JP2016064375A - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP2016064375A
JP2016064375A JP2014195634A JP2014195634A JP2016064375A JP 2016064375 A JP2016064375 A JP 2016064375A JP 2014195634 A JP2014195634 A JP 2014195634A JP 2014195634 A JP2014195634 A JP 2014195634A JP 2016064375 A JP2016064375 A JP 2016064375A
Authority
JP
Japan
Prior art keywords
water
temperature
electrolytic cell
electrolyzed water
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014195634A
Other languages
Japanese (ja)
Inventor
治彦 福本
Haruhiko Fukumoto
治彦 福本
良太 西江
Ryota Nishie
良太 西江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2014195634A priority Critical patent/JP2016064375A/en
Publication of JP2016064375A publication Critical patent/JP2016064375A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyzed water generator which can detect electric conductivity with high accuracy in consideration of an influence of water temperature variations, and can set a pH of electrolyzed water generated to a target value.SOLUTION: The electrolyzed water generator comprises: an electrolytic cell for generating electrolyzed water, comprising an inflow port through which water flows in from a water supply source, an outflow port through which water flows out, and a pair of opposing electrodes; temperature measurement means for measuring temperature of water which passes through the electrolytic cell; and a control part for calculating electric conductivity of water which passes through the electrolytic cell and controlling an electric current to the pair of electrodes. The control part carries out calculation of the electric conductivity based on temperature measured by the temperature measurement means, and determines a target electric current so that the pH becomes the target value.SELECTED DRAWING: Figure 1

Description

本発明は、水を電気分解して電解水を生成する電解水生成装置に関する。   The present invention relates to an electrolyzed water generating apparatus that electrolyzes water to generate electrolyzed water.

従来から、例えば、特許文献1に記載の電解水生成装置のように、電極に電流を流すことで電解水を生成する電解水生成装置が提供されている。このような電解水生成装置においては、例えば、アルカリ飲料水生成や除菌水生成などに電解水を使用する場合、単に一定の電流を流して電解水を生成するだけでなく、用途に応じて、生成する電解水を狙いのpH値に設定することが求められる。
そのために、例えば、特許文献2に記載の電解水生成装置においては、電極に印加される電圧と電流を計測し、計測された電圧と電流に基づいて得られる電気伝導度(電気伝導度EC=電極間距離L/電極面積A/水質抵抗値Rから算出)の値によって、電極に通電する電力を調整し、電解水のpH値を制御する手段がある。
2. Description of the Related Art Conventionally, an electrolyzed water generating device that generates electrolyzed water by passing an electric current through an electrode, such as the electrolyzed water generating device described in Patent Document 1, has been provided. In such an electrolyzed water generating apparatus, for example, when using electrolyzed water for alkaline drinking water generation or sterilized water generation, not only simply generate a constant current but also generate electrolyzed water, depending on the application. It is required to set the generated electrolyzed water to a target pH value.
Therefore, for example, in the electrolyzed water generating device described in Patent Document 2, the voltage and current applied to the electrodes are measured, and the electric conductivity obtained based on the measured voltage and current (electric conductivity EC = There is a means for controlling the pH value of the electrolyzed water by adjusting the power supplied to the electrodes according to the value of the distance between the electrodes L / electrode area A / water quality resistance value R).

特開2011−206622JP2011-206622A 特開2003−027556JP2003-027556

しかしながら、特許文献2のように水質抵抗値から電気伝導度を測定する場合においては、特に水温のばらつきによって電気伝導度の値が変動するため、水質抵抗値に基づいて得られる電気伝導度の値(例えば25℃を基準にして算出)と、実際の水温での電気伝導度の値が一致せず、正確に電気伝導度を測定できないという課題がある。   However, in the case where the electrical conductivity is measured from the water quality resistance value as in Patent Document 2, the value of the electrical conductivity obtained based on the water quality resistance value because the value of the electrical conductivity fluctuates particularly due to variations in the water temperature. There is a problem that the electrical conductivity cannot be accurately measured because the electrical conductivity value at the actual water temperature does not match (for example, calculated based on 25 ° C.).

また、電極は、電流を繰り返し流すことで電極の面積が減り、経年的に劣化する。これにより、特許文献2のように水質抵抗値から電気伝導度を測定する場合においては、電極の劣化の影響を受けることで水質抵抗値を正確に測定できず、適切な電解水のpH値を制御できないといった課題がある。   In addition, the electrode is deteriorated over time by reducing the area of the electrode by repeatedly passing the current. Thereby, when measuring electrical conductivity from the water quality resistance value as in Patent Document 2, the water quality resistance value cannot be accurately measured due to the influence of the deterioration of the electrode, and the appropriate pH value of the electrolyzed water is set. There is a problem that it cannot be controlled.

第1の発明は、給水源からの水が流入する流入口と、水が流出する流出口と、対向した一対の電極と、を有する電解水を生成する電解槽と、前記電解槽を通過する水の温度を測定する温度測定手段と、前記電解槽を通過する水の電気伝導度を演算し、かつ前記一対の電極への電流を制御する制御部と、を有し、前記制御部は前記温度測定手段の温度に基づいて、前記電気伝導度の演算を行い、所定のpH値となるよう目標電流を決定する電解水生成装置である。   1st invention passes the electrolytic cell which produces | generates the electrolyzed water which has the inflow port into which the water from a water supply source flows in, the outflow port from which water flows out, and a pair of electrode which opposed. Temperature measuring means for measuring the temperature of water, and a control unit for calculating the electrical conductivity of water passing through the electrolytic cell and controlling the current to the pair of electrodes, It is an electrolyzed water generating apparatus that calculates the electrical conductivity based on the temperature of the temperature measuring means and determines a target current so as to obtain a predetermined pH value.

第1の発明によれば、水温のばらつきの影響を考慮して電気伝導度を高精度で検出することができ、結果として生成する電解水を狙いのpH値に設定することが可能となる。   According to the first invention, the electric conductivity can be detected with high accuracy in consideration of the influence of variations in water temperature, and the resulting electrolyzed water can be set to a target pH value.

第2の発明は、前記電解槽の上流側に配置され、前記電解槽に流入される水を加熱する加熱手段と、を更に備え、前記加熱手段を制御する加熱制御部と、を有し、前記加熱制御部は前記加熱手段によって前記水の温度を所定の温度とする電解水生成装置。   The second aspect of the present invention further includes a heating unit that is disposed on the upstream side of the electrolytic cell and that heats water flowing into the electrolytic cell, and has a heating control unit that controls the heating unit, The said heating control part is an electrolyzed water generating apparatus which makes the temperature of the said water predetermined temperature with the said heating means.

第2の発明によれば、所定の温度とすることで季節などの気温の影響を受けずに、電気伝導度をさらに高精度で検出することができ、結果として生成する電解水を狙いのpH値に設定することが可能となる。   According to the second aspect of the invention, the electrical conductivity can be detected with higher accuracy without being affected by the temperature of the season or the like by setting the predetermined temperature, and as a result, the pH of the electrolyzed water to be generated is targeted. It can be set to a value.

第3の発明は、前記対向した一対の電極とは別に水の電気伝導度を計測するための一対の電極を設けた電解水生成装置。   3rd invention is the electrolyzed water generating apparatus which provided the pair of electrode for measuring the electrical conductivity of water separately from the said pair of facing electrode.

第3の発明によれば、電解水を生成するための電流よりは小さい電流を、電気伝導度を計測するための一対の電極へ通電して水質抵抗値を検出するので、電極の劣化の影響を抑制し適切な水質抵抗値の検出が可能となる。   According to the third aspect of the invention, since the current smaller than the current for generating the electrolyzed water is supplied to the pair of electrodes for measuring the electrical conductivity to detect the water quality resistance value, the influence of the deterioration of the electrodes This makes it possible to detect an appropriate water quality resistance value.

これにより、水温のばらつきの影響を考慮して電気伝導度を高精度で検出することができ、結果として生成する電解水を狙いのpH値に設定することが可能となる。   As a result, the electrical conductivity can be detected with high accuracy in consideration of the influence of variations in the water temperature, and the resulting electrolyzed water can be set to a target pH value.

本発明に係わる実施形態1の電解水生成装置を例示する回路ブロック図である。It is a circuit block diagram which illustrates the electrolyzed water generating apparatus of Embodiment 1 concerning the present invention. 水の温度に対する水質抵抗値と電気伝導度の関係を表した図である。It is a figure showing the relationship between the water quality resistance value with respect to the temperature of water, and electrical conductivity. 本発明に係わる実施形態2の電解水生成装置を例示する回路ブロック図である。It is a circuit block diagram which illustrates the electrolyzed water generating apparatus of Embodiment 2 concerning the present invention. 本発明に係わる実施形態3の電解水生成装置を例示する回路ブロック図である。It is a circuit block diagram which illustrates the electrolyzed water generating apparatus of Embodiment 3 concerning the present invention.

以下、本発明に係わる実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる実施形態1の電解水生成装置を例示する回路ブロック図である。   FIG. 1 is a circuit block diagram illustrating an electrolyzed water generating apparatus according to Embodiment 1 of the present invention.

図1に示すように、電解水生成装置100は、AC/DC変換部2と、制御部である電気伝導度を演算するマイコン部3と電極へ電流を制御する電極駆動部6と、電解槽400内に設けられる対向した一対の第1の電極7と、水質抵抗値を検出する水質抵抗検出部8と、水温を測定するサーミスタ9と、を備える。電解水生成装置100への給電はAC電源1によって行われる。   As shown in FIG. 1, the electrolyzed water generating apparatus 100 includes an AC / DC conversion unit 2, a microcomputer unit 3 that calculates electrical conductivity as a control unit, an electrode drive unit 6 that controls current to the electrodes, and an electrolytic cell. A pair of opposed first electrodes 7 provided in 400, a water quality resistance detector 8 that detects a water quality resistance value, and a thermistor 9 that measures the water temperature are provided. Power supply to the electrolyzed water generating apparatus 100 is performed by an AC power source 1.

電解槽400に給水源20から流水路200を通して水が供給される。電解槽400によって電気分解された水は吐出部30から吐出される。吐出部30から吐出された電解水は、例えば便器への洗浄水としてボウルに噴霧される。流水路200は、給水源20から吐出部30までを繋ぐ水路である。   Water is supplied to the electrolytic cell 400 from the water supply source 20 through the flowing water channel 200. Water electrolyzed by the electrolytic bath 400 is discharged from the discharge unit 30. The electrolyzed water discharged from the discharge unit 30 is sprayed on the bowl as washing water for the toilet bowl, for example. The flowing water channel 200 is a water channel connecting the water supply source 20 to the discharge unit 30.

AC/DC変換部2はAC電源1から入力されたAC電圧をDC電圧に変換し、マイコン部3と、電極駆動部6と、サーミスタ9に電力を供給する。   The AC / DC conversion unit 2 converts the AC voltage input from the AC power source 1 into a DC voltage, and supplies power to the microcomputer unit 3, the electrode driving unit 6, and the thermistor 9.

温度測定手段としてのサーミスタ9は給水源20と電解槽400とをつなぐ流水路200に設けられ、サーミスタ9が位置する水の温度を測定し、その情報をマイコン部3に送信する。つまり、サーミスタ9は電解槽400を通過する水の温度を測定する。   The thermistor 9 as a temperature measuring means is provided in the flowing water channel 200 connecting the water supply source 20 and the electrolytic bath 400, measures the temperature of the water where the thermistor 9 is located, and transmits the information to the microcomputer unit 3. That is, the thermistor 9 measures the temperature of water passing through the electrolytic cell 400.

電極駆動部6はマイコン部3から指令を受けて対向した一対の第1の電極7へ流す電流を制御する。   The electrode driving unit 6 receives a command from the microcomputer unit 3 and controls a current that flows to the pair of first electrodes 7 facing each other.

水質抵抗検出部8は流入口10から電解槽400内に流入した水の水質抵抗値を検出する。   The water quality detection unit 8 detects the water quality resistance value of the water flowing into the electrolytic cell 400 from the inlet 10.

電解槽400はサーミスタ9と吐水部30の間に位置し、給水源20からの水が流入する流入口10と、水が流出する流出口11と、対向した一対の電極7と、を有し電解水を生成する。   The electrolytic cell 400 is located between the thermistor 9 and the water discharge unit 30, and has an inlet 10 into which water from the water supply source 20 flows, an outlet 11 from which water flows out, and a pair of electrodes 7 facing each other. Generate electrolyzed water.

次に、電解水を狙いのpH値に設定するまでの動作を説明する。   Next, an operation until the electrolytic water is set to a target pH value will be described.

サーミスタ9によって読み取られた流水路200の水の温度と、水質抵抗検出部8によって検出された水の水質抵抗値とをマイコン部3に送信する。   The temperature of the water in the flowing water channel 200 read by the thermistor 9 and the water quality resistance value detected by the water quality resistance detection unit 8 are transmitted to the microcomputer unit 3.

マイコン部3はサーミスタ9から送信された流水路200の水の温度と、水質抵抗検出部8から送信された流水路200の水の水質抵抗値から、水温に応じた電気伝導度を算出する。   The microcomputer unit 3 calculates the electrical conductivity according to the water temperature from the temperature of the water in the flow channel 200 transmitted from the thermistor 9 and the water quality resistance value of the water in the flow channel 200 transmitted from the water quality detection unit 8.

マイコン部3は電気伝導度に応じた電流を決定し、電極駆動部6へ制御信号を送信する。   The microcomputer unit 3 determines a current corresponding to the electric conductivity and transmits a control signal to the electrode driving unit 6.

電極駆動部6はマイコン部3からの指令を受け、対向した一対の第1の電極7へ電流を制御する。   The electrode drive unit 6 receives a command from the microcomputer unit 3 and controls the current to the pair of first electrodes 7 facing each other.

第1の電極7に電流を供給することによって電解槽400内の水が電気分解され、狙いのpH値の電解水を得ることができる。   By supplying current to the first electrode 7, the water in the electrolytic cell 400 is electrolyzed, and electrolyzed water having a target pH value can be obtained.

図2は、水の温度に対する水質抵抗値と電気伝導度の関係を表した図である。水の温度が変化することによって電気伝導度は変化する。   FIG. 2 is a diagram showing the relationship between the water resistance value and the electric conductivity with respect to the temperature of the water. The electrical conductivity changes as the temperature of the water changes.

図2に示すとおり、水質抵抗値が大きくなると、電気伝導度は小さくなり、逆に水質抵抗値が小さくなると、電気伝導度は大きくなる。また、同じ水質抵抗値でも、水の温度によって電気伝導度の値は異なる。水の温度が高い場合の方が、水の温度が低い場合に比べて、電気伝導度の値は小さくなる。そのため、水温を検出することによって電気伝導度を精度良く測ることができ、その結果、生成する電解水を狙いのpH値に設定することができる。   As shown in FIG. 2, when the water quality resistance value increases, the electrical conductivity decreases, and conversely, when the water quality resistance value decreases, the electrical conductivity increases. In addition, even with the same water quality resistance value, the value of electrical conductivity varies depending on the temperature of water. When the water temperature is high, the electric conductivity is smaller than when the water temperature is low. Therefore, it is possible to accurately measure the electrical conductivity by detecting the water temperature, and as a result, it is possible to set the generated electrolyzed water to a target pH value.

つまり、電極間距離L、電極面積A、水質抵抗値R、温度係数kによって次式のように電気伝導度ECが表せる。   That is, the electrical conductivity EC can be expressed by the following equation using the interelectrode distance L, the electrode area A, the water resistance R, and the temperature coefficient k.

実施形態2は、電解水生成装置100にヒータ5を更に備え、ヒータ5を制御しタンク300内の水の温度を所定の温度になるように設定する。例えば、30℃に設定する。   In the second embodiment, the electrolyzed water generating apparatus 100 is further provided with a heater 5, and the heater 5 is controlled to set the temperature of the water in the tank 300 to a predetermined temperature. For example, it is set to 30 ° C.

図3は、本発明に係わる実施形態2の電解水生成装置を例示する回路ブロック図である。   FIG. 3 is a circuit block diagram illustrating the electrolyzed water generating device according to the second embodiment of the invention.

実施形態1との違いは図3に示すように、ヒータ5を制御する加熱制御部4と、タンク300内の水を加熱する加熱手段としてのヒータ5と、を備える。   As shown in FIG. 3, the difference from the first embodiment includes a heating control unit 4 that controls the heater 5 and a heater 5 as a heating unit that heats water in the tank 300.

給水源20の下流側かつサーミスタ9の上流側にタンク300が設置される。   A tank 300 is installed downstream of the water supply source 20 and upstream of the thermistor 9.

加熱制御部4はAC電源1に接続されており、ヒータ5への電力供給を制御する。   The heating control unit 4 is connected to the AC power source 1 and controls power supply to the heater 5.

次に、電解水を狙いのpH値に設定するまでの動作を説明する。   Next, an operation until the electrolytic water is set to a target pH value will be described.

図3に示すように、加熱制御部4はマイコン部3から受け取った流水路200の水の温度情報に応じて、ある所定の温度、例えば30℃となるようにヒータ5へ電力を供給する。   As shown in FIG. 3, the heating control unit 4 supplies power to the heater 5 so as to reach a predetermined temperature, for example, 30 ° C., according to the temperature information of the water in the flowing water channel 200 received from the microcomputer unit 3.

30℃に温められた水温情報を受信し、水質抵抗検出部8から水質抵抗値の情報を受信したマイコン部3は、演算を行い、電気伝導度に応じた電流を決定し、電極駆動部6へ制御信号を送信する。   The microcomputer unit 3 that has received the water temperature information heated to 30 ° C. and has received the information on the water quality resistance value from the water quality detection unit 8 performs calculation, determines the current according to the electrical conductivity, and the electrode driving unit 6 Send a control signal to

電極駆動部6はマイコン部3からの指令を受け、対向した一対の第1の電極7へ電流を制御する。   The electrode drive unit 6 receives a command from the microcomputer unit 3 and controls the current to the pair of first electrodes 7 facing each other.

第1の電極7に電流を供給することによって電解槽400内の水が電気分解され、狙いのpH値の電解水を得ることができる。   By supplying current to the first electrode 7, the water in the electrolytic cell 400 is electrolyzed, and electrolyzed water having a target pH value can be obtained.

実施形態3は、対向した一対の第1の電極7とは別に、水の電気伝導度を計測するための一対の第2の電極12を設ける。   In the third embodiment, a pair of second electrodes 12 for measuring the electrical conductivity of water is provided separately from the pair of opposed first electrodes 7.

図4は、本発明に係わる実施形態3の電解水生成装置を例示する回路ブロック図である。   FIG. 4 is a circuit block diagram illustrating the electrolyzed water generating device according to the third embodiment of the invention.

対向した一対の第2の電極12は電解槽400内にあり、水質抵抗検出部8に接続されている。   A pair of opposed second electrodes 12 are in the electrolytic bath 400 and are connected to the water quality resistance detector 8.

第2の電極12を用いて水質抵抗検出部8によって電解槽400内の水質抵抗値を検出する。   The water resistance value in the electrolytic cell 400 is detected by the water quality resistance detection unit 8 using the second electrode 12.

実施形態1、2では電解水を生成することによって電極の面積が減り、正確な電気伝導度の計算が困難になってしまう。実施形態3では、電解水を生成するための第1の電極7とは別に、水の電気伝導度を計測するための一対の第2の電極12を設けているので実施形態1、2に比べて電極の劣化の影響を抑え、正確な電気伝導度を計算することができる。   In the first and second embodiments, the generation of electrolyzed water reduces the area of the electrode, making it difficult to accurately calculate the electrical conductivity. In the third embodiment, a pair of second electrodes 12 for measuring the electrical conductivity of water is provided separately from the first electrode 7 for generating electrolyzed water, and therefore, compared with the first and second embodiments. Thus, the influence of electrode deterioration can be suppressed, and an accurate electrical conductivity can be calculated.

次に、実施形態3での電解水を狙いのpH値に設定するまでの動作を説明する。   Next, the operation until the electrolyzed water in Embodiment 3 is set to a target pH value will be described.

サーミスタ9によって読み取られた流水路200の水の温度と、対向した一対の第2の電極12を介して、水質抵抗検出部8によって検出された水の水質抵抗値とをマイコン部3に送信する。   The temperature of the water in the flowing water channel 200 read by the thermistor 9 and the water quality resistance value of the water detected by the water quality resistance detection unit 8 are transmitted to the microcomputer unit 3 through the pair of opposed second electrodes 12. .

マイコン部3はサーミスタ9から送信された流水路200の水の温度と、水質抵抗検出部8から送信された流水路200の水の水質抵抗値から、水温に応じた電気伝導度を算出する。   The microcomputer unit 3 calculates the electrical conductivity according to the water temperature from the temperature of the water in the flow channel 200 transmitted from the thermistor 9 and the water quality resistance value of the water in the flow channel 200 transmitted from the water quality detection unit 8.

マイコン部3は電気伝導度に応じた電流を決定し、電極駆動部6へ制御信号を送信する。   The microcomputer unit 3 determines a current corresponding to the electric conductivity and transmits a control signal to the electrode driving unit 6.

電極駆動部6はマイコン部3からの指令を受け、対向した一対の第1の電極7へ電流を制御する。   The electrode drive unit 6 receives a command from the microcomputer unit 3 and controls the current to the pair of first electrodes 7 facing each other.

第1の電極7に電流を供給することによって電解槽400内の水が電気分解され、電極の劣化の影響を抑え、狙いのpH値の電解水を得ることができる。   By supplying a current to the first electrode 7, the water in the electrolytic cell 400 is electrolyzed, the influence of electrode deterioration can be suppressed, and electrolytic water having a target pH value can be obtained.

1…AC電源
2…AC/DC変換部
3…マイコン部
4…加熱制御部
5…ヒータ
6…電極駆動部
7…第1の電極
8…水質抵抗検出部
9…サーミスタ
10…流入口
11…流出口
12…第2の電極
20…給水源
30…吐出部
100…電解水生成装置
200…流水路
300…タンク
400…電解槽
DESCRIPTION OF SYMBOLS 1 ... AC power source 2 ... AC / DC conversion part 3 ... Microcomputer part 4 ... Heating control part 5 ... Heater 6 ... Electrode drive part 7 ... 1st electrode 8 ... Water quality resistance detection part 9 ... Thermistor 10 ... Inlet 11 ... Current Outlet 12 ... Second electrode 20 ... Water supply source 30 ... Discharge unit 100 ... Electrolyzed water generating device 200 ... Flow channel 300 ... Tank 400 ... Electrolyzer

Claims (3)

給水源からの水が流入する流入口と、水が流出する流出口と、対向した一対の電極と、を有する電解水を生成する電解槽と、
前記電解槽を通過する水の温度を測定する温度測定手段と、
前記電解槽を通過する水の電気伝導度を演算し、かつ前記一対の電極への電流を制御する制御部と、を有し、
前記制御部は前記温度測定手段の温度に基づいて、前記電気伝導度の演算を行い、所定のpH値となるよう目標電流を決定する電解水生成装置。
An electrolytic cell for generating electrolyzed water having an inlet through which water from a water supply source flows, an outlet through which water flows out, and a pair of opposed electrodes;
Temperature measuring means for measuring the temperature of water passing through the electrolytic cell;
A controller that calculates the electrical conductivity of water passing through the electrolytic cell and controls the current to the pair of electrodes;
The said control part is an electrolyzed water generating apparatus which calculates the said electrical conductivity based on the temperature of the said temperature measurement means, and determines a target electric current so that it may become a predetermined pH value.
前記電解槽の上流側に配置され、前記電解槽に流入される水を加熱する加熱手段と、を更に備え、
前記加熱手段を制御する加熱制御部と、を有し、
前記加熱制御部は前記加熱手段によって前記水の温度を所定の温度とする請求項1記載の電解水生成装置。
A heating means disposed on the upstream side of the electrolytic cell and heating water flowing into the electrolytic cell;
A heating control unit for controlling the heating means,
The electrolyzed water generating apparatus according to claim 1, wherein the heating control unit sets the temperature of the water to a predetermined temperature by the heating unit.
前記対向した一対の電極とは別に水の電気伝導度を計測するための一対の電極を設けた請求項1または請求項2に記載の電解水生成装置。   The electrolyzed water generating apparatus according to claim 1 or 2, wherein a pair of electrodes for measuring electric conductivity of water is provided separately from the pair of opposed electrodes.
JP2014195634A 2014-09-25 2014-09-25 Electrolyzed water generator Pending JP2016064375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195634A JP2016064375A (en) 2014-09-25 2014-09-25 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195634A JP2016064375A (en) 2014-09-25 2014-09-25 Electrolyzed water generator

Publications (1)

Publication Number Publication Date
JP2016064375A true JP2016064375A (en) 2016-04-28

Family

ID=55803713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195634A Pending JP2016064375A (en) 2014-09-25 2014-09-25 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP2016064375A (en)

Similar Documents

Publication Publication Date Title
CN107228693B (en) System and method for determining gas
RU2014125076A (en) Energy saving coffee machine
RU2021129871A (en) POWER CONTROL METHOD AND SYSTEM FOR AEROSOL GENERATING DEVICE POWERED BY BATTERY
ATE508403T1 (en) TEMPERATURE CONTROL APPARATUS, PROCESSING APPARATUS AND TEMPERATURE CONTROL METHOD
RU2009139232A (en) SYSTEM AND METHOD FOR IMPROVED HEATING OF A FLUID
CN204084813U (en) Electric bare wire continuous heaters
RU2009131726A (en) METHOD AND DEVICE FOR GAS SUPPLY MANAGEMENT FOR CREATION OF A PROTECTIVE GAS CURTAIN IN ELECTRIC WELDING MACHINE
RU2021113220A (en) IMPLEMENTING DEPOSIT CONTROL
US20190219301A1 (en) Dual element electric tankless water heater
JP2020125928A (en) Oxygen measurement device and oxygen measurement method
KR20130079079A (en) Apparatus for supplying hot water and method for the same
JP2016064375A (en) Electrolyzed water generator
CN103196236B (en) Instantaneous heating body control method based on predictive control
JP7068943B2 (en) Nitrous oxide concentration detector
JP2017025362A (en) Electric conduction heating device and electric conduction heating method
CN104897969B (en) Method and apparatus for detecting conductivity in instant electric water heater
JP2011179708A (en) Method and device for controlling water level in boiler
JP2007232299A (en) Boiler
JP2015182003A (en) Electrolytic water generator
JP2018515321A (en) PH control method for UpA cell
EP3632854B1 (en) A method for measuring water quality and a method for operating a system allowing for purification and recycling of water or separation of water
US20230183106A1 (en) System and method for electrochemical disinfection
JP2019136625A (en) Electrolyzed water generator
JP5469566B2 (en) Thermal flow meter
KR20180056067A (en) Apparatus for detecting state of heater