JP2016059951A - Method for production of titanium alloy processed article for organism, and titanium alloy processed article for organism - Google Patents
Method for production of titanium alloy processed article for organism, and titanium alloy processed article for organism Download PDFInfo
- Publication number
- JP2016059951A JP2016059951A JP2014191029A JP2014191029A JP2016059951A JP 2016059951 A JP2016059951 A JP 2016059951A JP 2014191029 A JP2014191029 A JP 2014191029A JP 2014191029 A JP2014191029 A JP 2014191029A JP 2016059951 A JP2016059951 A JP 2016059951A
- Authority
- JP
- Japan
- Prior art keywords
- titanium alloy
- alloy processed
- biological
- processed product
- processed article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Dental Preparations (AREA)
- Forging (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
本発明は、生体用チタン合金加工品の製造方法、及び生体用チタン合金加工品に関する。 The present invention relates to a method for producing a biological titanium alloy processed article and a biological titanium alloy processed article.
チタン合金は、軽量で、磁化率が低く、耐食性及び組織適合性に優れることから、骨固定具、人工関節、歯科用インプラント体などの、体内留置型医療用品に利用されている。これら体内留置型医療用品は、骨量の不足症例にも適応できるように近年ますます小型化されているが、医療用品の小型化にともなってチタン合金の高強度化が必要になる。チタン合金の機械的強度を向上させる加工法の一つとして、高圧ねじり(High Pressure Torsion;HPT)加工が知られている(例えば、非特許文献1〜4)。HPT加工は、結晶粒を微細化することで、金属材料の機械的強度を向上させる加工法である。 Titanium alloys are lightweight, have low magnetic susceptibility, and are excellent in corrosion resistance and tissue compatibility. Therefore, titanium alloys are used in indwelling medical supplies such as bone anchors, artificial joints, and dental implant bodies. These indwelling medical supplies have been increasingly miniaturized in recent years so that they can be adapted to cases with insufficient bone mass, but with the miniaturization of medical supplies, it is necessary to increase the strength of titanium alloys. As one of processing methods for improving the mechanical strength of a titanium alloy, high pressure torsion (HPT) processing is known (for example, Non-Patent Documents 1 to 4). HPT processing is a processing method that improves the mechanical strength of a metal material by refining crystal grains.
一般に合金は、加工によって機械的強度が向上すると、延性が低下する傾向がある。体内留置型医療用品の改良のために、チタン合金の延性を保ちつつ機械的強度を向上させる加工技術が求められている。 In general, when the mechanical strength of an alloy is improved by processing, the ductility tends to decrease. In order to improve indwelling medical supplies, there is a need for a processing technique that improves the mechanical strength while maintaining the ductility of the titanium alloy.
本発明は、上記状況のもとになされた。
本発明の課題は、機械的強度及び延性に優れる生体用チタン合金加工品、及びその製造方法を提供することである。
The present invention has been made under the above circumstances.
An object of the present invention is to provide a biological titanium alloy processed article excellent in mechanical strength and ductility, and a manufacturing method thereof.
前記課題を解決するための具体的手段は以下の通りである。 Specific means for solving the above problems are as follows.
[A1] 対向する二つのアンビル間にα+β型チタン合金を挟み、1GPa以上30GPa以下の圧力をかけながら、前記二つのアンビルの少なくとも一方を相対的に回転させることにより、前記α+β型チタン合金に相当ひずみ15以上400以下のひずみを付与して結晶粒を小さくする工程、を含む、生体用チタン合金加工品の製造方法。
[A2] 前記工程は、回転速度0.1rpm以上2rpm未満で、前記二つのアンビルの少なくとも一方を相対的に回転させる工程である、[A1]に記載の生体用チタン合金加工品の製造方法。
[A3] 前記α+β型チタン合金が、Ti−6Al−7Nb、Ti−6Al−4V、又はTi−6Al−4V ELIである、[A1]又は[A2]に記載の生体用チタン合金加工品の製造方法。
[A1] Corresponds to the α + β type titanium alloy by sandwiching an α + β type titanium alloy between two opposing anvils and rotating at least one of the two anvils relatively while applying a pressure of 1 GPa to 30 GPa. A method for producing a biological titanium alloy processed article, comprising a step of applying a strain of 15 to 400 to reduce the crystal grains.
[A2] The process for producing a biological titanium alloy processed article according to [A1], wherein the process is a process of rotating at least one of the two anvils relatively at a rotation speed of 0.1 rpm or more and less than 2 rpm.
[A3] Manufacture of biological titanium alloy processed article according to [A1] or [A2], wherein the α + β type titanium alloy is Ti-6Al-7Nb, Ti-6Al-4V, or Ti-6Al-4V ELI. Method.
[B1] α+β型チタン合金を加工してなり、引張強さが1100MPa以上で、破断伸びが10%以上である、生体用チタン合金加工品。
[B2] [A1]〜[A3]のいずれか1項に記載の製造方法により製造された、α+β型チタン合金からなる、生体用チタン合金加工品。
[B3] 生体用チタン合金加工品内の平均結晶粒径が800nm以下である、[B1]又は[B2]に記載の生体用チタン合金加工品。
[B4] 前記α+β型チタン合金が、Ti−6Al−7Nb、Ti−6Al−4V、又はTi−6Al−4V ELIである、[B1]〜[B3]のいずれか1項に記載の生体用チタン合金加工品。
[B5] 生体用チタン合金加工品が、歯科用インプラント体、歯科矯正用インプラントアンカー、脊椎固定器具、又は骨固定器具である、[B1]〜[B4]のいずれか1項に記載の生体用チタン合金加工品。
[B1] A biological titanium alloy processed article obtained by processing an α + β type titanium alloy, having a tensile strength of 1100 MPa or more and a breaking elongation of 10% or more.
[B2] A biological titanium alloy processed product made of an α + β-type titanium alloy manufactured by the manufacturing method according to any one of [A1] to [A3].
[B3] The biological titanium alloy processed article according to [B1] or [B2], wherein the average crystal grain size in the biological titanium alloy processed article is 800 nm or less.
[B4] The biotitanium according to any one of [B1] to [B3], wherein the α + β type titanium alloy is Ti-6Al-7Nb, Ti-6Al-4V, or Ti-6Al-4V ELI. Alloy processed products.
[B5] The biological titanium alloy processed product according to any one of [B1] to [B4], wherein the biological titanium alloy processed product is a dental implant body, an orthodontic implant anchor, a spinal fixation device, or a bone fixation device. Titanium alloy processed product.
本発明によれば、機械的強度及び延性に優れる生体用チタン合金加工品、及びその製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the titanium alloy processed product for bio-insulations excellent in mechanical strength and ductility, and its manufacturing method are provided.
本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
In this specification, the term “process” is not limited to an independent process, and is included in this term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
以下に、本発明の実施の形態について説明する。これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。 Embodiments of the present invention will be described below. These descriptions and examples are illustrative of the invention and are not intended to limit the scope of the invention.
<生体用チタン合金加工品の製造方法>
本発明の製造方法は、チタン合金の延性を保ちつつ機械的強度を高めた生体用チタン合金加工品を得る目的で、α+β型チタン合金に、所定の条件の高圧ねじり(High Pressure Torsion;HPT)加工を施す製造方法である。
<Production method of biological titanium alloy processed product>
The production method of the present invention is a high pressure torsion (HPT) with a predetermined condition applied to an α + β type titanium alloy for the purpose of obtaining a biological titanium alloy processed product with increased mechanical strength while maintaining the ductility of the titanium alloy. This is a manufacturing method for performing processing.
本発明においては、生体用チタン合金加工品を製造する材料として、α+β型チタン合金を用いる。α+β型チタン合金は、軽量で、磁化率が低く、細胞毒性も低く、耐食性及び組織適合性に優れることから、体内留置型医療用品に好適である。α+β型チタン合金は、具体的には、Ti−6Al−4V、Ti−6Al−4V ELI、Ti−6Al−7Nb、Ti−3Al−2.5V、Ti−5Al−2.5Feである。 In the present invention, an α + β type titanium alloy is used as a material for producing a biological titanium alloy processed product. The α + β type titanium alloy is suitable for an in-dwelling medical product because it is lightweight, has low magnetic susceptibility, low cytotoxicity, and excellent corrosion resistance and tissue compatibility. Specifically, the α + β type titanium alloy is Ti-6Al-4V, Ti-6Al-4V ELI, Ti-6Al-7Nb, Ti-3Al-2.5V, and Ti-5Al-2.5Fe.
本発明の製造方法は、具体的には、対向する二つのアンビル間にα+β型チタン合金を挟み、1GPa〜30GPaの圧力をかけながら、二つのアンビルの少なくとも一方を相対的に回転させることにより、α+β型チタン合金に相当ひずみ15〜400のひずみを付与して結晶粒を小さくする工程を有する。
本発明の製造方法は、α+β型チタン合金に上記条件のHPT加工を施すことにより、合金の延性を保ちつつ機械的強度を高めることができる。したがって、本発明の製造方法によれば、機械的強度及び延性に優れる生体用チタン合金加工品が得られる。
Specifically, in the production method of the present invention, an α + β type titanium alloy is sandwiched between two anvils facing each other, and at least one of the two anvils is relatively rotated while applying a pressure of 1 GPa to 30 GPa. It has a step of applying a strain of 15 to 400 equivalent strain to the α + β type titanium alloy to reduce the crystal grains.
The production method of the present invention can increase the mechanical strength while maintaining the ductility of the alloy by subjecting the α + β type titanium alloy to the HPT process under the above conditions. Therefore, according to the production method of the present invention, a biological titanium alloy processed product having excellent mechanical strength and ductility can be obtained.
本発明の製造方法がα+β型チタン合金の延性を保ちつつ機械的強度を高めることができる理由は、特定のメカニズムに拘束されるものではないが、加工時に合金にかかる1GPa〜30GPaの圧力と、合金に付与される相当ひずみ15〜400のひずみとにより、機械的強度と延性のバランスのとれた微細構造が形成されることによると考えられる。 The reason why the production method of the present invention can increase the mechanical strength while maintaining the ductility of the α + β type titanium alloy is not restricted by a specific mechanism, but the pressure of 1 GPa to 30 GPa applied to the alloy during processing, This is considered to be due to the formation of a fine structure in which mechanical strength and ductility are balanced by the equivalent strain of 15 to 400 applied to the alloy.
HPT加工により合金に付与される相当ひずみは、下記の式(1)により定義される。 The equivalent strain imparted to the alloy by HPT processing is defined by the following formula (1).
ε:相当ひずみ、N:回転数、r:回転中心からの距離(mm)、t:合金の厚さ(mm)
ε: equivalent strain, N: rotational speed, r: distance from the rotational center (mm), t: alloy thickness (mm)
HPT加工により合金塊に付与される相当ひずみの量は、一つの合金塊において、回転中心からの距離、及びその位置における合金の厚さによって異なるところ、本発明では、一つの合金塊における最も大きい相当ひずみの量を15〜400の範囲とする。一つの合金塊に付与されるひずみのうち最も大きいひずみは、一つの合金塊全体の微細構造の変化を決定づけるので、本発明においては、加工品の機械的強度と延性のバランスの観点で、一つの合金塊における最も大きい相当ひずみの量を15〜400の範囲とする。
一つの合金塊において、最も大きい相当ひずみが発生する位置は、通常は、回転中心から最も遠い位置である。
The amount of equivalent strain imparted to the alloy ingot by HPT processing varies depending on the distance from the center of rotation and the thickness of the alloy at that position in one alloy ingot. The amount of equivalent strain is in the range of 15 to 400. The largest strain among the strains applied to one alloy ingot determines the change in the microstructure of the entire alloy ingot. Therefore, in the present invention, from the viewpoint of the balance between mechanical strength and ductility of a processed product, The largest equivalent strain amount in one alloy lump is in the range of 15 to 400.
The position where the largest equivalent strain occurs in one alloy lump is usually the position farthest from the center of rotation.
本発明におけるHPT加工において、α+β型チタン合金に付与される相当ひずみの量の下限は、合金に十分なひずみを付与し結晶粒を微細化して加工品の機械的強度を高める観点で、15以上であり、20以上が好ましい。
一方、α+β型チタン合金に付与される相当ひずみの量の上限は、加工品の機械的強度と延性のバランスの観点で、400以下であり、350以下がより好ましく、300以下がより好ましく、250以下がより好ましく、200以下がより好ましく、150以下が更に好ましい。
In the HPT processing in the present invention, the lower limit of the amount of equivalent strain imparted to the α + β-type titanium alloy is 15 or more from the viewpoint of imparting sufficient strain to the alloy to refine crystal grains and increase the mechanical strength of the processed product. And is preferably 20 or more.
On the other hand, the upper limit of the amount of equivalent strain imparted to the α + β-type titanium alloy is 400 or less, more preferably 350 or less, more preferably 300 or less, more preferably 250 or less, from the viewpoint of the balance between mechanical strength and ductility of the processed product. The following is more preferable, 200 or less is more preferable, and 150 or less is more preferable.
HPT加工後の合金から目的とする加工品を削り出すことを予定する場合は、出来上がりの加工品に対応する位置における相当ひずみの量も考慮することが好ましい。当該位置における相当ひずみの量は、例えば、6〜200が好ましく、8〜200がより好ましく、8〜180がより好ましく、8〜150がより好ましく、8〜100がより好ましく、8〜80がより好ましく、8〜50が更に好ましい。 When it is planned to cut out a target processed product from the alloy after HPT processing, it is preferable to consider the amount of equivalent strain at a position corresponding to the finished processed product. 6-200 are preferable, for example, 8-200 is more preferable, 8-180 is more preferable, 8-180 is more preferable, 8-150 is more preferable, 8-100 is more preferable, and 8-80 is more. 8-50 are more preferable.
本発明におけるHPT加工において、相当ひずみの量を15〜400とするには、HPT加工を施す合金の大きさ及び形状(即ち、式(1)中のrとt)に応じて、二つのアンビル間の相対的な回転数を設定すればよい。
ただし、上記回転数は、加工品の機械的強度と延性のバランスの観点で、1〜20回転が好ましく、1〜18回転がより好ましく、1〜15回転がより好ましく、1〜10回転がより好ましく、1〜8回転がより好ましく、1〜6回転がより好ましく、2〜6回転がより好ましく、3〜6回転が更に好ましい。
In the HPT processing in the present invention, in order to set the equivalent strain amount to 15 to 400, two anvils are used according to the size and shape of the alloy to be subjected to HPT processing (that is, r and t in the formula (1)). What is necessary is just to set the relative rotation speed between.
However, the number of rotations is preferably 1 to 20 rotations, more preferably 1 to 18 rotations, more preferably 1 to 15 rotations, and more preferably 1 to 10 rotations from the viewpoint of the balance between mechanical strength and ductility of the processed product. Preferably, 1-8 rotations are more preferable, 1-6 rotations are more preferable, 2-6 rotations are more preferable, and 3-6 rotations are still more preferable.
本発明におけるHPT加工において、対向する二つのアンビルによってα+β型チタン合金にかけられる圧力の大きさの下限は、合金に十分なひずみを付与し結晶粒を微細化して加工品の機械的強度を高める観点で、1GPa以上であり、2GPa以上が好ましく、5GPa以上がより好ましい。
一方、対向する二つのアンビルによってα+β型チタン合金にかけられる圧力の大きさの上限は、HPT加工用装置の制約、製造効率などの観点で、30GPa以下である。
In the HPT processing according to the present invention, the lower limit of the pressure applied to the α + β type titanium alloy by the two opposing anvils is a viewpoint that imparts sufficient strain to the alloy and refines the crystal grains to increase the mechanical strength of the processed product. And 1 GPa or more, preferably 2 GPa or more, and more preferably 5 GPa or more.
On the other hand, the upper limit of the magnitude of the pressure applied to the α + β type titanium alloy by the two opposing anvils is 30 GPa or less from the viewpoints of restrictions on the apparatus for HPT processing, production efficiency, and the like.
本発明におけるHPT加工において、二つのアンビルの相対的な回転速度は特に制限されない。合金に十分なひずみを付与する観点および熱発生を抑制する観点ではゆっくりの方がよく、製造効率の観点では速い方がよい。これらのバランスにより、二つのアンビルの相対的な回転速度は0.1rpm以上2rpm未満が好ましく、0.1rpm〜1.5rpmがより好ましく、0.1rpm〜1rpmが更に好ましい。 In the HPT processing in the present invention, the relative rotational speed of the two anvils is not particularly limited. From the viewpoint of imparting sufficient strain to the alloy and suppressing heat generation, it is preferable to be slow, and from the viewpoint of production efficiency, it is preferable to be fast. Due to these balances, the relative rotational speed of the two anvils is preferably 0.1 rpm or more and less than 2 rpm, more preferably 0.1 rpm to 1.5 rpm, and even more preferably 0.1 rpm to 1 rpm.
本発明の製造方法の材料となるα+β型チタン合金の形状及び大きさは、特に制限されるものではなく、目的とする加工品の形状及び大きさに従って設定してよい。
材料となるα+β型チタン合金の形状は、例えば、ディスク状、リング状、ディスク又はリングの一部である。
材料となるα+β型チタン合金の厚さは、HPT加工への適性の観点と目的とする加工品の大きさの観点で、例えば0.8mm〜8mmである。
材料となるα+β型チタン合金の容積は、HPT加工への適性の観点と目的とする加工品の大きさの観点で、例えば60mm3〜650mm3であり、より具体的には例えば62mm3〜628mm3である。
The shape and size of the α + β-type titanium alloy used as the material of the production method of the present invention are not particularly limited, and may be set according to the shape and size of the target processed product.
The shape of the α + β type titanium alloy used as the material is, for example, a disk shape, a ring shape, a part of the disk or the ring.
The thickness of the α + β-type titanium alloy as the material is, for example, 0.8 mm to 8 mm from the viewpoint of suitability for HPT processing and the size of the target processed product.
Become the volume of alpha + beta type titanium alloy material, in terms of aspect and of the workpiece of interest magnitude of suitability for HPT processing, for example, 60mm 3 ~650mm 3, and more specifically, for example 62mm 3 ~628mm 3 .
本発明の製造方法は、HPT加工が施されたα+β型チタン合金に、切削、研削、表面処理などを施し、最終的な製品である生体用チタン合金加工品を得ればよい。したがって、本発明の製造方法は、HPT加工の工程の後に、切削、研削等の機械加工を行う工程;各種ブラスト処理等の表面処理を行う工程;などをさらに有してもよい。 In the production method of the present invention, the α + β-type titanium alloy that has been subjected to the HPT process may be subjected to cutting, grinding, surface treatment, and the like to obtain a final product of biological titanium alloy that is a final product. Therefore, the manufacturing method of the present invention may further include a step of performing machining such as cutting and grinding, a step of performing surface treatment such as various blast treatments, and the like after the step of HPT processing.
本発明におけるHPT加工は、常温下で行う。 The HPT processing in the present invention is performed at room temperature.
以下、図1を用いて、本発明におけるHPT加工を説明する。
図1は、HPT加工に用いる装置、及び該装置による合金の加工の仕方を、概略的に示した図である。
HPT加工用装置は、対向する二つのアンビル(図1中、Upper AnvilとLower Anvil)を備えている。二つのアンビルの成形面(二つのアンビルの対向面)にはそれぞれ、合金を狭持するための凹部が形成されており、該凹部において合金が狭持される。そして、二つのアンビルによって合金を挟持したHPT加工用装置は、合金に厚さ方向(図1では上下方向)の圧力をかけながら、予め定められた回転軸の回りに、二つのアンビルの少なくとも一方を相対的に回転させる。二つのアンビルは、一方のみが回転してもよく、両方が逆方向に回転してもよい。二つのアンビルの相対的な回転により、合金は、ねじりによるせん断変形を受けて、内部にひずみが付与され、結晶粒が微細化する。
HPT加工用装置の大きさ、アンビルの成形面の大きさ、及びアンビルの成形面が有する凹部の大きさは、加工する合金に合わせて設計される。アンビルの成形面が有する凹部の形状は、加工する合金の形状に合わせて、例えば、ディスク状、リング状である。
Hereinafter, the HPT processing in the present invention will be described with reference to FIG.
FIG. 1 is a diagram schematically showing an apparatus used for HPT processing and an alloy processing method using the apparatus.
The HPT processing apparatus includes two opposing anvils (Upper Anvil and Lower Anvil in FIG. 1). Each of the molding surfaces of the two anvils (opposite surfaces of the two anvils) is formed with a recess for sandwiching the alloy, and the alloy is sandwiched in the recess. The HPT processing apparatus in which the alloy is sandwiched between the two anvils is configured to apply at least one of the two anvils around a predetermined rotation axis while applying pressure in the thickness direction (vertical direction in FIG. 1) to the alloy. Rotate relatively. Only one of the two anvils may rotate, or both may rotate in opposite directions. Due to the relative rotation of the two anvils, the alloy undergoes shear deformation due to torsion, strain is applied to the inside, and the crystal grains become finer.
The size of the HPT processing device, the size of the molding surface of the anvil, and the size of the concave portion of the molding surface of the anvil are designed according to the alloy to be processed. The shape of the concave portion of the molding surface of the anvil is, for example, a disk shape or a ring shape according to the shape of the alloy to be processed.
以下、本発明の製造方法によって製造される生体用チタン合金加工品の物性等について説明する。 Hereinafter, physical properties and the like of the biological titanium alloy processed product manufactured by the manufacturing method of the present invention will be described.
<生体用チタン合金加工品>
本発明の生体用チタン合金加工品は、α+β型チタン合金を加工してなる加工品である。α+β型チタン合金は、具体的には、Ti−6Al−4V、Ti−6Al−4V ELI、Ti−6Al−7Nb、Ti−3Al−2.5V、Ti−5Al−2.5Feである。
<Bio-processed titanium alloy products>
The biological titanium alloy processed product of the present invention is a processed product formed by processing an α + β type titanium alloy. Specifically, the α + β type titanium alloy is Ti-6Al-4V, Ti-6Al-4V ELI, Ti-6Al-7Nb, Ti-3Al-2.5V, and Ti-5Al-2.5Fe.
本発明の生体用チタン合金加工品は、引張強さが1100MPa以上であることが好ましく、1120MPa以上であることがより好ましく、1150MPa以上であることが更に好ましい。 The biological titanium alloy processed product of the present invention preferably has a tensile strength of 1100 MPa or more, more preferably 1120 MPa or more, and still more preferably 1150 MPa or more.
本発明の生体用チタン合金加工品は、破断伸びが10%以上であることが好ましく、12%以上であることがより好ましく、14%以上であることがより好ましく、16%以上であることが更に好ましい。 The biological titanium alloy processed product of the present invention preferably has a breaking elongation of 10% or more, more preferably 12% or more, more preferably 14% or more, and more preferably 16% or more. Further preferred.
本発明の生体用チタン合金加工品は、その内部の平均結晶粒径が800nm以下であることが好ましく、500nm以下であることがより好ましく、400nm以下であることがより好ましく、300nm以下であることがより好ましく、200nm以下であることが更に好ましい。 The biological titanium alloy processed product of the present invention preferably has an internal average crystal grain size of 800 nm or less, more preferably 500 nm or less, more preferably 400 nm or less, and 300 nm or less. Is more preferable, and it is still more preferable that it is 200 nm or less.
本発明の生体用チタン合金加工品は、例えば、体内留置型の医療用品に適用される。本発明の生体用チタン合金加工品は、機械的強度及び延性に優れることから、体内留置型の医療用品の小型化を実現し得る。 The biomedical titanium alloy processed product of the present invention is applied to, for example, an indwelling medical product. Since the biomedical titanium alloy processed product of the present invention is excellent in mechanical strength and ductility, it is possible to reduce the size of an indwelling medical product.
本発明の生体用チタン合金加工品が適用される医療用品としては、具体的には、例えば、ナローインプラント、ショートインプラント等の歯科用インプラント体;歯科用インプラントのアバットメント;ミニスクリュー、ミニプレート等の歯科矯正用インプラントアンカー;スクリュー、ミニスクリュー、プレート、ミニプレート等の脊椎固定器具;スクリュー、ミニスクリュー、プレート、ミニプレート、ピン、釘等の骨固定器具;などが挙げられる。中でも、本発明の生体用チタン合金加工品は、骨に埋入される小型の医療用品に好適である。 Specific examples of medical supplies to which the biological titanium alloy processed product of the present invention is applied include, for example, dental implants such as narrow implants and short implants; abutments for dental implants; miniscrews, miniplates, and the like Orthodontic implant anchors; spinal fixation devices such as screws, miniscrews, plates and miniplates; bone fixation devices such as screws, miniscrews, plates, miniplates, pins and nails; Among these, the biological titanium alloy processed article of the present invention is suitable for a small medical article embedded in bone.
以下に実施例を挙げて、本発明をさらに具体的に説明する。以下の実施例に示す材料、加工条件等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The present invention will be described more specifically with reference to the following examples. The materials, processing conditions, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
<製造例1〜6>
Ti−6Al−7Nb(ASTM F1295。市販品)を直径10mm厚さ0.8mmに切り出し、試料とした。この試料に対して、表1に示す加工条件でHPT加工を行った。
<Production Examples 1-6>
Ti-6Al-7Nb (ASTM F1295, commercially available product) was cut into a diameter of 10 mm and a thickness of 0.8 mm to prepare a sample. This sample was subjected to HPT processing under the processing conditions shown in Table 1.
<製造例7〜8>
Ti−6Al−4V(ASTM F1472。市販品)を直径10mm厚さ0.8mmに切り出し、試料とした。この試料に対して、表1に示す加工条件でHPT加工を行った。
<Production Examples 7-8>
Ti-6Al-4V (ASTM F1472; commercially available) was cut into a diameter of 10 mm and a thickness of 0.8 mm to prepare a sample. This sample was subjected to HPT processing under the processing conditions shown in Table 1.
<評価>
HPT加工前の試料およびHPT加工後の試料から、図2に示すとおりの形状に試験片を切り出し、組織観察および機械的特性の試験を行った。
HPT加工前のTi−6Al−7NbのX線回折パターンと走査型電子顕微鏡(SEM)像を図3に示す。
<Evaluation>
From the sample before HPT processing and the sample after HPT processing, a test piece was cut into a shape as shown in FIG. 2, and the structure was observed and the mechanical properties were tested.
FIG. 3 shows an X-ray diffraction pattern and a scanning electron microscope (SEM) image of Ti-6Al-7Nb before HPT processing.
[組織観察]
試験片を鏡面状態に研磨し、透過型電子顕微鏡(TEM)(100kV)で組織観察を行った。図4に、圧力2GPaをかけて加工した試料の組織像(TEM像)を示し、図5に、圧力6GPaをかけて加工した試料の組織像(TEM像)を示し、表1に、平均結晶粒径を示す。平均結晶粒径は、TEMの暗視野像を画像解析し、50個以上の結晶粒子の平均を求めた。図6に、結晶粒径の測定方法を示す。
[Tissue observation]
The test piece was polished into a mirror state, and the structure was observed with a transmission electron microscope (TEM) (100 kV). FIG. 4 shows a structure image (TEM image) of a sample processed with a pressure of 2 GPa. FIG. 5 shows a structure image (TEM image) of a sample processed with a pressure of 6 GPa. The particle size is shown. For the average crystal grain size, a dark field image of TEM was image-analyzed and the average of 50 or more crystal grains was determined. FIG. 6 shows a method for measuring the crystal grain size.
[引張強度、破断伸び]
引張試験機(佐川製作所製、極小引張試験片の横型引張試験機)を用いて、試験片に引張試験(室温下、初期ひずみ速度2×10−3s−1)を行い、引張強度及び破断伸びを求めた。その結果を、図7及び表1に示す。
[Tensile strength, elongation at break]
Using a tensile tester (manufactured by Sagawa Seisakusho Co., Ltd., a horizontal tensile tester for ultra-small tensile test pieces), the test piece is subjected to a tensile test (at room temperature, initial strain rate 2 × 10 −3 s −1 ), tensile strength and fracture We asked for growth. The results are shown in FIG.
[ビッカース硬さ]
試験片を鏡面状態に研磨し、ビッカース硬度計(島津製作所製HMV−1)を用いて、荷重300gf、負荷時間15sで測定を行った。測定位置は、中心から半径方向に0.5mm間隔に10位置とった。各位置で12点測定し、最大値と最小値を除いた10点の平均値を求めた。回転中心からの距離に対するビッカース硬さを図8に示し、相当ひずみに対するビッカース硬さを図9に示す。表1に示すビッカース硬さは、10位置のうちの最高値である。
[Vickers hardness]
The test piece was polished into a mirror surface state and measured using a Vickers hardness meter (HMV-1 manufactured by Shimadzu Corporation) at a load of 300 gf and a load time of 15 s. The measurement positions were 10 positions at intervals of 0.5 mm in the radial direction from the center. 12 points were measured at each position, and an average value of 10 points excluding the maximum value and the minimum value was obtained. FIG. 8 shows the Vickers hardness with respect to the distance from the rotation center, and FIG. 9 shows the Vickers hardness with respect to the equivalent strain. The Vickers hardness shown in Table 1 is the highest value among the 10 positions.
表1から分かるとおり、本発明の製造方法で製造したTi−6Al−7Nbの加工品及びTi−6Al−4Vの加工品は、引張強さ及び破断伸びに優れる。 As can be seen from Table 1, the processed product of Ti-6Al-7Nb and the processed product of Ti-6Al-4V manufactured by the manufacturing method of the present invention are excellent in tensile strength and elongation at break.
Claims (8)
を含む、生体用チタン合金加工品の製造方法。 An α + β type titanium alloy is sandwiched between two opposing anvils and at least one of the two anvils is relatively rotated while a pressure of 1 GPa or more and 30 GPa or less is applied. Applying a strain of 400 or less to reduce crystal grains,
A method for producing a titanium alloy processed product for living body, comprising:
The biological titanium alloy processed product according to any one of claims 4 to 7, wherein the biological titanium alloy processed product is a dental implant body, an orthodontic implant anchor, a spinal fixation device, or a bone fixation device. Goods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191029A JP2016059951A (en) | 2014-09-19 | 2014-09-19 | Method for production of titanium alloy processed article for organism, and titanium alloy processed article for organism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191029A JP2016059951A (en) | 2014-09-19 | 2014-09-19 | Method for production of titanium alloy processed article for organism, and titanium alloy processed article for organism |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016059951A true JP2016059951A (en) | 2016-04-25 |
Family
ID=55796846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014191029A Pending JP2016059951A (en) | 2014-09-19 | 2014-09-19 | Method for production of titanium alloy processed article for organism, and titanium alloy processed article for organism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016059951A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109158515A (en) * | 2018-02-09 | 2019-01-08 | 沈阳中核舰航特材科技(常州)有限公司 | A kind of manufacturing method of titanium alloy TC 4 bone plate and TC4ELI bone plate |
CN109158516A (en) * | 2018-02-09 | 2019-01-08 | 沈阳中核舰航特材科技(常州)有限公司 | A kind of manufacturing method of titanium alloy T C20 bone plate |
JP2019198873A (en) * | 2018-05-14 | 2019-11-21 | 善治 堀田 | Manufacturing method of long wire |
WO2023100603A1 (en) * | 2021-11-30 | 2023-06-08 | 住友電気工業株式会社 | Titanium material |
-
2014
- 2014-09-19 JP JP2014191029A patent/JP2016059951A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109158515A (en) * | 2018-02-09 | 2019-01-08 | 沈阳中核舰航特材科技(常州)有限公司 | A kind of manufacturing method of titanium alloy TC 4 bone plate and TC4ELI bone plate |
CN109158516A (en) * | 2018-02-09 | 2019-01-08 | 沈阳中核舰航特材科技(常州)有限公司 | A kind of manufacturing method of titanium alloy T C20 bone plate |
JP2019198873A (en) * | 2018-05-14 | 2019-11-21 | 善治 堀田 | Manufacturing method of long wire |
JP7090281B2 (en) | 2018-05-14 | 2022-06-24 | 善治 堀田 | Manufacturing method of long wire rod and equivalent strain introduction device |
WO2023100603A1 (en) * | 2021-11-30 | 2023-06-08 | 住友電気工業株式会社 | Titanium material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6094901B2 (en) | Fatigue-resistant wire and manufacturing method thereof | |
Medvedev et al. | Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material | |
Serra et al. | Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants | |
JP5917558B2 (en) | Fabrication of nano-twinned titanium materials by casting | |
Niinomi et al. | Mechanical characteristics and microstructure of drawn wire of Ti–29Nb–13Ta–4.6 Zr for biomedical applications | |
Polyakov et al. | Recent advances in processing and application of nanostructured titanium for dental implants | |
JP2016059951A (en) | Method for production of titanium alloy processed article for organism, and titanium alloy processed article for organism | |
EP2352854A1 (en) | Method for imparting improved fatigue strength to wire made of shape memory alloys, and medical devices made from such wire | |
Gurel et al. | Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading | |
Lowe et al. | Frontiers for bulk nanostructured metals in biomedical applications | |
Polyakov et al. | High fatigue strength and enhanced biocompatibility of UFG CP Ti for medical innovative applications | |
Li et al. | Microstructure, mechanical and superelastic behaviors in Ni-free Ti-Zr-Nb-Sn shape memory alloy fibers prepared by rapid solidification processing | |
Estrin et al. | Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation | |
Valiev et al. | Nanostructured titanium for biomedical applications: New developments and challenges for commercialization | |
Kumar et al. | An assessment of residual stresses and micro-structure during single point incremental forming of commercially pure titanium used in biomedical applications | |
WO2012124661A1 (en) | Titanium-magnesium material having high strength and low elasticity | |
Klinge et al. | Nanostructured Ti–13Nb–13Zr for dental implant applications produced by severe plastic deformation | |
Kaplan et al. | Influence of the surface modification on the mechanical properties of NiTi (55.8 wt% Ni) alloy wire for medical purposes | |
JP2023503829A (en) | Titanium alloy for medical use with high fatigue strength, its hot working and heat treatment methods, and equipment | |
JP2015048500A (en) | Metal material and method of producing metal material | |
Takeda et al. | Influence of nitrogen ion implantation on deformation and fatigue properties of TiNi shape-memory alloy wire | |
Klinge et al. | Nanostructured Ti-13Nb-13Zr alloy for implant application—material scientific, technological, and biological aspects | |
Mohammed | Mechanical and wear properties of HPT-biomedical titanium: A review | |
Nasakina et al. | Applications of nanostructural NiTi alloys for medical devices | |
Wang et al. | An investigation of hardness homogeneity and microstructure in pure titanium processed by high pressure torsion |