JP2016061248A - Internal combustion engine and control device of internal combustion engine - Google Patents

Internal combustion engine and control device of internal combustion engine Download PDF

Info

Publication number
JP2016061248A
JP2016061248A JP2014190721A JP2014190721A JP2016061248A JP 2016061248 A JP2016061248 A JP 2016061248A JP 2014190721 A JP2014190721 A JP 2014190721A JP 2014190721 A JP2014190721 A JP 2014190721A JP 2016061248 A JP2016061248 A JP 2016061248A
Authority
JP
Japan
Prior art keywords
valve
control
internal combustion
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014190721A
Other languages
Japanese (ja)
Inventor
伸匡 大橋
Nobumasa Ohashi
伸匡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014190721A priority Critical patent/JP2016061248A/en
Publication of JP2016061248A publication Critical patent/JP2016061248A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine which improves supercharging characteristics by shortening a turbo lag at acceleration, and can highly efficiently operate a supercharger over the whole region of an engine operation, and a control method of the internal combustion engine.SOLUTION: An internal combustion engine 10 which has a two-stage supercharging system 20 comprises a variable valve train mechanism 18 which can make the valve-closing timing of an intake valve 17a retard, and can make the whole of a valve-opening period of an exhaust valve 17b advance. A control device 30 which controls the variable valve train mechanism 18 performs intake-valve retardant closing control for making valve-closing timing retard without making the valve-opening timing of the intake valve 17a advance according to an engine rotation speed Ne and target supercharging pressure Pt. Furthermore, the control device performs exhaust-valve early-opening control for making the whole of the valve-opening period of the exhaust valve 17b advance according to the engine rotation speed Ne and the target supercharging pressure Pt at acceleration.SELECTED DRAWING: Figure 3

Description

本発明は、タービン側におけるウエストゲートの設定を不要にしたままで、作動ガス量を低減させて、幅広い機関運転条件において高過給運転時のポンピングロスの悪化を回避でき、高過給条件においても高効率で運転することが可能になる内燃機関及び内燃機関の制御方法に関する。   The present invention eliminates the need for setting a wastegate on the turbine side, reduces the amount of working gas, can avoid deterioration of pumping loss during high supercharging operation in a wide range of engine operating conditions, and in high supercharging conditions The present invention also relates to an internal combustion engine that can be operated with high efficiency and a method for controlling the internal combustion engine.

現在、車両に搭載されるディーゼルエンジンにおいては、機関の高出力化と低排ガスレベルを両立するために高過給運転が必須となっており、排気ターボシステムを適用している。この場合に、加速時におけるターボラグ(過給遅れ)の発生と、高過給化(高ブースト)による排気圧力の上昇という、システム上回避することのできない問題がある。   Currently, in a diesel engine mounted on a vehicle, high supercharging operation is indispensable in order to achieve both high engine output and low exhaust gas level, and an exhaust turbo system is applied. In this case, there are problems that cannot be avoided in the system, such as the occurrence of turbo lag (supercharging delay) during acceleration and the increase in exhaust pressure due to high supercharging (high boost).

これに関連して、ターボ過給機を備えたエンジンの過給装置に関して、エンジンの発進・加速性を向上させるために、高段圧の小型ターボ過給機および低段圧の大型ターボ過給機を用いて、吸気通路には上流側から順に大型コンプレッサと小型コンプレッサとが直列に配設され、排気通路には上流側から順に小型タービンと大型タービンとが直列に配設されたエンジンの過給装置が提案されている(例えば、特許文献1参照)。   In this regard, in order to improve engine start-up / acceleration with respect to an engine turbocharger equipped with a turbocharger, a high-stage pressure small turbocharger and a low-stage pressure large turbocharger are used. A large compressor and a small compressor are arranged in series in the intake passage in order from the upstream side, and the exhaust passage of the engine in which a small turbine and a large turbine are arranged in series from the upstream side in the exhaust passage. A feeding device has been proposed (see, for example, Patent Document 1).

この2段過給システムでは、加速時におけるターボラグの発生を回避するためには、比較的容量の小さい過給機を使用することが望ましいが、発進時以外の運転条件、特に作動ガス量が増加する機関高速回転速度領域では高効率で過給することが出来なくなり、排気圧力が過度に上昇するため機関性能が悪化する。従って、ターボラグの問題と排気圧力の上昇の問題を同時に解決することが困難となっている。   In this two-stage turbocharging system, it is desirable to use a turbocharger with a relatively small capacity in order to avoid the occurrence of turbo lag during acceleration. However, operating conditions other than when starting, especially the amount of working gas increases. In the high engine speed range, the engine cannot be supercharged with high efficiency, and the exhaust pressure rises excessively, so the engine performance deteriorates. Therefore, it is difficult to solve the turbo lag problem and the exhaust pressure increase problem at the same time.

つまり、図13〜図16に、過給機容量の違いによる全負荷運転時の過給圧と排気圧力、及び、コンプレッサ作動点を示すが、排気ガス流量が最も多くなるエンジンの定格点にて過給機容量を設定した場合は、図13及び図14に示すように比較的大容量ターボを用いることになる。しかし、エンジン低速側では過給圧が低くなってしまい、また加速時においてはターボラグ(過給遅れ)が長期化するという問題が生じる。   That is, FIGS. 13 to 16 show the supercharging pressure and exhaust pressure during full load operation due to the difference in supercharger capacity, and the compressor operating point. At the rated point of the engine where the exhaust gas flow rate is the highest. When the supercharger capacity is set, a relatively large capacity turbo is used as shown in FIGS. However, there is a problem that the supercharging pressure becomes low on the engine low speed side, and the turbo lag (supercharging delay) becomes longer during acceleration.

一方、図15及び図16に示すように、比較的低流量タイプの過給機を設定する場合、ターボラグ(過給遅れ)は短縮されるが、高速運転側では高効率領域から過給作動点が外れてしまい、排気圧力が大幅に上昇するという問題が生じる。また、これに加えて過渡時に過給圧と排気圧力の上昇を抑えるためにタービン側にウエストゲートを設定する必要が生じる。   On the other hand, as shown in FIGS. 15 and 16, when a relatively low flow type turbocharger is set, the turbo lag (supercharging delay) is shortened, but on the high speed operation side, the supercharging operating point starts from the high efficiency region. Will come off and the exhaust pressure will rise significantly. In addition to this, it is necessary to set a wastegate on the turbine side in order to suppress an increase in supercharging pressure and exhaust pressure during a transition.

特開2011−214414号公報JP 2011-214414 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、加速時のターボラグを短縮して過給特性を改善すると共に、タービン側におけるウエストゲートの設定を不要にしたままで、エンジン運転領域の全体に亘って高効率で過給機を作動させることが可能となる内燃機関及び内燃機関の制御方法を提供することにある。   The present invention has been made in view of the above, and its purpose is to shorten the turbo lag at the time of acceleration and improve the supercharging characteristics, while leaving the setting of the wastegate on the turbine side unnecessary. It is an object of the present invention to provide an internal combustion engine and a control method for the internal combustion engine that can operate a supercharger with high efficiency over the entire engine operation region.

さらには、   Moreover,

上記の目的を達成するための本発明の内燃機関は、2段過給システムを備えた内燃機関において、吸気弁の閉弁時期を遅角可能で、かつ、排気弁の開弁期間全体を進角可能な可変動弁機構を備えて構成されると共に、該可変動弁機構を制御する制御装置が、エンジン回転速度と目標過給圧に応じて、前記吸気弁の開弁時期を進角させることなく、閉弁時期を遅角させる吸気弁遅閉じ制御を行うように構成される。   In order to achieve the above object, an internal combustion engine of the present invention is an internal combustion engine equipped with a two-stage supercharging system that can retard the closing timing of the intake valve and advance the entire opening period of the exhaust valve. A control device configured to include a variable valve mechanism capable of turning, and to advance the opening timing of the intake valve according to the engine rotation speed and the target supercharging pressure. Without being configured, the intake valve delay close control is performed to retard the valve close timing.

この構成によれば、吸気弁遅閉じ制御を実施することにより、タービン側におけるウエストゲートの設定を不要にしたままで、作動ガス量を低減させて、幅広い機関運転条件において高過給運転時のポンピングロスの悪化を回避できるので、高過給条件においても高効率で運転することが可能になる。   According to this configuration, by performing the intake valve slow closing control, the working gas amount is reduced while the setting of the waste gate on the turbine side is unnecessary, and the high supercharging operation is performed under a wide range of engine operating conditions. Since deterioration of the pumping loss can be avoided, it becomes possible to operate with high efficiency even under high supercharging conditions.

上記の内燃機関において、前記制御装置が、エンジン回転速度と、加速時の目標過給圧に応じて、前記排気弁の開弁期間全体を進角させる排気弁早開け制御を行うように構成される。   In the internal combustion engine, the control device is configured to perform exhaust valve early opening control for advancing the entire valve opening period of the exhaust valve in accordance with the engine speed and the target boost pressure during acceleration. The

また、加速時に、排気弁早開け制御を実施することにより、排気エンタルピを瞬時に増大させることができ、迅速にタービン回転速度を上昇させ、最小限のターボラグで目標過給圧に到達させることができる。   In addition, by performing exhaust valve early opening control during acceleration, the exhaust enthalpy can be increased instantaneously, the turbine rotational speed can be increased quickly, and the target boost pressure can be reached with a minimum turbo lag. it can.

従って、加速時のターボラグを短縮して過給特性を改善すると共に、タービン側におけるウエストゲートの設定を不要にしたままで、エンジン運転領域の全体に亘って高効率で過給機を作動させることが可能となる。   Therefore, the turbo lag at the time of acceleration is shortened to improve the supercharging characteristics, and the turbocharger can be operated with high efficiency over the entire engine operating range while eliminating the need for setting the wastegate on the turbine side. Is possible.

上記の内燃機関において、前記制御装置が、前記吸気弁の閉弁時期を遅角させる吸気弁遅閉じ制御を行う際に、目標過給圧が大きくなるにつれて遅角量を大きくするように構成されると、より吸気弁遅閉じ制御の効果が大きくなる。   In the internal combustion engine, the control device is configured to increase the retard amount as the target supercharging pressure increases when performing the intake valve delay close control for retarding the valve closing timing of the intake valve. As a result, the effect of the intake valve slow closing control is further increased.

上記の内燃機関において、前記制御装置が、前記排気弁の開弁期間全体を進角させる排気弁早開け制御を行う際に、過給圧を測定して、測定した過給圧と目標過給圧の差が大きくなるにつれて進角量を大きくするように構成されると、より排気弁早開け制御の効果が大きくなる。   In the internal combustion engine, when the control device performs exhaust valve early opening control for advancing the entire valve opening period of the exhaust valve, the supercharging pressure is measured, and the measured supercharging pressure and the target supercharging are measured. When the advance amount is increased as the pressure difference increases, the effect of the exhaust valve early opening control is further increased.

そして、上記の目的を達成するための本発明の内燃機関の制御方法は、2段過給システムを備え、吸気弁の閉弁時期を遅角可能で、かつ、排気弁の開弁期間全体を進角可能な可変動弁機構を備えた内燃機関の制御方法において、エンジン回転速度と目標過給圧に応じて、前記吸気弁の開弁時期を進角させることなく、閉弁時期を遅角させる吸気弁遅閉じ制御を行うことを特徴とする方法である。   And the control method of the internal combustion engine of the present invention for achieving the above object comprises a two-stage supercharging system, can retard the closing timing of the intake valve, and extends the entire opening period of the exhaust valve. In a control method for an internal combustion engine equipped with a variable valve mechanism that can advance, the valve closing timing is retarded without advancing the opening timing of the intake valve according to the engine speed and the target boost pressure. In this method, the intake valve slow closing control is performed.

上記の内燃機関の制御方法において、エンジン回転速度と、加速時の目標過給圧に応じて、前記排気弁の開弁期間全体を進角させる排気弁早開け制御を行う。これらの方法によれば、上記の内燃機関と同様の作用効果を奏することができる。   In the internal combustion engine control method, exhaust valve early opening control is performed to advance the entire opening period of the exhaust valve in accordance with the engine speed and the target boost pressure during acceleration. According to these methods, the same effects as the above-described internal combustion engine can be achieved.

本発明の内燃機関及び内燃機関の制御方法によれば、吸気弁遅閉じ制御により、加速時のターボラグを短縮して過給特性を改善すると共に、タービン側におけるウエストゲートの設定を不要にしたままで、エンジン運転領域の全体に亘って高効率で過給機を作動させることが可能となる。   According to the internal combustion engine and the control method of the internal combustion engine of the present invention, the turbo lag at the time of acceleration is shortened by the intake valve slow closing control to improve the supercharging characteristic and the setting of the waste gate on the turbine side is unnecessary. Thus, the supercharger can be operated with high efficiency over the entire engine operation region.

更に、加速時に、排気弁早開け制御を実施することにより、排気エンタルピを瞬時に増大させることができ、迅速にタービン回転速度を上昇させ、最小限のターボラグで目標過給圧に到達させることができる。   Furthermore, by performing exhaust valve early opening control during acceleration, the exhaust enthalpy can be increased instantaneously, the turbine rotational speed can be increased quickly, and the target boost pressure can be reached with a minimum turbo lag. it can.

従って、この両方の制御を併用することにより、加速時のターボラグを短縮して過給特性を改善すると共に、タービン側におけるウエストゲートの設定を不要にしたままで、エンジン運転領域の全体に亘って高効率で過給機を作動させることが可能となる   Therefore, by using both of these controls in combination, the turbo lag at the time of acceleration is shortened to improve the supercharging characteristics, and the setting of the wastegate on the turbine side is made unnecessary, and the entire engine operation range is maintained. It becomes possible to operate the turbocharger with high efficiency

本発明に係る実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of an embodiment concerning the present invention. 本発明に係る実施の形態の内燃機関の気筒周辺の構成を示す図である。It is a figure which shows the structure of the cylinder periphery of the internal combustion engine of embodiment which concerns on this invention. 本発明における吸気弁と排気弁の開閉のタイミングを模式的に示す図である。It is a figure which shows typically the timing of opening and closing of the intake valve and exhaust valve in this invention. 本発明における吸気弁遅閉じ制御領域を模式的に示す図である。It is a figure which shows typically the intake valve late closing control area | region in this invention. 本発明における吸気弁遅閉じ制御における、排気弁と吸気弁の開閉のタイミングを模式的に示す図である。It is a figure which shows typically the timing of opening and closing of an exhaust valve and an intake valve in the intake valve late closing control in this invention. 本発明における吸気弁遅閉じ制御のエンジン回転速度と吸気弁遅閉時量との関係を示す図である。It is a figure which shows the relationship between the engine speed of intake valve late closing control in this invention, and the amount at the time of intake valve late closing. 本発明における吸気弁遅閉じ制御を使用した場合のエンジン回転速度と過給圧、排気圧との関係を示す図である。It is a figure which shows the relationship between the engine speed at the time of using the intake valve slow closing control in this invention, a supercharging pressure, and exhaust pressure. 本発明における吸気弁遅閉じ制御を使用した場合の空気量とコンプレッサ圧力比との関係を示す図である。It is a figure which shows the relationship between the air quantity at the time of using the intake valve late closing control in this invention, and a compressor pressure ratio. 本発明における排気弁早開け制御領域を模式的に示す図である。It is a figure which shows typically the exhaust valve early opening control area | region in this invention. 本発明の排気弁早開け制御を使用した場合の加速時における排気弁と吸気弁の開閉のタイミングを模式的に示す図である。It is a figure which shows typically the timing of opening and closing of an exhaust valve and an intake valve at the time of acceleration at the time of using the exhaust valve early opening control of this invention. 本発明における吸気弁遅閉じ制御と排気弁早開け制御の同時使用による、加速時における排気弁と吸気弁の開閉のタイミングを模式的に示す図である。It is a figure which shows typically the timing of opening and closing of an exhaust valve and an intake valve at the time of acceleration by simultaneous use of intake valve late closing control and exhaust valve early opening control in the present invention. 本発明における吸気弁遅閉じ制御と排気弁早開け制御の同時使用による、加速時における過給応答性の改善の例を示す図である。It is a figure which shows the example of the improvement of the supercharging response at the time of acceleration by simultaneous use of intake valve late closing control and exhaust valve early opening control in this invention. 従来技術の過給システムで大容量過給機を使用し、機関高速回転域でマッチングさせた場合の機関回転速度と過給圧、排気圧との関係を示す図である。It is a figure which shows the relationship between an engine speed, a supercharging pressure, and an exhaust pressure at the time of making it match in an engine high-speed rotation area using a high capacity | capacitance supercharger with the supercharging system of a prior art. 従来技術の過給システムで大容量過給機を使用し、機関高速回転域でマッチングさせた場合の空気量とコンプレッサ圧力比との関係を示す図である。It is a figure which shows the relationship between the air quantity at the time of using a large capacity | capacitance supercharger with the supercharging system of a prior art, and making it match in an engine high speed rotation area. 従来技術の過給システムで小容量過給機を使用し、機関低速回転域でマッチングさせた場合の機関回転速度と過給圧、排気圧との関係を示す図である。It is a figure which shows the relationship between an engine speed, a supercharging pressure, and an exhaust pressure at the time of making it match in an engine low speed rotation area using a small capacity | capacitance supercharger with the supercharging system of a prior art. 従来技術の過給システムで小容量過給機を使用し、機関低速回転域でマッチングさせた場合の空気量とコンプレッサ圧力比との関係を示す図である。It is a figure which shows the relationship between the air quantity at the time of using a small capacity | capacitance supercharger with the supercharging system of a prior art, and making it match in an engine low speed rotation area, and a compressor pressure ratio.

以下、本発明に係る実施の形態の内燃機関、及び内燃機関の制御方法について図面を参照しながら説明する。   Hereinafter, an internal combustion engine according to an embodiment of the present invention and a control method for the internal combustion engine will be described with reference to the drawings.

図1及び図2に示すように、本発明の実施の形態のエンジン(内燃機関)10は、エンジン本体11と吸気通路12と排気通路13とEGR通路14を備えている。また、エンジン本体11には各気筒15に、燃料噴射装置16と、吸気通路12に連通する部分に吸気弁17aと、排気通路13に連通する部分に排気弁17bと、これらの吸気弁17aと排気弁17bを開閉弁操作するための可変バルブタイミングの可変動弁機構18が設けられている。そして、この気筒15にピストン19が挿入されている。また、このエンジン10は、低圧段ターボチャージャ(ターボ式過給器)21と高圧段ターボチャージャ22からなる2段過給システム20を備えている。   As shown in FIGS. 1 and 2, an engine (internal combustion engine) 10 according to an embodiment of the present invention includes an engine body 11, an intake passage 12, an exhaust passage 13, and an EGR passage 14. The engine body 11 includes a cylinder 15, a fuel injection device 16, an intake valve 17 a at a portion communicating with the intake passage 12, an exhaust valve 17 b at a portion communicated with the exhaust passage 13, and these intake valves 17 a. A variable valve timing mechanism 18 having a variable valve timing for opening / closing the exhaust valve 17b is provided. A piston 19 is inserted into the cylinder 15. The engine 10 includes a two-stage turbocharging system 20 including a low-pressure stage turbocharger (turbo-type supercharger) 21 and a high-pressure stage turbocharger 22.

そして、図1及び図2に示すように、大気から導入される空気(新気)Aが、吸気通路12において、エアクリーナ(図示しない)、低圧段ターボチャージャ21の低圧段コンプレッサ21a、高圧段ターボチャージャ22の高圧段コンプレッサ22a、インタークーラ23、エンジン本体11の吸気マニホールド11aと吸気弁17aを経由して、気筒15内に送られて、燃料噴射装置16より噴射された燃料と混合圧縮されて、燃料が着火及び燃焼することで、ピストン19を押し下げて、クランク軸19aを回転させて、動力を発生する。   As shown in FIGS. 1 and 2, air (fresh air) A introduced from the atmosphere is, in the intake passage 12, an air cleaner (not shown), the low-pressure stage compressor 21 a of the low-pressure stage turbocharger 21, and the high-pressure stage turbo. Via the high-pressure compressor 22a of the charger 22, the intercooler 23, the intake manifold 11a of the engine body 11 and the intake valve 17a, the fuel is fed into the cylinder 15 and mixed and compressed with the fuel injected from the fuel injection device 16. When the fuel is ignited and burned, the piston 19 is pushed down, and the crankshaft 19a is rotated to generate power.

図1及び図2に示すように、この気筒15内での燃焼により発生した排気ガスGが、排気弁17bと排気マニホールド11bを経由して排気通路13に流出し、その一部がEGRクーラ24とEGRバルブ25が設けられているEGR通路14にEGRガスGeとして分岐され、残りの排気ガスGoは高圧段タービン22b、低圧段タービン21bを経由して後処理装置(図示しない)により浄化され、この浄化処理された排気ガスGoは、マフラー(図示しない)を経由して大気へ放出される。   As shown in FIGS. 1 and 2, the exhaust gas G generated by the combustion in the cylinder 15 flows out to the exhaust passage 13 via the exhaust valve 17b and the exhaust manifold 11b, and a part thereof is the EGR cooler 24. And the EGR gas Ge is branched into the EGR passage 14 where the EGR valve 25 is provided, and the remaining exhaust gas Go is purified by an aftertreatment device (not shown) via the high pressure turbine 22b and the low pressure turbine 21b, The purified exhaust gas Go is discharged to the atmosphere via a muffler (not shown).

また、エンジン10を制御する制御装置30を備える。この制御装置30は、エンジン10に備えた各種センサ、または、エンジン10を搭載した車両に備えた各種センサの情報に基づいて、可変動弁機構18を介しての吸気弁17aと排気弁17bの開閉制御や燃料噴射装置16の燃料噴射制御やEGRバルブ25の開度制御等の、エンジン10の全般の制御や車両の全般の制御を行うECU(エンジンコントロールユニット)と呼ばれる制御装置である。   Moreover, the control apparatus 30 which controls the engine 10 is provided. The control device 30 is configured to control the intake valve 17a and the exhaust valve 17b via the variable valve mechanism 18 based on information of various sensors provided in the engine 10 or various sensors provided in a vehicle on which the engine 10 is mounted. It is a control device called ECU (engine control unit) that performs general control of the engine 10 and general control of the vehicle, such as opening / closing control, fuel injection control of the fuel injection device 16, and opening degree control of the EGR valve 25.

そして、本発明においては、図1及び図2に示すように、吸気マニホールド11aの内部の圧力を測定する圧力センサ(MAPセンサ:Manifold Absolute Pressure センサ)31を設けて、制御装置30が、この圧力センサ31で過給圧Pinを監視(モニター)できるようにする。   In the present invention, as shown in FIGS. 1 and 2, a pressure sensor (MAP sensor: Manifold Absolute Pressure Sensor) 31 for measuring the pressure inside the intake manifold 11a is provided, and the control device 30 controls the pressure. The supercharging pressure Pin can be monitored (monitored) by the sensor 31.

そして、この2つの過給機20A、20Bを備えた高過給システムのエンジン10において、可変動弁機構18は、吸気弁17aと排気弁17bの開閉タイミングにおいて、図3に示すように、吸気弁17aに対しては、通常のバルブ閉弁時期(ノーマルカムポジション:細線)Anに対して、バルブ開弁時期はそのままで遅らせることなく、バルブ閉弁時期を中線Aaや太線Abで示すように、遅角することが可能に構成される。また、更に、排気弁17bに対しては、通常のバルブ開閉弁時期(ノーマルカムポジション:細線)に対して、バルブ開閉弁時期の全体を中線Baや太線Bbで示すように、進角することが可能なように構成される。   And in the engine 10 of the high supercharging system provided with these two superchargers 20A and 20B, the variable valve mechanism 18 is configured to take in the intake and exhaust timings of the intake valve 17a and the exhaust valve 17b as shown in FIG. For the valve 17a, the valve closing timing is indicated by the middle line Aa and the thick line Ab without delaying the valve opening timing with respect to the normal valve closing timing (normal cam position: thin line) An. In addition, it is possible to retard. Further, with respect to the exhaust valve 17b, the entire valve opening / closing valve timing is advanced with respect to the normal valve opening / closing valve timing (normal cam position: thin line) as shown by the middle line Ba and the thick line Bb. Configured to be possible.

また、制御装置30は、動弁機構18の制御において、予め設定された図4に示すようなマップデータに基づいて、ノーマルバルブ領域Ranでは、吸気弁17aにおいて、通常のバルブ閉弁時期の開閉制御を行い、予め設定された、吸気弁遅閉じ制御領域Racでは、圧力センサ31で過給圧Pinを監視しながら、「エンジン回転速度Ne」と「目標過給圧Pt」に応じて、図5に示すように、吸気弁17aの開弁時期を進角させることなく、閉弁時期を遅角させる閉弁時期を遅角する吸気弁遅閉じ制御を実施するように構成される。なお、排気弁17bは、ノーマルバルブ領域Ranと吸気弁遅閉じ制御領域Racの両方の領域で、通常のバルブ閉弁時期の開閉制御を行う。   Further, in the control of the valve mechanism 18, the control device 30 opens and closes the normal valve closing timing in the intake valve 17 a in the normal valve region Ran based on map data as shown in FIG. 4 set in advance. In the intake valve slow closing control region Rac that is controlled in advance, the supercharging pressure Pin is monitored by the pressure sensor 31, and in accordance with the “engine rotational speed Ne” and the “target supercharging pressure Pt”, As shown in FIG. 5, the intake valve slow closing control for delaying the valve closing timing for retarding the valve closing timing is performed without advancing the valve opening timing of the intake valve 17a. The exhaust valve 17b performs normal opening / closing control of the valve closing timing in both the normal valve region Ran and the intake valve slow closing control region Rac.

また、この遅角の度合いである遅閉じ量Δθ1は、例えば、図6に示すように、過給圧Pinが大きい程大きくなるように制御される。この過給圧Pinと遅閉じ量Δθ1の関係は、予め実験などにより設定しておくことができる。この関係は、図6では直線で示しているが、必ずしも直線とは限らず、実験的に求めることが好ましい。   Further, for example, as shown in FIG. 6, the delay closing amount Δθ1, which is the degree of retardation, is controlled so as to increase as the boost pressure Pin increases. The relationship between the supercharging pressure Pin and the slow closing amount Δθ1 can be set in advance through experiments or the like. Although this relationship is shown by a straight line in FIG. 6, it is not necessarily a straight line, and it is preferable to obtain this relationship experimentally.

例えば、吸気弁17aの開弁時期は従来技術と同様に、クランク角度で320度(°)ATDC〜370度ATDCの範囲で開弁し、閉弁時期は従来技術のクランク角度で540度ATDC〜590度ATDCの範囲から0度〜100度程度、遅角させる。なお、吸気弁17aのリフト量は使用している可変動弁機構の機構により、閉弁時期を遅角させる場合において同じリフト量を維持できる場合もあり、異なる場合もある。   For example, the valve opening timing of the intake valve 17a is in the range of 320 degrees (°) ATDC to 370 degrees ATDC as the crank angle, as in the prior art, and the valve closing timing is 540 degrees ATDC from the conventional crank angle. The angle is retarded by about 0 to 100 degrees from the range of 590 degrees ATDC. It should be noted that the lift amount of the intake valve 17a may be maintained or may be different when the valve closing timing is retarded by the mechanism of the variable valve mechanism used.

通常、高過給運転条件にて過渡的な排気圧力Poutの増加を抑制するためには、排気タービン側にウエストゲートを設けて、最高回転速度を抑制することが必要になるが、図15及び図16に示すように高効率運転領域から外れてしまう。そこで、本発明では、吸気弁遅閉じ制御を実施することにより、タービン側におけるウエストゲートの設定を不要にしたままで、作動ガス量を低減させて、高過給条件においても高効率で運転することを可能とする。これにより、幅広い機関運転条件において高過給運転時のポンピングロスの悪化を回避できる。従って、この吸気弁遅閉じ制御により、図7及び図8に示すように、幅広い機関運転条件において高効率で高過給を行うことが可能となり、ポンピングロスの悪化を回避できるようになる。   Normally, in order to suppress a transient increase in the exhaust pressure Pout under high supercharging operation conditions, it is necessary to provide a wastegate on the exhaust turbine side to suppress the maximum rotation speed. As shown in FIG. 16, it will deviate from the high efficiency operation region. Therefore, in the present invention, by performing the intake valve slow closing control, the operation gas amount is reduced while setting the wastegate on the turbine side is unnecessary, and the operation is performed with high efficiency even under high supercharging conditions. Make it possible. Thereby, deterioration of the pumping loss at the time of high supercharging operation can be avoided in a wide range of engine operating conditions. Therefore, by this intake valve slow closing control, as shown in FIGS. 7 and 8, it is possible to perform high supercharging with high efficiency under a wide range of engine operating conditions, and avoid deterioration of pumping loss.

また、制御装置30は動弁機構18の制御において、加速時に、圧力センサ31で過給圧Pinを監視しながら、予め設定された図9に示すようなマップデータに基づいて、ノーマルバルブ領域Rbnでは通常のノーマルバルブ制御を行うが、排気弁早開け制御領域Rbcにある場合は、「エンジン回転速度Ne」と「過給圧Pinと目標過給圧Ptの差ΔP」に応じて、図10及び図11に示すように、排気弁17aの閉弁時期全体を進角させる排気弁早開け制御を実施するように構成される。この進角の度合いである可変位相量Δθ2は、過給圧Pinと目標過給圧Ptの差ΔPが大きい程大きくなるように制御される。なお、この過給圧Pinと目標過給圧Ptの差ΔPと可変位相量Δθ2の関係は、予め実験などにより設定しておくことができる。この関係は、図9では直線で示しているが、必ずしも直線とは限らず、実験的に求めることが好ましい。   Further, in the control of the valve operating mechanism 18, the control device 30 monitors the supercharging pressure Pin with the pressure sensor 31 during acceleration, and based on the preset map data as shown in FIG. 9, the normal valve region Rbn. In FIG. 10, normal normal valve control is performed, but when the exhaust valve is in the early opening control region Rbc, the engine rotational speed Ne and the difference ΔP between the supercharging pressure Pin and the target supercharging pressure Pt are shown in FIG. And as shown in FIG. 11, it is comprised so that the exhaust valve early opening control which advances the whole valve closing timing of the exhaust valve 17a may be implemented. The variable phase amount Δθ2 that is the degree of advance is controlled so as to increase as the difference ΔP between the boost pressure Pin and the target boost pressure Pt increases. The relationship between the difference ΔP between the supercharging pressure Pin and the target supercharging pressure Pt and the variable phase amount Δθ2 can be set in advance by experiments or the like. Although this relationship is shown by a straight line in FIG. 9, it is not always a straight line, and it is preferable to obtain this relationship experimentally.

また、図10は吸気弁に関するノーマルバルブ領域Ran(図4)にある場合を示し、図11は吸気弁に関する吸気弁遅閉じ領域Rac(図4)にある場合を示す。   FIG. 10 shows the case in the normal valve region Ran (FIG. 4) related to the intake valve, and FIG. 11 shows the case in the intake valve late close region Rac (FIG. 4) related to the intake valve.

例えば、排気弁17bの開弁時期は従来技術のクランク角度で120度ATDC〜170度ATDCの範囲から0度〜80度程度進角させて開弁し、閉弁時期は従来技術のクランク角度で360度ATDC〜400度ATDCの範囲から、同じく0度〜80度程度進角させて閉弁する。なお、排気弁17bのリフト量は使用している可変動弁機構の機構により、開弁期間全体を進角させる場合において同じリフト量を維持できる場合もあり、異なる場合もある。   For example, the valve opening timing of the exhaust valve 17b is opened by advancing about 0 to 80 degrees from the range of 120 degrees ATDC to 170 degrees ATDC in the conventional crank angle, and the valve closing timing is the crank angle of the conventional technique. From the range of 360 degrees ATDC to 400 degrees ATDC, the valve is similarly advanced by about 0 degrees to 80 degrees to close the valve. It should be noted that the lift amount of the exhaust valve 17b may be the same or different when the entire valve opening period is advanced by the mechanism of the variable valve mechanism used.

通常、エンジン加速時にはターボラグを最小限にするために,迅速にターボ回転数を増加する必要があり、そのためには、排気エンタルピを増加することが必要になるが、本発明の排気弁早開け制御は、排気エンタルピを増大させるためには有効な手段であるので、このときに、排気弁早開け制御を実施することにより、図12に示す実施例と従来例の比較で示すように、排気エンタルピを瞬時に増大させることができる。従って、迅速にタービン回転速度を上昇させ、最小限のターボラグで目標過給圧Ptに到達させることができるので、迅速に目標過給圧Ptが得られるようになる。なお、図12では、吸気弁遅閉じ制御と排気弁早開け制御の両方を実施した実施例と、両方を実施しない従来例とを比較している。   Usually, in order to minimize the turbo lag during engine acceleration, it is necessary to increase the turbo rotation speed quickly. For this purpose, it is necessary to increase the exhaust enthalpy. Is an effective means for increasing the exhaust enthalpy. At this time, by performing exhaust valve early opening control, as shown in the comparison between the embodiment shown in FIG. 12 and the conventional example, the exhaust enthalpy is shown. Can be increased instantaneously. Therefore, the turbine rotational speed can be quickly increased and the target boost pressure Pt can be reached with the minimum turbo lag, so that the target boost pressure Pt can be obtained quickly. In FIG. 12, an example in which both intake valve slow closing control and exhaust valve early opening control are performed is compared with a conventional example in which both are not performed.

従って、上記の構成の内燃機関及び内燃機関の制御方法によれば、吸気弁遅閉じ制御により、加速時のターボラグを短縮して過給特性を改善すると共に、タービン側におけるウエストゲートの設定を不要にしたままで、エンジン運転領域の全体に亘って高効率で過給機を作動させることが可能となる。   Therefore, according to the internal combustion engine and the control method for the internal combustion engine having the above-described configuration, the turbo valve is shortened during acceleration to improve the supercharging characteristics by the intake valve slow closing control, and the waste gate is not required to be set on the turbine side. It is possible to operate the supercharger with high efficiency over the entire engine operation region.

更に、加速時に、排気弁早開け制御を実施することにより、排気エンタルピを瞬時に増大させることができ、迅速にタービン回転速度を上昇させ、最小限のターボラグで目標過給圧に到達させることができる。   Furthermore, by performing exhaust valve early opening control during acceleration, the exhaust enthalpy can be increased instantaneously, the turbine rotational speed can be increased quickly, and the target boost pressure can be reached with a minimum turbo lag. it can.

従って、この両方の制御を併用することにより、加速時のターボラグを短縮して過給特性を改善すると共に、タービン側におけるウエストゲートの設定を不要にしたままで、エンジン運転領域の全体に亘って高効率で過給機を作動させることが可能となる   Therefore, by using both of these controls in combination, the turbo lag at the time of acceleration is shortened to improve the supercharging characteristics, and the setting of the wastegate on the turbine side is made unnecessary, and the entire engine operation range is maintained. It becomes possible to operate the turbocharger with high efficiency

10 ディーゼルエンジン(圧縮着火内燃機関)
11 エンジン本体
11a 吸気マニホールド
11b 排気マニホールド
12 吸気通路
13 排気通路
14 EGR通路
15 気筒(シリンダ)
16 燃料噴射装置
17a 吸気弁
17b 排気弁
18 動弁機構
19 ピストン
19a クランク軸
20 2段過給システム
21 低圧段ターボチャージャ(ターボ式過給器)
21a 低圧段コンプレッサ
21b 低圧段タービン
22 低圧段ターボチャージャ(ターボ式過給器)
22a 低圧段コンプレッサ
22b 低圧段タービン
23 インタークーラ
30 制御装置(ECU)
31 圧力センサ
A 空気(新気)
G 排気ガス
Go 排気ガス(EGRガス分が除かれた残りの排気ガス)
Pin 過給圧
Pt 目標過給圧
Ran ノーマルバルブ制御領域(吸気弁)
Rac 吸気弁遅閉じ制御領域
Rbn ノーマルバルブ制御領域(排気弁)
Rbc 排気弁早開け制御領域
Δθ1 遅閉じ量
Δθ2 可変位相量
10 Diesel engine (compression ignition internal combustion engine)
11 Engine body 11a Intake manifold 11b Exhaust manifold 12 Intake passage 13 Exhaust passage 14 EGR passage 15 Cylinder
16 Fuel injection device 17a Intake valve 17b Exhaust valve 18 Valve mechanism 19 Piston 19a Crankshaft 20 Two-stage supercharging system 21 Low-pressure stage turbocharger (turbo supercharger)
21a Low-pressure stage compressor 21b Low-pressure stage turbine 22 Low-pressure stage turbocharger (turbo supercharger)
22a Low-pressure stage compressor 22b Low-pressure stage turbine 23 Intercooler 30 Control device (ECU)
31 Pressure sensor A Air (fresh air)
G Exhaust gas Go Exhaust gas (remaining exhaust gas with EGR gas removed)
Pin Supercharging pressure Pt Target supercharging pressure Ran Normal valve control area (intake valve)
Rac Intake valve slow closing control region Rbn Normal valve control region (exhaust valve)
Rbc Exhaust valve early opening control region Δθ1 Slow closing amount Δθ2 Variable phase amount

Claims (6)

2段過給システムを備えた内燃機関において、
吸気弁の閉弁時期を遅角可能で、かつ、排気弁の開弁期間全体を進角可能な可変動弁機構を備えて構成されると共に、該可変動弁機構を制御する制御装置が、エンジン回転速度と目標過給圧に応じて、前前記吸気弁の開弁時期を進角させることなく、閉弁時期を遅角させる吸気弁遅閉じ制御を行うと共に、
In an internal combustion engine equipped with a two-stage supercharging system,
A control device configured to include a variable valve mechanism that can retard the closing timing of the intake valve and advance the entire valve opening period of the exhaust valve, and to control the variable valve mechanism, In accordance with the engine speed and the target boost pressure, the intake valve slow closing control is performed to retard the valve closing timing without advancing the valve opening timing of the previous intake valve,
前記制御装置が、エンジン回転速度と、加速時の目標過給圧に応じて、前記排気弁の開弁期間全体を進角させる排気弁早開け制御を行うように構成される請求項1記載の内燃機関。   The control device according to claim 1, wherein the control device is configured to perform exhaust valve early opening control for advancing the entire valve opening period of the exhaust valve according to an engine rotation speed and a target supercharging pressure during acceleration. Internal combustion engine. 前記制御装置が、前記吸気弁の閉弁時期を遅角させる吸気弁遅閉じ制御を行う際に、目標過給圧が大きくなるにつれて遅角量を大きくする請求項1又は2に記載の内燃機関。   3. The internal combustion engine according to claim 1, wherein when the control device performs intake valve delay closing control for delaying the valve closing timing of the intake valve, the amount of delay increases as the target boost pressure increases. . 前記制御装置が、前記排気弁の開弁時期を進角させる排気弁早開け制御を行う際に、過給圧を測定して、測定した過給圧と目標過給圧の差が大きくなるにつれて進角量を大きくする請求項1〜3にいずれか1項に記載の内燃機関。   When the control device performs the exhaust valve early opening control to advance the opening timing of the exhaust valve, the supercharging pressure is measured, and as the difference between the measured supercharging pressure and the target supercharging pressure increases. The internal combustion engine according to claim 1, wherein the advance amount is increased. 2段過給システムを備え、吸気弁の閉弁時期を遅角可能で、かつ、排気弁の開弁期間全体を進角可能な可変動弁機構を備えた内燃機関の制御方法において、
エンジン回転速度と目標過給圧に応じて、前記吸気弁の開弁時期を進角させることなく、閉弁時期を遅角させる吸気弁遅閉じ制御を行うことを特徴とする内燃機関の制御方法。
In a control method for an internal combustion engine comprising a two-stage supercharging system, comprising a variable valve mechanism capable of retarding the closing timing of an intake valve and advancing the entire opening period of an exhaust valve,
A control method for an internal combustion engine, characterized by performing intake valve slow closing control for retarding the valve closing timing without advancing the valve opening timing of the intake valve in accordance with an engine rotational speed and a target supercharging pressure. .
更に、エンジン回転速度と、加速時の目標過給圧に応じて、前記排気弁の開弁期間全体を進角させる排気弁早開け制御を行う請求項5に記載の内燃機関の制御方法。   6. The control method for an internal combustion engine according to claim 5, wherein the exhaust valve early opening control is performed to advance the entire valve opening period of the exhaust valve in accordance with the engine rotation speed and the target boost pressure during acceleration.
JP2014190721A 2014-09-19 2014-09-19 Internal combustion engine and control device of internal combustion engine Pending JP2016061248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190721A JP2016061248A (en) 2014-09-19 2014-09-19 Internal combustion engine and control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190721A JP2016061248A (en) 2014-09-19 2014-09-19 Internal combustion engine and control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016061248A true JP2016061248A (en) 2016-04-25

Family

ID=55797311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190721A Pending JP2016061248A (en) 2014-09-19 2014-09-19 Internal combustion engine and control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016061248A (en)

Similar Documents

Publication Publication Date Title
US7487750B2 (en) Variable intake valve and exhaust valve timing strategy for improving performance in a hydrogen fueled engine
US20140298802A1 (en) Control Device for Internal Combustion Engine
JP2009047005A (en) Control device for internal combustion engine provided with turbocharger
JP2005090468A (en) Egr device of premixed compression self ignition internal combustion engine, and ignition timing control method of premixed compression self ignition internal combustion engine
US20150219025A1 (en) Method for operating an internal combustion engine in particular a spark-ignition engine, having at least one inlet valve
US9879617B2 (en) Control apparatus of engine
US10167793B2 (en) Exhaust-gas-turbocharged internal combustion engine with partial deactivation and method for operating an internal combustion engine
KR101542979B1 (en) Engine Control Apparatus having Turbocharger and Method Thereof
JP5348338B2 (en) Engine control device
JP2009002283A (en) Control system of internal combustion engine
JP4893514B2 (en) Control device for an internal combustion engine with a supercharger
GB2507061A (en) Method of two-stage turbocharger matching for supporting cylinder deactivation.
CN111788378B (en) Internal combustion engine and control method thereof
US10060361B2 (en) Method for performing a charge exchange in an internal combustion engine
EP2698518A1 (en) Internal combustion engine control apparatus
US10393032B2 (en) Elevated compression ratio internal combustion engine with multi-stage boosting
JP2010151087A (en) Controller for internal combustion engine
JP2016130489A (en) Internal combustion engine control device
JP2010043579A (en) Internal combustion engine with turbocharger
JP2008051017A (en) Premixed compression self-igniting internal combustion engine
JP5338709B2 (en) Control device for internal combustion engine
JP2016061248A (en) Internal combustion engine and control device of internal combustion engine
US9885293B2 (en) Control apparatus of engine
JP6317649B2 (en) Supercharging system
JP2014214638A (en) Engine device with turbo supercharger