and an air circulation flow portion 39 (see FIG. 2 and FIG. 3), and a circulating flow in which the downflowed air flows up the air circulation flow part 39 and further flows down can be formed.
The amount of particles falling on the substrate 6 can be reduced by making the inside of the temporary substrate storage chamber 7 airtight and preventing the entry of moisture and oxygen while creating a downward flow from above the substrate 6.
The substrate temporary storage chamber 7 is not exposed to the atmosphere and does not require so-called vacuum replacement in which evacuation is performed and replacement with an inert gas. Particle adhesion can be surely prevented.

上記のように、基板仮置き室7には、搬送室13に設けられている真空排気の機能が設けられていないが、この理由は以下の通りである。
基板仮置き室7には、基板搬送装置33が設けられており、比較的容積の大きな室となっている。このような容積の大きな室に対して真空引きを行った後、窒素ガスを封入するといういわゆる真空置換を行うと、それだけで相当な時間を必要とし、スループットが低下する。そこで、本発明では、基板仮置き室7を、搬送室13との間は第2仕切り扉21で仕切り、基板回収用カセット室9との間は第1ゲートバルブ25で、基板搬入用カセット室11との間は第2ゲートバルブ27でそれぞれ仕切るようにして、基板仮置き室7自体は大気暴露しない密封可能な室とすることで、基板仮置き室7の真空置換を不要としてスループットの低下を防止している。
As described above, the temporary substrate placement chamber 7 is not provided with the function of evacuation provided in the transfer chamber 13 for the following reason.
The temporary substrate storage chamber 7 is provided with a substrate transfer device 33, which is a chamber having a relatively large volume. If so-called vacuum replacement is performed in which nitrogen gas is sealed after evacuating a chamber having such a large volume, a considerable amount of time is required, and throughput is reduced. Therefore, in the present invention, the substrate temporary storage chamber 7 is partitioned from the transfer chamber 13 by the second partition door 21, and the substrate collection cassette chamber 9 is partitioned by the first gate valve 25 to transfer the substrate into the cassette loading chamber. And the substrate temporary storage chamber 7 itself is a sealable chamber that is not exposed to the atmosphere, thereby eliminating the need for vacuum replacement of the substrate temporary storage chamber 7 and lowering the throughput. Is preventing.

<基板回収用カセット室及び基板搬入用カセット室>
基板回収用カセット室9は、基板仮置き室7に隣接して設けられ、基板仮置き室7に仮置きされた基板6Bを回収するための室である。
基板搬入用カセット室11は、基板仮置き室7に隣接して設けられ、未処理の基板6Aを搬入するための室である。
前述したように、基板回収用カセット室9と基板仮置き室7の間には第1ゲートバルブ25が設けられ、基板搬入用カセット室11と基板仮置き室7の間には第2ゲートバルブ27が設けられている。
<Substrate recovery cassette chamber and substrate loading cassette chamber>
The substrate collection cassette chamber 9 is provided adjacent to the temporary substrate placement chamber 7 and is a chamber for collecting the substrate 6B temporarily placed in the temporary substrate placement chamber 7.
The substrate loading cassette chamber 11 is provided adjacent to the temporary substrate storage chamber 7 and is a chamber for loading an unprocessed substrate 6A.
As described above, the first gate valve 25 is provided between the substrate collection cassette chamber 9 and the temporary substrate storage chamber 7, and the second gate valve is provided between the substrate carry-in cassette chamber 11 and the temporary substrate storage chamber 7. 27 is provided.

基板回収用カセット室9及び基板搬入用カセット室11には、室内のガスを吸気して排気するための第1排気管41が設けられ、第1排気管41には第1真空ポンプ43が接続されると共に、バルブV3、V4が設けられている。
基板回収用カセット室9と基板仮置き室7の間には、第1ゲートバルブ25をバイパスして両室を連通させてガスの通流を可能とし、両室の均圧するための第1均圧管45が設けられている。
また、基板搬入用カセット室11と基板仮置き室7の間には、第2ゲートバルブ27をバイパスして両室を連通させてガスの通流を可能とし、両室の均圧するための第2均圧管47が設けられている。第1均圧管45にはバルブV5が、第2均圧管47にはバルブV6がそれぞれ設けられている。
The substrate recovery cassette chamber 9 and the substrate carry-in cassette chamber 11 are provided with a first exhaust pipe 41 for inhaling and exhausting gas inside the chamber, and a first vacuum pump 43 is connected to the first exhaust pipe 41. In addition, valves V3 and V4 are provided.
Between the substrate collection cassette chamber 9 and the temporary substrate storage chamber 7, the first gate valve 25 is bypassed so that both chambers communicate with each other to enable gas flow, and a first equalization for equalizing the pressure in both chambers. A pressure tube 45 is provided.
In addition, between the substrate loading cassette chamber 11 and the temporary substrate storage chamber 7, the second gate valve 27 is bypassed so that both chambers communicate with each other to allow gas flow, and a first pressure for equalizing the pressure in both chambers. A two pressure equalizing pipe 47 is provided. The first pressure equalizing pipe 45 is provided with a valve V5, and the second pressure equalizing pipe 47 is provided with a valve V6.

基板回収用カセット室9には、第1ガス導入管49が設けられ、N2ガス又はCDA(クリーンドライエア)を選択的に供給することが可能になっている。
また、基板搬入用カセット室11には、第2ガス導入管51が設けられ、N2ガス又はCDA(クリーンドライエア)を選択的に供給することが可能になっている。
また、第1ガス導入管49にはバルブV7が、第2ガス導入管51にはバルブV8がそれぞれ設けられている。
さらに、基板回収用カセット室9には気圧計P3が、基板搬入用カセット室11には気圧計P4がそれぞれ設けられている。
The substrate recovery cassette chamber 9 is provided with a first gas introduction pipe 49, which can selectively supply N2 gas or CDA (clean dry air).
Further, the substrate carrying cassette chamber 11 is provided with a second gas introduction pipe 51 so that N2 gas or CDA (clean dry air) can be selectively supplied.
The first gas introduction pipe 49 is provided with a valve V7, and the second gas introduction pipe 51 is provided with a valve V8.
Further, the substrate collecting cassette chamber 9 is provided with a barometer P3, and the substrate carrying-in cassette chamber 11 is provided with a barometer P4.

<搬送室>
搬送室13は、反応炉室5と基板仮置き室7との間、反応炉室5と交換ボックス17の間及び基板仮置き室7と交換ボックス17の間に介在して、基板6が載置されたサセプタカバー15又はサセプタカバー15のみを、それぞれの室間で搬送する搬送ロボット53が設置されている室である。
搬送室13には、窒素ガスを供給するための第3窒素ガス供給管55が接続されている。また、室内のガスを吸気して排気するための第2排気管57が接続され、第2排気管57には第2真空ポンプ59が接続されている。
第3窒素ガス供給管55にはバルブV9が、第2排気管57にはバルブV10がそれぞれ設けられている。
<Transport room>
The transfer chamber 13 is interposed between the reaction furnace chamber 5 and the temporary substrate storage chamber 7, between the reaction furnace chamber 5 and the replacement box 17, and between the temporary substrate storage chamber 7 and the replacement box 17. This is a chamber in which a transfer robot 53 that transfers only the susceptor cover 15 or the susceptor cover 15 placed between the chambers is installed.
A third nitrogen gas supply pipe 55 for supplying nitrogen gas is connected to the transfer chamber 13. A second exhaust pipe 57 for inhaling and exhausting indoor gas is connected, and a second vacuum pump 59 is connected to the second exhaust pipe 57.
The third nitrogen gas supply pipe 55 is provided with a valve V9, and the second exhaust pipe 57 is provided with a valve V10.

搬送室13と反応炉室5との間には、第1仕切り扉19をバイパスして両室を連通させてガスの通流を可能とし、両室の均圧するための第3均圧管61が設けられている。
また、搬送室13と基板仮置き室7との間には、第2仕切り扉21をバイパスして両室を連通させてガスの通流を可能とし、両室の均圧するための第4均圧管63が設けられている。
第3均圧管61にはバルブV11が、第4均圧管63にはバルブV12がそれぞれ設けられている。
また、搬送室13には、搬送室13には、室内の気圧を測定する気圧計P5が設置されている。
Between the transfer chamber 13 and the reaction furnace chamber 5, a first pressure equalizing door 61 is provided to bypass the first partition door 19 so as to allow the two chambers to communicate with each other. Is provided.
Further, between the transfer chamber 13 and the temporary substrate storage chamber 7, the second partition door 21 is bypassed so that both chambers communicate with each other to enable gas flow, and a fourth equalization for equalizing the pressure in both chambers. A pressure tube 63 is provided.
The third pressure equalizing pipe 61 is provided with a valve V11, and the fourth pressure equalizing pipe 63 is provided with a valve V12.
Further, in the transfer chamber 13, a barometer P <b> 5 for measuring the atmospheric pressure in the chamber is installed in the transfer chamber 13.

<交換ボックス>
交換ボックス17は、サセプタ及び/又はサセプタカバー15を交換するための室である。
交換ボックス17には、室外と連通させて室内の気圧を大気圧と同じにするため外気連通管65が設けられている。
また、交換ボックス17と搬送室13との間には、第3仕切り扉23をバイパスして両室を連通させてガスの通流を可能とし、両室の均圧するための第5均圧管67が設けられている。
外気連通管65にはバルブV13が、第5均圧管67にはバルブV14がそれぞれ設けられている。
交換ボックス17には、室内の気圧を測定する気圧計P6が設置されている。
<Exchange box>
The exchange box 17 is a chamber for exchanging the susceptor and / or the susceptor cover 15.
The exchange box 17 is provided with an outdoor air communication pipe 65 in order to communicate with the outdoor space so that the atmospheric pressure is the same as the atmospheric pressure.
Further, between the exchange box 17 and the transfer chamber 13, the third partition door 23 is bypassed so that both chambers communicate with each other to enable gas flow, and a fifth pressure equalizing pipe 67 for equalizing the pressure in both chambers. Is provided.
The outside air communication pipe 65 is provided with a valve V13, and the fifth pressure equalizing pipe 67 is provided with a valve V14.
The exchange box 17 is provided with a barometer P6 for measuring the atmospheric pressure in the room.

<制御部>
制御部18は、気圧計P1〜P6の情報や、操作者からの動作支持の入力に基づいて、第1仕切り扉19〜第3仕切り扉23、第1ゲートバルブ25、第2ゲートバルブ27、基板搬送装置、搬送ロボット、バルブV1〜V14の動作制御を行う機能を有している。なお、図面において、制御部から各機器への制御線は図面が煩雑になるので図示を省略している。
<Control unit>
Based on information from the barometers P1 to P6 and an operation support input from the operator, the control unit 18 includes a first partition door 19 to a third partition door 23, a first gate valve 25, a second gate valve 27, It has a function of controlling the operation of the substrate transfer device, transfer robot, and valves V1 to V14. In the drawings, control lines from the control unit to each device are not shown because the drawings are complicated.

次に、以上のように構成された気相成長装置1の動作を、図1〜図15に基づいて説明する。
なお、以下に示す動作は、制御部18が上記の機能に基づいて各機器の動作制御を行うことで実現される。
Next, the operation of the vapor phase growth apparatus 1 configured as described above will be described with reference to FIGS.
The operation described below is realized by the control unit 18 controlling the operation of each device based on the above function.

図1は、既に交換された洗浄済のサセプタカバー15が交換ボックス17に設置されている状態を示している。サセプタカバー15は、基板6を乗せるためのトレイ(図示なし)を有しており、基板6はトレイに載置される。
図1に示す状態では、交換ボックス17は大気雰囲気となっており、第3仕切り扉23は閉じられ、交換ボックス17自体は閉じた空間となっている。
基板仮置き室7はFFU37による気流循環でダウンフローが常に行われている。基板搬入用カセット室11には基板6Aが設置され、適宜N2による真空置換が行われている。また、反応炉室5はN2を常に流すことによって、N2雰囲気の環境になっている。
FIG. 1 shows a state in which the cleaned susceptor cover 15 that has already been replaced is installed in the replacement box 17. The susceptor cover 15 has a tray (not shown) on which the substrate 6 is placed, and the substrate 6 is placed on the tray.
In the state shown in FIG. 1, the exchange box 17 is in an air atmosphere, the third partition door 23 is closed, and the exchange box 17 itself is a closed space.
The substrate temporary storage chamber 7 is always down-flowed by air flow circulation by the FFU 37. A substrate 6A is installed in the substrate loading cassette chamber 11, and vacuum replacement with N2 is appropriately performed. The reactor chamber 5 is in an N2 atmosphere environment by constantly flowing N2.

搬送室13は、交換ボックス17と同様に大気雰囲気であり、搬送室13と交換ボックス17の間に圧力差はほとんどない状態になっている。圧力差がほとんどないことが気圧計P6、P5で確認されると、第5均圧管67に設けられたバルブV14を開にする。バルブV14が開になることで、搬送室13と交換ボックス17の気圧が同一になり、第3仕切り扉23を開放しても、室間での圧力差に起因する気流が生ずることがなく、パーティクルの飛散の問題が生じない。   The transfer chamber 13 is an atmospheric atmosphere like the exchange box 17, and there is almost no pressure difference between the transfer chamber 13 and the exchange box 17. When it is confirmed by the barometers P6 and P5 that there is almost no pressure difference, the valve V14 provided in the fifth pressure equalizing pipe 67 is opened. By opening the valve V14, the air pressure in the transfer chamber 13 and the exchange box 17 becomes the same, and even if the third partition door 23 is opened, there is no air flow caused by the pressure difference between the chambers. The problem of particle scattering does not occur.

交換ボックス17と搬送室13の均圧が完了すると、両室を仕切っている第3仕切り扉23を開き、搬送室13の搬送ロボット53のロボットアーム53aが交換ボックス17にあるサセプタカバー15をサセプタ搬送室13に搬送する(図5参照)。その後、第3仕切り扉23を閉じて、バルブV10を開けて第2真空ポンプ59により搬送室13の大気成分を排気する。十分に大気成分が排気されると、バルブV10を閉じて、バルブV9を開き、N2を大気圧(100kPa)まで封入する。   When the pressure equalization between the exchange box 17 and the transfer chamber 13 is completed, the third partition door 23 that partitions both chambers is opened, and the robot arm 53a of the transfer robot 53 in the transfer chamber 13 attaches the susceptor cover 15 in the exchange box 17 to the susceptor. It conveys to the conveyance chamber 13 (refer FIG. 5). Thereafter, the third partition door 23 is closed, the valve V10 is opened, and the atmospheric components in the transfer chamber 13 are exhausted by the second vacuum pump 59. When the atmospheric components are sufficiently exhausted, the valve V10 is closed, the valve V9 is opened, and N2 is sealed up to atmospheric pressure (100 kPa).

搬送室13のN2置換が完了し、搬送室13と基板仮置き室7の圧力がほぼ同じになったことが、気圧計P5と気圧計P2の情報から検知されると、バルブV12を開き両室の均圧を行う。その後、第2仕切り扉21を開き、バルブV12を閉じる。そして、搬送室13のサセプタカバー15を、ロボットアーム53aによってダウンフローが行われている基板仮置き室7に搬送する(図6参照)。   When the N2 replacement in the transfer chamber 13 is completed and the pressure in the transfer chamber 13 and the temporary substrate holding chamber 7 is substantially the same, it is detected from the information in the barometer P5 and the barometer P2, and the valve V12 is opened. Perform equalization of the chamber. Thereafter, the second partition door 21 is opened and the valve V12 is closed. Then, the susceptor cover 15 of the transfer chamber 13 is transferred to the temporary substrate storage chamber 7 where the downflow is performed by the robot arm 53a (see FIG. 6).

サセプタカバー15が基板仮置き室7に搬送されたとき、基板搬入用カセット室11はN2置換され、室内圧力は大気圧(100kPa)になっているので、バルブV6を開いて均圧する。その後、第2ゲートバルブ27を開いて、バルブV6を閉じる。この状態で、基板仮置き室7に設置されている基板搬送装置33のロボットアーム33aが基板搬入用カセット室11から基板6Aを取り出し、サセプタカバー15に設置されているトレイ上に基板6Aを載置する。基板6Aがトレイ上に載置されると(図7参照)、第2ゲートバルブ27を閉じる。
基板仮置き室7では常時ダウンフローの循環流が生じているので、基板6Aへのパーティクルの付着が確実に防止できる。
When the susceptor cover 15 is transferred to the temporary substrate storage chamber 7, the substrate loading cassette chamber 11 is replaced with N2, and the pressure inside the chamber is atmospheric pressure (100 kPa), so that the pressure is equalized by opening the valve V6. Thereafter, the second gate valve 27 is opened and the valve V6 is closed. In this state, the robot arm 33a of the substrate transfer device 33 installed in the temporary substrate storage chamber 7 takes out the substrate 6A from the substrate loading cassette chamber 11, and places the substrate 6A on the tray installed in the susceptor cover 15. Put. When the substrate 6A is placed on the tray (see FIG. 7), the second gate valve 27 is closed.
In the temporary substrate storage chamber 7, a downflow circulation flow is always generated, so that it is possible to reliably prevent particles from adhering to the substrate 6A.

第2ゲートバルブ27を閉じると、バルブV12を開いて基板仮置き室7と搬送室13の均圧を行う。そして、第2仕切り扉21を開いて、バルブV12を閉じて、搬送室13のロボットアーム53aによって、基板仮置き室7のサセプタカバー15を搬送室13に搬送し(図8参照)、第2仕切り扉21を閉じる。   When the second gate valve 27 is closed, the valve V12 is opened to equalize the pressure in the temporary substrate storage chamber 7 and the transfer chamber 13. Then, the second partition door 21 is opened, the valve V12 is closed, and the susceptor cover 15 of the temporary substrate storage chamber 7 is transferred to the transfer chamber 13 by the robot arm 53a of the transfer chamber 13 (see FIG. 8). Close the partition door 21.

上記の説明のように、サセプタカバー15を交換ボックス17から基板仮置き室7に搬送し、さらに基板搬入用カセット室11から基板6Aを取り出して、基板仮置き室7に仮置きされたサセプタカバー15に載置し、これを搬送室13に搬送するという一連の工程の中で、基板仮置き室7が大気暴露されることはなく、それ故に基板仮置き室7を真空置換する必要がないので、FFU37を通過させた清浄な気流の循環フローによるパーティクル付着防止効果を発揮するとともに、スループットが向上する。   As described above, the susceptor cover 15 is transferred from the replacement box 17 to the temporary substrate placement chamber 7, and the substrate 6 A is taken out from the substrate loading cassette chamber 11, and is temporarily placed in the temporary substrate placement chamber 7. The temporary substrate placement chamber 7 is not exposed to the atmosphere in a series of steps of placing it on the substrate 15 and transferring it to the transfer chamber 13, and therefore there is no need to vacuum replace the temporary substrate placement chamber 7. Therefore, the effect of preventing particle adhesion due to the circulation flow of the clean airflow that has passed through the FFU 37 is exhibited, and the throughput is improved.

次に、搬送室13のサセプタカバー15を反応炉室5に搬送することになるが、その前段階の処理として、反応炉室5にある反応炉3の蓋を開けて、サセプタカバー15の受け入れの準備を完了しておく。なお、反応炉3の蓋を開ける際には、反応炉3内の圧力と反応炉室5の圧力を均圧する。   Next, the susceptor cover 15 of the transfer chamber 13 is transferred to the reaction furnace chamber 5. As a previous process, the lid of the reaction furnace 3 in the reaction furnace chamber 5 is opened to accept the susceptor cover 15. Complete the preparations. When opening the lid of the reaction furnace 3, the pressure in the reaction furnace 3 and the pressure in the reaction furnace chamber 5 are equalized.

反応炉室5は大気圧(外部環境と同じ圧力、例えばその日の気圧)と同じなので、これまで他の室で気圧調整した絶対圧(100kPa)と少し差が大きくなる場合がある。圧力差が所定の値よりも大きい場合は、搬送室13のガスを第2真空ポンプ59で排気するか、または、搬送室13にN2を導入するなどして搬送室13の圧力を反応炉室5の圧力に近くなるように調整する。その後、バルブV11を開いて反応炉室5と搬送室13の均圧を行い、その後、第1仕切り扉19を開き、バルブV11を閉じ、サセプタカバー15を搬送室13から反応炉室5に搬送して、反応炉3内に設置する(図9参照)。   Since the reactor chamber 5 is the same as the atmospheric pressure (the same pressure as the external environment, for example, the atmospheric pressure of the day), there may be a slight difference from the absolute pressure (100 kPa) adjusted in the other chambers. When the pressure difference is larger than a predetermined value, the gas in the transfer chamber 13 is exhausted by the second vacuum pump 59, or N2 is introduced into the transfer chamber 13 so that the pressure in the transfer chamber 13 is changed to the reactor chamber. Adjust so that the pressure is close to 5. Thereafter, the valve V11 is opened to equalize the pressure in the reaction chamber 5 and the transfer chamber 13, and then the first partition door 19 is opened, the valve V11 is closed, and the susceptor cover 15 is transferred from the transfer chamber 13 to the reaction chamber 5. Then, it is installed in the reaction furnace 3 (see FIG. 9).

反応炉3での反応が完了すると、反応炉室5の圧力と反応炉3内の圧力を均圧してから、反応炉3の蓋を開く(図10参照)。
反応炉3の蓋が開き、サセプタカバー15を搬出できる状態において、反応炉室5と搬送室13の圧力差が所定の値よりも大きい場合は、搬送室13のガスを第2真空ポンプ59で排気するか、または、搬送室13にN2を導入するなどして搬送室13の圧力を反応炉室5の圧力とほぼ等しくなるように調整する。その後、バルブV11を開いて反応炉室5と搬送室13の均圧を行い、第1仕切り扉19を開き、バルブV11を閉じて、処理済みの基板6Bが載置されたサセプタカバー15を搬送室13に搬送する(図11参照)。搬送後、第1仕切り扉19を閉じる。
When the reaction in the reaction furnace 3 is completed, the pressure in the reaction furnace chamber 5 and the pressure in the reaction furnace 3 are equalized, and then the cover of the reaction furnace 3 is opened (see FIG. 10).
In the state where the lid of the reaction furnace 3 is opened and the susceptor cover 15 can be carried out, if the pressure difference between the reaction furnace chamber 5 and the transfer chamber 13 is larger than a predetermined value, the gas in the transfer chamber 13 is discharged by the second vacuum pump 59. The pressure in the transfer chamber 13 is adjusted to be substantially equal to the pressure in the reaction chamber 5 by evacuating or introducing N 2 into the transfer chamber 13. Thereafter, the valve V11 is opened to equalize the pressure in the reactor chamber 5 and the transfer chamber 13, the first partition door 19 is opened, the valve V11 is closed, and the susceptor cover 15 on which the processed substrate 6B is placed is transferred. It conveys to the chamber 13 (refer FIG. 11). After the conveyance, the first partition door 19 is closed.

次に、気圧計P5と気圧計P2によって、搬送室13と基板仮置き室7の気圧の違いを検知し、基板仮置き室7と搬送室13の圧力差が所定の値よりも大きい場合は、搬送室13の圧力を第2真空ポンプ59で排気するか、または、搬送室13にN2を導入するなどして搬送室13と基板仮置き室7の圧力を調整(100kPa)する。気圧計P5、P2の値がほぼ同じであれば、バルブV12を開いて搬送室13と基板仮置き室7の均圧を行う。その後、第2仕切り扉21を開き、バルブV12を閉じる。そして、搬送室13のサセプタカバー15を、ダウンフローが行われている基板仮置き室7に搬送する(図12参照)。   Next, when the pressure difference between the transfer chamber 13 and the temporary substrate chamber 7 is detected by the barometer P5 and the barometer P2, and the pressure difference between the temporary substrate chamber 7 and the transfer chamber 13 is larger than a predetermined value, Then, the pressure in the transfer chamber 13 and the temporary substrate storage chamber 7 is adjusted (100 kPa) by evacuating the pressure in the transfer chamber 13 with the second vacuum pump 59 or introducing N 2 into the transfer chamber 13. If the values of the barometers P5 and P2 are substantially the same, the valve V12 is opened to equalize the pressure in the transfer chamber 13 and the temporary substrate storage chamber 7. Thereafter, the second partition door 21 is opened and the valve V12 is closed. Then, the susceptor cover 15 of the transfer chamber 13 is transferred to the temporary substrate storage chamber 7 where the downflow is performed (see FIG. 12).

サセプタカバー15を、基板仮置き室7に搬送したら、既に真空置換されている基板回収用カセット室9の圧力は大気圧(100kPa)になっているので、バルブV5を開いて基板仮置き室7と基板回収用カセット室9の均圧を行う。その後、第1ゲートバルブ25を開いて、バルブV5を閉じて、基板仮置き室7のロボットアーム33aによってサセプタカバー15のトレイ上の基板6Bを基板回収用カセット室9に回収し、トレイ上の全ての基板6Bの回収が完了すると(図13参照)、第1ゲートバルブ25を閉じる。   When the susceptor cover 15 is transported to the temporary substrate placement chamber 7, the pressure in the substrate recovery cassette chamber 9 that has already been vacuum-replaced is at atmospheric pressure (100 kPa), so the valve V5 is opened and the temporary substrate placement chamber 7 is opened. And the pressure in the substrate collecting cassette chamber 9 is equalized. Thereafter, the first gate valve 25 is opened, the valve V5 is closed, and the substrate 6B on the tray of the susceptor cover 15 is collected in the substrate collection cassette chamber 9 by the robot arm 33a of the temporary substrate placement chamber 7, When the collection of all the substrates 6B is completed (see FIG. 13), the first gate valve 25 is closed.

第1ゲートバルブ25を閉じた後、バルブV12を開いて基板仮置き室7と搬送室13の均圧を行う。そして、第2仕切り扉21を開いて、バルブV12を閉じて、搬送室13のロボットアーム53aによって、基板仮置き室7のサセプタカバー15を搬送室13に搬送し、第2仕切り扉21を閉じる。
基板回収用カセット室9は、再びN2置換を行い、最後にリーク弁(図示していない)を開とし、大気圧として、解放可能な状態にする。この際、N2で置換することで、解放時の安全上の問題があれば、クリーンドライエア(CDA)などを選択することも可能である。
After the first gate valve 25 is closed, the valve V12 is opened to equalize the pressure in the substrate temporary placement chamber 7 and the transfer chamber 13. Then, the second partition door 21 is opened, the valve V12 is closed, the susceptor cover 15 of the temporary substrate storage chamber 7 is transported to the transport chamber 13 by the robot arm 53a of the transport chamber 13, and the second partition door 21 is closed. .
The substrate recovery cassette chamber 9 performs N2 replacement again, and finally opens the leak valve (not shown) so that the atmospheric pressure can be released. At this time, it is possible to select clean dry air (CDA) or the like if there is a safety problem at the time of release by replacing with N2.

サセプタカバー15が搬送室13に搬送された後、搬送室13と交換ボックス17の間に圧力差はほぼないことを、気圧計P5、P6で検知して、バルブV14を開にして両室の均圧を行う。その後、交換ボックス17と搬送室13の間の第3仕切り扉23を開いて、搬送室13から交換ボックス17にサセプタカバー15を搬送する(図12参照)。
その後、第3仕切り扉23を閉じて、バルブV13を開き、交換ボックス17内の雰囲気を大気圧と等しくなるように均圧する。
交換ボックス17に搬送されたサセプタカバー15は、洗浄後のものに交換され、洗浄後のサセプタカバー15が交換ボックス17に設置されることで、図1の状態となり、同様の動作が繰り返される。
After the susceptor cover 15 is transferred to the transfer chamber 13, the barometers P5 and P6 detect that there is almost no pressure difference between the transfer chamber 13 and the exchange box 17, and the valve V14 is opened to open the two chambers. Perform pressure equalization. Thereafter, the third partition door 23 between the replacement box 17 and the transfer chamber 13 is opened, and the susceptor cover 15 is transferred from the transfer chamber 13 to the replacement box 17 (see FIG. 12).
Thereafter, the third partition door 23 is closed, the valve V13 is opened, and the atmosphere in the exchange box 17 is equalized so as to be equal to the atmospheric pressure.
The susceptor cover 15 transported to the replacement box 17 is replaced with a cleaned one, and the cleaned susceptor cover 15 is installed in the replacement box 17 so that the state shown in FIG.

上記の説明のように、処理済みの基板6Bを載置したサセプタカバー15を、搬送室13を介して基板仮置き室7に搬送し、さらに基板回収用カセット室9に処理済みの基板6Bを回収して、基板6Bの回収が完了したサセプタカバー15を交換ボックス17に戻すという一連の工程の中で、基板仮置き室7が大気暴露されることはなく、それ故に基板仮置き室7を真空置換する必要がないので、スループットが向上する。
また、上記の一連の工程において、サセプタカバー15や基板6Bは窒素雰囲気の中にあり、表面の酸化が防止されており、この環境の実現とスループットの向上の両立が図られている。さらには、気密環境における、FFU37を通過させた清浄な気流の循環フローによるパーティクル付着防止効果を発揮できる。
As described above, the susceptor cover 15 on which the processed substrate 6B is placed is transferred to the temporary substrate storage chamber 7 via the transfer chamber 13, and the processed substrate 6B is further transferred to the substrate recovery cassette chamber 9. In the series of steps of collecting and returning the susceptor cover 15 from which the substrate 6B has been collected to the replacement box 17, the temporary substrate storage chamber 7 is not exposed to the atmosphere. Since there is no need for vacuum replacement, the throughput is improved.
Further, in the above series of steps, the susceptor cover 15 and the substrate 6B are in a nitrogen atmosphere, and the surface is prevented from being oxidized. Thus, both the realization of this environment and the improvement of the throughput are achieved. Furthermore, the particle adhesion prevention effect by the circulation flow of the clean airflow which passed FFU37 in an airtight environment can be exhibited.

また、第1仕切り扉19、第2仕切り扉21、第3仕切り扉23、第1ゲートバルブ25及び第2ゲートバルブ27の開閉前に各室間の均圧を可能にしているので、各室間を仕切る第1〜第3仕切り扉23や第1、第2ゲートバルブ27の開閉時に室間の差圧に起因する気流が生ずることがなく、パーティクルの飛散の問題も生じない。   Since the first partition door 19, the second partition door 21, the third partition door 23, the first gate valve 25, and the second gate valve 27 are opened and closed, pressure equalization between the chambers is enabled. When the first to third partition doors 23 and the first and second gate valves 27 for partitioning are opened and closed, no air current is generated due to the differential pressure between the chambers, and the problem of particle scattering does not occur.

なお、上記の説明では、第1均圧管45〜第5均圧管67に取り付けられているバルブを開にする前に各均圧管が設けられている2室間の気圧差を確認するようにしているため、パーティクルの舞い上がりを効果的に防止できているが、必ずしも気圧差を確認する必要はなく、気圧差を確認することなく第1均圧管45〜第5均圧管67に取り付けられているバルブを開にするような操作を行ってもよい。   In the above explanation, before opening the valves attached to the first pressure equalizing pipe 45 to the fifth pressure equalizing pipe 67, the pressure difference between the two chambers where each pressure equalizing pipe is provided is confirmed. Therefore, it is possible to effectively prevent the particles from rising, but it is not always necessary to check the pressure difference, and the valves attached to the first pressure equalizing pipe 45 to the fifth pressure equalizing pipe 67 without checking the pressure difference. You may perform operation which opens.

なお、上記の説明では、サセプタカバーに設けたトレイに基板を載置する方法を前提に説明したが、本発明は、サセプタに設けた基板プレートに基板を載置する方法の場合も含んでおり、実施の形態の上記の説明におけるサセプタカバー15がサセプタに代わるだけである。   The above description is based on the premise that the substrate is placed on the tray provided on the susceptor cover. However, the present invention includes the case where the substrate is placed on the substrate plate provided on the susceptor. The susceptor cover 15 in the above description of the embodiment only replaces the susceptor.

また、上記の説明では、反応炉室5の態様として、反応炉3とは別に反応炉3が設置される室を例に挙げて説明したが、本発明の反応炉室は、サセプタカバー又はサセプタに保持された基板上に原料ガスを供給して前記基板上に薄膜を成長させる機能を有しておればよく、反応炉室自体が反応炉そのものとなっているような態様も含む。
この場合の反応炉室は、反応炉本体の壁が反応炉室の壁となり、内部にファンフィルターユニットなどを設置する空間などはなく、直接サセプタ及び/又はサセプタカバーを設置するヒーター部分が設けられ、また気相成長に用いられるガスの導入、排気は反応炉室に対して直接行われる構造である。
In the above description, the reaction furnace chamber 5 is described as an example of a chamber in which the reaction furnace 3 is installed separately from the reaction furnace 3, but the reaction furnace chamber of the present invention has a susceptor cover or susceptor. It is sufficient if it has a function of supplying a source gas onto a substrate held in the substrate and growing a thin film on the substrate, and includes a mode in which the reaction furnace chamber itself is the reaction furnace itself.
In this case, the reactor chamber wall is the wall of the reactor chamber, there is no space for installing a fan filter unit or the like inside, and a heater part for directly installing a susceptor and / or susceptor cover is provided. In addition, the gas used for vapor phase growth is introduced and exhausted directly to the reactor chamber.

そのため、この構造の場合には、仕切り弁の開閉のみで、サセプタカバー15及び/又はサセプタを反応炉室内に搬入し、または搬出するため、上記の実施の形態で説明したように、仕切り弁の開閉に加えて反応炉の蓋の開閉をすることなく、気相成長が可能であり、この点でも、パーティクルの低減並びにスループットのさらなる向上を図ることができる。   Therefore, in the case of this structure, the susceptor cover 15 and / or the susceptor is carried into or out of the reactor chamber only by opening and closing the gate valve. As described in the above embodiment, Vapor phase growth is possible without opening and closing the reactor lid in addition to opening and closing, and in this respect as well, particle reduction and further improvement in throughput can be achieved.

さらにこの構造では、上記の実施の形態に比べ、より容積が小さく、気密性の高い機密構造を容易に実現できるので、いわゆる真空置換によるパーティクルの低減効果が期待できる。   Further, in this structure, a secret structure having a smaller volume and higher airtightness can be easily realized as compared with the above-described embodiment, so that the effect of reducing particles by so-called vacuum replacement can be expected.

本発明の効果を確認するために、8インチのシリコン基板を基板搬入用カセット室から、基板仮置き室、搬送室を経由して、反応炉室5の反応炉3に搬入し、成長反応をすることなく再び搬出した際のシリコン基板上に付着したパーティクルの数を測定する実験を行った。
上述した実施の形態に示したように、基板を各室を経由して移動させる際に均圧処理を行うと共に基板仮置き室7でダウンフローを行った場合(発明例)と、均圧処理及び基板仮置き室7でのダウンフローを行わない場合(比較例)を比較した。
In order to confirm the effect of the present invention, an 8-inch silicon substrate is transferred from the substrate loading cassette chamber to the reaction furnace 3 of the reaction chamber 5 via the temporary substrate storage chamber and the transfer chamber, and the growth reaction is performed. An experiment was conducted to measure the number of particles adhering to the silicon substrate when it was unloaded again.
As shown in the above-described embodiment, the pressure equalization process is performed when the substrate is moved through each chamber and the downflow is performed in the temporary substrate storage chamber 7 (invention example). And the case (comparative example) which does not perform the downflow in the substrate temporary storage chamber 7 was compared.

実験の結果を図16に示す。図16(a)に示す発明例の方が比較例を示す図16(b)よりも基板に付着するパーティクル数が少なかった。このことから、本発明による気相成長装置1が基板搬送過程においてパーティクルの付着を確実に抑えられることが実証された。   The result of the experiment is shown in FIG. The number of particles adhering to the substrate was smaller in the inventive example shown in FIG. 16A than in FIG. 16B showing the comparative example. From this, it was proved that the vapor phase growth apparatus 1 according to the present invention can reliably suppress adhesion of particles in the substrate transfer process.

1 気相成長装置
3 反応炉
5 反応炉室
6 基板
6A 未処理の基板
6B 処理済みの基板
7 基板仮置き室
9 基板回収用カセット室
11 基板搬入用カセット室
13 搬送室
15 サセプタカバー
17 交換ボックス
18 制御部
19 第1仕切り扉
21 第2仕切り扉
23 第3仕切り扉
25 第1ゲートバルブ
27 第2ゲートバルブ
29 第1窒素ガス供給管
31 窒素ガス排気管
33 基板搬送装置
33a ロボットアーム
35 第2窒素ガス供給管
37 ファンフィルターユニット(FFU)
39 気流通流部
41 第1排気管
43 第1真空ポンプ
45 第1均圧管
47 第2均圧管
49 第1ガス導入管
51 第2ガス導入管
53 搬送ロボット
53a ロボットアーム
55 第3窒素ガス供給管
57 第2排気管
59 第2真空ポンプ
61 第3均圧管
63 第4均圧管
65 外気連通管
67 第5均圧管
V1〜V14 バルブ
P1〜P6 気圧計
DESCRIPTION OF SYMBOLS 1 Vapor growth apparatus 3 Reactor 5 Reactor chamber 6 Substrate 6A Unprocessed substrate 6B Processed substrate 7 Substrate temporary storage chamber 9 Substrate recovery cassette chamber 11 Substrate carry-in cassette chamber 13 Transfer chamber 15 Susceptor cover 17 Exchange box 18 control unit 19 first partition door 21 second partition door 23 third partition door 25 first gate valve 27 second gate valve 29 first nitrogen gas supply pipe 31 nitrogen gas exhaust pipe 33 substrate transfer device 33a robot arm 35 second Nitrogen gas supply pipe 37 Fan filter unit (FFU)
39 Gas distribution flow part 41 First exhaust pipe 43 First vacuum pump 45 First pressure equalization pipe 47 Second pressure equalization pipe 49 First gas introduction pipe 51 Second gas introduction pipe 53 Transfer robot 53a Robot arm 55 Third nitrogen gas supply pipe 57 Second exhaust pipe 59 Second vacuum pump 61 Third pressure equalizing pipe 63 Fourth pressure equalizing pipe 65 Outside air communication pipe 67 Fifth pressure equalizing pipe
V1-V14 valve
P1 to P6 Barometer

Claims (5)

サセプタ上に設置されるサセプタカバー又はサセプタに保持された基板上に原料ガスを供給して前記基板上に薄膜を成長させる機能を備えた反応炉室と、
成膜が行われた処理済の基板の回収又は未処理の基板をセットするために基板を仮置きする基板仮置き室と、
該基板仮置き室に付随して設けられて処理済み基板を回収するための基板回収用カセット室と、
前記基板仮置き室に付随して設けられて未処理の基板を搬入するための基板搬入用カセット室と、
前記基板仮置き室と前記反応炉室との間に介在して前記反応炉室と前記基板仮置き室との間で前記基板の搬送を行う搬送ロボットが設置されている搬送室と、
該搬送室に隣接して設けられ前記サセプタカバー又はサセプタを交換するための交換ボックスと、を有し、
前記反応炉室、前記搬送室、前記基板仮置き室、前記基板搬入用カセット室、前記基板回収用カセット室及び前記交換ボックスは気密構造になっており、かつ前記各室の間が仕切り扉によって仕切られており、
前記搬送室、前記基板回収用カセット室及び前記基板搬入用カセット室は真空引きができるように構成され、
前記基板仮置き室は、室内にダウンフローの気流を生じさせるファンフィルターユニットと、部屋の側壁部に設けられて気流が通流できる気流通流部とを有し、前記ダウンフローした気流が前記気流通流部を上昇してさらにダウンフローする循環流が形成できるようにしたことを特徴とする気相成長装置。
A reactor chamber provided with a function of supplying a source gas onto a susceptor cover or a substrate held on the susceptor and growing a thin film on the substrate;
A substrate temporary storage chamber for temporarily storing a substrate in order to collect a processed substrate on which a film is formed or to set an unprocessed substrate;
A substrate recovery cassette chamber provided in association with the temporary substrate storage chamber for recovering processed substrates;
A substrate loading cassette chamber provided in association with the substrate temporary storage chamber for loading unprocessed substrates;
A transfer chamber in which a transfer robot is provided between the reaction chamber and the temporary substrate chamber, the transfer robot being interposed between the temporary substrate chamber and the reaction chamber;
An exchange box provided adjacent to the transfer chamber for exchanging the susceptor cover or the susceptor,
The reaction chamber, the transfer chamber, the temporary substrate storage chamber, the substrate carry-in cassette chamber, the substrate recovery cassette chamber, and the exchange box have an airtight structure, and a partition door is provided between the chambers. Is partitioned,
The transfer chamber, the substrate collection cassette chamber and the substrate carry-in cassette chamber are configured to be evacuated,
The substrate temporary storage chamber includes a fan filter unit that generates a downflow airflow in the room, and an air circulation flow portion that is provided on a side wall portion of the room and through which the airflow can flow. A vapor phase growth apparatus characterized in that a circulation flow can be formed in which a gas flow portion is raised and further downflowed.
前記反応炉室、前記搬送室及び前記基板仮置き室の各室に不活性ガスを供給するガス供給管と、前記反応炉室と前記搬送室の間、前記搬送室と前記基板仮置き室の間で気流の通流を可能にして均圧する均圧管と、該均圧管及び前記ガス供給管に設けられた開閉バルブとを備えたことを特徴とする請求項1記載の気相成長装置。   A gas supply pipe for supplying an inert gas to each of the reaction furnace chamber, the transfer chamber, and the temporary substrate storage chamber; between the reaction furnace chamber and the transfer chamber; between the transfer chamber and the temporary substrate storage chamber; 2. The vapor phase growth apparatus according to claim 1, further comprising: a pressure equalizing pipe that allows air flow between the pressure equalizing pipe and an open / close valve provided in the pressure equalizing pipe and the gas supply pipe. 前記反応炉室、前記搬送室及び前記基板仮置き室の各室の気圧を計測する気圧計と、該気圧計の測定値に基づいて前記開閉バルブの開閉制御を行って各室の気圧を調整する制御部とを備えたことを特徴とする請求項2に記載の気相成長装置。   A barometer that measures the pressure in each chamber of the reaction chamber, the transfer chamber, and the temporary substrate storage chamber, and controls the open / close valve based on the measured value of the barometer to adjust the pressure in each chamber The vapor phase growth apparatus according to claim 2, further comprising a control unit that performs the control. 前記制御部は、前記仕切り扉の開閉制御を行う機能を有し、前記気圧計により各室に所定値以上の差圧があることが検出された場合には、前記仕切り扉を開ける前に前記開閉バルブの開閉制御を行って各室の差圧を所定値より小さくする均圧処理を行うことを特徴とする請求項3に記載の気相成長装置。   The control unit has a function of performing opening / closing control of the partition door, and when the barometer detects that there is a differential pressure of a predetermined value or more in each chamber, before opening the partition door, the controller 4. The vapor phase growth apparatus according to claim 3, wherein a pressure equalizing process is performed to control the opening / closing of the opening / closing valve to make the differential pressure in each chamber smaller than a predetermined value. 前記反応炉室は、反応炉が設置された室を有し、該室内にダウンフローの気流を生じさせるファンフィルターユニットと、部屋の側壁部に設けられて気流が通流できる気流通流部とを有し、前記ダウンフローした気流が前記気流通流部を上昇してさらにダウンフローする循環流が形成できるようにしたことを特徴とする請求項1乃至4のいずれか一項に記載の気相成長装置。   The reactor chamber has a chamber in which a reactor is installed, a fan filter unit that generates a downflow airflow in the chamber, and an air circulation flow portion that is provided on a side wall portion of the room and through which an airflow can flow. The gas according to any one of claims 1 to 4, wherein the downflowed airflow rises up the airflowflow section to form a circulationflow that further flows down. Phase growth equipment.
JP2014196154A 2014-09-26 2014-09-26 Vapor growth equipment Active JP6373703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196154A JP6373703B2 (en) 2014-09-26 2014-09-26 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196154A JP6373703B2 (en) 2014-09-26 2014-09-26 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2016066767A true JP2016066767A (en) 2016-04-28
JP6373703B2 JP6373703B2 (en) 2018-08-15

Family

ID=55804303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196154A Active JP6373703B2 (en) 2014-09-26 2014-09-26 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP6373703B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037442A (en) * 2016-08-29 2018-03-08 株式会社アルバック Substrate carrying device, film deposition apparatus, and substrate conveyance method
JP2018174259A (en) * 2017-03-31 2018-11-08 シンフォニアテクノロジー株式会社 Robot transport device
JP2021106181A (en) * 2019-12-26 2021-07-26 株式会社Sumco Vapor phase growth apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831909A (en) * 1994-05-12 1996-02-02 Kokusai Electric Co Ltd Semiconductor manufacturing device and its method for transferring wafer
JPH08291384A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Device for adjusting pressure and method for communicating chamber using the device
JP2009130240A (en) * 2007-11-27 2009-06-11 Tokyo Electron Ltd Plasma treatment equipment, substrate treatment system and plasma treatment method
JP2010040623A (en) * 2008-08-01 2010-02-18 Tokyo Electron Ltd Pressure regulation apparatus, processing system using the same, and pressure regulation method
JP2010135744A (en) * 2008-10-29 2010-06-17 Kyocera Corp Suction carrier member and substrate carrier device using the same
JP2011258859A (en) * 2010-06-11 2011-12-22 Toshiba Corp Thin film forming apparatus
JP2012212771A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Vapor phase growth system
JP2014112631A (en) * 2012-10-31 2014-06-19 Tdk Corp Load port unit and EFEM system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831909A (en) * 1994-05-12 1996-02-02 Kokusai Electric Co Ltd Semiconductor manufacturing device and its method for transferring wafer
JPH08291384A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Device for adjusting pressure and method for communicating chamber using the device
JP2009130240A (en) * 2007-11-27 2009-06-11 Tokyo Electron Ltd Plasma treatment equipment, substrate treatment system and plasma treatment method
JP2010040623A (en) * 2008-08-01 2010-02-18 Tokyo Electron Ltd Pressure regulation apparatus, processing system using the same, and pressure regulation method
JP2010135744A (en) * 2008-10-29 2010-06-17 Kyocera Corp Suction carrier member and substrate carrier device using the same
JP2011258859A (en) * 2010-06-11 2011-12-22 Toshiba Corp Thin film forming apparatus
JP2012212771A (en) * 2011-03-31 2012-11-01 Taiyo Nippon Sanso Corp Vapor phase growth system
JP2014112631A (en) * 2012-10-31 2014-06-19 Tdk Corp Load port unit and EFEM system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037442A (en) * 2016-08-29 2018-03-08 株式会社アルバック Substrate carrying device, film deposition apparatus, and substrate conveyance method
JP2018174259A (en) * 2017-03-31 2018-11-08 シンフォニアテクノロジー株式会社 Robot transport device
JP7001910B2 (en) 2017-03-31 2022-01-20 シンフォニアテクノロジー株式会社 Robot transfer device
JP2021106181A (en) * 2019-12-26 2021-07-26 株式会社Sumco Vapor phase growth apparatus
JP7279630B2 (en) 2019-12-26 2023-05-23 株式会社Sumco Vapor deposition equipment

Also Published As

Publication number Publication date
JP6373703B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
US20210216054A1 (en) Substrate processing systems, apparatus, and methods with substrate carrier and purge chamber environmental controls
TWI534923B (en) Load interlock
US9159600B2 (en) Wafer transport apparatus
JP2018532264A (en) Multi-chamber chemical vapor deposition system
US11610794B2 (en) Side storage pods, equipment front end modules, and methods for operating the same
US20080134977A1 (en) Substrate Treating Apparatus and Semiconductor Device Manufacturing Method
TWI797163B (en) Substrate processing device, substrate processing method, and computer storage medium
JP6091487B2 (en) Substrate processing apparatus, substrate processing apparatus control method, substrate processing apparatus maintenance method, and recipe control program
KR20140123479A (en) Purging device and purging method for substrate-containing vessel
US11054184B2 (en) Methods and apparatus for processing a substrate to remove moisture and/or residue
JP6373703B2 (en) Vapor growth equipment
JP2013143558A5 (en)
JPH04206547A (en) Interdevice transfer method
JP6363927B2 (en) Substrate transfer method and apparatus in vapor phase growth apparatus
JP2000174007A (en) Heat processing device
JPH1074820A (en) Conveying method and processing system for substrate to be processed
TWI700764B (en) Substrate cooling method, substrate transport method and loading lock device in loading lock device
JP2005259858A (en) Substrate processing apparatus
KR20170007611A (en) Semiconductor apparatus of furnace type, cleaning method of the same, and method of forming thin film using the same
JP4324632B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US20180076030A1 (en) SiC FILM FORMING METHOD AND SiC FILM FORMING APPARATUS
JP2007242729A (en) Vapor phase epitaxial growth device and method
JP2006134901A (en) Substrate processing equipment
JP2005259927A (en) Substrate treatment apparatus
JP2006013215A (en) Substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6373703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250