JP2016063755A - Plant cultivation system - Google Patents

Plant cultivation system Download PDF

Info

Publication number
JP2016063755A
JP2016063755A JP2014193278A JP2014193278A JP2016063755A JP 2016063755 A JP2016063755 A JP 2016063755A JP 2014193278 A JP2014193278 A JP 2014193278A JP 2014193278 A JP2014193278 A JP 2014193278A JP 2016063755 A JP2016063755 A JP 2016063755A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
plant cultivation
cultivation system
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014193278A
Other languages
Japanese (ja)
Inventor
洋 細野
Hiroshi Hosono
細野  洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014193278A priority Critical patent/JP2016063755A/en
Publication of JP2016063755A publication Critical patent/JP2016063755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plant cultivation system which can suppress reduction in a ratio of heat quantity which can be recovered with respect to heat quantity generated in a gas turbine or the like.SOLUTION: A plant cultivation system comprises: a power generator 1 which uses an internal combustion engine as a power source; an exhaust heat recovery device 2 which recovers heat from exhaust gas generated in the power generator 1; and a denitrification device 10 which removes nitrogen oxide in the exhaust gas, in which the system supplies carbon dioxide contained in exhaust gas to plants to raise the plants. The exhaust gas is supplied from the exhaust heat recovery device 2 to the plants via the denitrification device 10, the denitrification device 10 is a dry absorbent formed by impregnating KOH into a base material made of gypsum and active carbon powder, and the denitrification device 10 has a dilution chamber 7 as condensation suppressing means for suppressing internal condensation.SELECTED DRAWING: Figure 1

Description

本発明はトリジェネレーションシステムの植物栽培に関する。   The present invention relates to plant cultivation of a trigeneration system.

近年、コージェネレーション(熱電併給)システムで発生した電気、熱に加え、CO2(二酸化炭素)も有効活用する「トリジェネレーションシステム」の植物栽培が試験的に行われてきている。   In recent years, plant cultivation of a “trigeneration system” that effectively uses CO2 (carbon dioxide) in addition to electricity and heat generated in a cogeneration (cogeneration) system has been experimentally conducted.

実際のシステムでは、コージェネレーションシステムで発電機として使用されるガスタービンの排気ガス中には植物栽培に有用な二酸化炭素以外に植物の育成に障害となる窒素酸化物が含有されているため、窒素酸化物を除去する脱硝装置を組み込んだ植物栽培システムが提案されている(例えば特許文献1参照)。   In an actual system, the exhaust gas of a gas turbine used as a generator in a cogeneration system contains nitrogen oxides that hinder plant growth in addition to carbon dioxide, which is useful for plant cultivation. A plant cultivation system incorporating a denitration device for removing oxides has been proposed (see, for example, Patent Document 1).

この植物栽培システムの窒素酸化物除去方法はアンモニア接触還元式であり、アンモニアを消費し、かつ触媒が機能する170℃以上の温度が必要となるため、脱硝装置をガスタービンと排熱回収装置の間に配置した構成となっている。   The method for removing nitrogen oxides of this plant cultivation system is an ammonia catalytic reduction method, and requires a temperature of 170 ° C. or higher at which ammonia is consumed and the catalyst functions. It has a configuration arranged between them.

特許第5073264号公報Japanese Patent No. 5073264

このような従来の植物栽培システムでは、ガスタービンで発生した排気ガスの熱は、脱硝装置内で一部使用された後、排熱回収装置で回収されているため、ガスタービンでの発生熱量に対し、回収できる熱量の割合が低くなるという課題があった。   In such a conventional plant cultivation system, the heat of the exhaust gas generated in the gas turbine is partially used in the denitration device and then recovered in the exhaust heat recovery device. On the other hand, there has been a problem that the ratio of the amount of heat that can be recovered becomes low.

そこで本発明は、上記従来の課題を解決するものであり、ガスタービンでの発生熱量に対し、回収できる熱量の割合が低くなるのを抑制できる植物栽培システムを提供することを目的とする。   Then, this invention solves the said conventional subject, and it aims at providing the plant cultivation system which can suppress that the ratio of the calorie | heat amount which can be collect | recovered with respect to the calorie | heat amount generated with a gas turbine becomes low.

そして、この目的を達成するために、本発明は、内燃機関を動力源とする発電機と、この発電機で発生する排気ガスから熱を回収する排熱回収装置と、前記排気ガス中の窒素酸化物を除去する脱硝装置とを備え、前記排気ガス中に含まれる二酸化炭素を植物へ供給し、植物の育成を行う植物栽培システムであって、前記排気ガスは、前記排熱回収装置から前記脱硝装置を経て植物へ供給され、前記脱硝装置は石膏および活性炭粉末からなる基材にKOHを含浸させてなる乾式吸収剤であり、前記脱硝装置は内部での結露を抑制する結露抑制手段を有することを特徴とする植物栽培システムとしたものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a generator using an internal combustion engine as a power source, an exhaust heat recovery device that recovers heat from the exhaust gas generated by the generator, and nitrogen in the exhaust gas. A denitration device that removes oxides, supplying carbon dioxide contained in the exhaust gas to a plant and growing the plant, wherein the exhaust gas is supplied from the exhaust heat recovery device to the plant The denitration device is supplied to the plant through a denitration device, and the denitration device is a dry absorbent obtained by impregnating a base material made of gypsum and activated carbon powder with KOH, and the denitration device has dew condensation suppression means for suppressing dew condensation inside The plant cultivation system is characterized by this, and the intended purpose is thereby achieved.

本発明によれば、脱硝装置に乾式吸収剤を用い、脱硝装置は内部での結露を抑制する結露抑制手段を有した構成にしたことにより、脱硝装置を介せず、発電機で発生する排気ガスから熱を回収できるので、ガスタービンでの発生熱量に対し、回収できる熱量の割合が低くなるのを抑制できる植物栽培システムを提供するという効果を得ることができる。   According to the present invention, a dry absorbent is used for the denitration device, and the denitration device has a dew condensation suppressing means for suppressing dew condensation inside, so that the exhaust generated by the generator without using the denitration device. Since heat can be recovered from the gas, it is possible to obtain an effect of providing a plant cultivation system that can suppress a reduction in the ratio of the amount of heat that can be recovered to the amount of heat generated in the gas turbine.

すなわち、乾式吸収剤は常温で窒素酸化物除去機能を発揮できるため、従来例のように脱硝装置をガスタービンと排熱回収装置の間に配置する必要がなく、ガスタービン、排熱回収装置、脱硝装置の順に排気ガスを流すことが可能となる。   That is, since the dry absorbent can exhibit the nitrogen oxide removing function at room temperature, there is no need to arrange the denitration device between the gas turbine and the exhaust heat recovery device as in the conventional example, the gas turbine, the exhaust heat recovery device, It becomes possible to flow exhaust gas in the order of the denitration device.

従って、ガスタービンで発生直後の排気ガスの熱を排熱回収装置で回収できるため、ガスタービンでの発生熱量に対し、回収できる熱量の割合が低くなるのを、従来例より抑制できる。   Therefore, since the heat of the exhaust gas immediately after it is generated by the gas turbine can be recovered by the exhaust heat recovery device, it is possible to suppress the ratio of the amount of heat that can be recovered with respect to the amount of heat generated by the gas turbine from the conventional example.

本発明の実施の形態1の植物栽培システムの全体構成図Whole block diagram of plant cultivation system of Embodiment 1 of the present invention 本発明の実施の形態1の脱硝装置の内部構造図1 is an internal structure diagram of a denitration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2の脱硝装置の側面図Side view of the denitration apparatus of Embodiment 2 of the present invention 本発明の実施の形態3の脱硝装置の斜視図The perspective view of the denitration apparatus of Embodiment 3 of this invention

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明における植物栽培システムの全体構成図である。本システムは、発電機1で発電した電気と、発電時に発生する熱と二酸化炭素を栽培室14に供給するトリジェネレーションシステムである。
(Embodiment 1)
FIG. 1 is an overall configuration diagram of a plant cultivation system in the present invention. This system is a trigeneration system that supplies the cultivation room 14 with electricity generated by the generator 1, heat generated during power generation, and carbon dioxide.

本システムは発電機1、排熱回収装置2、回収熱配管3、戻り配管4、外気導入配管5、外気導入用ダンパ6、希釈チャンバー7、ドレン配管8、フィルタ9、脱硝装置10、インバータ11、ファン12、流量調整用ダンパ13、栽培室14、CO2計15、流量計16を備えている。   This system includes a generator 1, an exhaust heat recovery device 2, a recovery heat pipe 3, a return pipe 4, an outside air introduction pipe 5, an outside air introduction damper 6, a dilution chamber 7, a drain pipe 8, a filter 9, a denitration apparatus 10, and an inverter 11. A fan 12, a flow rate adjusting damper 13, a cultivation room 14, a CO2 meter 15, and a flow meter 16.

発電機1で発生した排ガスから、まず排熱回収装置2により熱を回収する。排熱回収装置2では、熱交換器(図示せず)により排ガスと水の熱交換を行い、排ガスを冷却すると共に温水を生成する。   First, heat is recovered from the exhaust gas generated by the generator 1 by the exhaust heat recovery device 2. In the exhaust heat recovery apparatus 2, heat exchange of exhaust gas and water is performed by a heat exchanger (not shown) to cool the exhaust gas and generate hot water.

生成された温水は回収熱配管3を介して、栽培室14に供給される。栽培室14にて熱を供給し温度が低下した水は、戻り配管4を介して排熱回収装置2に戻り、熱交換器によって再び温水となる。   The generated warm water is supplied to the cultivation room 14 via the recovery heat pipe 3. The water whose temperature is reduced by supplying heat in the cultivation room 14 returns to the exhaust heat recovery device 2 via the return pipe 4 and becomes hot water again by the heat exchanger.

排熱回収装置2により熱回収された排ガスは、排熱回収装置2の下流側に設置された脱硝装置10により排ガス中の窒素酸化物を除去した後、処理後の空気に含まれる二酸化炭素を栽培室14に供給する。   The exhaust gas heat recovered by the exhaust heat recovery device 2 is removed from the nitrogen oxide in the exhaust gas by the denitration device 10 installed on the downstream side of the exhaust heat recovery device 2, and then carbon dioxide contained in the treated air is removed. Supply to the cultivation room 14.

栽培室14に供給する二酸化炭素を含む空気(以下単に「二酸化炭素」とする)は流量と濃度をそれぞれ流量計16とCO2計15により監視している。二酸化炭素の流量調整は、ファン12を駆動するインバータ11の周波数と流量調整用ダンパ13の開度のいずれか、または両方を可変することにより行う。   The flow rate and concentration of air containing carbon dioxide (hereinafter simply referred to as “carbon dioxide”) supplied to the cultivation room 14 are monitored by a flow meter 16 and a CO 2 meter 15, respectively. The flow rate of carbon dioxide is adjusted by changing either or both of the frequency of the inverter 11 that drives the fan 12 and the opening of the flow rate adjusting damper 13.

また、二酸化炭素の濃度調整は排ガスに外気を導入することにより行い、外気導入配管5に設けた外気導入用ダンパ6の開度の調整で、希釈チャンバー7内に導入する外気の量を調整し、希釈チャンバー7内で排ガスと外気を混合し、所定の二酸化炭素の濃度に調整する。   The concentration of carbon dioxide is adjusted by introducing outside air into the exhaust gas, and the amount of outside air introduced into the dilution chamber 7 is adjusted by adjusting the opening of the outside air introducing damper 6 provided in the outside air introducing pipe 5. The exhaust gas and the outside air are mixed in the dilution chamber 7 and adjusted to a predetermined carbon dioxide concentration.

なお、運転条件毎の二酸化炭素濃度と流量が予め把握できている場合は、必ずしもCO2計15や流量計16を常設しなくても良い。   In addition, when the carbon dioxide concentration and the flow rate for each operating condition can be grasped in advance, the CO2 meter 15 and the flow meter 16 are not necessarily installed.

ここで本願の特徴である脱硝装置10について図2を用いて説明する。   Here, the denitration apparatus 10 which is a feature of the present application will be described with reference to FIG.

脱硝装置10は、筐体内に乾式吸収剤21を収納している。乾式吸収剤21は石膏および活性炭粉末を含む基材にKOHを含浸させたものである。排ガス中の窒素酸化物は、活性炭の微細孔で吸着し、吸着した窒素酸化物をKOHとの化学反応により塩に変化させることで除去するものである。   The denitration apparatus 10 stores a dry absorbent 21 in a housing. The dry absorbent 21 is obtained by impregnating a base material containing gypsum and activated carbon powder with KOH. Nitrogen oxides in the exhaust gas are adsorbed by the fine pores of the activated carbon, and are removed by changing the adsorbed nitrogen oxides into salts by a chemical reaction with KOH.

なお、風の流れを矢印で図示しているが、乾式吸収剤21は、通風部(開口部)面積をできる限り大きくするために、図2に示すようにプリーツ状に配置するのが一般的である。   In addition, although the flow of a wind is illustrated with the arrow, in order to enlarge the ventilation part (opening part) area as much as possible, the dry absorbent 21 is generally arranged in a pleat shape as shown in FIG. It is.

この乾式吸収剤は、通常、トンネル等の常温環境で使用されており、脱硝装置10内での排ガスの温度低下は問題とならない。   This dry absorbent is normally used in a room temperature environment such as a tunnel, and the temperature reduction of exhaust gas in the denitration apparatus 10 does not cause a problem.

しかし、本願の植物栽培システムに適用する場合、排熱回収装置2内の熱交換器等により熱回収を行うが、それでもなお下流側の排ガスは常温以上、例えば70℃以上となる状況も考えられる。   However, when applied to the plant cultivation system of the present application, heat recovery is performed by a heat exchanger or the like in the exhaust heat recovery device 2, but the situation where the exhaust gas on the downstream side is still at room temperature or higher, for example, 70 ° C. or higher is also conceivable. .

すなわち、乾式吸収剤は湿気に弱いため、脱硝装置10内での排ガスの温度低下により結露が発生し、結露水が乾式吸収剤に付着した場合、窒素酸化物の吸着を妨げ、窒素酸化物の除去性能が低下するという新たな課題を生じる。   That is, since the dry absorbent is vulnerable to moisture, dew condensation occurs due to a decrease in the temperature of the exhaust gas in the denitration apparatus 10, and when the condensed water adheres to the dry absorbent, the adsorption of nitrogen oxides is hindered. There arises a new problem that the removal performance is lowered.

この課題を解決するため、本願のもう一つの特徴である結露抑制手段が必要となる。   In order to solve this problem, dew condensation suppression means, which is another feature of the present application, is required.

以下では、結露抑制手段の具体例について説明する。   Below, the specific example of a dew condensation suppression means is demonstrated.

上述した希釈チャンバー7は、二酸化炭素濃度調整のため排ガスと外気を混合しているため、混合後の排ガスの温湿度を低下させており、外気導入配管5、外気導入用ダンパ6を含めた構成で、脱硝装置10内での結露抑制の機能も有している。   Since the dilution chamber 7 described above mixes exhaust gas and outside air to adjust the carbon dioxide concentration, the temperature and humidity of the exhaust gas after mixing is lowered, and includes the outside air introduction pipe 5 and the outside air introduction damper 6. Therefore, it also has a function of suppressing dew condensation in the denitration apparatus 10.

すなわち、高温の排ガスを低温の外気で冷却することにより、脱硝装置10へ流入する前に希釈チャンバー7内で結露させている。   That is, the high-temperature exhaust gas is cooled by the low-temperature outside air, so that dew condensation occurs in the dilution chamber 7 before flowing into the denitration apparatus 10.

外気により冷却された排ガスから発生する結露水は、ドレン配管8より系外に排出する。なお、排ガス中に残留し、排ガスと共に搬送される一部の結露水はフィルタ9により除去する。   Condensed water generated from the exhaust gas cooled by the outside air is discharged out of the system through the drain pipe 8. A part of the condensed water remaining in the exhaust gas and transported together with the exhaust gas is removed by the filter 9.

このように、希釈チャンバー7内で排ガスの温度を低下させることにより、脱硝装置10内での結露が抑制され、乾式吸収剤を常温より高温の環境で用いることが可能となる。   Thus, by reducing the temperature of the exhaust gas in the dilution chamber 7, dew condensation in the denitration apparatus 10 is suppressed, and the dry absorbent can be used in an environment higher than normal temperature.

(実施の形態2)
図3に結露抑制手段の他の実施形態として、脱硝装置10の構成図を示す。実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 2)
FIG. 3 shows a configuration diagram of a denitration apparatus 10 as another embodiment of the dew condensation suppressing means. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

脱硝装置10は、保温装置として、筐体の側面、天面、底面のいずれか、もしくは全てに排熱回収装置2で生成した温水の一部を循環させる回収熱配管3を備えている。脱硝装置10に熱を供給し温度の低下した水は戻り配管4を介して排熱回収装置2に戻す。   The denitration apparatus 10 includes a recovery heat pipe 3 that circulates a part of the hot water generated by the exhaust heat recovery apparatus 2 on any or all of the side surface, top surface, and bottom surface of the casing as a heat retention device. Heat is supplied to the denitration apparatus 10 and the water whose temperature has dropped is returned to the exhaust heat recovery apparatus 2 via the return pipe 4.

これにより脱硝装置10内を流入する排ガスの温度と同等以上に加温でき、脱硝装置10に流入する排ガスの温度が常温以上の場合でも、脱硝装置10内での排ガス温度低下を防止し、結露の発生による乾式吸収剤21の性能低下を抑制できる。   As a result, the temperature of the exhaust gas flowing into the denitration apparatus 10 can be heated to the same level or higher, and even if the temperature of the exhaust gas flowing into the denitration apparatus 10 is equal to or higher than normal temperature, the exhaust gas temperature in the denitration apparatus 10 is prevented from lowering and dew condensation occurs. It is possible to suppress the performance deterioration of the dry absorbent 21 due to the occurrence of the above.

なお、図3では回収熱配管3より脱硝装置10へ温水を供給しているが、戻り配管4内の水が常温以上の温度がある場合、戻り配管4より脱硝装置10へ水を供給しても所要の保温をすることが可能であり、回収できる熱量の割合が低くなるのをより抑制できる。   In FIG. 3, hot water is supplied from the recovery heat pipe 3 to the denitration apparatus 10, but when the water in the return pipe 4 has a temperature higher than room temperature, water is supplied from the return pipe 4 to the denitration apparatus 10. In addition, it is possible to keep the required heat, and it is possible to further suppress the reduction in the proportion of the amount of heat that can be recovered.

(実施の形態3)
図4に結露抑制手段のさらに他の実施形態として、脱硝装置10の斜視図を示す。実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 3)
FIG. 4 shows a perspective view of a denitration apparatus 10 as still another embodiment of the dew condensation suppressing means. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

脱硝装置10は、断熱装置として、筐体の外周部(側面、天面、底面)の全てに断熱材31を備えている。排ガスと外気の温度差が小さい場合は、筐体の外周部(側面、天面、底面)のいずれかのみに断熱材31を備えてもよい。   The denitration device 10 includes a heat insulating material 31 as a heat insulating device on all of the outer peripheral portions (side surface, top surface, and bottom surface) of the housing. When the temperature difference between the exhaust gas and the outside air is small, the heat insulating material 31 may be provided only on one of the outer peripheral portions (side surface, top surface, bottom surface) of the housing.

断熱材は例えばボードタイプのグラスウールから成り、厚みは50〜100mm程度、密度は20〜50kg/m3程度のものを使用する。   The heat insulating material is made of, for example, board type glass wool, and has a thickness of about 50 to 100 mm and a density of about 20 to 50 kg / m 3.

これにより脱硝装置10周囲への熱の伝達(放出)を防止し、脱硝装置10内での排ガス温度低下を防止することができ、結果として結露の発生による乾式吸収剤21の性能低下を抑制できる。   Thereby, the transmission (release) of heat to the periphery of the denitration apparatus 10 can be prevented, the exhaust gas temperature in the denitration apparatus 10 can be prevented from lowering, and as a result, the performance degradation of the dry absorbent 21 due to the occurrence of condensation can be suppressed. .

なお、上述した実施の形態1〜3の結露抑制手段は、単独での使用、または組合せての使用、どちらでも可能である。   Note that the dew condensation suppressing means of the above-described first to third embodiments can be used alone or in combination.

本発明にかかる植物栽培システムは、排熱回収装置で回収できる熱量の割合が低くなるのを抑制できるものであるので、「トリジェネレーションシステム」の植物栽培等として有用である。   Since the plant cultivation system concerning this invention can suppress that the ratio of the calorie | heat amount which can be collect | recovered with an exhaust heat recovery apparatus becomes low, it is useful as plant cultivation etc. of a "trigeneration system".

1 発電機
2 排熱回収装置
3 回収熱配管
4 戻り配管
5 外気導入配管
6 外気導入用ダンパ
7 希釈チャンバー
8 ドレン配管
9 フィルタ
10 脱硝装置
11 インバータ
12 ファン
13 流量調整用ダンパ
14 栽培室
15 CO2計
16 流量計
21 乾式吸収剤
31 断熱材
DESCRIPTION OF SYMBOLS 1 Generator 2 Waste heat recovery device 3 Recovery heat piping 4 Return piping 5 Outside air introduction piping 6 Damper for outside air introduction 7 Dilution chamber 8 Drain piping 9 Filter 10 Denitration device 11 Inverter 12 Fan 13 Damper for flow adjustment 14 Cultivation room 15 CO2 meter 16 Flow meter 21 Dry absorbent 31 Heat insulation material

Claims (6)

内燃機関を動力源とする発電機と、
この発電機で発生する排気ガスから熱を回収する排熱回収装置と、
前記排気ガス中の窒素酸化物を除去する脱硝装置とを備え、
前記排気ガス中に含まれる二酸化炭素を植物へ供給し、植物の育成を行う植物栽培システムであって、
前記排気ガスは、前記排熱回収装置から前記脱硝装置を経て植物へ供給され、
前記脱硝装置は石膏および活性炭粉末からなる基材にKOHを含浸させてなる乾式吸収剤であり、
前記脱硝装置は内部での結露を抑制する結露抑制手段を有することを特徴とする植物栽培システム。
A generator powered by an internal combustion engine;
An exhaust heat recovery device that recovers heat from the exhaust gas generated by the generator;
A denitration device for removing nitrogen oxides in the exhaust gas,
A plant cultivation system for supplying carbon dioxide contained in the exhaust gas to a plant and growing the plant,
The exhaust gas is supplied from the exhaust heat recovery device to the plant via the denitration device,
The denitration device is a dry absorbent obtained by impregnating a base material made of gypsum and activated carbon powder with KOH,
The denitration apparatus has a dew condensation suppressing means for suppressing dew condensation inside.
脱硝装置および/またはその上流側に、結露抑制手段を設けたことを特徴とする請求項1記載の植物栽培システム。 2. The plant cultivation system according to claim 1, wherein dew condensation suppression means is provided on the denitration apparatus and / or upstream thereof. 結露抑制手段は、排熱回収装置と脱硝装置の間に設けた、排気ガスを外気で希釈する希釈チャンバーであることを特徴とする請求項2記載の植物栽培システム。 The plant cultivation system according to claim 2, wherein the dew condensation suppressing means is a dilution chamber provided between the exhaust heat recovery device and the denitration device for diluting the exhaust gas with outside air. 結露抑制手段は、脱硝装置を保温する保温装置であることを特徴とする請求項2または3記載の植物栽培システム。 The plant cultivation system according to claim 2 or 3, wherein the dew condensation suppressing means is a heat retaining device for retaining the denitration device. 保温装置の熱源として排熱回収装置で回収した熱を利用することを特徴とする請求項4記載の植物栽培システム。 The plant cultivation system according to claim 4, wherein the heat recovered by the exhaust heat recovery device is used as a heat source of the heat retention device. 結露抑制手段は、脱硝装置の外郭を断熱する断熱装置であることを特徴とする請求項2から5のいずれか1項に記載の植物栽培システム。 The plant cultivation system according to any one of claims 2 to 5, wherein the dew condensation suppressing means is a heat insulating device that insulates the outer shell of the denitration device.
JP2014193278A 2014-09-24 2014-09-24 Plant cultivation system Pending JP2016063755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193278A JP2016063755A (en) 2014-09-24 2014-09-24 Plant cultivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193278A JP2016063755A (en) 2014-09-24 2014-09-24 Plant cultivation system

Publications (1)

Publication Number Publication Date
JP2016063755A true JP2016063755A (en) 2016-04-28

Family

ID=55803627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193278A Pending JP2016063755A (en) 2014-09-24 2014-09-24 Plant cultivation system

Country Status (1)

Country Link
JP (1) JP2016063755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041642A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Carbon dioxide application device
JP2019041638A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Carbon dioxide application device
KR20200073184A (en) * 2017-08-31 2020-06-23 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device and method for capturing carbon dioxide contained in a combustion exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041642A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Carbon dioxide application device
JP2019041638A (en) * 2017-08-31 2019-03-22 フタバ産業株式会社 Carbon dioxide application device
KR20200073184A (en) * 2017-08-31 2020-06-23 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device and method for capturing carbon dioxide contained in a combustion exhaust gas
KR102192432B1 (en) 2017-08-31 2020-12-17 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device and method for capturing carbon dioxide contained in a combustion exhaust gas

Similar Documents

Publication Publication Date Title
US9908083B2 (en) Absorption type—removal / condensing apparatus
US8500886B2 (en) Apparatus for removing carbon dioxide from a gas
JP5275064B2 (en) Exhaust gas treatment apparatus and method for oxyfuel coal fired boiler
JP2010025108A (en) Heat pipe for removing thermal energy from exhaust gas
JP2006253020A (en) Fuel cell generating device and intake and exhaust device
JP5209153B1 (en) Cogeneration system
JP2016063755A (en) Plant cultivation system
CA2726113A1 (en) Integrated exhaust gas cooling system and method
JP2011038517A (en) System and method for injecting cooling air into exhaust gas flow
JP5324701B2 (en) Carbon dioxide recovery type power generation system
CN106659128B (en) Carbon dioxide application apparatus
JP4961681B2 (en) Fuel cell power generator
Cheng et al. Experimental study on water recovery and SO2 permeability of ceramic membranes with different pore sizes
CN113769551B (en) Low-temperature desulfurization and denitrification method and system for biomass power plant flue gas
US20200348045A1 (en) Methods systems and devices for controlling temperature and humidity using excess energy from a combined heat and power system
WO2016051758A1 (en) Gas turbine
JP6764644B2 (en) Exhaust gas supply system and exhaust gas supply method
JP2007322032A (en) Desiccant air conditioning system
TWI673430B (en) Exhaust treatment device
JP6155114B2 (en) Gas turbine intake cooling system and gas turbine equipment
JP2007322027A (en) Humidifier
JP2004167450A (en) Method and device for injecting ammonia to denitrification apparatus
US20120012298A1 (en) Method and Appratus for Heating an Aqueous Mixture to Vaporization
CN215311461U (en) Boiler denitration system
US20240027080A1 (en) System and method for making a building carbon neutral

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520