JP2016061243A - Steam turbine - Google Patents

Steam turbine Download PDF

Info

Publication number
JP2016061243A
JP2016061243A JP2014190571A JP2014190571A JP2016061243A JP 2016061243 A JP2016061243 A JP 2016061243A JP 2014190571 A JP2014190571 A JP 2014190571A JP 2014190571 A JP2014190571 A JP 2014190571A JP 2016061243 A JP2016061243 A JP 2016061243A
Authority
JP
Japan
Prior art keywords
flow
wall surface
side wall
steam
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014190571A
Other languages
Japanese (ja)
Inventor
神保 智彦
Tomohiko Jinbo
智彦 神保
ビスワス デバシス
Biswas Debasis
ビスワス デバシス
村田 頼治
Yoriji Murata
頼治 村田
新一郎 大橋
Shinichiro Ohashi
新一郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014190571A priority Critical patent/JP2016061243A/en
Publication of JP2016061243A publication Critical patent/JP2016061243A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam turbine that suppresses separation of a steam flow generated in the vicinity of an outer peripheral side wall surface of a steam passage part to lower a pressure loss in the steam turbine.SOLUTION: The steam turbine includes a jetting nozzle for jetting fluid toward a downstream in an axial direction of the turbine, at the outer peripheral side wall surface on an upstream side of a stationary vane.SELECTED DRAWING: Figure 1

Description

本発明は、蒸気タービンの蒸気通路部の外周壁面近傍に生じる流れの剥離を抑制する蒸気
タービンに関する。
The present invention relates to a steam turbine that suppresses flow separation occurring in the vicinity of an outer peripheral wall surface of a steam passage portion of a steam turbine.

火力発電所などに設置される蒸気タービンの低圧部においては,蒸気の大幅な膨張を得る
ために,蒸気通路は下流側にいくほど径方向に拡大する構造となっている。このような蒸
気通路における流れは,下流ほど圧力が高くなる逆圧力こう配が形成されており,このよ
うな流れ場では蒸気通路の壁面から流れが剥離することがある。
In the low pressure part of a steam turbine installed in a thermal power plant or the like, the steam passage is configured to expand in the radial direction toward the downstream side in order to obtain significant expansion of the steam. The flow in such a steam passage has a reverse pressure gradient in which the pressure increases toward the downstream, and in such a flow field, the flow may be separated from the wall surface of the steam passage.

この剥離が生じる要因として,動翼の先端と外周側壁面との間から流出する漏れ流れの影
響が挙げられる。この漏れ流れは,動翼の有効部を通過した流れに比べて流速が速い。漏
れ流れが蒸気通路部の壁面近傍において急に減速することと,流路断面積が拡大すること
により,剥離の発生を促す。このような剥離の発生は,蒸気タービンにおけるエネルギー
損失を増加させる要因の一つである。そこで,外周側壁面で生じる剥離を抑制し,損失を
低減させることが必要である。
The cause of this separation is the influence of the leakage flow that flows out between the tip of the rotor blade and the outer peripheral side wall surface. This leakage flow has a higher flow velocity than the flow that has passed through the effective part of the blade. The leakage flow suddenly decelerates in the vicinity of the wall surface of the steam passage and the cross-sectional area of the flow path is enlarged, thereby promoting the occurrence of separation. The occurrence of such separation is one of the factors that increase energy loss in the steam turbine. Therefore, it is necessary to suppress the peeling that occurs on the outer peripheral side wall surface and reduce the loss.

ここで,蒸気タービンにおける従来例に関して,図5〜図7を用いて具体的に説明する。
図5〜図7蒸気タービンの一例で,蒸気タービン201,202,203の鉛直方向の子
午断面の一部を表す。図5,図6は最終段のタービン段落およびその1段上流のタービン
の断面で,図5は外周側壁面が直線のもの,図6は曲線になっている場合の例を表す。図
7は最終段のタービン段落の断面で,外周側壁面に流体を吸い込む構造を設けたものを表
す。
Here, a conventional example of a steam turbine will be specifically described with reference to FIGS.
FIG. 5 to FIG. 7 are examples of the steam turbine, and represent a part of the vertical meridional section of the steam turbines 201, 202, 203. 5 and 6 are cross sections of the turbine stage at the final stage and the turbine upstream of the first stage, FIG. 5 shows an example in which the outer peripheral side wall surface is a straight line, and FIG. 6 shows a curve. FIG. 7 is a cross section of the turbine stage at the final stage, and shows a structure in which fluid is sucked into the outer peripheral side wall surface.

図5に示すように外周側壁面213a,213b,内周側壁面214a〜214dとの間
には蒸気通路部231aが形成される。静翼211aは外周側壁面213a,内周側壁面
214aとの間に支持され,静翼211bは外周側壁面213b,内周側壁面214cと
の間に支持されている。静翼211a,211bの直下流側にはタービンロータ(図示せ
ず)に植設された動翼212a,212bが配置されている。同様に図6では外周壁面2
13a,213c,内周側壁面214a〜214dとの間には蒸気通路部231bが形成
され,静翼211a,211bは外周面側壁面213a,213c,内周側壁面214a
,214cとの間に支持されている。
As shown in FIG. 5, a steam passage portion 231a is formed between the outer peripheral side wall surfaces 213a and 213b and the inner peripheral side wall surfaces 214a to 214d. The stationary blade 211a is supported between the outer peripheral side wall surface 213a and the inner peripheral side wall surface 214a, and the stationary blade 211b is supported between the outer peripheral side wall surface 213b and the inner peripheral side wall surface 214c. On the downstream side of the stationary blades 211a and 211b, moving blades 212a and 212b implanted in a turbine rotor (not shown) are arranged. Similarly, in FIG.
13a, 213c and inner peripheral side wall surfaces 214a to 214d are formed with a steam passage portion 231b.
, 214c.

図5に示す蒸気タービン201では,外周側壁面213bは下流側に向かって直線的に拡
大している。このような,通路231aにおいては,流路の急拡大により,外周側壁面2
13b近傍において,静翼211bの入口の直上流側で流れの剥離221cを生じ,逆流
域222aが発生する。その結果,損失が増加する。
In the steam turbine 201 shown in FIG. 5, the outer peripheral side wall surface 213b linearly expands toward the downstream side. In such a passage 231a, the outer peripheral side wall surface 2 is caused by the sudden expansion of the flow path.
In the vicinity of 13b, a flow separation 221c occurs immediately upstream of the inlet of the stationary blade 211b, and a reverse flow region 222a is generated. As a result, the loss increases.

そこで,このような流れの剥離を抑制するために,図6に示すように,外周側壁面213
cの一部を,緩やかなS字状に湾曲した形状の構成にすることがある。つまり動翼の先端
と外周側壁面との間の直後は、外周側壁面の径方向の広がり角を緩やかとし、その後、径
方向の広がり角度を一度急角度で増加させ,その下流側において緩やかに増加するように
形成されている。しかし,このような構成を備えても,流れの剥離221eが生じる位置
が下流側に移動するだけで,流れの剥離221eや逆流域222bが発生する
また,剥離を抑制するために,図7に示すように外周側壁面213dに穴215および穴
215に通じた流路216を設け,穴215から吸引される流れ221fを発生させ,流
路216を通じて動翼212bのチップ部分に噴出される構成にすることで,剥離を抑制
することがある(特許文献1参照)。しかし,外周壁面213d近傍で剥離が発生しない
ようにするためには,強い吸引力が必要になってくる。
Therefore, in order to suppress such separation of the flow, as shown in FIG.
A part of c may be configured to have a gently curved S-shape. In other words, immediately after the tip of the rotor blade and the outer peripheral side wall surface, the radial spread angle of the outer peripheral side wall surface is made gentle, and then the radial spread angle is once increased at a steep angle and then gently on the downstream side. It is formed to increase. However, even if such a configuration is provided, the flow separation 221e and the reverse flow region 222b are generated only by moving the position where the flow separation 221e occurs to the downstream side. As shown in the figure, a hole 215 and a channel 216 communicating with the hole 215 are provided in the outer peripheral side wall surface 213d, a flow 221f sucked from the hole 215 is generated, and is ejected to the tip portion of the rotor blade 212b through the channel 216. By doing so, peeling may be suppressed (see Patent Document 1). However, a strong suction force is required to prevent peeling near the outer peripheral wall surface 213d.

また、特許文献2には,周方向に隣り合う静翼同士を連結するシュラウド表面に、ガスの
噴出孔を設ける構造が提案されているが、これにより水滴による動翼の浸食防止や効率の
低下回避にはつながるが、ガスが静翼の水滴にあたるよう、ガスの噴出方向が静翼の長手
方向、すなわち半径方向であるため、蒸気通路壁面からの蒸気流れの剥離からみると、む
しろ助長してしまうことになり、蒸気流れの抑制には効果がない。
Further, Patent Document 2 proposes a structure in which gas ejection holes are provided on the surface of the shroud that connects the stationary blades adjacent to each other in the circumferential direction. This prevents the blade from being eroded by water droplets and reduces efficiency. Although it leads to avoidance, the gas jet direction is the longitudinal direction of the stationary blade, that is, the radial direction so that the gas hits the water droplets on the stationary blade. Therefore, there is no effect in suppressing the steam flow.

さらに、特許文献3には,最終段のタービン段落において,ダイヤフラム外輪と内輪との
間に構成される環状流路において、ダイヤフラム外輪との間に間隔をあけ,かつダイヤフ
ラム外輪に沿って、静翼に環状導風板を取り付けることにより、蒸気流れの剥離の抑制構
造が提案されているが、剥離抑制のために、環状導風板と外輪の壁面とのクリアランスの
調整や、環状導風板を静翼に取り付けるための特別な加工が必要などの課題もあった。
Further, in Patent Document 3, in the turbine stage of the final stage, in the annular flow path configured between the diaphragm outer ring and the inner ring, a space is provided between the diaphragm outer ring and the stationary blade along the diaphragm outer ring. Although a structure for suppressing the separation of vapor flow has been proposed by attaching an annular air guide plate to the ring, adjustment of the clearance between the annular air guide plate and the outer ring wall surface, There were also problems such as the need for special processing to attach to the stator blades.

特開2011−99438号公報JP 2011-99438 A 特開2014−77397号公報JP 2014-77397 A 特開2013−148059号公報JP2013-148059A

以上のように,蒸気通路部における流れの剥離の発生を抑制するために,蒸気通路部の形
状を変えるとか,外周側壁面から流れを吸引するなどの対策を施しても,流れの剥離の発
生を抑制することは困難であった。また,近年の蒸気タービンにおける長翼化の傾向から
,蒸気通路部のタービンロータの軸方向に対する径方向の拡大は,さらに増加する傾向に
ある。そのため,従来の蒸気タービンでは,蒸気通路部の外周側壁面近傍で生じる流れの
剥離の発生を抑制することが困難であり,損失が増加するといった課題があった。
As described above, even if measures such as changing the shape of the steam passage or sucking the flow from the outer peripheral side wall are used to suppress the occurrence of flow separation in the steam passage, the occurrence of flow separation occurs. It was difficult to suppress. In addition, due to the trend toward longer blades in steam turbines in recent years, the radial expansion of the steam passage section with respect to the axial direction of the turbine rotor tends to increase further. Therefore, the conventional steam turbine has a problem that it is difficult to suppress the occurrence of flow separation that occurs in the vicinity of the outer peripheral side wall surface of the steam passage, and the loss increases.

蒸気タービンにおいて,蒸気通路部の外周側壁面近傍で剥離が生じ,その結果,損失が増
加するといった課題があった。そこで,剥離を抑制するために,静翼の上流側の外周側壁
面に,タービンの軸方向の下流に向かって流体を噴出する噴出口を設けた蒸気タービンを
提供することにより上記目的を達成する。
In the steam turbine, there is a problem that separation occurs near the outer peripheral side wall surface of the steam passage, resulting in an increase in loss. Therefore, in order to suppress separation, the above object is achieved by providing a steam turbine provided with a jet outlet for jetting fluid toward the downstream in the axial direction of the turbine on the outer peripheral side wall surface on the upstream side of the stationary blade. .

以下、本発明の実施の形態について、図1から図4を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に本発明第1の実施形態に関わる構成概略図の断面図,図2に本発明第1の実施形態
に関わる流れの概略図の断面図を示す。図3に本発明第2,第3の実施形態に関わる構成
概略図の断面図の噴出口付近の拡大図,図4に本発明第4の実施形態に関わる構成概略図
の断面図および噴出口の形状の概略図を示す。ここで,図1〜図4は最終段のタービン段
落の断面を示している。
FIG. 1 is a cross-sectional view of a schematic configuration diagram related to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a schematic flow diagram related to the first embodiment of the present invention. FIG. 3 is an enlarged view of the vicinity of the spout of the cross-sectional view of the configuration schematic diagram related to the second and third embodiments of the present invention, and FIG. 4 is a cross-sectional view of the configuration schematic diagram related to the fourth embodiment of the present invention and the spout port. The schematic of the shape of is shown. Here, FIGS. 1 to 4 show cross sections of the turbine stage at the final stage.

図1は蒸気タービンの一例で,最終段のタービン段落の断面を表す。蒸気タービン101
では,外周側壁面113,内周側壁面114a,114bとの間に蒸気通路131が形成
される。静翼111は外周側壁面113,内周側壁面114aとの間に支持されている。
静翼111の直下流側にはタービンロータ(図示せず)に植設された動翼112が配置さ
れている。蒸気タービン101に対して,外周側壁面113のうち、静翼111よりも上
流側であって、通路部を構成する壁面113aに噴出口11を設ける。噴出口11には流
路12を通じて,静翼111、動翼112を構成する段落よりも上流の段落から供給され
た流体が噴出される。したがって噴出される流体は、剥離される流体に比べて高圧となる
ため、その圧力差で、剥離流れに向かって噴出する。
FIG. 1 is an example of a steam turbine, and shows a cross section of a turbine stage in the final stage. Steam turbine 101
Then, a steam passage 131 is formed between the outer peripheral side wall surface 113 and the inner peripheral side wall surfaces 114a and 114b. The stationary blade 111 is supported between the outer peripheral side wall surface 113 and the inner peripheral side wall surface 114a.
A moving blade 112 planted in a turbine rotor (not shown) is disposed immediately downstream of the stationary blade 111. The jet port 11 is provided on a wall surface 113a that constitutes a passage portion on the upstream side of the stationary blade 111 in the outer peripheral side wall surface 113 with respect to the steam turbine 101. The fluid supplied from the paragraph upstream of the paragraphs constituting the stationary blade 111 and the moving blade 112 is ejected through the flow path 12 to the ejection port 11. Accordingly, since the ejected fluid has a higher pressure than the fluid to be separated, the fluid is ejected toward the separation flow by the pressure difference.

蒸気の流れを具体的に表したのが図2であり、上流の段落からの主流151が、静翼11
1、動翼112を通過して流れ152となる。外周側壁面113近傍で剥離していた流れ
に対して,噴出口11から流れ153が、上記した圧力差により噴出することで,運動量
が供給され,流れ154のように,外周側壁面113に再付着し,逆流域も解消される。
その結果,流れの剥離による損失の増加を防ぐことができる。
FIG. 2 specifically shows the flow of the steam, and the main flow 151 from the upstream paragraph is the stationary blade 11.
1. It passes through the moving blade 112 and becomes a flow 152. The flow 153 from the outlet 11 is ejected by the above-described pressure difference with respect to the flow separated in the vicinity of the outer peripheral side wall surface 113, so that momentum is supplied to the outer peripheral side wall surface 113 like the flow 154. It adheres and the backflow area is also eliminated.
As a result, an increase in loss due to flow separation can be prevented.

図3に本発明第2および第3の実施形態に関わる噴出口付近の拡大図を示す。図3に示す
ように,外周側壁面113に対して,噴出の角度13が大きすぎると噴出口11からの流
れの方向が径方向側になる結果、剥離流れを助長してしまい好ましくない。また、噴出の
角度13が小さすぎても剥離流れ全体に運動量を供給できないため、同様に好ましくない
。このような知見により、噴出口からの流れが30°から45°の範囲になるように,外
周側壁面113に噴出口11を設ける。このように,噴出角度13を30°から45°の
範囲にすることで,剥離した流れに対して,軸方向および径方向にバランスよく運動量を
供給できるようになるため,より効果的に流れの外周側壁面への再付着を促すことができ
るようになる。
FIG. 3 shows an enlarged view of the vicinity of the jet outlet according to the second and third embodiments of the present invention. As shown in FIG. 3, if the jet angle 13 is too large with respect to the outer peripheral side wall 113, the flow direction from the jet port 11 becomes the radial direction, which promotes the separation flow. Further, since the momentum cannot be supplied to the entire separation flow even if the jet angle 13 is too small, it is similarly not preferable. Based on such knowledge, the jet port 11 is provided on the outer peripheral side wall surface 113 so that the flow from the jet port is in the range of 30 ° to 45 °. Thus, by setting the ejection angle 13 in the range of 30 ° to 45 °, the momentum can be supplied in a balanced manner in the axial direction and the radial direction with respect to the separated flow. Reattachment to the outer peripheral side wall surface can be promoted.

さらに、噴出口から噴出する流れ155の流速は、主流151の流速の1.0倍から1.
5倍の範囲になるようにする。主流の流速よりも遅い流れを噴出口から噴出すると,流れ
を減速され,流れの剥離を助長する方向に作用するため,逆流領域を増大させ,損失が増
加してしまうといった問題が起こる。このように,噴出の角度を30°から45°の範囲
にすることや,流速を主流の1.0倍から1.5倍の範囲にすることで,逆流領域を増大
させることなく,より効果的に剥離を外周側壁面に再付着させることができるようになる
ため,逆流領域が解消され,流れの剥離による損失の増加を,より効果的に防ぐことがで
きるようになる。
Furthermore, the flow velocity of the flow 155 ejected from the ejection port is from 1.0 times the flow velocity of the main flow 151 to 1.
Try to be 5 times the range. When a flow slower than the main flow velocity is ejected from the jet outlet, the flow is decelerated and acts in a direction that promotes flow separation, which increases the reverse flow region and increases the loss. In this way, by making the angle of ejection in the range of 30 ° to 45 °, and in the range of 1.0 to 1.5 times the main flow rate, it is more effective without increasing the backflow region. Since the separation can be reattached to the outer peripheral side wall surface, the backflow region is eliminated, and an increase in loss due to the separation of the flow can be prevented more effectively.

図4に本発明第4の実施形態に関わる構成概略図の断面図および噴出口の形状の概略図を
示す。図4(a)のAの方向からみた噴出口の形状を図4(b)に示す。ここで,図中左
側が上流,右側が下流を表している。また噴出口14aから14cは、いずれも同形状で
あり、外周壁面に沿って複数設けられていることを表している。噴出口の形状は、14c
を使って示すように、二つの楕円15および16を組み合わせた形である。具体的には,
二つの楕円のうち,楕円の長径を短径で割った値が小さい方の楕円15の半分15a(ブ
ラントな楕円、鈍頭部)を上流側に用い,大きい方の楕円16の半分16a(細長い楕円
、鋭頭部)を下流側に用いた形状を噴出口に用いる。
FIG. 4 shows a cross-sectional view of a schematic configuration diagram relating to the fourth embodiment of the present invention and a schematic diagram of the shape of a jet port. FIG. 4B shows the shape of the spout as seen from the direction A in FIG. Here, the left side in the figure represents the upstream and the right side represents the downstream. Moreover, all the jet nozzles 14a to 14c have the same shape, which indicates that a plurality of jet nozzles 14a to 14c are provided along the outer peripheral wall surface. The shape of the spout is 14c
As shown by using, two ellipses 15 and 16 are combined. In particular,
Of the two ellipses, the half 15a (blunt ellipse, blunt head) of the ellipse 15 having a smaller value obtained by dividing the major axis of the ellipse by the minor axis is used on the upstream side, and the half 16a (elongated) of the larger ellipse 16 is used. A shape in which an ellipse or a sharp head) is used on the downstream side is used for the jet outlet.

このように上流側でブラントな楕円,下流側で細長い楕円の組み合わせにすることで,上
流側がブラントになっているため,タービン軸方向に安定して一様な流れを噴出すること
ができ,少ない抵抗で流れを噴出できるとともに,下流側に細い楕円を用いることで,タ
ービン軸方向に広い範囲で,流れを噴出することができるようになる。その結果,より効
果的に剥離した流れの再付着を促すことができるようになるため,流れの剥離による損失
の増加を,より効果的に防ぐことができるようになる。
By combining a blunt ellipse on the upstream side and a long and narrow ellipse on the downstream side, the upstream side is blunt, so a uniform flow can be stably ejected in the turbine axis direction, and there are few The flow can be ejected with resistance, and the flow can be ejected in a wide range in the turbine axis direction by using a thin ellipse on the downstream side. As a result, it becomes possible to promote the reattachment of the separated flow more effectively, and thus it is possible to more effectively prevent the loss due to the flow separation.

噴出口および噴出する流れは,上記第1〜第4の実施例を組み合わせてもよい。 You may combine the said 1st-4th Example with the jet outlet and the flow to eject.

このように,静翼の上流側に噴出口を設けて,外周側壁面近傍の剥離した流れに,流れを
噴出して運動量を供給することで,再付着を促し,剥離から再付着までの距離を短くする
ことができる。その結果,剥離による損失が低減され,タービンの効率向上を得ることが
できる。
In this way, by providing a spout on the upstream side of the stationary blade and ejecting the flow to the separated flow near the outer peripheral side wall surface to supply momentum, reattachment is promoted, and the distance from separation to reattachment Can be shortened. As a result, loss due to separation is reduced, and the efficiency of the turbine can be improved.

本発明の第1の実施形態に関わる構成概略図1 is a schematic configuration diagram relating to the first embodiment of the present invention. 本発明の第1の実施形態に関わる流れの概略図Schematic of the flow related to the first embodiment of the present invention 本発明の第2,3の実施形態に関わる構成概略図Schematic configuration related to second and third embodiments of the present invention 本発明の第4の実施形態に関わる構成概略図Schematic configuration related to the fourth embodiment of the present invention 本発明実施前の形態に関わる構成概略図1(断面図)1 is a schematic configuration diagram (cross-sectional view) relating to an embodiment of the present invention. 本発明実施前の形態に関わる構成概略図2(断面図)Configuration schematic diagram 2 (cross-sectional view) relating to the embodiment before the present invention 本発明実施前の形態に関わる構成概略図3(断面図)Configuration schematic diagram 3 (cross-sectional view) related to the embodiment before the present invention

A:視点
11:噴出口
12:噴出口流路
13:噴出口角度
14a〜14c:噴出口形状
15a,15b,16a,16b:楕円
101,201,202,203:蒸気タービン
111,211a,211b:静翼
112,212a,212b:動翼
113,213a〜213c:外周側壁面
114a,114b,214a〜214d:内周側壁面
131,231a〜231c:蒸気通路部
151:主流
152,221d,221i:静翼,動翼を通過する流れ
153,155,156:噴出口からの流れ
154:再付着する流れ
215:穴
216:流路
221a:静翼に流入する流れ
221b:チップ部分漏れ流れ
221c,221e:流れの剥離
222a,222b:逆流域
221f:吸引流れ
221g:流路を通過する流れ
221h:チップ部分に噴出する流れ
A: View point 11: Outlet 12: Outlet channel 13: Outlet angles 14a to 14c: Outlet shapes 15a, 15b, 16a, 16b: Ellipses 101, 201, 202, 203: Steam turbines 111, 211a, 211b: Stator blades 112, 212a, 212b: Rotor blades 113, 213a to 213c: Outer peripheral side wall surfaces 114a, 114b, 214a to 214d: Inner peripheral side wall surfaces 131, 231a to 231c: Steam passage portion 151: Main flow 152, 221d, 221i: Static Flows 153, 155, and 156 that pass through blades and moving blades: Flow 154 from the ejection port 154: Flow that reattaches 215: Hole 216: Channel 221a: Flow 221b that flows into the stationary blade 221: Tip partial leakage flows 221c, 221e: Flow separation 222a, 222b: reverse flow region 221f: suction flow 221g: flow 221h passing through flow path: h Flow to be ejected into the flops part

Claims (5)

蒸気の流れに順次拡大する蒸気通路部を構成する外周側壁面および内周側壁面間に静翼を
周方向に配列するとともに,前記静翼の下流に動翼を備えた蒸気タービンにおいて,前記
静翼の上流側の前記外周側壁面に,前記タービンの下流に向かって流体を噴出する噴出口
が,周方向に少なくとも1つ形成されていることを特徴とする蒸気タービン。
In a steam turbine, in which a stationary blade is arranged in a circumferential direction between an outer peripheral side wall surface and an inner peripheral side wall surface constituting a steam passage portion that sequentially expands to a steam flow, and a moving blade is provided downstream of the stationary blade, A steam turbine characterized in that at least one jet outlet for jetting fluid toward the downstream side of the turbine is formed in the peripheral side wall surface on the upstream side of the blade in the circumferential direction.
前記噴出口が前記外周壁面に対して30°から45°の範囲で流体が噴出されることを特
徴とする請求項1記載の蒸気タービン。
The steam turbine according to claim 1, wherein a fluid is ejected from the ejection port in a range of 30 ° to 45 ° with respect to the outer peripheral wall surface.
前記噴出口から噴出される蒸気の流速は、前記タービンの主流の流速と同じか大きいこと
を特徴とする請求項1記載の蒸気タービン。
The steam turbine according to claim 1, wherein a flow velocity of the steam ejected from the ejection port is equal to or greater than a flow velocity of the main flow of the turbine.
前記噴出口の出口の形状が,2つの楕円を組み合わせた形状からなり,前記楕円のなかで
,楕円の長径を短径で割った値が大きい方の前記楕円を前記蒸気タービンの下流側に用い
,値が小さい方の前記楕円を前記蒸気タービンの上流側に用いることを特徴とする請求項
1記載の蒸気タービン。
The shape of the outlet of the jet outlet is a combination of two ellipses, and the ellipse having a larger value obtained by dividing the major axis of the ellipse by the minor axis is used on the downstream side of the steam turbine. 2. The steam turbine according to claim 1, wherein the ellipse having a smaller value is used on the upstream side of the steam turbine.
前記外周側壁面のうち、前記静翼よりも上流側であって、前記蒸気通路部を構成する部分
に噴出口が設けられたことを特徴とする請求項1から4いずれかに記載の蒸気タービン。
5. The steam turbine according to claim 1, wherein a jet port is provided in a portion of the outer peripheral side wall surface upstream of the stationary blade and constituting the steam passage portion. 6. .
JP2014190571A 2014-09-18 2014-09-18 Steam turbine Pending JP2016061243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190571A JP2016061243A (en) 2014-09-18 2014-09-18 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190571A JP2016061243A (en) 2014-09-18 2014-09-18 Steam turbine

Publications (1)

Publication Number Publication Date
JP2016061243A true JP2016061243A (en) 2016-04-25

Family

ID=55797340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190571A Pending JP2016061243A (en) 2014-09-18 2014-09-18 Steam turbine

Country Status (1)

Country Link
JP (1) JP2016061243A (en)

Similar Documents

Publication Publication Date Title
US11215196B2 (en) Diffuser pipe with splitter vane
CN107202036B (en) Self-circulation treatment casing capable of improving flowing of stator corner area simultaneously
JP6001696B2 (en) Turbine blade with swirling cooling channel and cooling method thereof
US8926267B2 (en) Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling
EP2645000A2 (en) Swirler for combustion chambers
EP2956624B1 (en) Gas turbine engine with an ambient air cooling arrangement having a pre-swirler
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
US20170218773A1 (en) Blade cascade and turbomachine
RU2015136552A (en) EFFICIENCY SEAL TURBINE
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
US11149588B2 (en) Exhaust chamber of steam turbine, flow guide for steam turbine exhaust chamber, and steam turbine
US20170175676A1 (en) Axial flow device and jet engine
GB201212384D0 (en) A gas turbine engine
JP2015536410A (en) Exhaust gas diffuser for gas turbine
US20160177728A1 (en) Vane structure for axial flow turbomachine and gas turbine engine
RU2013126230A (en) GAS-TURBINE ENGINE AND AERODYNAMIC ELEMENT OF A GAS-TURBINE ENGINE
EP2578815A2 (en) Exhaust gas diffuser
JP5319958B2 (en) Transonic two-stage centrifugal compressor
JP2017008756A (en) Axial flow turbine
JP2016061243A (en) Steam turbine
EP2578809A3 (en) Turbomachine having a gas flow aeromechanic system and method
JP2005290985A (en) Exhaust diffuser for axial turbine
JP2014173427A (en) Diffuser vane and centrifugal compressor with the same
JP2014137151A (en) Combustor
US9388710B2 (en) Exhaust diffuser arrangement for a turbine system and method of redirecting a flow

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170220