JP2016063133A - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2016063133A
JP2016063133A JP2014191314A JP2014191314A JP2016063133A JP 2016063133 A JP2016063133 A JP 2016063133A JP 2014191314 A JP2014191314 A JP 2014191314A JP 2014191314 A JP2014191314 A JP 2014191314A JP 2016063133 A JP2016063133 A JP 2016063133A
Authority
JP
Japan
Prior art keywords
hole
wiring board
region
drill
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014191314A
Other languages
Japanese (ja)
Inventor
幸夫 竹田
Yukio Takeda
幸夫 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014191314A priority Critical patent/JP2016063133A/en
Publication of JP2016063133A publication Critical patent/JP2016063133A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board that can ensure plating around a through hole, while suppressing the bending in the major axis direction, even when an elongated hole where the major axis is two time or more of the minor axis is formed, and the method of manufacturing the same.SOLUTION: In a wiring board including an insulating layer, a conductor circuit arranged on both sides of the insulating layer, a penetration hole penetrating the conductor circuit and the insulating layer, and a through hole having through hole plating on the inner wall of the penetration hole, the penetration hole is an elongated hole including a linear region in the major axis direction and circular arc regions at both ends of the linear region, in the plan view, and hole inner roughness of the inner wall of the circular arc region is smaller than that of the linear region.SELECTED DRAWING: Figure 1

Description

本発明は、ドリルで形成した長穴を有する配線基板及びその製造方法に関する。   The present invention relates to a wiring board having a long hole formed by a drill and a manufacturing method thereof.

電子機器の高機能化、高密度化に伴い、配線板に実装される部品の形態も多様化しており、例えばディスクリート部品等の搭載のため、配線基板には長穴の形成が求められる場合がある。ここで、長穴とは、平面視において長径方向の直線領域とこの直線領域の両端に位置する円弧領域とを備えるものをいい、例えば、複数の貫通穴同士が平面方向に直線状に繋がるように連続して設けられた貫通穴が挙げられる。   As electronic devices have higher functionality and higher density, the form of components mounted on the wiring board has also diversified. For example, in order to mount discrete components, etc., it is sometimes required to form long holes in the wiring board. is there. Here, the long hole means one having a linear region in the major axis direction and arc regions located at both ends of the linear region in plan view. For example, a plurality of through holes are linearly connected in the planar direction. And through holes provided continuously.

この異形貫通穴のひとつである長穴の形成方法として、長穴の位置や仕上り形状の精度を向上させる目的で、長穴方向とは直角方向のズレ量を補正した座標位置から穿穴する方向(特許文献1)、穴加工を先端角θが150°≦θ≦180°であるドリルを用いて行なう方法(特許文献2)、下穴を設けておいてから、目的の長穴を開ける方法が提案されている(特許文献3、4)。
特開2009−124837号公報 特開2003−071794号公報 特開平10−041593号公報 特開2007−098502号公報
In order to improve the accuracy of the position of the long hole and the finished shape as a method of forming the long hole that is one of these irregular shaped through holes, the direction of drilling from the coordinate position corrected for the amount of deviation in the direction perpendicular to the long hole direction (Patent Document 1), a method of drilling holes using a drill having a tip angle θ of 150 ° ≦ θ ≦ 180 ° (Patent Document 2), and a method of opening a target slot after providing a pilot hole Has been proposed (Patent Documents 3 and 4).
JP 2009-124837 A JP 2003-071794 A Japanese Patent Laid-Open No. 10-041593 JP 2007-0985502 A

しかしながら、特許文献1から4は、何れも、長穴の平面視における位置や仕上り形状の精度を向上させるものであるが、これら以外の重要な要素である、穴内壁の粗さ、長穴に形成されるスルーホールめっきの付きまわりについて配慮されたものではない。   However, Patent Documents 1 to 4 all improve the accuracy of the position and finished shape of the long hole in plan view, but the other important factors are the roughness of the inner wall of the hole and the long hole. It is not considered about the surroundings of the through-hole plating to be formed.

また、長径が短径の2倍以上の長い長穴を形成する場合は、長穴の長径方向の長さが長くなるほど、直線領域の平面視における曲がりが拡大する傾向がある。また、この曲がりを抑制する方法としては、上述した特許文献2のように、ドリルの先端角を大きくして、加工時にドリルを安定しやすくする方法が考えられるが、この場合は、長穴の内壁全体の表面粗さが大きくなるため、スルーホールを形成する必要がある際に、スルーホールめっきの付きまわりが不十分となる場合がある。   Further, when forming a long slot whose major axis is twice or more the minor axis, the curvature of the straight region in plan view tends to increase as the length of the slot increases in the major axis direction. Further, as a method for suppressing this bending, a method of increasing the tip angle of the drill and making it easier to stabilize the drill during processing can be considered as in Patent Document 2 described above. Since the surface roughness of the entire inner wall is increased, the through hole plating may be insufficient when it is necessary to form a through hole.

本発明は、上記問題点に鑑みなされたものであり、長径が短径の2倍以上の長い長穴を形成する場合でも、長穴の長径方向における曲がりを抑制しつつ、スルーホールめっきの付きまわりを確保可能な配線基板及びその製造方法を提供する。   The present invention has been made in view of the above problems, and even when a long hole whose major axis is twice or more as long as the minor axis is formed, the bending of the major hole in the major axis direction is suppressed and through-hole plating is applied. Provided are a wiring board capable of securing the periphery and a manufacturing method thereof.

本発明の発明者は、スルーホールめっきの付きまわり不足は、長穴の円弧領域で発生しやすい傾向があり、また、その理由は、長穴の円弧領域では、直線領域に比べてスルーホールめっきを行なう際のめっき液の液流が不十分になりやすいためであるという知見を得たことから、本発明をなすに到った。本発明は、以下のものに関する。
(1) 絶縁層と、この絶縁層の両面に配置される導体回路と、前記導体回路及び絶縁層を貫通する貫通穴と、この貫通穴の内壁にスルーホールめっきを備えるスルーホールと、を有する配線基板であって、前記貫通穴が平面視において長径方向の直線領域とこの直線領域の両端に位置する円弧領域と、を備える長穴であり、前記円弧領域の内壁の穴内粗さが、前記直線領域の内壁の穴内粗さより小さい配線基板。
(2) 項1において、長穴の平面視における長径が、短径の2倍以上である配線基板。
(3) 項1又は2の配線基板の製造方法であって、前記長穴の両端に位置する円弧領域をアンダーカットタイプの丸穴用ドリルで形成する工程と、前記長穴の長径方向の直線領域をストレートタイプの長穴用ドリルで形成する工程と、前記長穴の内壁にスルーホールめっきを形成する工程と、を有する配線基板の製造方法。
(4) 項3において、前記長穴の長径方向の直線領域を長穴用ドリルで形成する工程では、既に形成された加工穴の間隔を2等分する位置に加工穴を形成する配線基板の製造方法。
(5) 項3又は4において、加工穴の中心が中心線14上を移動する穴ピッチが、0.07〜0.22mmである配線基板の製造方法。
(6) 項3から4の何れか1項において、丸穴用ドリルの先端角αが130°以上、150°以下であり、長穴用ドリルの先端角βが140°以上、160度未満である配線基板の製造方法。
The inventor of the present invention has a tendency that a lack of contact with through-hole plating tends to occur in the arc region of the long hole, and the reason is that in the arc region of the long hole, the through-hole plating is performed as compared with the straight region. As a result of obtaining the knowledge that the liquid flow of the plating solution during the process tends to be insufficient, the present invention has been made. The present invention relates to the following.
(1) It has an insulating layer, a conductor circuit disposed on both surfaces of the insulating layer, a through hole penetrating the conductor circuit and the insulating layer, and a through hole having a through hole plating on the inner wall of the through hole. It is a wiring board, and the through hole is a long hole provided with a linear region in a major axis direction in plan view and an arc region located at both ends of the linear region, and the roughness in the hole of the inner wall of the arc region is A wiring board smaller than the roughness in the hole in the inner wall of the straight region.
(2) The wiring board according to item 1, wherein a long diameter of the long hole in plan view is twice or more a short diameter.
(3) A method for manufacturing a wiring board according to Item 1 or 2, wherein arc regions located at both ends of the elongated hole are formed with an undercut type round hole drill, and a straight line in the major axis direction of the elongated hole A method of manufacturing a wiring board, comprising: forming a region with a straight type long hole drill; and forming a through-hole plating on an inner wall of the long hole.
(4) In the item 3, in the step of forming the linear region in the major axis direction of the long hole with the long hole drill, the wiring board for forming the processed hole at a position that divides the interval between the formed holes into two equal parts. Production method.
(5) The method for manufacturing a wiring board according to item 3 or 4, wherein the hole pitch at which the center of the processed hole moves on the center line 14 is 0.07 to 0.22 mm.
(6) In any one of items 3 to 4, the tip angle α of the round hole drill is 130 ° or more and 150 ° or less, and the tip angle β of the long hole drill is 140 ° or more and less than 160 degrees. A method for manufacturing a wiring board.

本発明によれば、長径が短径の2倍以上の長い長穴を形成する場合でも、長穴の長径方向における曲がりを抑制しつつ、スルーホールめっきの付きまわりを確保可能な配線基板及びその製造方法を提供する。   According to the present invention, even when a long hole whose major axis is twice or more of the minor axis is formed, a wiring board capable of securing the through hole plating while suppressing the bending of the long hole in the major axis direction and its A manufacturing method is provided.

本発明の一実施形態の配線基板の一部を示す平面図である。It is a top view which shows a part of wiring board of one Embodiment of this invention. 本発明の一実施形態の配線基板のX−X’断面図である。It is X-X 'sectional drawing of the wiring board of one Embodiment of this invention. 本発明の一実施形態の配線基板のY−Y’断面図である。It is Y-Y 'sectional drawing of the wiring board of one Embodiment of this invention. 本発明の一実施形態の配線基板の長穴の形成方法を示す平面図である。It is a top view which shows the formation method of the long hole of the wiring board of one Embodiment of this invention. 本発明の一実施形態の配線基板の製造方法に用いる長穴用ドリルの先端部を示す。The front-end | tip part of the long hole drill used for the manufacturing method of the wiring board of one Embodiment of this invention is shown. 本発明の一実施形態の配線基板の製造方法に用いる丸穴用ドリルの先端部を示す。The tip part of the drill for round holes used for the manufacturing method of the wiring board of one Embodiment of this invention is shown.

(配線基板)
本発明の配線基板の一実施形態を、図1〜図4を用いて説明する。
図1〜図3に示すように、本実施の形態の配線基板1は、絶縁層2と、この絶縁層2の両面に配置される導体回路3と、前記導体回路3及び絶縁層2を貫通する貫通穴4と、この貫通穴4の内壁9にスルーホールめっき7を備えるスルーホール22と、を有する配線基板1であって、前記貫通穴4が平面視において長径方向の直線領域5とこの直線領域5の両端に位置する円弧領域6と、を備える長穴8であり、前記円弧領域6の内壁9bの穴内粗さが、前記直線領域5の内壁9aの穴内粗さより小さい配線基板1である。
(Wiring board)
An embodiment of a wiring board of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the wiring board 1 of the present embodiment includes an insulating layer 2, a conductor circuit 3 disposed on both surfaces of the insulating layer 2, and the conductor circuit 3 and the insulating layer 2. A wiring board 1 having a through-hole 4 and a through-hole 22 having a through-hole plating 7 on the inner wall 9 of the through-hole 4. The wiring board 1 is an elongated hole 8 having circular arc regions 6 positioned at both ends of the straight line region 5, and the inner wall 9 b of the circular arc region 6 has a smaller hole roughness than the inner wall 9 a of the straight line region 5. is there.

本実施の形態において、絶縁層2とは、電気的な絶縁性を有するとともに、導体回路3等の配線基板1を構成する要素の支持体となるものである。電気的な絶縁性と支持体としての強度を有していればよく、一般的な配線基板用の絶縁材料及び方法を用いて形成することができる。支持体としての強度が大きい点で、ガラスクロス等の補強材に、エポキシ樹脂又はポリイミド樹脂等を含浸させて半硬化させたプリプレグを用い、熱プレスを用いて成形したものが望ましい。   In the present embodiment, the insulating layer 2 has electrical insulation and serves as a support for elements constituting the wiring substrate 1 such as the conductor circuit 3. It only needs to have electrical insulation and strength as a support, and can be formed using a general insulating material and method for a wiring board. From the viewpoint of high strength as a support, it is desirable to use a prepreg impregnated with a reinforcing material such as a glass cloth and impregnated with an epoxy resin or a polyimide resin and then molded using a hot press.

導体回路3とは、絶縁層2上に形成され、電子部品同士又は電子部品と電源あるいはグランド等とを電気的に接続して、電気回路を形成するためにパターン形成された導体であり、ライン状の導体回路3aとランド状の導体回路3bを含む。一般的な配線基板と同様に、銅箔等の金属箔又はめっきを用いて、サブトラクト法又はセミアディティブ等の回路加工方法により形成することができる。   The conductor circuit 3 is a conductor formed on the insulating layer 2 and patterned to form an electric circuit by electrically connecting electronic components or between an electronic component and a power source or a ground. A conductor circuit 3a and a land conductor circuit 3b are included. Similarly to a general wiring board, it can be formed by a circuit processing method such as a subtractive method or a semi-additive method using a metal foil such as a copper foil or plating.

貫通穴4とは、後述する長穴8を形成するために、導体回路3及び絶縁層2を貫通するように設けられる穴であり、ドリル加工によって形成する。   The through hole 4 is a hole provided so as to penetrate the conductor circuit 3 and the insulating layer 2 in order to form a long hole 8 described later, and is formed by drilling.

図2、図3において、貫通穴4の内壁9に形成されるスルーホールめっき7は、スルーホール22を形成するために、貫通穴4の内壁9に形成されるものである。スルーホールめっき7は、貫通穴4の内壁9に沿って膜状に形成されるものであり、貫通穴4を充填するものではない。例えば、貫通穴4の内壁9に、下地の給電層となるスルーホールめっき7を無電解銅めっきを用いて形成した後、電気銅めっきを用いて厚付けすることにより形成することができる。   2 and 3, the through hole plating 7 formed on the inner wall 9 of the through hole 4 is formed on the inner wall 9 of the through hole 4 in order to form the through hole 22. The through-hole plating 7 is formed in a film shape along the inner wall 9 of the through hole 4, and does not fill the through hole 4. For example, it is possible to form the through hole plating 7 on the inner wall 9 of the through hole 4 by using electroless copper plating, and then thicken it by using electrolytic copper plating.

図1に示すように、本実施の形態の配線基板1は、スルーホール22として、長穴8を有する配線基板であり、ディスクリート部品等の搭載に用いられる。   As shown in FIG. 1, the wiring board 1 of the present embodiment is a wiring board having a long hole 8 as a through hole 22, and is used for mounting discrete components and the like.

図1に示すように、本実施の形態では、貫通穴4が平面視において長径方向の直線領域5とこの直線領域5の両端に位置する円弧領域6と、を備える長穴8である。   As shown in FIG. 1, in the present embodiment, the through hole 4 is a long hole 8 that includes a linear region 5 in the major axis direction and arc regions 6 positioned at both ends of the linear region 5 in plan view.

図1に示すように、貫通穴4の直線領域5とは、貫通穴4の外周が、平面視において長径方向に、概ね直線を描くように形成される領域をいう。このように直線領域5を形成する方法としては、図4に示すように、ドリル加工により形成される円形の加工穴11の穴中心13が、中心線14上を移動するようにドリル加工し、かつ隣り合う加工穴11同士が重なり合うように配置する方法が挙げられる。また、ドリル加工の順番と位置としては、既に形成された加工穴10、11の間隔を2等分する位置に加工穴11を形成する方法が挙げられる。   As shown in FIG. 1, the straight region 5 of the through hole 4 refers to a region where the outer periphery of the through hole 4 is formed so as to draw a straight line in the major axis direction in plan view. As a method of forming the straight region 5 in this way, as shown in FIG. 4, drilling is performed so that the hole center 13 of the circular processing hole 11 formed by drilling moves on the center line 14, And the method of arrange | positioning so that the adjacent process holes 11 may overlap is mentioned. Further, as the order and position of the drilling process, there is a method of forming the machining hole 11 at a position where the interval between the machining holes 10 and 11 that have already been formed is divided into two equal parts.

本実施の形態において、直線領域5は、補強材であるガラスクロス等の補強繊維の方向と直角又は平行に設けられる。これにより、直線領域5の内壁9aは、ガラスクロス等の補強繊維の方向と直角又は平行に形成されるので、後述する円弧領域6の内壁9bに比べて、穴内粗さが小さくなる傾向がある。一方、円弧領域6は、ガラスクロス等の補強繊維の方向に対して、必ず45度に交わる部分を有するので、直線領域5の内壁9aに比べて、穴内粗さが大きくなる傾向がある。しかしながら、本実施の形態では、後述するように、円弧領域6には丸穴用ドリルを用い、直線領域5には長穴用ドリルを用いることにより、円弧領域6の内壁9bの穴内粗さが、直線領域5の内壁9aの穴内粗さよりも小さい長穴を形成することができる。   In the present embodiment, the straight region 5 is provided at a right angle or parallel to the direction of a reinforcing fiber such as a glass cloth that is a reinforcing material. Thereby, since the inner wall 9a of the straight region 5 is formed at right angles or parallel to the direction of the reinforcing fiber such as glass cloth, the roughness in the hole tends to be smaller than the inner wall 9b of the arc region 6 described later. . On the other hand, the arc region 6 always has a portion that intersects at 45 degrees with respect to the direction of the reinforcing fiber such as a glass cloth, so that the roughness in the hole tends to be larger than the inner wall 9a of the straight region 5. However, in the present embodiment, as will be described later, by using a round hole drill for the arc region 6 and using a long hole drill for the straight region 5, the in-hole roughness of the inner wall 9b of the arc region 6 is reduced. A long hole smaller than the roughness in the hole of the inner wall 9a of the straight region 5 can be formed.

直線領域5の両端に位置する円弧領域6とは、貫通穴4の外周が、平面視において、概ね半円を描くように形成される領域をいう。このように円弧領域6を形成する方法は、直線領域5を形成するのと同様であり、図4に示すように、ドリル加工により形成される円形の加工穴11の穴中心13が、中心線14上を移動するようにドリル加工し、かつ隣り合う加工穴11同士が重なり合うように配置して直線領域5を形成することで、この直線領域5の両端に円弧領域6が形成される。   The arc regions 6 positioned at both ends of the straight region 5 are regions where the outer periphery of the through hole 4 is formed so as to draw a substantially semicircle in plan view. The method of forming the arc region 6 in this manner is the same as that for forming the straight region 5, and as shown in FIG. 4, the hole center 13 of the circular processing hole 11 formed by drilling is the center line. The circular arc region 6 is formed at both ends of the linear region 5 by drilling so as to move on 14 and arranging the adjacent processing holes 11 so as to overlap each other to form the linear region 5.

本実施の形態における長穴8とは、異なる層の導体回路3同士を電気的に接続する層間接続を行ない、主にディスクリート部品等のリードを挿入して搭載するために用いられるスルーホール22を形成するための貫通穴4である。   The long hole 8 in the present embodiment is an interlayer connection that electrically connects conductor circuits 3 of different layers, and a through hole 22 that is mainly used to insert and mount a lead such as a discrete component. It is the through hole 4 for forming.

本実施の形態の配線基板においては、円弧領域6の内壁9bの穴内粗さ(図3)が、直線領域5の内壁9aの穴内粗さ(図2)より小さい。円弧領域6の内壁9bの穴内粗さ(図3)としては、40μm以下が好ましく、30μm以下がより好ましい。これにより、円弧領域6が片側が閉塞された環境であっても、めっき液の循環を確保でき、スルーホールめっき7の付き回りを確保できる。また、直線領域5の内壁9aの穴内粗さ(図2)としては、60μm以下が好ましく、50μm以下がより好ましい。この穴内粗さの範囲であれば、直線領域5が開放環境であることにより、スルーホールめっき7の付き回りを確保することができる。   In the wiring board of the present embodiment, the in-hole roughness of the inner wall 9b of the arc region 6 (FIG. 3) is smaller than the in-hole roughness of the inner wall 9a of the linear region 5 (FIG. 2). The in-hole roughness (FIG. 3) of the inner wall 9b of the arc region 6 is preferably 40 μm or less, and more preferably 30 μm or less. Thereby, even if it is the environment where the circular arc area | region 6 was obstruct | occluded on one side, the circulation of a plating solution can be ensured and the surroundings of the through-hole plating 7 can be ensured. Further, the roughness in the hole (FIG. 2) of the inner wall 9a of the linear region 5 is preferably 60 μm or less, more preferably 50 μm or less. If it is the range of this roughness in a hole, the surroundings of the through-hole plating 7 can be ensured because the straight region 5 is an open environment.

図1に示すように、直線領域5は、長穴8の両端ではない領域に位置するため、両側には円弧領域6の空間があり、開放されているので、スルーホールめっき7を形成する際にめっき液が循環し易い。このため、内壁9aの穴内粗さが多少粗くても、スルーホールめっき7の付き回りを確保できる。ここで、直線領域5におけるドリル加工では、図4(工程B−1)、(工程B−2)に示すように、既に加工されて加工穴10が形成されている部分と未加工の部分を跨いでドリル加工する場合が生じるため、ドリルに対する負荷に偏りが生じ、その結果、平面視において直線領域5が長径方向から垂直方向にずれて曲がる傾向がある。しかしながら、直線領域5では内壁9aの穴内粗さが多少粗くてもよいことによって、平面視における曲がりを生じやすい直線領域5においては、穴内粗さが大きくなるものの直進性のよい長穴用ドリルを用いることが可能になる。   As shown in FIG. 1, since the straight region 5 is located in a region that is not at both ends of the long hole 8, there is a space of the arc region 6 on both sides and is open, so when forming the through-hole plating 7 The plating solution is easy to circulate. For this reason, even if the inner wall 9a is somewhat rough in the hole, the through hole plating 7 can be secured. Here, in the drilling process in the straight region 5, as shown in FIG. 4 (process B-1) and (process B-2), a part that has already been processed and the processed hole 10 is formed and an unprocessed part are divided. Since the drilling process may occur over the span, the load on the drill is biased, and as a result, the straight region 5 tends to bend in the vertical direction from the major axis direction in plan view. However, in the straight region 5, the inner wall 9 a may have a slightly rough inner hole, so that in the straight region 5, which tends to bend in a plan view, a long hole drill with good straightness is obtained although the inner roughness is large. Can be used.

また、図4(工程B−1)、(工程B−2)において、穴中心13の近くに示したドリル加工の順番のとおり、既に形成された加工穴10、11の間隔を2等分する位置に加工穴11を形成することにより、既に加工されて加工穴10が形成されている部分と未加工の部分を跨いでドリル加工する場合が生じる場合でも、長穴8の長径方向についてドリルの負荷のバランスが保てるので、曲がりを抑制できる。さらに、図4(工程B−1)、(工程B−2)を繰り返すことで、図4(B−3)に示すように、直線領域5の内壁9aが、平面視でほぼ直線となるようにすることができる。   Moreover, in FIG. 4 (process B-1) and (process B-2), the space | interval of the already formed process holes 10 and 11 is divided into two equally according to the order of the drill process shown near the hole center 13. FIG. By forming the processed hole 11 at the position, even when drilling occurs across the part that has already been processed and the processed hole 10 is formed and the unprocessed part, drilling is performed in the major axis direction of the long hole 8. Since the load balance can be maintained, bending can be suppressed. Furthermore, by repeating FIG. 4 (process B-1) and (process B-2), as shown in FIG. 4 (B-3), the inner wall 9a of the straight region 5 becomes substantially straight in plan view. Can be.

一方、図1に示すように、円弧領域6は、長穴8の両端に位置するので、片側が閉塞されており、スルーホールめっき7を形成する際にめっき液が循環し難い。このため、内壁9bの穴内粗さが粗い場合には、スルーホールめっき7の付き回りを確保できない可能性がある。しかしながら、例えば、図4(工程A)に示すように、長穴8の円弧領域6となる両端の穴を先に開けるようにすることで、ドリル加工が未加工の部分のみになされるようになる。このため、円弧領域6は、直線領域5と異なり、平面視における曲がりの問題はないので、直進性は劣るが穴内粗さの小さい丸穴用ドリルを用いることが可能になる。   On the other hand, as shown in FIG. 1, since the arc region 6 is located at both ends of the long hole 8, one side is closed, and it is difficult for the plating solution to circulate when forming the through-hole plating 7. For this reason, when the inner wall 9b is rough in the hole, there is a possibility that the through hole plating 7 cannot be secured. However, for example, as shown in FIG. 4 (step A), by drilling the holes at both ends that will be the arc region 6 of the long hole 8 first, the drilling is performed only on the unprocessed portion. Become. For this reason, the arc region 6 is different from the straight region 5 in that there is no problem of bending in a plan view. Therefore, it is possible to use a round hole drill with inferior straightness but small in-hole roughness.

このように、円弧領域6の内壁9bの穴内粗さが、直線領域5の内壁9aの穴内粗さより小さいことによって、直線領域5では、長穴8の長径方向における曲がりを抑制しつつ、スルーホールめっき7の付きまわりを確保可能であり、円弧領域6でもスルーホールめっき7の付きまわりを確保可能になる。したがって、長径が短径の2倍以上の長い長穴を形成する場合でも、長穴の長径方向における曲がりを抑制しつつ、スルーホールめっき7の付きまわりを確保可能な配線基板を提供できる。   In this way, since the in-hole roughness of the inner wall 9b of the arc region 6 is smaller than the in-hole roughness of the inner wall 9a of the straight region 5, in the straight region 5, the bending of the long hole 8 in the major axis direction is suppressed and the through hole is suppressed. The area around the plating 7 can be secured, and the area around the through-hole plating 7 can be secured even in the arc region 6. Therefore, it is possible to provide a wiring board capable of securing the through hole plating 7 while suppressing the bending of the long hole in the long diameter direction even when forming a long long hole whose long diameter is twice or more the short diameter.

長穴用ドリルとは、曲がりを生じにくいドリルをいい、例えば、図5に示すように、長穴用ドリルの刃20の直径が、刃先から根本まで同じで、アンダーカットを有しないストレートタイプのドリルが挙げられる。このように、ストレートタイプのドリルは、ドリルの刃の剛性が高いので、長穴8の長径方向における曲がりを抑制できる。   The long hole drill refers to a drill that does not easily bend. For example, as shown in FIG. 5, the diameter of the long hole drill 20 is the same from the blade tip to the root and has no undercut. Is mentioned. Thus, since the rigidity of the drill of the straight type drill is high, the bending of the long hole 8 in the major axis direction can be suppressed.

一方、丸穴用ドリルとは、貫通穴4の内壁9の穴内粗さが、長穴用ドリルにより形成した貫通穴4の内壁9の穴内粗さよりも小さくなるドリルをいい、例えば、図6に示すように、丸穴用ドリルの刃15の直径16に対して、アンダーカット18を有するアンダーカットタイプのドリルが挙げられる。ここで、アンダーカットとは、ドリルの刃先の径に比べて、刃先より根本側の直径が細くなっている寸法のことをいい、このアンダーカットは、一般に0.01〜0.05mmである。アンダーカットタイプのドリルは、ストレートタイプのドリルに比べて、穴の内壁9との摩擦が低減されており、粗さを小さくすることができる。   On the other hand, the round hole drill refers to a drill in which the inner roughness of the inner wall 9 of the through hole 4 is smaller than the inner roughness of the inner wall 9 of the through hole 4 formed by the long hole drill. As shown, an undercut type drill having an undercut 18 with respect to the diameter 16 of the blade 15 of the round hole drill may be mentioned. Here, the undercut means a dimension in which the diameter on the base side of the cutting edge is smaller than the diameter of the cutting edge of the drill, and this undercut is generally 0.01 to 0.05 mm. In the undercut type drill, the friction with the inner wall 9 of the hole is reduced as compared with the straight type drill, and the roughness can be reduced.

本実施の形態において、図1に示すように、長穴の平面視における長径が、短径の2倍以上であるのが好ましい。これにより、長穴の直線領域5では、めっき液が循環するので、内壁9aの穴内粗さがある程度粗くても、スルーホールめっき7の付き回り性を確保でき、円弧領域6では、平面視における直線は問題にならず、内壁9bの穴内粗さの小さい丸穴用ドリルを用いてドリル加工が可能になる。   In this Embodiment, as shown in FIG. 1, it is preferable that the long diameter in planar view of a long hole is 2 times or more of a short diameter. As a result, since the plating solution circulates in the straight region 5 of the long hole, even if the inner wall 9a is rough to some extent, the through hole plating 7 can be secured, and the arc region 6 can be seen in a plan view. Straight lines are not a problem, and drilling is possible using a round hole drill having a small inner roughness of the inner wall 9b.

(配線基板の製造方法)
本発明の配線基板の製造方法の一実施形態を、図4〜図6を用いて説明する。
図4に示すように、本実施の形態の配線基板1の製造方法は、前記長穴8の両端に位置する円弧領域6をアンダーカットタイプの丸穴用ドリルで形成する工程Aと、前記長穴8の長径方向の直線領域5をストレートタイプの長穴用ドリルで形成する工程B(工程B−1〜B−3)と、前記長穴8の内壁9にスルーホールめっき7を形成する工程C(図示せず)と、を有する配線基板1の製造方法である。
(Method for manufacturing a wiring board)
One embodiment of a method for manufacturing a wiring board according to the present invention will be described with reference to FIGS.
As shown in FIG. 4, the manufacturing method of the wiring board 1 according to the present embodiment includes a step A in which arc regions 6 located at both ends of the elongated hole 8 are formed by an undercut type round hole drill, and the long Step B (steps B-1 to B-3) of forming the straight region 5 in the major axis direction of the hole 8 with a straight type long hole drill, and step C of forming the through-hole plating 7 on the inner wall 9 of the slot 8 (Not shown).

まず、図4(工程A)に示すように、長穴8の両端に位置する円弧領域6をアンダーカットタイプの丸穴用ドリルで形成する工程Aでは、未加工の部分のみをドリル加工することになるので、ドリルの負荷が全方向で同等となり曲がりを生じ難い。このため、アンダーカットタイプの丸穴用ドリルを用いることが可能になる。また、円弧領域6のアンダーカットタイプの丸穴用ドリルで形成するので、円弧領域6の内壁9bの穴内粗さは小さく抑えられる。穴中心13の近くの数字は、ドリル加工を行なった順番を示している。   First, as shown in FIG. 4 (process A), in the process A in which the arc regions 6 positioned at both ends of the long hole 8 are formed by an undercut type round hole drill, only an unprocessed portion is drilled. Therefore, the load on the drill is the same in all directions, and bending is difficult to occur. For this reason, an undercut type drill for round holes can be used. Further, since the undercut type round hole drill in the arc region 6 is used, the in-hole roughness of the inner wall 9b of the arc region 6 can be kept small. The numbers near the hole center 13 indicate the order of drilling.

次に、図4(工程B−1)〜(工程B−3)に示すように、長穴8の長径方向の直線領域5をストレートタイプの長穴用ドリルで形成する工程Bでは、ドリル加工により形成される円形の加工穴11の穴中心13が、中心線14上を移動するようにドリル加工し、かつ隣り合う加工穴11同士が重なり合うように配置する。穴中心13の近くの数字は、ドリル加工を行なった順番を示している。図4(工程B−1)、(工程B−2)に示すように、既に加工されて加工穴10が形成されている部分と未加工の部分を跨いでドリル加工することになるため、ドリルに対する負荷に偏りが生じ、曲がりを生じやすい傾向がある。しかしながら、直線領域5では内壁9aの穴内粗さが多少粗くても、スルーホールめっき7の付き回りがよいため、穴内粗さは大きくなるものの直進性のよい長穴用ドリルを用いることが可能になる。したがって、長穴8の長径方向における曲がりを抑制できる。   Next, as shown in FIG. 4 (process B-1) to (process B-3), in the process B in which the straight region 5 in the major axis direction of the long hole 8 is formed with a straight type long hole drill, drilling is performed. Drilling is performed so that the hole center 13 of the formed circular processing hole 11 moves on the center line 14, and the adjacent processing holes 11 are arranged so as to overlap each other. The numbers near the hole center 13 indicate the order of drilling. As shown in FIG. 4 (process B-1) and (process B-2), drilling is performed across the unprocessed part and the part that has already been processed and the processed hole 10 is formed. There is a tendency for the load to be uneven and to bend easily. However, in the straight region 5, even if the inner wall 9a is somewhat rough, the through-hole plating 7 is good, so that it is possible to use a long hole drill with good straightness although the hole roughness increases. Become. Therefore, the bending of the long hole 8 in the major axis direction can be suppressed.

次に、長穴8の内壁9にスルーホールめっき7を形成する工程C(図示せず)では、直線領域5については、内壁9aの穴内粗さが大きいが、めっき液が循環しやすい開放環境であるため、めっき液の循環が確保され、スルーホールめっき7の付き回りが確保される。また、円弧領域6については、めっき液が循環し難い閉塞環境ではあるが、内壁9bの穴内粗さが小さいため、めっき液の循環が確保され、スルーホールめっき7の付き回りが確保される。したがって、長穴8全体に亘って、スルーホールめっき7の付き回りが確保される。なお、スルーホールめっき7は、例えば、貫通穴4の内壁9に、下地の給電層を無電解銅めっきを用いて形成した後、電気銅めっきを用いて厚付けすることにより形成することができる。   Next, in the process C (not shown) of forming the through-hole plating 7 on the inner wall 9 of the long hole 8, the open area in which the plating solution is easy to circulate in the straight region 5 although the inner wall 9 a has a large roughness in the hole. Therefore, the circulation of the plating solution is ensured, and the attachment of the through-hole plating 7 is ensured. Further, the arc region 6 is a closed environment in which the plating solution is difficult to circulate, but the inner wall 9b has a small hole roughness, so that the circulation of the plating solution is secured and the through hole plating 7 is secured. Therefore, the attachment of the through-hole plating 7 is ensured over the entire long hole 8. The through-hole plating 7 can be formed, for example, by forming an underlying power supply layer on the inner wall 9 of the through-hole 4 using electroless copper plating and then thickening using electroless copper plating. .

図4(工程B−1)、(工程B−2)に示すように、本実施の形態において、長穴8の長径方向の直線領域5を長穴用ドリルで形成する工程では、既に形成された加工穴10、11の間隔を2等分する位置に加工穴11を形成するのが好ましい。これにより、図4(工程B−1)に示すように、なるべくドリル加工が未加工の領域のみにドリル加工することができ、ドリルの回転方向における負荷が均等になるので、曲がりを抑制できる。また、図4(工程B−1)、(工程B−2)に示すように、既に加工されて加工穴10が形成されている部分と未加工の部分を跨いでドリル加工する場合が生じる場合でも、長穴8の長径方向についてドリルの負荷のバランスが保てるので、曲がりを抑制できる。したがって、長穴8の長径方向全体に亘って、曲がりを抑制することができる。さらに、図4(工程B−1)、(工程B−2)を繰り返すことで、図4(B−3)に示すように、直線領域5の内壁9aが、平面視でほぼ直線となるようにすることができる。   As shown in FIG. 4 (process B-1) and (process B-2), in the present embodiment, in the process of forming the linear region 5 in the major axis direction of the long hole 8 with a long hole drill, it is already formed. It is preferable to form the processed holes 11 at positions that divide the interval between the processed holes 10 and 11 into two equal parts. Thereby, as shown to FIG. 4 (process B-1), it can drill only to the area | region where drilling is not processed as much as possible, and since the load in the rotation direction of a drill becomes equal, bending can be suppressed. Moreover, as shown to FIG. 4 (process B-1) and (process B-2), the case where the case where it drills across the part which has already been processed and the processed hole 10 is formed, and an unprocessed part arises. However, since the load balance of the drill can be maintained in the major axis direction of the long hole 8, the bending can be suppressed. Therefore, bending can be suppressed over the entire major axis direction of the long hole 8. Furthermore, by repeating FIG. 4 (process B-1) and (process B-2), as shown in FIG. 4 (B-3), the inner wall 9a of the straight region 5 becomes substantially straight in plan view. Can be.

図4(工程B−1)〜(工程B−3)において、1穴のドリル加工毎に、穴中心13が中心線14上を移動する穴ピッチ12は、0.07〜0.22mmが好ましい。穴ピッチ12をこの範囲とすることで、図1に示す、平面視における直線領域5はより直線に近づき、また、図2に示す直線領域の内壁9aの穴内粗さは小さくなる。このため、スルーホールめっき7の付きまわりを確保することができる。   4 (step B-1) to (step B-3), the hole pitch 12 at which the hole center 13 moves on the center line 14 is preferably 0.07 to 0.22 mm for each drilling of one hole. . By setting the hole pitch 12 in this range, the straight line region 5 in plan view shown in FIG. 1 is closer to a straight line, and the roughness in the hole of the inner wall 9a of the straight line region shown in FIG. 2 is reduced. For this reason, the surroundings of the through-hole plating 7 can be ensured.

本実施の形態において、丸穴用ドリルの先端角αが130°以上、150°以下であるのが、穴内粗さの小さい加工穴を形成できる点で好ましい。長穴用ドリルの先端角βが140°以上、160度未満であるのが、ドリルの直進性を高め、曲がりを抑制できる点で好ましい。   In the present embodiment, it is preferable that the tip angle α of the round hole drill is 130 ° or more and 150 ° or less in that a processed hole with small in-hole roughness can be formed. It is preferable that the tip angle β of the long hole drill is 140 ° or more and less than 160 ° in that the straightness of the drill can be improved and bending can be suppressed.

(実施例)
まず、エポキシ樹脂をガラス布に含浸させた絶縁層の両面に厚さが18μmの銅箔を有する銅張積層板(日立化成株式会社、商品名MCL−E−679、厚さ1.6mm)を準備し、銅箔をエッチングすることにより両面に導体回路を形成した。
(Example)
First, a copper-clad laminate (Hitachi Chemical Co., Ltd., trade name MCL-E-679, thickness 1.6 mm) having copper foil with a thickness of 18 μm on both sides of an insulating layer impregnated with glass cloth with epoxy resin. The conductor circuit was formed in both surfaces by preparing and etching copper foil.

次に、配線基板のドリル進入面に上当て板を配置し、ドリル進入面の反対側の面には、フェノール樹脂基板の下当て板を配置した。このように、配線基板を、上当て板とフェノール樹脂基板の下当て板とで固定して挟み、NC制御穴明け機(日立ビアメカニクス株式会社製、商品名MARK20)の穴明けテーブルにセットした。   Next, an upper cover plate was disposed on the drill entry surface of the wiring board, and a phenol resin substrate undercoat plate was disposed on the surface opposite to the drill entry surface. Thus, the wiring board was fixed and sandwiched between the upper plate and the lower plate of the phenol resin substrate, and set on the drilling table of the NC control drilling machine (trade name MARK20, manufactured by Hitachi Via Mechanics Co., Ltd.). .

次に、図4(工程A)に示すように、長穴8の両端に位置する円弧領域6をアンダーカットタイプの丸穴用ドリルで形成した。ここでは、ドリルの刃長が9.0mm、直径が1.1mm、先端角が140度のアンダーカットタイプのドリル(ユニオンツール株式会社製、商品名128 9110)を使用して、NC制御穴明け機(日立ビアメカニクス株式会社製、商品名MARK20)で、スピンドル回転数55,000min−1及び送り速度1.40m/minの条件で、加工穴10を形成した。加工穴10の穴中心13間の距離は、3.0mmである。穴中心13の近くの数字は、ドリル加工を行なった順番を示している。 Next, as shown in FIG. 4 (step A), the arc regions 6 positioned at both ends of the long hole 8 were formed with an undercut type round hole drill. Here, NC control drilling was performed using an undercut type drill (trade name 128 9110, manufactured by Union Tool Co., Ltd.) with a drill blade length of 9.0 mm, a diameter of 1.1 mm, and a tip angle of 140 degrees. The machined hole 10 was formed with a machine (manufactured by Hitachi Via Mechanics Co., Ltd., trade name MARK20) under the conditions of a spindle rotation speed of 55,000 min −1 and a feed rate of 1.40 m / min. The distance between the hole centers 13 of the processed holes 10 is 3.0 mm. The numbers near the hole center 13 indicate the order of drilling.

次に、図4(工程B−1)〜(工程B−3)に示すように、長穴8の長径方向の直線領域5をストレートタイプの長穴用ドリルで形成した。ここでは、ドリルの刃長が8.7mm、直径が1.1mm、先端角が150度のストレートタイプのドリル(CARBIDE INTERNATIONAL社製、商品名TCT SD24 SD 1100)を使用して、スピンドル回転数50,000min−1及び送り速度2.5m/minのドリル穴明け加工条件で、加工穴11を形成した。穴中心13の近くの数字は、ドリル加工を行なった順番を示している。 Next, as shown to FIG. 4 (process B-1)-(process B-3), the linear area | region 5 of the long diameter direction of the long hole 8 was formed with the drill for straight type long holes. Here, using a straight type drill with a drill length of 8.7 mm, a diameter of 1.1 mm, and a tip angle of 150 degrees (CARBIDE INTERNATIONAL, trade name: TCT SD24 SD 1100), the spindle rotation speed is 50, The machining hole 11 was formed under the drilling conditions of 000 min −1 and a feed rate of 2.5 m / min. The numbers near the hole center 13 indicate the order of drilling.

図4(工程B−1)、(工程B−2)に示すように、本実施の形態において、長穴8の長径方向の直線領域5を長穴用ドリルで形成する工程では、既に形成された加工穴10、11の間隔を2等分する位置に加工穴11を形成した。さらに、図4(工程B−1)、(工程B−2)を繰り返し、最終的に、穴中心13が中心線14上を移動する穴ピッチ12が、約0.1mmとした結果、図4(B−3)に示すように、直線領域5の内壁9aが平面視でほぼ直線の長穴8を形成した。   As shown in FIG. 4 (process B-1) and (process B-2), in the present embodiment, in the process of forming the linear region 5 in the major axis direction of the long hole 8 with a long hole drill, it is already formed. The processed holes 11 were formed at positions where the interval between the processed holes 10 and 11 was equally divided. Further, FIG. 4 (Step B-1) and (Step B-2) are repeated, and finally, the hole pitch 12 at which the hole center 13 moves on the center line 14 is set to about 0.1 mm. As shown to (B-3), the inner wall 9a of the linear area | region 5 formed the substantially straight long hole 8 by planar view.

次に、長穴8の内壁9にスルーホールめっき7を形成した(工程C)。なお、ドリル加工後の長穴8内はスプレー水洗のみを行い、多層配線基板で用いられるような過マンガン酸等を用いるデスミア処理は行っていない。スルーホールめっき7は、薄付け用の無電解銅めっきであるCUST2000(日立化成株式会社製、商品名。「CUST」は登録商標。)を用い、貫通穴4の内壁9に、厚さ約1μmの下地の給電層を形成した後、硫酸銅めっき浴を用いた電気銅めっきで、厚さ約25μmとなるよう形成した。   Next, the through-hole plating 7 was formed in the inner wall 9 of the long hole 8 (process C). In addition, the inside of the long hole 8 after drilling is only spray-washed, and the desmear process using permanganic acid etc. which are used with a multilayer wiring board is not performed. The through-hole plating 7 uses CUST2000 (trade name, manufactured by Hitachi Chemical Co., Ltd., “CUST” is a registered trademark), which is an electroless copper plating for thinning, and has a thickness of about 1 μm on the inner wall 9 of the through-hole 4. After forming the base power feeding layer, the thickness was about 25 μm by electrolytic copper plating using a copper sulfate plating bath.

(比較例1)
図4(工程A)で、長穴8の両端に位置する円弧領域6を、アンダーカットタイプの丸穴用ドリルで形成する代わりに、ストレートタイプの長穴用ドリルで形成したこと以外は、実施例と同様にして長穴8を形成した。
(Comparative Example 1)
In FIG. 4 (Process A), the arc regions 6 positioned at both ends of the long hole 8 are formed by a straight type long hole drill instead of being formed by an undercut type round hole drill. In the same manner, the long hole 8 was formed.

(比較例2)
図4(工程B−1)〜(工程B−3)で、長穴8の長径方向の直線領域5をアンダーカットタイプの丸穴用ドリルで形成したこと以外は、実施例と同様にして長穴8を形成した。
(Comparative Example 2)
In FIG. 4 (process B-1) to (process B-3), a long region is formed in the same manner as in the embodiment except that the straight region 5 in the major axis direction of the long hole 8 is formed by an undercut type round hole drill. Hole 8 was formed.

(直線領域の直線性)
スルーホールめっき後の配線基板の表裏面側から、曲がりが目視で確認できないレベル(0.1mm以内)は○、目視で確認できるレベル(0.1mmを超えるもの)は×とした。
(Linearity linearity)
From the front and back sides of the wiring board after through-hole plating, the level (within 0.1 mm) where the bending could not be visually confirmed was ○, and the level (over 0.1 mm) that could be visually confirmed was x.

(穴内壁粗さの測定)
スルーホールめっき後の配線基板から、各10穴を注型し、長穴8の内壁9の断面を、金属顕微鏡を用いて倍率500倍で観察し、穴内粗さ(穴内壁の凹凸の段差)を測定した。この時、長穴8の長径方向の直線領域5については、長径方向に対して直角方向(図1のX−X’方向、ガラスクロスの繊維と平行方向)の断面を観察し、長穴8の円弧領域6については、長径方向(図1のY−Y’方向、ガラスクロスの繊維と平行方向)の断面を観察した。なお、長穴8の円弧領域6については、長径方向(図1のY−Y’方向、ガラスクロスの繊維と平行方向)と45度に交わる方向(ガラスクロスの繊維と45度に交わる方向)の断面も観察した。また、各穴の穴内粗さは、穴内の最大の粗さをその穴の穴内粗さとし、各10穴分の穴内粗さの最大値、最小値、平均値を算出した。
(Measurement of hole inner wall roughness)
10 holes each are cast from the wiring board after through-hole plating, and the cross section of the inner wall 9 of the long hole 8 is observed with a magnification of 500 times using a metal microscope, and the roughness in the hole (the uneven step on the inner wall of the hole) Was measured. At this time, with respect to the linear region 5 in the major axis direction of the long hole 8, a cross section in a direction perpendicular to the major axis direction (XX ′ direction in FIG. 1, parallel to the fiber of the glass cloth) is observed. For the arc region 6, a cross section in the major axis direction (YY ′ direction in FIG. 1, parallel to the fiber of the glass cloth) was observed. In addition, for the arc region 6 of the long hole 8, a direction intersecting with the major axis direction (YY ′ direction in FIG. 1, a direction parallel to the fiber of the glass cloth) at 45 degrees (a direction intersecting with the fiber of the glass cloth at 45 degrees). The cross section was also observed. In addition, regarding the in-hole roughness of each hole, the maximum roughness in the hole was defined as the in-hole roughness of the hole, and the maximum value, minimum value, and average value of the in-hole roughness for each 10 holes were calculated.

(スルーホールめっきの付き回り)
スルーホールめっき後の配線基板から、各10穴を注型し、長穴8の内壁9の断面を、金属顕微鏡を用いて倍率×100倍で観察して評価した。配線基板の表面のめっき厚さに対して、穴内の内壁のスルーホールめっきの厚さが、50%以上の場合は○、50%未満の場合は△、スルーホールめっきの未着部分が観察された場合は×とした。
(Around through hole plating)
Ten holes were cast from the wiring board after through-hole plating, and the cross section of the inner wall 9 of the long hole 8 was observed and evaluated at a magnification of 100 times using a metal microscope. When the thickness of the through-hole plating on the inner wall in the hole is 50% or more with respect to the plating thickness of the surface of the wiring board, △ is indicated when the thickness is less than 50%, and the through-hole plating is not observed. When it was, it was set as x.

(評価結果)
実施例、比較例1、2の穴内粗さの測定結果(最小値〜最大値)とスルーホールめっきの付き回りの評価結果を、表1に示す。
(Evaluation results)
Table 1 shows the measurement results (minimum value to maximum value) of the in-hole roughness of Examples and Comparative Examples 1 and 2 and the evaluation results of the attachment of through-hole plating.

Figure 2016063133
Figure 2016063133

実施例では、直線領域の穴内粗さが、円弧領域よりも大きいものの、めっき付き回り及び直線領域の直線性は良好であった。ストレートタイプの長穴用ドリルだけを用いた比較例1では、円弧領域の穴内粗さが大きく、めっき付き回りが得られなかった。アンダーカットタイプの丸穴用ドリルだけを用いた比較例2は、直線領域で曲がりやドリルの折れを生じ、直線性が得られなかった。なお、比較例1、2で、同じドリルを用いているにも関わらず、直線領域の方が、円弧領域よりも穴内粗さが小さくなるのは、加工穴の穴ピッチが小さいので、既に加工済みの部分がほとんどで、実際にドリルで加工するのはごく小さい部分であり、ドリルへの負荷が小さいためと考えられる。一方、円弧領域では、未加工の部分を加工するため、ドリルへの負荷が大きいためと考えられる。
In the example, although the roughness in the hole of the linear region was larger than that of the arc region, the linearity of the plating area and the linear region was good. In Comparative Example 1 using only the straight type long hole drill, the roughness in the hole in the arc region was large, and the periphery with plating could not be obtained. In Comparative Example 2 using only the undercut type round hole drill, bending or drill breakage occurred in the linear region, and linearity was not obtained. In Comparative Examples 1 and 2, although the same drill is used, the straight area has a smaller hole roughness than the arc area because the hole pitch of the processed holes is small. Most of the parts are already finished, and what is actually drilled is a very small part, which is thought to be because the load on the drill is small. On the other hand, in the arc region, it is considered that an unprocessed portion is processed and the load on the drill is large.

1.配線基板
2.絶縁層
3.導体回路
3a.(ライン状の)導体回路
3b.(ランド状の)導体回路
4.貫通穴
5.直線領域
6.円弧領域
7.スルーホールめっき
8.長穴
8a.短径
8b.長径
9.内壁
9a.(直線領域の)内壁
9b.(円弧領域の)内壁
10.(丸穴用ドリルの)加工穴
11.(長穴用ドリルの)加工穴
12.穴ピッチ
13.穴中心
14.中心線
15.丸穴用ドリルの刃
16.(ドリルの刃の)直径
17.アンダーカット径
18.アンダーカット
19.先端角α
20.長穴用ドリルの刃
21.先端角β
22.スルーホール
23.ランド
24.銅箔
1. 1. Wiring board 2. Insulating layer Conductor circuit 3a. (Line-shaped) conductor circuit 3b. 3. (land-shaped) conductor circuit Through hole 5. 5. Linear area Arc region 7. Through-hole plating8. Slot 8a. Minor axis 8b. Major axis 9. Inner wall 9a. Inner wall 9b. Inner wall (in the arc region) 10. Processing hole (for round hole drill) 11. Processing hole (for long hole drills) 12. Hole pitch13. Hole center 14. Center line 15. Round hole drill blade 16. Diameter (of drill blade) 17. Undercut diameter 18. Undercut 19. Tip angle α
20. 21. Long hole drill blade 21. Tip angle β
22. Through hole 23. Land 24. Copper foil

Claims (6)

絶縁層と、この絶縁層の両面に配置される導体回路と、前記導体回路及び絶縁層を貫通する貫通穴と、この貫通穴の内壁にスルーホールめっきを備えるスルーホールと、を有する配線基板であって、前記貫通穴が平面視において長径方向の直線領域とこの直線領域の両端に位置する円弧領域と、を備える長穴であり、前記円弧領域の内壁の穴内粗さが、前記直線領域の内壁の穴内粗さより小さい配線基板。   A wiring board having an insulating layer, a conductor circuit disposed on both surfaces of the insulating layer, a through hole penetrating the conductor circuit and the insulating layer, and a through hole having a through hole plating on an inner wall of the through hole. The through hole is a long hole having a linear region in the major axis direction in plan view and an arc region located at both ends of the linear region, and the roughness in the hole of the inner wall of the arc region is A wiring board smaller than the roughness in the hole in the inner wall. 請求項1において、長穴の平面視における長径が、短径の2倍以上である配線基板。   2. The wiring board according to claim 1, wherein the major axis of the elongated hole in plan view is twice or more the minor axis. 請求項1又は2の配線基板の製造方法であって、前記長穴の両端に位置する円弧領域をアンダーカットタイプの丸穴用ドリルで形成する工程と、前記長穴の長径方向の直線領域をストレートタイプの長穴用ドリルで形成する工程と、前記長穴の内壁にスルーホールめっきを形成する工程と、を有する配線基板の製造方法。   It is a manufacturing method of the wiring board of Claim 1 or 2, Comprising: The process of forming the circular arc area | region located in the both ends of the said long hole with an undercut type round hole drill, and the linear area | region of the long diameter direction of the said long hole A method of manufacturing a wiring board, comprising: a step of forming with a straight type long hole drill; and a step of forming through-hole plating on an inner wall of the long hole. 請求項3において、前記長穴の長径方向の直線領域を長穴用ドリルで形成する工程では、既に形成された加工穴の間隔を2等分する位置に加工穴を形成する配線基板の製造方法。   4. The method for manufacturing a wiring board according to claim 3, wherein in the step of forming the straight region in the major axis direction of the elongated hole with the elongated hole drill, the processed hole is formed at a position that divides the interval between the formed holes into two equal parts. . 請求項3又は4において、加工穴の中心が中心線14上を移動する穴ピッチが、0.07〜0.22mmである配線基板の製造方法。   5. The method of manufacturing a wiring board according to claim 3, wherein a hole pitch at which the center of the processed hole moves on the center line 14 is 0.07 to 0.22 mm. 請求項3から4の何れか1項において、丸穴用ドリルの先端角αが130°以上、150°以下であり、長穴用ドリルの先端角βが140°以上、160度未満である配線基板の製造方法。   5. The wiring according to claim 3, wherein the tip angle α of the round hole drill is 130 ° or more and 150 ° or less, and the tip angle β of the long hole drill is 140 ° or more and less than 160 °. A method for manufacturing a substrate.
JP2014191314A 2014-09-19 2014-09-19 Wiring board and method of manufacturing the same Pending JP2016063133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014191314A JP2016063133A (en) 2014-09-19 2014-09-19 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191314A JP2016063133A (en) 2014-09-19 2014-09-19 Wiring board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016063133A true JP2016063133A (en) 2016-04-25

Family

ID=55796213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191314A Pending JP2016063133A (en) 2014-09-19 2014-09-19 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2016063133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860856A (en) * 2019-11-22 2020-03-06 中铁工程装备集团盾构制造有限公司 Novel grouting block manufacturing process of shield machine and novel grouting block of shield machine
CN114096058A (en) * 2021-11-05 2022-02-25 昆山沪利微电有限公司 Multi-order HDI-PCB and manufacturing method thereof
CN114096058B (en) * 2021-11-05 2024-04-30 昆山沪利微电有限公司 Multi-order HDI-PCB and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232111A (en) * 1989-02-28 1990-09-14 Toshiba Tungaloy Co Ltd Slotted hole machining small diameter drill
JPH0577104A (en) * 1991-09-19 1993-03-30 Matsushita Electric Works Ltd Drilling method of glass backing fluororesin substrate
JP2010238762A (en) * 2009-03-30 2010-10-21 Elna Co Ltd Method of forming through hole, and multilayer printed wiring board
JP2011161566A (en) * 2010-02-09 2011-08-25 Hitachi Via Mechanics Ltd Method of making long hole, drilling device, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232111A (en) * 1989-02-28 1990-09-14 Toshiba Tungaloy Co Ltd Slotted hole machining small diameter drill
JPH0577104A (en) * 1991-09-19 1993-03-30 Matsushita Electric Works Ltd Drilling method of glass backing fluororesin substrate
JP2010238762A (en) * 2009-03-30 2010-10-21 Elna Co Ltd Method of forming through hole, and multilayer printed wiring board
JP2011161566A (en) * 2010-02-09 2011-08-25 Hitachi Via Mechanics Ltd Method of making long hole, drilling device, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860856A (en) * 2019-11-22 2020-03-06 中铁工程装备集团盾构制造有限公司 Novel grouting block manufacturing process of shield machine and novel grouting block of shield machine
CN114096058A (en) * 2021-11-05 2022-02-25 昆山沪利微电有限公司 Multi-order HDI-PCB and manufacturing method thereof
CN114096058B (en) * 2021-11-05 2024-04-30 昆山沪利微电有限公司 Multi-order HDI-PCB and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8925192B2 (en) Printed wiring board and method for manufacturing the same
CN101695218B (en) Method for manufacturing printed circuit board with half-edge hole
JP5915882B2 (en) Wiring board and manufacturing method thereof
JPWO2016136222A1 (en) Printed wiring board and manufacturing method thereof
JP2018026392A (en) Wiring board and manufacturing method thereof
CN110839320A (en) Processing method of countersunk PCB
US20130126224A1 (en) Printed circuit board and method of manufacturing the same
JP2014120756A (en) Method of manufacturing printed circuit board
KR20100138755A (en) Boring method for printed substrate
JP2009147263A (en) Wiring substrate and its manufacturing method
JP2016063133A (en) Wiring board and method of manufacturing the same
CN108135083A (en) The pcb board and its processing method of a kind of groove at side surface
JP6016004B2 (en) Wiring board and manufacturing method thereof
CN109561583B (en) Efficient drilling method for multilayer PCB
JP2015185735A (en) Multilayer wiring board and manufacturing method therefor
CN105009697B (en) High-speed printed circuit board with uniform via interior diameter
JP2016025307A (en) Wiring board manufacturing method and wiring board
JP6417765B2 (en) Laminate for wiring board, wiring board using the same, and manufacturing method thereof
KR20150051440A (en) Composite metal film and method for forming circuit pattern of printed circuit board using the same
JP6115759B2 (en) Manufacturing method of multilayer wiring board
KR20210002455A (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
US20150114699A1 (en) Insulation material, printed circuit board using the same and method of manufacturing the same
JP2019029559A (en) Multilayer wiring board and manufacturing method thereof
JP2009088337A (en) Printed circuit board and its manufacturing method
CN113473710B (en) Circuit board manufacturing method and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807