JP2016065291A - Corrosion inhibitor and corrosion inhibition method of boiler water system - Google Patents

Corrosion inhibitor and corrosion inhibition method of boiler water system Download PDF

Info

Publication number
JP2016065291A
JP2016065291A JP2014195369A JP2014195369A JP2016065291A JP 2016065291 A JP2016065291 A JP 2016065291A JP 2014195369 A JP2014195369 A JP 2014195369A JP 2014195369 A JP2014195369 A JP 2014195369A JP 2016065291 A JP2016065291 A JP 2016065291A
Authority
JP
Japan
Prior art keywords
boiler
corrosion
water
corrosion inhibitor
water system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195369A
Other languages
Japanese (ja)
Other versions
JP6316719B2 (en
Inventor
伊藤 賢一
Kenichi Ito
賢一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2014195369A priority Critical patent/JP6316719B2/en
Publication of JP2016065291A publication Critical patent/JP2016065291A/en
Application granted granted Critical
Publication of JP6316719B2 publication Critical patent/JP6316719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion inhibitor of boiler water system applied for a boiler from which vapor has vapor pressure of 20 MPa or less for contacting foods or pharmaceuticals and capable of preventing corrosion of a steel material and a copper material at the same time.SOLUTION: There are provided a corrosion inhibitor containing one or more kind of amine compound selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, butylamine, and a corrosion inhibition method of a boiler system including adding one or more kind of amine compound selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, butylamine to the boiler water system and holding pH (25°C) of feed water and/or condensate and/or condensed water of the boiler water system at 7.0 to 9.8. Further there is provided the corrosion inhibitor containing a reduction compound and further the corrosion inhibition method of the boiler water system including adding the reduction compound.SELECTED DRAWING: None

Description

ボイラからの蒸気が食品や医薬品と接触するボイラ水系システムにおける、水と接触する金属の腐食を抑制するボイラ水系システムの腐食抑制剤及び腐食抑制方法に関する。   The present invention relates to a corrosion inhibitor and a corrosion suppression method for a boiler water system that suppresses corrosion of a metal that comes into contact with water in a boiler water system in which steam from a boiler comes into contact with food and medicine.

ボイラ水系システムにおけるボイラドラム、蒸発管、エコノマイザー、脱気器、給水系統や蒸気・復水系統の各種熱交換器や配管等の水と接触する構成材質として主に鋼材が使用されている。また、給水系や復水系における復水器や給水予熱器の伝熱管材質には、無酸素銅、りん脱酸銅、アルミニウム黄銅、アドミラルティ黄銅、キュプロニッケル等の銅材が主に使用され、通常のボイラ水系システムでは鋼材と銅材が混在している。鉄や銅の水酸化物及び酸化物の溶解度は温度が上がるほど低下し、水温が200℃以下の給水や復水では鉄や銅の水酸化物及び酸化物の溶解度は十分高いが、ボイラ水のように水温が200℃を超えるような条件ではその溶解度は小さくなる。その結果、給水系統や復水系統の鋼材や銅材から溶出した鉄イオンや銅イオンは、主にボイラ内の蒸発管で鉄や銅の水酸化物及び酸化物として再析出する。蒸発管における析出物は、伝熱を阻害して燃料消費量の増加や蒸気発生量の低下をもたらすだけでなく、析出物と管表面の隙間内でアルカリや酸が濃縮されることによる二次腐食の原因にもなる。そのため、給水系統や復水系統における鋼材や銅材から鉄イオンや銅イオンの溶出を抑制することは、ボイラ水系システムの安全操業と経済的な面から重要な問題である。   Steel materials are mainly used as constituent materials that come into contact with water such as boiler drums, evaporator pipes, economizers, deaerators, various heat exchangers and piping in steam / condensate systems in boiler water systems. Copper materials such as oxygen-free copper, phosphorous deoxidized copper, aluminum brass, admiralty brass, and cupronickel are mainly used as heat transfer tube materials for condensers and feed water preheaters in water supply systems and condensate systems. In a normal boiler water system, steel and copper are mixed. The solubility of iron and copper hydroxides and oxides decreases as the temperature rises, and the solubility of iron and copper hydroxides and oxides is sufficiently high in water supply and condensate with a water temperature of 200 ° C. or lower. In such a condition that the water temperature exceeds 200 ° C., the solubility becomes small. As a result, iron ions and copper ions eluted from the steel and copper materials of the water supply system and the condensate system reprecipitate as iron and copper hydroxides and oxides mainly in the evaporation pipes in the boiler. Precipitates in the evaporation tube not only increase heat consumption and decrease the amount of steam generated, but also cause secondary condensation due to the concentration of alkali and acid in the gap between the precipitate and the tube surface. It can also cause corrosion. Therefore, suppressing the elution of iron ions and copper ions from steel materials and copper materials in the water supply system and the condensate system is an important problem from the safe operation and economical aspects of the boiler water system.

鋼材や銅材の腐食反応は電気化学的に進行する。例えば、水に溶解している酸素は鋼材や銅材の金属表面で鉄や銅から電子を引き抜いて水酸化物イオンを生成することにより、鋼材や銅材からの鉄イオンや銅イオンの溶出を促進する(酸素還元反応)。一方、水中の水素イオンは鋼材や銅材の金属表面で鉄や銅から電子を引き抜いて水素となることにより、鋼材や銅材が電子を放出して鉄イオンや銅イオンとして溶解する反応を促進する(水素還元反応)。酸素還元反応型の腐食では水中の溶存酸素を除去することにより腐食防止できるが、水の解離による水素イオンは必ず存在するため、水素還元反応型の腐食を完全に抑制することはできない。特にボイラ水系システムのように温度が高い系では水の解離定数が大きくなり、水素還元反応型の腐食が発生し易くなる。例えば25℃における純水のpHは7であるが、100℃における純水のpHは6.15、250℃では5.6まで低下する。この場合でも水のpHを高くして水素イオン濃度を低下させれば腐食は低下し、更に鉄や銅の水酸化物及び酸化物が安定であるpH領域までpHを高くすれば、これらの水酸化物及び酸化物が保護皮膜となり腐食が低減する。加えて、pHの上昇は、エロージョン・コロージョンや流れ誘起腐食の抑制にも有効である。   The corrosion reaction of steel and copper materials proceeds electrochemically. For example, oxygen dissolved in water causes elution of iron ions and copper ions from steel and copper materials by extracting electrons from iron and copper on the metal surface of steel and copper materials to generate hydroxide ions. Promote (oxygen reduction reaction). On the other hand, hydrogen ions in water pull out electrons from iron and copper on the metal surface of steel and copper to become hydrogen, thereby promoting the reaction of steel and copper releasing electrons to dissolve as iron and copper ions. (Hydrogen reduction reaction). In oxygen reduction reaction type corrosion, corrosion can be prevented by removing dissolved oxygen in water, but hydrogen ions due to dissociation of water always exist, and thus hydrogen reduction reaction type corrosion cannot be completely suppressed. In particular, in a system having a high temperature such as a boiler water system, the dissociation constant of water becomes large, and hydrogen reduction reaction type corrosion tends to occur. For example, although the pH of pure water at 25 ° C. is 7, the pH of pure water at 100 ° C. is decreased to 6.15 and to 5.6 at 250 ° C. Even in this case, if the pH of the water is increased to lower the hydrogen ion concentration, the corrosion is reduced, and if the pH is raised to a pH range where iron and copper hydroxides and oxides are stable, these waters are reduced. Oxides and oxides become protective films, reducing corrosion. In addition, the increase in pH is also effective in suppressing erosion / corrosion and flow-induced corrosion.

しかし、pHを過度に高くすると、銅の水酸化物及び酸化物等の保護皮膜を再溶解させるため好ましくない。そこで、従来から、ボイラ水系システムの腐食抑制のために水中の溶存酸素を除去するとともに、給水、ボイラ水ならびに復水のpHを適正値に調整する処理が実施されてきた。例えば、アンモニアを添加して給水ならびに復水のpHを9.0以上にすることにより給水系ならびに復水系における鋼材の腐食を低減できることが知られている(例えば非特許文献1、非特許文献2参照)。一方、アンモニアは高pHにおいて銅と安定な水溶性キレート化合物を生成して銅材の腐食を促進するため、銅材のアンモニア腐食を防止するには、給水ならびに復水のpHを9.0以下で管理する必要がある(例えば非特許文献3参照)。従って、いずれのpH域で管理しても、鋼材と銅材の両方の腐食を同時に防止することは困難であった。このような銅材のアンモニア腐食に対する懸念から、pH上昇剤としてモルホリン、2−アミノエタノール等の揮発性アミンを使用する方法が開示されている(例えば非特許文献4参照)。しかし、モルホリンは気相への分配比が小さく蒸気系統の初期凝縮部に溶け込み易い反面、pH上昇能力が低いためにpH9.0以上に維持するには多量の添加量が必要であるという問題点があった。また、2−アミノエタノールは気相への分配比が小さ過ぎるため、初期凝縮部でアミンの濃厚液が生成して初期凝縮部にアルカリ腐食が発生し易いという問題点があった。更にこれらの揮発性アミンを使用しても、pHが9.0を超えると銅材の腐食を十分抑制するには至っていない。   However, excessively high pH is not preferable because the protective film such as copper hydroxide and oxide is redissolved. Therefore, conventionally, processing for removing dissolved oxygen in water and adjusting the pH of feed water, boiler water, and condensate to appropriate values has been performed in order to suppress corrosion of the boiler water system. For example, it is known that corrosion of steel materials in a water supply system and a condensate system can be reduced by adding ammonia to make the pH of the water supply and condensate 9.0 or more (for example, Non-Patent Document 1 and Non-Patent Document 2). reference). On the other hand, ammonia generates a stable water-soluble chelate compound with copper at a high pH and promotes corrosion of the copper material. To prevent ammonia corrosion of the copper material, the pH of the feed water and condensate is 9.0 or less. (See, for example, Non-Patent Document 3). Therefore, it was difficult to prevent corrosion of both the steel material and the copper material at the same time regardless of the pH range. From the concern about ammonia corrosion of copper materials, a method of using volatile amines such as morpholine and 2-aminoethanol as a pH increasing agent has been disclosed (for example, see Non-Patent Document 4). However, although morpholine has a small distribution ratio to the gas phase and easily dissolves in the initial condensing part of the vapor system, it has a problem that a large amount of addition is necessary to maintain pH above 9.0 because of its low pH increasing ability. was there. In addition, since 2-aminoethanol has a distribution ratio to the gas phase that is too small, a concentrated amine solution is generated in the initial condensing part and alkali corrosion is likely to occur in the initial condensing part. Furthermore, even if these volatile amines are used, the corrosion of the copper material has not been sufficiently suppressed when the pH exceeds 9.0.

上述の問題点に加えて、ボイラからの蒸気が食品や医薬品と接触するボイラ水系システムでは、腐食抑制等の目的で添加するボイラ添加剤の安全性の問題がある。米国の食品医薬品局(FDA)によって、モルホリン、シクロヘキシルアミン、ジエチルアミノエタノール、オクタデシルアミンが、ボイラからの蒸気がミルクや乳製品を除く食品や医薬品と接触するボイラ添加物として規定濃度を超えない範囲で使用することが認定されており、また、カナダの食品検査庁(CFIA)では、上記化合物に加えて2−アミノ−2−メチル−1−プロパノールが、蒸気がミルクや乳製品を除く食品や医薬品と接触するボイラの添加物として使用することが認定されている。従って、日本国内でもこれらのアミン化合物を、蒸気が食品や医薬品と接触するボイラの添加物として使用されているが、しかしながら、これらのアミン化合物は、食品衛生法で指定された食品添加物には認定されていない。   In addition to the above-described problems, a boiler water system in which steam from a boiler comes into contact with food or medicine has a problem of safety of a boiler additive added for the purpose of inhibiting corrosion. According to the US Food and Drug Administration (FDA), morpholine, cyclohexylamine, diethylaminoethanol, and octadecylamine do not exceed the specified concentration as a boiler additive in which steam from boilers comes into contact with foods and medicines except milk and dairy products. It is certified for use, and the Canadian Food Inspection Agency (CFIA) uses 2-amino-2-methyl-1-propanol in addition to the above compounds for foods and pharmaceuticals where steam excludes milk and dairy products. It is certified to be used as an additive in boilers that come into contact with. Therefore, in Japan, these amine compounds are used as additives for boilers that come into contact with food and pharmaceuticals. However, these amine compounds are not used in food additives specified by the Food Sanitation Law. Not certified.

アンモニアは食品添加物に認定されているが、前述のように銅の腐食を促進する欠点がある。モルホリン脂肪酸塩は食品添加物に認定されており、また、蒸気配管及び復水配管の腐食抑制にモルホリン脂肪酸塩を添加する方法が開示されている(例えば特許文献1参照)が、モルホリン脂肪酸塩はボイラ水のフォーミングを引き起こすため好ましくない。菜種油、ひまわり油、大豆油、とうもろこし油、ごま油、オリーブ油等の植物系油脂を乳化したエマルジョンを、蒸気若しくは復水に添加することを特徴とする蒸気復水系の防食方法が開示されている(特許文献2参照)が、復水を給水の一部として回収しているボイラでは、これらの油脂がボイラ水中に混入して高温と高pHにより脂肪酸石鹸に加水分解してフォーミングを引き起こすため好ましくない。このため、JIS B8223 1999「ボイラの給水及びボイラ水の水質」には、給水中の油脂類は低く保つことが望ましいことが示されている。   Ammonia is certified as a food additive, but has the disadvantage of promoting copper corrosion as described above. Morpholine fatty acid salt is certified as a food additive, and a method of adding morpholine fatty acid salt to inhibit corrosion of steam piping and condensate piping is disclosed (for example, see Patent Document 1). This is not preferable because it causes boiler water forming. A steam condensate anticorrosion method characterized by adding an emulsion emulsified with vegetable oils such as rapeseed oil, sunflower oil, soybean oil, corn oil, sesame oil and olive oil to steam or condensate (patent) However, in a boiler in which condensate is recovered as a part of feed water, these oils and fats are mixed in the boiler water and hydrolyzed into fatty acid soap due to high temperature and high pH, which is not preferable. For this reason, JIS B8223 1999 "Boiler feed water and boiler water quality" indicates that it is desirable to keep the fats and oils in the feed water low.

特開2004−061052号公報JP 2004-061052 A 特開2013−019042号公報JP 2013-019042 A

「最近のボイラ等における腐食とその対策」、社団法人日本ボイラ協会、平成9年10月15日発行、138頁“Recent Corrosion in Boilers and Countermeasures”, Japan Boiler Association, October 15, 1997, page 138 「ボイラの水管理」、社団法人日本ボイラ協会、平成13年1月15日発行、230頁“Boiler Water Management”, Japan Boiler Association, published on January 15, 2001, page 230 「火力原子力発電」、134頁(1270頁)、433号、43巻、1992年“Thermal Power Generation”, 134 (1270), 433, 43, 1992 「ボイラの水管理」、社団法人日本ボイラ協会、平成13年1月15日発行、261頁“Boiler Water Management”, Japan Boiler Association, published on January 15, 2001, page 261

本発明の課題は、鋼材と銅材を含むボイラ水系システムにおいて、鋼材と銅材の腐食を同時に防止でき、更には、給水、蒸気ならびに復水が食品や医薬品と直接的あるいは間接的に接触する可能性のあるボイラ水系システムに対しても安全に適用できる腐食抑制剤及び腐食抑制方法を提供することである。   An object of the present invention is to simultaneously prevent corrosion of steel material and copper material in a boiler water system including steel material and copper material, and furthermore, water supply, steam, and condensate are in direct or indirect contact with food and medicine. It is an object of the present invention to provide a corrosion inhibitor and a corrosion inhibition method that can be safely applied to a potential boiler water system.

本発明者は、ボイラ水系システムにおける鋼材と銅材の腐食を同時に防止でき、かつ、給水、蒸気ならびに復水が食品や医薬品と直接的あるいは間接的に接触する可能性のあるボイラ水系システムに対して安全に適用できる腐食抑制剤及び腐食抑制方法について鋭意検討した結果、食品添加物に認定されている特定のアミン化合物を用いることにより、更には特定のアミン化合物に加えて食品添加物に認定されている還元性化合物と組み合わせて用いることによりこれらの課題を克服できることを見出し本発明に到達した。   The present inventor is able to prevent corrosion of steel and copper in a boiler water system at the same time, and for a boiler water system in which feed water, steam and condensate may come into direct or indirect contact with food and medicines. As a result of intensive investigations on corrosion inhibitors and corrosion control methods that can be applied safely, the use of a specific amine compound that is certified as a food additive further certified as a food additive in addition to the specific amine compound. The present inventors have found that these problems can be overcome by using in combination with a reducing compound.

即ち、請求項1に係る発明は、ピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される1種以上のアミン化合物を含有することを特徴とする、ボイラからの蒸気が食品や医薬品と接触する蒸気圧20MPa以下のボイラの水系システムに適用する腐食抑制剤である。   That is, the invention according to claim 1 is characterized in that it contains one or more amine compounds selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine, and the steam from the boiler is in contact with food and medicine. It is a corrosion inhibitor applied to an aqueous system of a boiler having a vapor pressure of 20 MPa or less.

請求項2に係る発明は、更に還元性化合物を含有することを特徴とする請求項1記載のボイラの水系システムに適用する腐食抑制剤である。   The invention according to claim 2 is the corrosion inhibitor applied to the boiler aqueous system according to claim 1, further comprising a reducing compound.

請求項3に係る発明は、ボイラからの蒸気が食品や医薬品と接触する蒸気圧20MPa以下のボイラの水系システムに適用する腐食抑制方法であって、ピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される1種以上のアミン化合物をボイラ水系システムに添加すること及び該ボイラ水系システムの給水及び/又は復水及び/又は凝縮水のpH(25℃)を7.0〜9.8に維持することを特徴とするボイラ水系システムの腐食抑制方法である。   The invention according to claim 3 is a corrosion inhibiting method applied to an aqueous system of a boiler having a vapor pressure of 20 MPa or less in which steam from the boiler comes into contact with food or pharmaceuticals, from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine. Adding one or more selected amine compounds to the boiler water system and maintaining the pH (25 ° C.) of feed water and / or condensate and / or condensed water of the boiler water system at 7.0 to 9.8 This is a method for inhibiting corrosion of a boiler water-system.

請求項4に係る発明は、更に還元性化合物を添加することを特徴とする請求項3記載のボイラ水系システムの腐食抑制方法である。   The invention according to claim 4 is the method for inhibiting corrosion of a boiler aqueous system according to claim 3, further comprising adding a reducing compound.

給水系統や復水系統における鋼材や銅材の腐食による鉄イオンや銅イオンの溶出を抑制し、ボイラの蒸発管における鉄や銅の水酸化物や酸化物の再析出を防止することにより、燃料消費量の増加、蒸気発生量の低下、ならびに析出物による二次腐食の発生を抑制して、ボイラからの蒸気が食品や医薬品と接触するボイラ水系システムの安全操業と経済的損失の抑止に寄与できる。   By suppressing the elution of iron ions and copper ions due to corrosion of steel and copper materials in the water supply system and condensate system, and preventing the reprecipitation of iron and copper hydroxides and oxides in the boiler evaporation pipe, Contributes to the safe operation of boiler water systems where steam from boilers comes into contact with food and pharmaceuticals and the suppression of economic losses by suppressing consumption increase, reduction of steam generation, and secondary corrosion caused by precipitates it can.

本発明の腐食抑制剤及び腐食抑制方法の対象となるボイラは、ボイラからの蒸気が食品や医薬品と接触する蒸気圧20MPa以下のボイラであり、その種類に特に制限はなく、立てボイラ、炉筒ボイラ、煙管ボイラ、炉筒煙管ボイラ等の丸ボイラ、水管ボイラ、特殊循環ボイラ、各種廃熱ボイラ、貫流ボイラ等のいずれであっても良い。また、その構成は、ボイラ本体だけでなく脱気器、給水配管、給水ポンプ、給水予熱器、エコノマイザー等のボイラの給水系統ならびに過熱器、タービン、蒸気配管、復水器、復水配管等の蒸気・復水系統も包含する。   The boiler which is the target of the corrosion inhibitor and the corrosion suppression method of the present invention is a boiler having a vapor pressure of 20 MPa or less in which steam from the boiler comes into contact with food or medicine, and there is no particular limitation on the type thereof. Any of round boilers, such as a boiler, a flue-tube boiler, and a furnace-tube flue-tube boiler, a water pipe boiler, a special circulation boiler, various waste heat boilers, a once-through boiler, etc. may be sufficient. In addition to the boiler body, its structure includes boiler water supply systems such as deaerators, water supply pipes, water supply pumps, water supply preheaters, economizers, superheaters, turbines, steam pipes, condensers, condensate pipes, etc. This includes steam and condensate systems.

本発明の腐食抑制剤及び腐食抑制方法が適用されるボイラからの蒸気が食品や医薬品と接触するボイラの水系システムは、ボイラからの蒸気が食品や医薬品と直接的あるいは間接的に接触するボイラ水系システムであり、ここで「間接的に接触」とは、例えば、本発明の腐食抑制剤を含む蒸気で滅菌、洗浄した食器や容器に入れた食品や医薬品が間接的に腐食抑制剤に接触することである。また、該水系システムとは、補給水、給水、復水、ボイラ循環水、蒸気に関わるボイラの給水系統から蒸気・復水系統を含むボイラシステム全般を流れる水系である。   The boiler water system in which the steam from the boiler to which the corrosion inhibitor and the corrosion inhibiting method of the present invention are applied is in contact with the food or medicine is the boiler water system in which the steam from the boiler is in direct or indirect contact with the food or medicine. Here, “indirect contact” means, for example, food or medicine in dishes or containers sterilized and cleaned with steam containing the corrosion inhibitor of the present invention indirectly contacts the corrosion inhibitor. That is. The water system is a water system that flows through the boiler system including the steam / condensate system from the supply system of the boiler related to makeup water, feed water, condensate, boiler circulating water, and steam.

本発明の腐食抑制剤及び腐食抑制方法の対象となるボイラの蒸気圧は20MPa以下であり、蒸気圧が20MPaを超えるボイラでは、本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物が熱分解するため、十分な腐食抑制効果が得られない。   The steam pressure of the boiler to be subjected to the corrosion inhibitor and the corrosion inhibiting method of the present invention is 20 MPa or less, and in the boiler having a vapor pressure exceeding 20 MPa, the amine compound used in the corrosion inhibitor and the corrosion inhibiting method of the present invention is hot. Since it decomposes, a sufficient corrosion inhibition effect cannot be obtained.

本発明の腐食抑制剤及び腐食抑制方法の対象となるボイラの補給水としては、イオン交換水、軟化水、逆浸透膜透過水を用いることができ、なかでもイオン交換水が好ましい。イオン交換水は、軟化水、工業用水、水道水、地下水等をイオン交換樹脂により処理した水であり、その水質は、JIS B8223:2006「ボイラの給水及びボイラ水の水質」によってボイラ種別ならびに最高使用圧力別に規定されている。イオン交換樹脂としては、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂を用い、これらを組み合わせて、例えば強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂の組み合わせ、強酸性陽イオン交換樹脂と弱酸性陽イオン交換樹脂の併用と強塩基性陰イオン交換樹脂の組み合わせ、強塩基性陰イオン交換樹脂と弱塩基性陰イオン交換樹脂の併用と強酸性陽イオン交換樹脂の組み合わせ等により、目的の水質のイオン交換水が得られる。   Ion exchange water, softened water, and reverse osmosis membrane permeated water can be used as boiler replenishment water that is the subject of the corrosion inhibitor and corrosion inhibition method of the present invention, and ion exchange water is particularly preferred. Ion-exchanged water is water obtained by treating softened water, industrial water, tap water, groundwater, etc. with ion-exchange resin. The quality of the water is JIS B8223: 2006 “Boiler supply water and boiler water quality”. Specified for each operating pressure. As the ion exchange resin, a strong acid cation exchange resin, a weak acid cation exchange resin, a strongly basic anion exchange resin, a weakly basic anion exchange resin, a combination thereof, for example, a strong acid cation exchange resin is used. And strong basic anion exchange resin, combination of strong acid cation exchange resin and weak acid cation exchange resin and strong basic anion exchange resin, strong base anion exchange resin and weak base anion By using a combination of an exchange resin and a strong acid cation exchange resin, ion exchange water having a desired water quality can be obtained.

本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物は、ピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される1種以上である。これらのアミン化合物は、一般に市販されているものがそのまま使用でき、例えばピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンは広栄化学工業(株)等より入手可能である。   The amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention is at least one selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine. As these amine compounds, commercially available ones can be used as they are. For example, piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine are available from Guangei Chemical Industry Co., Ltd.

本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物は、もともと食品中に天然に存在し、食品の香りのもととなっている成分であり、例えば、ピペリジンは、ホップ油、コーヒー、大麦、にしん等の塩蔵品等の加工品、麦芽、チーズ等の食品中に存在し、ピロリジンは、ラデッシュ、チーズ、コーヒー、とうもろこし、麦芽、ホップ油等、イソペンチルアミンは、トリュフ、ヤマドリダケ、ワイン、ルバーブ、コーヒー、ケール等、フェネチルアミンは、チーズ、魚の加工品、ワイン、キャベツ、ココア、ビール等、ブチルアミンは、ケール、チーズ、ワイン、キャビア、パン、生鮭等の食品中に天然に存在する。また、これらのアミン化合物は、アルコール飲料、清涼飲料、冷凍乳製品類、菓子類、ソース類等の加工食品において、香りの再現や風味の向上等の目的で食品添加物として添加されている。これらのアミン化合物のボイラ給水、ボイラ蒸気、ボイラ凝縮水及び復水中の濃度は、通常、これらの食品に含まれているアミン化合物の濃度を超えない。   The amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention is a component that is naturally present in food and is a source of food fragrance, for example, piperidine is hop oil, coffee, It is present in processed foods such as salted products such as barley and cinnamon, malt, cheese and other foods, pyrrolidine is radish, cheese, coffee, corn, malt, hop oil, etc., isopentylamine is truffle, madridake, Wine, rhubarb, coffee, kale, etc. Phenethylamine is cheese, processed fish products, wine, cabbage, cocoa, beer, etc. Butylamine is naturally present in foods such as kale, cheese, wine, caviar, bread, ginger To do. In addition, these amine compounds are added as food additives for the purpose of reproducing aroma and improving the flavor in processed foods such as alcoholic beverages, soft drinks, frozen dairy products, confectionery, and sauces. The concentrations of these amine compounds in boiler feed water, boiler steam, boiler condensate and condensate usually do not exceed the concentration of amine compounds contained in these foods.

本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物は、ボイラ水系システムにおける金属材質の腐食抑制のために、給水、復水や凝縮水のpHを上昇させる目的で添加される。本発明の腐食抑制剤又は本発明の腐食抑制方法で用いられるアミン化合物を添加した後の給水、復水や凝縮水のpH(25℃)は、通常は7.0〜9.8の範囲であり、好ましくは8.5〜9.5の範囲であり、より好ましくは9.0〜9.3の範囲である。給水のpHが7.0未満では、鋼材や銅材の腐食抑制効果が低下して好ましくなく、給水のpHが9.8を超えると特に銅材の腐食抑制効果が低下するため好ましくない。   The amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention is added for the purpose of increasing the pH of feed water, condensate and condensed water in order to suppress corrosion of metal materials in the boiler water system. The pH (25 ° C.) of water supply, condensate and condensed water after adding the amine compound used in the corrosion inhibitor of the present invention or the corrosion inhibitor of the present invention is usually in the range of 7.0 to 9.8. Yes, preferably in the range of 8.5-9.5, more preferably in the range of 9.0-9.3. If the pH of the feed water is less than 7.0, the corrosion inhibition effect of the steel material or the copper material is lowered, which is not preferable.

本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物の添加量は、給水中の溶存炭酸や不純物の濃度を考慮して適宜決定されればよいが、補給水がイオン交換水の場合は、補給水量に対して通常は0.5〜8mg/Lの範囲である。補給水が軟化水や逆浸透膜透過水の場合は、もともと原水中に含まれている重炭酸イオンや炭酸イオンが軟化装置によって除去されず、これらの成分がボイラ水中で炭酸に加水分解するため、凝縮水中のpHを上昇させるのに必要なアミン化合物の添加量は増加する。この場合、アミン化合物の必要添加量は蒸気中の炭酸濃度に依存するが、補給水量に対する本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物の添加量は、通常は1〜50mg/Lの範囲である。   The addition amount of the amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention may be appropriately determined in consideration of the concentration of dissolved carbonic acid and impurities in the feed water, but when makeup water is ion-exchanged water The amount is usually in the range of 0.5 to 8 mg / L with respect to the amount of makeup water. When makeup water is softened water or reverse osmosis membrane permeated water, bicarbonate ions and carbonate ions originally contained in the raw water are not removed by the softening device, and these components are hydrolyzed into carbonic acid in boiler water. The amount of amine compound added to increase the pH in the condensed water increases. In this case, the required addition amount of the amine compound depends on the carbonic acid concentration in the steam, but the addition amount of the amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention relative to the amount of makeup water is usually 1 to 50 mg / L. Range.

本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物は揮発性のため、補給水系統、給水系統、蒸気・復水系統のボイラ水系システムのいかなる箇所に添加しても給水と復水のpHは殆ど変化せず、その為、ボイラ水系システムにおけるいずれの場所に添加してもよい。   Since the amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention is volatile, it can be added to any part of the boiler water system of the make-up water system, feed water system, steam / condensate system. The pH hardly changes, so it may be added anywhere in the boiler water system.

本発明の腐食抑制剤又は本発明の腐食抑制方法で用いられるアミン化合物の添加方法を具体的に示すと、
(1)給水系統に設置したpH計の測定値をもとにpHが設定範囲になるように薬液注入ポンプ等を用いて注入する方法、
(2)電気伝導率とpHの関係を予め求めておき、給水系統に設置した電気伝導率計の測定値をもとに、pHの設定範囲に相当する電気伝導率の設定範囲になるように薬液注入ポンプ等を用いて注入する方法、
等がある。この場合、薬液注入を自動注入方法としてもよい。
Specifically showing the addition method of the amine compound used in the corrosion inhibitor of the present invention or the corrosion inhibition method of the present invention,
(1) A method of injecting using a chemical injection pump or the like so that the pH falls within a set range based on the measured value of a pH meter installed in the water supply system,
(2) The relationship between electrical conductivity and pH is obtained in advance, and based on the measured value of the electrical conductivity meter installed in the water supply system, the electrical conductivity is set in a range corresponding to the pH range. A method of infusion using a chemical infusion pump or the like,
Etc. In this case, chemical solution injection may be an automatic injection method.

一方、ボイラ水のpHは通常8.5〜12.0の範囲に調整されるが、pHが低過ぎてもpHが高過ぎても腐食が発生し易くなる。ボイラ形式や使用圧力別のボイラ水pHの適正値は、例えばJIS B8223:2006『ボイラの給水及びボイラ水の水質』に規定されている。ボイラの使用圧力が2MPaを超えるボイラではpHは8.5〜11.0程度に調整するのが好ましいが、アルカリ腐食の防止のため使用圧力が高いボイラほどpHの上限値を低く抑えることが好ましい。   On the other hand, the pH of boiler water is usually adjusted to a range of 8.5 to 12.0, but corrosion is likely to occur if the pH is too low or too high. Appropriate values of the boiler water pH for each boiler type and operating pressure are defined in, for example, JIS B8223: 2006 “Boiler Supply Water and Boiler Water Quality”. In a boiler where the working pressure of the boiler exceeds 2 MPa, it is preferable to adjust the pH to about 8.5 to 11.0. However, in order to prevent alkaline corrosion, it is preferable to keep the upper limit of the pH lower as the working pressure is higher. .

本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物は揮発性が高いため、貫流ボイラ以外の固形分の混入が許容されるボイラ水系システムでは、本発明の腐食抑制剤や本発明の腐食抑制方法で用いられるアミン化合物を添加した後のボイラ水のpHが前記JIS B8223:2006に規定されているボイラ水pHの適正値に到達しない場合がある。その場合は、別途、アルカリ金属水酸化物やアルカリ金属リン酸塩を添加することが好ましい。   Since the amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention has high volatility, in a boiler water system where mixing of solids other than the once-through boiler is allowed, the corrosion inhibitor of the present invention or the corrosion of the present invention. The pH of the boiler water after adding the amine compound used in the suppression method may not reach the proper value of the boiler water pH defined in the above JIS B8223: 2006. In that case, it is preferable to add an alkali metal hydroxide or an alkali metal phosphate separately.

ここで、アルカリ金属水酸化物としては、水酸化ナトリウムや水酸化カリウムが用いられ、 アルカリ金属リン酸塩としては、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素一ナトリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素一カリウム、ピロリン酸ナトリウム、酸性ピロリン酸ナトリウム、ピロリン酸カリウム、酸性ピロリン酸カリウム、トリポリリン酸ナトリウム、トリポリリン酸カリウム、ポリリン酸ナトリウム、ポリリン酸カリウム、メタリン酸ナトリウム、メタリン酸カリウム等が用いられる。   Here, sodium hydroxide or potassium hydroxide is used as the alkali metal hydroxide, and as the alkali metal phosphate, trisodium phosphate, disodium hydrogen phosphate, monosodium dihydrogen phosphate, phosphoric acid are used. Tripotassium, dipotassium hydrogen phosphate, monopotassium dihydrogen phosphate, sodium pyrophosphate, acidic sodium pyrophosphate, potassium pyrophosphate, acidic potassium pyrophosphate, sodium tripolyphosphate, potassium tripolyphosphate, sodium polyphosphate, potassium polyphosphate, Sodium metaphosphate, potassium metaphosphate, etc. are used.

蒸気圧力が3MPaを超えるボイラでは、水酸化カリウムやリン酸カリウム等のカリウム塩を使用するとアルカリ腐食が発生し易くなるため、アルカリ金属水酸化物としては水酸化ナトリウム、アルカリ金属リン酸塩としてはリン酸水素二ナトリウム、リン酸三ナトリウム、トリポリリン酸ナトリウム等のナトリウム塩を使用するのが好ましい。   In boilers with a steam pressure exceeding 3 MPa, alkaline corrosion is likely to occur when potassium salts such as potassium hydroxide and potassium phosphate are used. Therefore, as alkali metal hydroxides, sodium hydroxide and alkali metal phosphates are used. It is preferable to use sodium salts such as disodium hydrogen phosphate, trisodium phosphate and sodium tripolyphosphate.

アルカリ金属水酸化物やアルカリ金属リン酸塩はそれぞれ単独で用いてもよく、あるいは2種以上を混合して用いてもよい。例えば、JIS B8223:2006で規定されている処理方式が「リン酸塩処理」の場合は、Na/POモル比が3.0以下となるように、アルカリ金属リン酸塩の種類や配合比を調整して用いるか、あるいはアルカリ金属水酸化物とアルカリ金属リン酸塩を組み合わせて用いられる。また、JIS B8223:2006で規定されている処理方式が「アルカリ処理」の場合は、アルカリ金属水酸化物を用いるか、あるいは(Na+K)/POモル比が3.0を超えるように、アルカリ金属水酸化物とアルカリ金属リン酸塩を組み合わせて用いられる。 Alkali metal hydroxides and alkali metal phosphates may be used alone or in admixture of two or more. For example, when the treatment method defined in JIS B8223: 2006 is “phosphate treatment”, the type and blending ratio of the alkali metal phosphate so that the Na / PO 4 molar ratio is 3.0 or less. These are used after adjusting, or an alkali metal hydroxide and an alkali metal phosphate are used in combination. When the treatment method defined in JIS B8223: 2006 is “alkaline treatment”, an alkali metal hydroxide is used, or an alkali is used so that the (Na + K) / PO 4 molar ratio exceeds 3.0. A combination of a metal hydroxide and an alkali metal phosphate is used.

アルカリ金属水酸化物やアルカリ金属リン酸塩の添加量は、ボイラ水のpHがJIS B8223:2006に規定されているpH管理範囲に収まるように調整される。また、JIS B8223:2006ではボイラ形式、圧力、処理方式等によってボイラ水中に保持すべきリン酸イオンの濃度が規定されているので、ボイラ水のリン酸イオン濃度が所定の管理範囲に収まるように、アルカリ金属リン酸塩の添加量が調整される。   The addition amount of the alkali metal hydroxide or the alkali metal phosphate is adjusted so that the pH of the boiler water falls within the pH management range defined in JIS B8223: 2006. Further, in JIS B8223: 2006, the concentration of phosphate ions to be retained in the boiler water is defined by the boiler type, pressure, treatment method, etc., so that the phosphate ion concentration in the boiler water falls within a predetermined management range. The amount of alkali metal phosphate added is adjusted.

本発明の腐食抑制剤は、ピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される1種以上のアミン化合物を水溶性溶剤に溶解して調製される。使用できる水溶性溶剤は一般的にボイラ水系に添加する薬剤に用いられる溶剤であれば特に種類に制限は無いが、通常は水である。その水質は前記の本発明の腐食抑制剤及び腐食抑制方法の対象となるボイラの補給水の水質と同程度である。また、アミン化合物の配合量はその溶解度の範囲内であれば特に制限は無い。   The corrosion inhibitor of the present invention is prepared by dissolving one or more amine compounds selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine in a water-soluble solvent. The water-soluble solvent that can be used is not particularly limited as long as it is a solvent that is generally used for chemicals added to the boiler water system, but is usually water. The quality of the water is comparable to the quality of the makeup water of the boiler that is the target of the corrosion inhibitor and the corrosion inhibition method of the present invention. Further, the compounding amount of the amine compound is not particularly limited as long as it is within the solubility range.

本発明の腐食抑制剤では、アミン化合物に加えてさらに還元性化合物を含有しても良い。また、本発明の腐食抑制方法では、アミン化合物に加えてさらに還元性化合物を添加しても良い。本発明の腐食抑制剤及び腐食抑制方法で用いられる還元性化合物は、酸素の還元能力を有する食品添加物に認定された化合物であり、例えばエリソルビン酸塩、アスコルビン酸塩、亜硫酸塩化合物、没食子酸塩、タンニン類等が挙げられる。また、これらの還元性化合物は、クエン酸塩、コハク酸塩、ソルビン酸塩、グルコン酸塩等の常温では酸素の還元性能力は無いが、ボイラ水の高温で分解する過程で酸素還元能力を有する化合物であってもよい。   The corrosion inhibitor of the present invention may further contain a reducing compound in addition to the amine compound. In the corrosion inhibiting method of the present invention, a reducing compound may be further added in addition to the amine compound. The reducing compound used in the corrosion inhibitor and the corrosion inhibiting method of the present invention is a compound certified as a food additive having oxygen reducing ability, for example, erythorbate, ascorbate, sulfite compound, gallic acid Examples thereof include salts and tannins. In addition, these reducing compounds, such as citrate, succinate, sorbate, gluconate, etc., have no oxygen reducing ability at room temperature, but they have oxygen reducing ability in the process of decomposition at high temperatures in boiler water. It may be a compound.

本発明の腐食抑制剤及び腐食抑制方法で用いられる還元性化合物の好ましい例は、エリソルビン酸塩、アスコルビン酸塩、亜硫酸塩化合物、没食子酸塩、タンニン類から選択される1種以上である。   Preferable examples of the reducing compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention are one or more selected from erythorbate, ascorbate, sulfite compound, gallate, and tannins.

アスコルビン酸はビタミンCとして知られた物質であり、生体の活動に重要な役割を示す必須栄養素である。エリソルビン酸はL−アスコルビン酸の立体異性体であり、イソアスコルビン酸、D−アラボアスコルビン酸とも呼ばれる化合物であるが、食品の酸化防止剤として使用されている。   Ascorbic acid is a substance known as vitamin C, and is an essential nutrient that plays an important role in biological activities. Erythorbic acid is a stereoisomer of L-ascorbic acid and is a compound called isoascorbic acid or D-araboascorbic acid, but is used as an antioxidant for foods.

亜硫酸化合物は、亜硫酸ナトリウム、重亜硫酸ナトリウム、亜硫酸カリウム、重亜硫酸カリウム、亜硫酸等の水に溶解して亜硫酸イオンならびに亜硫酸水素イオンを生成する化合物であり、食品の漂白と保存の目的やワイン等の酸化防止剤として使用されている。   A sulfite compound is a compound that dissolves in water such as sodium sulfite, sodium bisulfite, potassium sulfite, potassium bisulfite, and sulfurous acid to produce sulfite ions and hydrogen sulfite ions. Used as an antioxidant.

没食子酸は、ウルシ科ヌルデに発生する五倍子やブナ科に発生する没食子より、水、エタノール又は有機溶剤で抽出したタンニン、又は、マメ科タラの実の夾より温水で抽出したタンニンを、アルカリ又はその他(タンナーゼ等)により加水分解して得られたものであり、食品の酸化防止剤として使用されている。タンニン類は、五倍子又は没食子から得られたタンニン酸、タラタンニン、ミモザタンニン、柿タンニン等の植物タンニンを用いることができる。   Gallic acid is an alkali or tannin extracted with water, ethanol or an organic solvent, or tannin extracted with warm water from legume pods, from gallic pods occurring in urchinaceae nurde It is obtained by hydrolysis (other than tannase) and is used as an antioxidant for food. As the tannins, plant tannins such as tannic acid, tara tannin, mimosa tannin, and salmon tannin obtained from pentaploid or gallic can be used.

本発明における還元性化合物は、通常、中和塩の形態で用いられるが、塩の種類としてナトリウム塩、カリウム塩、アンモニウム塩が挙げられる。本発明の腐食抑制剤調製の過程で、水とともに、酸の形態の還元性化合物と水酸化ナトリウム、水酸化カリウム、アンモニア、アミン等を混合、中和して調製してもよい。あるいは、エリソルビン酸、アスコルビン酸、亜硫酸、没食子酸、タンニン類から選択される未中和の還元性化合物をピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される本発明のアミン化合物で中和したアミン塩の形態で用いても良い。   The reducing compound in the present invention is usually used in the form of a neutralized salt, and examples of the salt include sodium salt, potassium salt, and ammonium salt. In the process of preparing the corrosion inhibitor of the present invention, it may be prepared by mixing and neutralizing a reducing compound in an acid form with sodium hydroxide, potassium hydroxide, ammonia, amine, etc. together with water. Alternatively, an unneutralized reducing compound selected from erythorbic acid, ascorbic acid, sulfurous acid, gallic acid, and tannins is neutralized with the amine compound of the present invention selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine. It may be used in the form of an amine salt.

本発明における還元性化合物の添加量は、還元性化合物の種類や給水中や復水中の溶存酸素濃度によって異なるが、好ましくは、溶存酸素の1重量部に対してエリソルビン酸塩は3〜6重量部、アスコルビン酸塩は3〜6重量部、亜硫酸塩化合物は亜硫酸換算で4〜6重量部、没食子酸塩は2〜4重量部、タンニン類は3〜6重量部を添加する。ここで、溶存酸素濃度の実測値が不明なとき、脱気装置がある場合は脱気装置における溶存酸素濃度の保証値や設計値を用いてもよく、脱気装置がない場合は復水や給水温度における溶存酸素濃度の理論値を用いてもよい。   The amount of the reducing compound added in the present invention varies depending on the type of the reducing compound and the dissolved oxygen concentration in the feed water and condensate, but preferably 3-6 wt. Of erythorbate with respect to 1 part by weight of the dissolved oxygen. Parts, 3-6 parts by weight of ascorbate, 4-6 parts by weight of sulfite compound, 2-4 parts by weight of gallate, and 3-6 parts by weight of tannins. Here, when the measured value of the dissolved oxygen concentration is unknown, if there is a degassing device, the guaranteed value or design value of the dissolved oxygen concentration in the degassing device may be used, and if there is no degassing device, condensate or You may use the theoretical value of the dissolved oxygen concentration in feed water temperature.

本発明における還元性化合物の添加箇所は、給水中の溶存酸素を効率的に除去できる箇所が好ましく、具体的には給水系統や復水系統のできるだけ上流側である。   The location where the reducing compound is added in the present invention is preferably a location where the dissolved oxygen in the feed water can be efficiently removed, and is specifically as upstream as possible of the feed water system and the condensate system.

本発明のアミン化合物と還元性化合物を併用するとき、これらを混合して一液性組成物である本発明の腐食抑制剤として薬液注入ポンプを用いて添加する方法、あるいはそれぞれ別々に薬液注入ポンプを用いて添加する方法のいずれでもよい。また、本発明の腐食抑制方法では、アミン化合物を添加して給水や復水のpHを維持できれば、その添加方法は特に限定されない。薬液添加方法は、通常、連続添加方法が用いられるが、間歇添加方法でもよく、また、アミン化合物と還元性化合物を別々に連続添加と間歇添加を組み合わせて添加する方法でもよい。   When the amine compound of the present invention and the reducing compound are used in combination, a method of mixing them and adding them as a corrosion inhibitor of the present invention, which is a one-component composition, using a chemical solution injection pump, or a separate chemical solution injection pump Any of the methods of adding using may be used. Moreover, in the corrosion inhibition method of the present invention, the addition method is not particularly limited as long as the amine compound can be added to maintain the pH of the feed water or condensate. As the chemical solution addition method, a continuous addition method is usually used, but an intermittent addition method may be used, or a method of adding an amine compound and a reducing compound separately in combination with continuous addition and intermittent addition may be used.

本発明の腐食抑制方法を適用するボイラのブロー率は特に制限はないが、ボイラ水中における溶解成分の過度の濃縮を防止するため、循環ボイラでは給水量に対して0.5〜20%のブローダウンを連続的あるいは断続的に実施するのが好ましい。   The blow rate of the boiler to which the corrosion inhibiting method of the present invention is applied is not particularly limited, but in order to prevent excessive concentration of dissolved components in the boiler water, the circulation boiler has a blow rate of 0.5 to 20% with respect to the water supply amount. It is preferable to carry out the down continuously or intermittently.

以下に本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be specifically described below, but the present invention is not limited to these examples.

(腐食試験1)
400番研磨紙で研磨仕上げした寸法が1×13×75mmの低炭素鋼試験片(材質:JIS G3141 SPCC−SB)をアセトンで脱脂後、乾燥して試験前の質量を測定した。四日市市水をミリポア社製Milli-Qプラスシステム(商品名)に通水して得られたイオン交換水(比抵抗18MΩ・cm以上)に窒素ガスを通気して該イオン交換水の溶存酸素濃度を10μg/Lまで低下させた後、表1に示すアミン化合物を添加し、更に炭酸ガス又は水酸化ナトリウムを用いて表1に示すpH(25℃)に調整し、試験液とした。試験片1枚を入れたガラス瓶に試験液を溢れるまで満たし、密閉して温度70℃で7日間保持した。7日後、試験片を取り出して付着物を除去後、試験後の質量を測定し、下記の式(1)より腐食速度(mdd)を計算した。
腐食速度(mdd)=(W−W)/(S×T)・・・・(1)
:試験前の質量(mg)、W:試験後の質量(mg)
S:試験片の表面積(dm
T:試験期間(日数)
同様に、前記低炭素鋼試験片に代えて、400番研磨紙で研磨仕上げした寸法が1×13×75mmのアルミニウム黄銅製試験片(材質:JIS H3100 C6871)を用いた試験を行った。
低炭素鋼試験片及びアルミニウム黄銅製試験片を用いた試験結果を表1に示す。
(Corrosion test 1)
A low-carbon steel test piece (material: JIS G3141 SPCC-SB) having a size of 1 × 13 × 75 mm polished with No. 400 polishing paper was degreased with acetone and dried to measure the mass before the test. Dissolved oxygen concentration of the ion exchange water by bubbling nitrogen gas through ion exchange water (specific resistance 18MΩ · cm or more) obtained by passing Yokkaichi city water through Milli-Q plus system (trade name) manufactured by Millipore Was reduced to 10 μg / L, the amine compound shown in Table 1 was added, and the pH (25 ° C.) shown in Table 1 was adjusted using carbon dioxide or sodium hydroxide to prepare a test solution. A glass bottle containing one test piece was filled with the test solution until it overflowed, sealed, and kept at 70 ° C. for 7 days. After 7 days, the test piece was taken out and the deposits were removed, the mass after the test was measured, and the corrosion rate (mdd) was calculated from the following equation (1).
Corrosion rate (mdd) = (W 0 −W 1 ) / (S × T) (1)
W 0 : Mass before test (mg), W 1 : Mass after test (mg)
S: surface area of the test piece (dm 2 )
T: Test period (days)
Similarly, instead of the low-carbon steel test piece, a test using an aluminum brass test piece (material: JIS H3100 C6871) having a size of 1 × 13 × 75 mm polished with No. 400 polishing paper was performed.
Table 1 shows the test results using the low carbon steel test piece and the aluminum brass test piece.

Figure 2016065291
Figure 2016065291

表1の結果から、本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物は、試験液のpH(25℃)が7.0〜9.8の範囲において、鋼材(低炭素鋼)と銅材(アルミニウム黄銅)の腐食を同時に防止できることが明らかになった。   From the results of Table 1, the amine compound used in the corrosion inhibitor and the corrosion inhibition method of the present invention is a steel material (low carbon steel) in the range of pH (25 ° C.) of the test solution from 7.0 to 9.8. It became clear that corrosion of copper material (aluminum brass) can be prevented at the same time.

(腐食試験2)
表2に示すアミン化合物及び還元性化合物を添加し、炭酸ガスと水酸化ナトリウムを用いるpH(25℃)調整を行わない以外は腐食試験1と同様の試験を行った。供試材質はJIS G3141 SPCC−SBである。結果を表2に示す。
(Corrosion test 2)
A test similar to the corrosion test 1 was performed except that the amine compound and the reducing compound shown in Table 2 were added and the pH (25 ° C.) adjustment using carbon dioxide and sodium hydroxide was not performed. The test material is JIS G3141 SPCC-SB. The results are shown in Table 2.

Figure 2016065291
Figure 2016065291

表2の結果から、本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物を単独で用いる場合、比較例に比べて鋼材(低炭素鋼)に対する優れた腐食抑制効果を示し、更に本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物と還元性化合物を併用した場合は、鋼材(低炭素鋼)に対してそれぞれ単独で使用するよりも相乗的な腐食抑制効果を示すことが分かる。   From the results shown in Table 2, when the corrosion inhibitor and the amine compound used in the corrosion inhibition method of the present invention are used alone, the present invention shows an excellent corrosion inhibition effect on steel (low carbon steel) as compared with the comparative example. It can be seen that when the amine compound and reducing compound used in the corrosion inhibitor and corrosion inhibiting method of the present invention are used in combination, they exhibit a synergistic corrosion inhibiting effect on steel materials (low carbon steel) than when used alone. .

(腐食試験3)
400番研磨紙で研磨仕上げした寸法が1×13×75mmのアルミニウム黄銅製試験片(材質:JIS H3100 C6871)をアセトンで脱脂後、乾燥して試験前の質量を測定した。四日市市水をミリポア社製Milli-Qプラスシステム(商品名)に通水して得られたイオン交換水(比抵抗18MΩ・cm以上)に表3に示すアミン化合物及び還元性化合物を添加し、試験液として用いた。ここで、アミン化合物の添加量は試験液のpHが9.5になるように調整した。試験片1枚を入れたガラス瓶に試験液を溢れるまで満たし、密閉して温度70℃で7日間保持した。7日後、試験片を取り出して付着物を除去後、試験後の質量を測定し、前記の式(1)より腐食速度(mdd)を計算した。結果を表3に示す。
(Corrosion test 3)
A test piece made of aluminum brass having a size of 1 × 13 × 75 mm polished with No. 400 polishing paper (material: JIS H3100 C6871) was degreased with acetone and dried to measure the mass before the test. Add the amine compounds and reducing compounds shown in Table 3 to ion-exchanged water (specific resistance of 18 MΩ · cm or more) obtained by passing Yokkaichi city water through Milli-Q plus system (trade name) manufactured by Millipore, Used as a test solution. Here, the addition amount of the amine compound was adjusted so that the pH of the test solution was 9.5. A glass bottle containing one test piece was filled with the test solution until it overflowed, sealed, and kept at 70 ° C. for 7 days. After 7 days, the test piece was taken out and the deposits were removed, the mass after the test was measured, and the corrosion rate (mdd) was calculated from the above equation (1). The results are shown in Table 3.

Figure 2016065291
Figure 2016065291

表3の結果から、還元性化合物を併用した比較例に比べて、本発明の腐食抑制剤及び腐食抑制方法で用いられるアミン化合物に還元性化合物を併用した場合は勿論のこと、該アミン化合物を単独で用いる場合であっても、アルミニウム黄銅に対する優れた腐食抑制効果を示すことが明らかになった。   From the results of Table 3, when compared to the comparative example in which the reducing compound is used in combination, when the reducing compound is used in combination with the amine compound used in the corrosion inhibitor and the corrosion suppressing method of the present invention, It has been clarified that even when used alone, it exhibits an excellent corrosion inhibiting effect on aluminum brass.

本発明の腐食抑制剤及び腐食抑制方法は、食品工場、医薬品工場、病院、介護施設、給食センター、ホテル等のボイラからの蒸気が食品や医薬品と接触するボイラ水系システムの金属材質の腐食の抑制に利用できる。
The corrosion inhibitor and the corrosion inhibition method of the present invention are used to suppress corrosion of metal materials in a boiler water system in which steam from a boiler of a food factory, a pharmaceutical factory, a hospital, a nursing facility, a meal center, a hotel, etc. comes into contact with food or a medicine. Available to:

Claims (4)

ピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される1種以上のアミン化合物を含有することを特徴とする、ボイラからの蒸気が食品や医薬品と接触する蒸気圧20MPa以下のボイラの水系システムに適用する腐食抑制剤。   An aqueous system for a boiler having a vapor pressure of 20 MPa or less in which steam from a boiler comes into contact with food or a pharmaceutical, characterized by containing at least one amine compound selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine Corrosion inhibitor applied to. 更に還元性化合物を含有することを特徴とする請求項1記載のボイラの水系システムに適用する腐食抑制剤。   Furthermore, a reducing compound is contained, The corrosion inhibitor applied to the aqueous system of the boiler of Claim 1 characterized by the above-mentioned. ボイラからの蒸気が食品や医薬品と接触する蒸気圧20MPa以下のボイラの水系システムに適用する腐食抑制方法であって、ピペリジン、ピロリジン、イソペンチルアミン、フェネチルアミン、ブチルアミンから選択される1種以上のアミン化合物をボイラ水系システムに添加すること及び該ボイラ水系システムの給水及び/又は復水及び/又は凝縮水のpH(25℃)を7.0〜9.8に維持することを特徴とするボイラ水系システムの腐食抑制方法。   One or more amines selected from piperidine, pyrrolidine, isopentylamine, phenethylamine, and butylamine, which is a corrosion control method applied to an aqueous system of a boiler having a vapor pressure of 20 MPa or less where steam from the boiler comes into contact with food or pharmaceuticals A boiler water system characterized by adding a compound to a boiler water system and maintaining the pH (25 ° C) of feed water and / or condensate and / or condensed water of the boiler water system at 7.0 to 9.8. How to control system corrosion. 更に還元性化合物を添加することを特徴とする請求項3記載のボイラ水系システムの腐食抑制方法。
The method for inhibiting corrosion of a boiler water system according to claim 3, further comprising adding a reducing compound.
JP2014195369A 2014-09-25 2014-09-25 Corrosion inhibitor and corrosion control method for boiler water system Active JP6316719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195369A JP6316719B2 (en) 2014-09-25 2014-09-25 Corrosion inhibitor and corrosion control method for boiler water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195369A JP6316719B2 (en) 2014-09-25 2014-09-25 Corrosion inhibitor and corrosion control method for boiler water system

Publications (2)

Publication Number Publication Date
JP2016065291A true JP2016065291A (en) 2016-04-28
JP6316719B2 JP6316719B2 (en) 2018-04-25

Family

ID=55805021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195369A Active JP6316719B2 (en) 2014-09-25 2014-09-25 Corrosion inhibitor and corrosion control method for boiler water system

Country Status (1)

Country Link
JP (1) JP6316719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735097B1 (en) 2016-04-05 2017-05-12 건국대학교 산학협력단 Composition containing Rhus verniciflua extract for corrosion inhibition and the method of corrosion inhibition using the same
WO2020174607A1 (en) * 2019-02-27 2020-09-03 Kurita Water Industries Ltd. Method for providing corrosion protection to a water-steam circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992097A (en) * 1982-11-17 1984-05-28 Katayama Chem Works Co Ltd Additive for soft water in boiler
JP2002256464A (en) * 2001-02-27 2002-09-11 Miura Co Ltd Corrosion inhibitor
JP2009285530A (en) * 2008-05-27 2009-12-10 Kurita Water Ind Ltd Water treatment agent for boiler device, and water treatment method for boiler device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992097A (en) * 1982-11-17 1984-05-28 Katayama Chem Works Co Ltd Additive for soft water in boiler
JP2002256464A (en) * 2001-02-27 2002-09-11 Miura Co Ltd Corrosion inhibitor
JP2009285530A (en) * 2008-05-27 2009-12-10 Kurita Water Ind Ltd Water treatment agent for boiler device, and water treatment method for boiler device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735097B1 (en) 2016-04-05 2017-05-12 건국대학교 산학협력단 Composition containing Rhus verniciflua extract for corrosion inhibition and the method of corrosion inhibition using the same
WO2020174607A1 (en) * 2019-02-27 2020-09-03 Kurita Water Industries Ltd. Method for providing corrosion protection to a water-steam circuit

Also Published As

Publication number Publication date
JP6316719B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
CN104355419A (en) Multifunctional scale and corrosion inhibitor and preparation method thereof
EP3106439B1 (en) Scale removal method for steam generating facilities
JP5773091B2 (en) Descale method for steam generating equipment
JP6316719B2 (en) Corrosion inhibitor and corrosion control method for boiler water system
JP2010181118A (en) Water treatment method in steam generation plant
JP4711902B2 (en) Boiler corrosion control method
CN102083757B (en) Boiler water treatment agent and water treatment process
JP5531413B2 (en) Boiler water treatment agent, water treatment method, and stabilization method during storage or distribution of boiler water treatment agent
CN111051251A (en) Compositions and methods for inhibiting corrosion and scale
JP5970884B2 (en) Anticorrosion method
EP3489387A1 (en) Deoxidizing agent for boilers and method for deoxidizing boiler water system
KR20170095596A (en) Water treatment composition containing carbohydrazide for power plant boiler system
JP5685137B2 (en) Metal anticorrosive for boiler water system
JP6156494B2 (en) Water treatment method for steam generating equipment
JP2008184680A (en) Corrosion inhibitor
CN106186373A (en) A kind of green high-efficient boiler corrosion inhibiting and descaling agent
JP5978711B2 (en) Iron corrosion control method
JP5826622B2 (en) Metal anticorrosive
JP2013237916A (en) Metal corrosion inhibitor and method for treating boiler water system
JP5691697B2 (en) Water treatment method for steam generating equipment
JP2845572B2 (en) High-temperature water-based corrosion inhibitor
JP5879699B2 (en) Corrosion prevention method for boiler water supply system
JP5402669B2 (en) Water treatment method for boiler water system
JP2001131778A (en) Chemical agent for water treatment
JP6249192B1 (en) Metal anticorrosive for open circulation cooling water system and anticorrosion method for open circulation cooling water system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171016

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

R150 Certificate of patent or registration of utility model

Ref document number: 6316719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250