WO2012124661A1 - Titanium-magnesium material having high strength and low elasticity - Google Patents

Titanium-magnesium material having high strength and low elasticity Download PDF

Info

Publication number
WO2012124661A1
WO2012124661A1 PCT/JP2012/056306 JP2012056306W WO2012124661A1 WO 2012124661 A1 WO2012124661 A1 WO 2012124661A1 JP 2012056306 W JP2012056306 W JP 2012056306W WO 2012124661 A1 WO2012124661 A1 WO 2012124661A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
magnesium
biomaterial
sintering
powder
Prior art date
Application number
PCT/JP2012/056306
Other languages
French (fr)
Japanese (ja)
Inventor
正広 久保田
Original Assignee
学校法人日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学 filed Critical 学校法人日本大学
Publication of WO2012124661A1 publication Critical patent/WO2012124661A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys

Definitions

  • the present invention relates to a titanium-magnesium biomaterial having high strength, low elasticity, and excellent suitability as a bone substitute material.
  • Titanium alloys are biomaterials, high specific strength, high corrosion resistance, and environmental cleanliness, and thus are the most frequently applied to living organisms among metal biomaterials.
  • Young's modulus between the human bone (20 to 40 GPa) and the titanium alloy (100 GPa) is large. It is difficult to say that it performs a sufficient function as a biomaterial.
  • Patent Documents 1 and 2 Compared to this background, research has also been conducted on lowering the modulus of elasticity so that the modulus of elasticity approximates that of human bones by elements added to titanium alloys and heat treatment.
  • domestic and overseas metal biomaterial manufacturing processes are being researched and developed based on conventional melting and casting methods, which dramatically improve the mechanical properties and biocompatibility of titanium biomaterials. It is almost impossible to do so, and only minor characteristics are improved (Patent Documents 1 and 2).
  • the elastic modulus of magnesium is about 45 GPa, which is closer to the elastic modulus of human bone.
  • pure magnesium has been attracting attention as a bioabsorbable material for medical use in recent years because it is highly safe even when decomposed in the body.
  • the decomposition rate in the body is extremely fast, so that it decomposes in 1/3 to 1/4 of the period required for fracture treatment. Therefore, magnesium and magnesium alloys are not suitable for bone-bonding materials.
  • An object of the present invention is to provide a titanium-based biomaterial that has a higher elasticity than a human bone and has a low elastic modulus close to that of a human bone and is useful as a bone substitute material or a bone reinforcing material.
  • the present inventor has made various studies in order to reduce the elastic modulus of the titanium-based material. Since the melting point of titanium is 1668 ° C., while the boiling point of magnesium is 1090 ° C., it is theoretically impossible for titanium and magnesium to form an alloy by the melt casting method. Therefore, further investigation revealed that, surprisingly, if a mixture obtained by mechanically alloying titanium and magnesium powder was sintered, magnesium was uniformly dispersed in the titanium and had high strength. The present inventors have found that a biocompatible Ti—Mg material having a reduced elastic modulus can be obtained.
  • the present invention provides a Ti—Mg biomaterial in which Mg is uniformly dispersed in Ti obtained by sintering a mixture obtained by mechanically alloying titanium and magnesium powder. is there.
  • the present invention also provides a method for producing a Ti—Mg biomaterial in which Mg is uniformly dispersed in Ti, wherein a mixture obtained by mechanically alloying titanium and magnesium powder is sintered. It is to provide.
  • the Ti—Mg biomaterial of the present invention is a molded body in which magnesium is uniformly dispersed in titanium. Therefore, the Ti—Mg biomaterial has a high strength and a lower elastic modulus than titanium, and the elasticity of human bones. Since it is close to the rate, it is useful as a bone substitute material, bone reinforcing material, artificial joint, orthodontic wire, implant material and the like.
  • Mg uniformly dispersed in the biomaterial of the present invention not only contributes to lowering the elastic modulus, but also gradually decomposes in the body, thereby increasing the surface area of Ti, and cortical bone in the body. It is thought that the bond becomes stronger.
  • the SEM image of the powder before and behind mechanical alloying is shown.
  • the X-ray-diffraction result of the powder after 4 hours mechanical alloying is shown. From the top, Ti-30Mg, Ti-20Mg, Ti-10Mg, Pure Ti. It is a figure which shows the relationship between the mechanical alloying time with respect to magnesium addition amount, and the hardness of each powder.
  • the X-ray-diffraction result of the sintered compact obtained from the Ti-10Mg mechanical alloying 4 hour powder is shown. From above, sintering temperature is 873K, 773K, 673K.
  • the Ti—Mg biomaterial of the present invention can be obtained by sintering a mixture obtained by mechanically alloying titanium and magnesium powder.
  • Titanium as a raw material may be metal titanium, but it is preferable in terms of biocompatibility to use titanium having a purity of 98% or more, particularly titanium having a purity of 99% or more.
  • the particle diameter of titanium to be used is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less from the viewpoint of obtaining a desired material by mechanical alloying and sintering.
  • magnesium may be metallic magnesium, but it is preferable in terms of biocompatibility to use magnesium having a purity of 98% or more, particularly magnesium having a purity of 99% or more.
  • the particle diameter of magnesium used is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less, from the viewpoint of obtaining a desired material by mechanical alloying and sintering.
  • the mixing ratio of titanium and magnesium may be changed according to the target elastic modulus, and the mixing mass of magnesium with respect to 100 parts by mass of titanium is preferably 20 to 75 parts by mass, more preferably 25 to 60 parts by mass, Further, 30 to 60 parts by mass is particularly preferable.
  • the elastic modulus of the obtained biomaterial can be controlled by the mixing mass of magnesium, and the elastic modulus decreases as the mixing amount of magnesium increases. However, an excessively large amount of magnesium is not preferable from the viewpoint of degradability in living organisms.
  • the mechanical alloying treatment of the mixture is not particularly limited as long as it is a method of mixing while imparting mechanical energy, and examples thereof include a ball mill, a turbo mill, a mechano-fusion, a disk mill, and the like.
  • a vibration type ball mill and a planetary ball mill are preferable.
  • the mechanical alloying conditions may be any conditions in which titanium and magnesium are uniformly dispersed, but it is preferable to add an alloying aid.
  • an alloying aid an organic compound that disappears by sintering, for example, an organic wax, a fatty acid, or the like is used. Of these, hydrocarbons and C 6 -C 24 fatty acids are preferred, and stearic acid is more preferred.
  • the amount of alloying aid used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of titanium and magnesium. When a ball mill is employed, steel and ceramics are used as the ball, but steel is preferred.
  • the amount used is preferably about 100 to 5000 parts by mass with respect to 100 parts by mass of the total amount of titanium and magnesium.
  • the rotation speed is preferably 200 to 800 rpm, and the treatment time is preferably 1 hour to 50 hours.
  • the atmosphere is preferably an inert gas atmosphere such as a nitrogen gas or argon gas atmosphere.
  • the obtained mechanical alloying mixture is sintered.
  • the sintering means include pressureless sintering, hot pressing, hot isostatic pressing, high frequency induction heating, and discharge plasma sintering (SPS), with discharge plasma sintering being particularly preferred.
  • SPS discharge plasma sintering
  • a spark plasma sintering method a graphite die is installed in a discharge plasma apparatus, and a direct current obtained by applying a pulse direct current or a short wave to a graphite die in a vacuum or an inert gas (nitrogen, argon, etc.) atmosphere, or First, a pulse direct current is applied, and then a direct current with a short wave added is applied.
  • the discharge plasma conditions the raw material is preferably held at 700 to 1200 ° C. and a pressure of 20 to 80 MPa for 60 to 600 seconds.
  • the shape of the biomaterial obtained can be adjusted with the apparatus used for sintering.
  • the Ti—Mg material obtained by mechanical alloying and sintering described above exhibits uniform properties as a whole because Mg is uniformly dispersed in Ti. There is also a trace amount of TiC.
  • the Ti—Mg biomaterial of the present invention is high in strength and has a lower elastic modulus than that of pure titanium, and is close to the elastic modulus of human bone. Moreover, it is formed of Ti and Mg and has good biocompatibility. Therefore, the Ti—Mg biomaterial of the present invention is useful as a bone substitute material, a bone reinforcing material, an artificial joint, a correction wire, an implant material, and the like.
  • Example 1 (1) Method The purity of the used pure titanium powder is 99.5%, and the particle diameter is 44 ⁇ m or less (rare metallic). On the other hand, the pure magnesium powder used had a purity of 99.8% and a particle size of 276 ⁇ m or less. Table 1 shows the composition and material symbols. Weighed using a precision balance so that the total amount of each composition was 10 g. Further, stearic acid was used as an alloying aid (PCA), and the amount added was constant 0.25 g. These powders and 70 g of tool steel balls were charged in a tool steel container in an argon gas atmosphere. A vibration type ball mill was used for the mechanical alloying (MA) treatment, and the treatment time was set to two conditions of 4 hours and 8 hours.
  • PCA alloying aid
  • the prepared MA powder was evaluated by X-ray diffraction, micro Vickers hardness test, and scanning electron microscope observation.
  • a spark plasma sintering (SPS) apparatus was used for the sintering of the MA powder.
  • SPS spark plasma sintering
  • the temperature was increased to 873 K at a temperature increase rate of 1.67 K / s, and then the mold was held at a pressure of 49 MPa for 0.18 ks.
  • the produced SPS material was evaluated by X-ray diffraction, Vickers hardness test, and SEM observation.
  • FIG. 2 shows the X-ray diffraction results of the powder obtained by keeping the MA treatment constant for 4 hours and changing the magnesium addition amount.
  • magnesium is uniformly dispersed in titanium ( ⁇ -Ti).
  • a trace amount of TiH 2 was generated.
  • the result of having measured the hardness of the powder is shown in FIG. As shown in FIG. 3, it can be seen that the Vickers hardness decreases as the amount of magnesium added is increased.
  • FIG. 4 The X-ray diffraction result of the SPS material obtained by plasma sintering after MA treatment is shown in FIG.
  • the obtained SPS material is a sintered body in which Mg is uniformly dispersed in titanium ( ⁇ -Ti). Small amounts of TiH 2 , TiC and MgO are present.
  • FIG. 5 shows that the obtained sintered body has lower Vickers hardness as the amount of magnesium added increases. This Vickers hardness is lower than Ti but higher than Mg, and is close to a human bone.
  • Vickers hardness there is a proportional relationship between Vickers hardness, strength, and elastic modulus, and a decrease in Vickers hardness means that these characteristics also decrease. In particular, it is also known that about three times the Vickers hardness is equal to the strength (MPa). The strength of the sintered body is sufficient as a bone material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Provided is a titanium biomaterial which has higher strength than human bones and a low elastic modulus similar to human bones, and which is effective as a bone substitute material or a bone reinforcing material. A Ti-Mg biomaterial in which Mg is evenly dispersed within Ti, and which is obtained by sintering a mixture obtained by subjecting titanium powder and magnesium powder to mechanical alloying.

Description

高強度・低弾性に優れるチタン-マグネシウム材料Titanium-magnesium material with high strength and low elasticity
 本発明は、高強度で弾性が低く、骨代替材料としての適性に優れるチタン-マグネシウム生体材料に関する。 The present invention relates to a titanium-magnesium biomaterial having high strength, low elasticity, and excellent suitability as a bone substitute material.
 超高齢化社会を迎えた日本では、生活(命)の質の維持・向上を目指し、生体材料の研究・開発が活発に行われている。チタン合金は生体適合性、高比強度、高耐食性、環境浄化性を兼備しているため、金属系生体材料の中で生体への適用が最も多い材料である。しかしながら、人体骨中に埋入させた場合、人体骨(20~40GPa)とチタン合金(100GPa)とのヤング率の差が大きいため、応力の負荷状態によっては人体骨側に不具合が発生し、生体材料として十分な機能を果たしているとは言い難いのが現状である。 In Japan, which has reached a super-aging society, research and development of biomaterials are actively conducted with the aim of maintaining and improving the quality of life (life). Titanium alloys are biomaterials, high specific strength, high corrosion resistance, and environmental cleanliness, and thus are the most frequently applied to living organisms among metal biomaterials. However, when embedded in the human bone, the difference in Young's modulus between the human bone (20 to 40 GPa) and the titanium alloy (100 GPa) is large. It is difficult to say that it performs a sufficient function as a biomaterial.
 このような背景の下、チタン合金に添加する元素や熱処理によって弾性率を人体骨に近づける低弾性率化に関する研究も行われている。しかし、国内外の金属系生体材料の製造プロセスは、従来の溶解・鋳造法をベースに研究・開発が行われており、チタン系生体材料の機械的特性や生体適応性を飛躍的に向上させることは不可能に近く、マイナーな特性の向上にとどまっているのが現状である(特許文献1、2)。 Against this background, research has also been conducted on lowering the modulus of elasticity so that the modulus of elasticity approximates that of human bones by elements added to titanium alloys and heat treatment. However, domestic and overseas metal biomaterial manufacturing processes are being researched and developed based on conventional melting and casting methods, which dramatically improve the mechanical properties and biocompatibility of titanium biomaterials. It is almost impossible to do so, and only minor characteristics are improved (Patent Documents 1 and 2).
 一方、マグネシウムの弾性率は約45GPaで、人体骨の弾性率により近い値を示す。また、純マグネシウムは体内で分解しても安全性が高いことから、近年、医療用生体吸収性材料として注目されている。しかし、純マグネシウムやマグネシウム合金を骨接合材として用いる場合、体内での分解速度が極めて速いため、骨折治療に求められる期間の1/3~1/4で分解する。従って、マグネシウムやマグネシウム合金は骨接材料には適していない。 On the other hand, the elastic modulus of magnesium is about 45 GPa, which is closer to the elastic modulus of human bone. In addition, pure magnesium has been attracting attention as a bioabsorbable material for medical use in recent years because it is highly safe even when decomposed in the body. However, when pure magnesium or a magnesium alloy is used as an osteosynthesis material, the decomposition rate in the body is extremely fast, so that it decomposes in 1/3 to 1/4 of the period required for fracture treatment. Therefore, magnesium and magnesium alloys are not suitable for bone-bonding materials.
特開平5-49656号公報JP-A-5-49656 特開2004-277873号公報JP 2004-277873 A
 本発明の課題は、人体骨よりも高い強度を有しながら、人体骨に近い低弾性率を有し、骨代替材料や骨補強材料として有用なチタン系生体材料を提供することにある。 An object of the present invention is to provide a titanium-based biomaterial that has a higher elasticity than a human bone and has a low elastic modulus close to that of a human bone and is useful as a bone substitute material or a bone reinforcing material.
 そこで本発明者は、チタン系材料の低弾性率化を図るべく種々検討した。チタンの融点は1668℃であり、一方マグネシウムの沸点は1090℃であるから、チタンとマグネシウムは溶解鋳造法により合金を形成させることは理論上不可能である。そこでさらに検討したところ、全く意外にも、チタンとマグネシウムの粉末をメカニカルアロイング処理して得られた混合物を焼結させれば、チタン中にマグネシウムが均一に分散しており、高い強度を有しながら弾性率が低下した生体適合性Ti-Mg材料が得られることを見出し、本発明を完成した。 Therefore, the present inventor has made various studies in order to reduce the elastic modulus of the titanium-based material. Since the melting point of titanium is 1668 ° C., while the boiling point of magnesium is 1090 ° C., it is theoretically impossible for titanium and magnesium to form an alloy by the melt casting method. Therefore, further investigation revealed that, surprisingly, if a mixture obtained by mechanically alloying titanium and magnesium powder was sintered, magnesium was uniformly dispersed in the titanium and had high strength. The present inventors have found that a biocompatible Ti—Mg material having a reduced elastic modulus can be obtained.
 すなわち、本発明は、チタン及びマグネシウムの粉末をメカニカルアロイングして得られた混合物を焼結することにより得られる、Ti中にMgが均一分散してなるTi-Mg生体材料を提供するものである。
 また本発明は、チタン及びマグネシウムの粉末をメカニカルアロイングして得られた混合物を焼結することを特徴とする、Ti中にMgが均一に分散してなるTi-Mg生体材料の製造法を提供するものである。
That is, the present invention provides a Ti—Mg biomaterial in which Mg is uniformly dispersed in Ti obtained by sintering a mixture obtained by mechanically alloying titanium and magnesium powder. is there.
The present invention also provides a method for producing a Ti—Mg biomaterial in which Mg is uniformly dispersed in Ti, wherein a mixture obtained by mechanically alloying titanium and magnesium powder is sintered. It is to provide.
 本発明のTi-Mg生体材料は、チタン中にマグネシウムが均一に分散した成形体となっているため、高い強度を有しつつ、チタンに比べて弾性率が低下しており、人体骨の弾性率に近くなっているため、骨代替材料、骨補強材料、人工関節、矯正用ワイヤー、インプラント材料等として有用である。また、本発明生体材料中に均一に分散したMgは、低弾性率化に寄与するだけでなく、徐々に体内で分解することからTiの表面積を増加させることになり、体内で皮質骨との結合がより強固になると考えられる。 The Ti—Mg biomaterial of the present invention is a molded body in which magnesium is uniformly dispersed in titanium. Therefore, the Ti—Mg biomaterial has a high strength and a lower elastic modulus than titanium, and the elasticity of human bones. Since it is close to the rate, it is useful as a bone substitute material, bone reinforcing material, artificial joint, orthodontic wire, implant material and the like. In addition, Mg uniformly dispersed in the biomaterial of the present invention not only contributes to lowering the elastic modulus, but also gradually decomposes in the body, thereby increasing the surface area of Ti, and cortical bone in the body. It is thought that the bond becomes stronger.
メカニカルアロイング前後の粉末のSEM像を示す。 (a)メカニカルアロイング前の純チタン、(b)メカニカルアロイング前の純マグネシウム、(c)メカニカルアロイング4時間のTi-20Mg、(d)メカニカルアロイング8時間Ti-30Mg。The SEM image of the powder before and behind mechanical alloying is shown. (A) pure titanium before mechanical alloying, (b) pure magnesium before mechanical alloying, (c) mechanical alloying 4 hours Ti-20Mg, (d) mechanical alloying 8 hours Ti-30Mg. 4時間メカニカルアロイング後の粉末のX線回折結果を示す。上から、Ti-30Mg、Ti-20Mg、Ti-10Mg、Pure Ti。The X-ray-diffraction result of the powder after 4 hours mechanical alloying is shown. From the top, Ti-30Mg, Ti-20Mg, Ti-10Mg, Pure Ti. マグネシウム添加量に対するメカニカルアロイング時間と各粉末の硬さの関係を示す図である。It is a figure which shows the relationship between the mechanical alloying time with respect to magnesium addition amount, and the hardness of each powder. Ti-10Mgメカニカルアロイング4時間粉末から得られた焼結体のX線回折結果を示す。上から焼結温度873K、773K、673K。The X-ray-diffraction result of the sintered compact obtained from the Ti-10Mg mechanical alloying 4 hour powder is shown. From above, sintering temperature is 873K, 773K, 673K. 異なるメカニカルアロイング時間で作製した焼結体[Ti-xMg(x=0、10、20、30、40、50質量%)]の硬さを示す。The hardness of the sintered body [Ti—xMg (x = 0, 10, 20, 30, 40, 50 mass%)] produced with different mechanical alloying times is shown.
 本発明のTi-Mg生体材料は、チタンとマグネシウムの粉末をメカニカルアロイング処理して得られた混合物を焼結することにより得られる。 The Ti—Mg biomaterial of the present invention can be obtained by sintering a mixture obtained by mechanically alloying titanium and magnesium powder.
 原料としてのチタンは、金属チタンであればよいが、純度が98%以上のチタン、特に純度99%以上のチタンを用いるのが、生体親和性の点で好ましい。また、用いるチタンの粒子径は100μm以下、さらに50μm以下であるのが、メカニカルアロイング及び焼結により目的の材料を得る点で好ましい。
 一方、マグネシウムは、金属マグネシウムであればよいが、純度98%以上のマグネシウム、特に純度99%以上のマグネシウムを用いるのが生体親和性の点で好ましい。また用いるマグネシウムの粒子径は100μm以下、さらに50μm以下であるのが、メカニカルアロイング及び焼結により目的の材料を得る点で好ましい。
Titanium as a raw material may be metal titanium, but it is preferable in terms of biocompatibility to use titanium having a purity of 98% or more, particularly titanium having a purity of 99% or more. Further, the particle diameter of titanium to be used is preferably 100 μm or less, and more preferably 50 μm or less from the viewpoint of obtaining a desired material by mechanical alloying and sintering.
On the other hand, magnesium may be metallic magnesium, but it is preferable in terms of biocompatibility to use magnesium having a purity of 98% or more, particularly magnesium having a purity of 99% or more. Further, the particle diameter of magnesium used is preferably 100 μm or less, and more preferably 50 μm or less, from the viewpoint of obtaining a desired material by mechanical alloying and sintering.
 チタンとマグネシウムの混合比は、目的とする弾性率に応じて変化させればよく、チタン100質量部に対するマグネシウムの混合質量が20~75質量部が好ましく、さらに25~60質量部がより好ましく、さらに30~60質量部が特に好ましい。得られる生体材料の弾性率は、マグネシウムの混合質量により制御でき、マグネシウムの混合量が多いほど弾性率が低下する。ただし、マグネシウム混合量が多すぎると、生体での分解性の点から好ましくない。 The mixing ratio of titanium and magnesium may be changed according to the target elastic modulus, and the mixing mass of magnesium with respect to 100 parts by mass of titanium is preferably 20 to 75 parts by mass, more preferably 25 to 60 parts by mass, Further, 30 to 60 parts by mass is particularly preferable. The elastic modulus of the obtained biomaterial can be controlled by the mixing mass of magnesium, and the elastic modulus decreases as the mixing amount of magnesium increases. However, an excessively large amount of magnesium is not preferable from the viewpoint of degradability in living organisms.
 前記混合物のメカニカルアロイング処理は、機械的エネルギーを付与しながら混合する方法であれば特に限定されるものではないが、例えばボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特に振動型ボールミル、遊星型ボールミルが好ましい。 The mechanical alloying treatment of the mixture is not particularly limited as long as it is a method of mixing while imparting mechanical energy, and examples thereof include a ball mill, a turbo mill, a mechano-fusion, a disk mill, and the like. In particular, a vibration type ball mill and a planetary ball mill are preferable.
 メカニカルアロイングの条件は、チタンとマグネシウムが均一に分散する条件であればよいが、アロイング助剤を添加するのが好ましい。アロイング助剤としては、焼結により消失してしまう有機化合物、例えば有機系ワックス、脂肪酸等が用いられる。このうち、炭化水素、C6-C24脂肪酸が好ましく、ステアリン酸がより好ましい。アロイング助剤の使用量は、チタン及びマグネシウムの合計量100質量部に対して、0.5~5質量部が好ましい。ボールミルを採用する場合、ボールとしては鋼、セラミックスが用いられるが、鋼が好ましい。その使用量はチタン及びマグネシウムの合計量100質量部に対して100~5000質量部程度が好ましい。回転数は、200~800rpmが好ましく、処理時間は1時間~50時間が好ましい。また、雰囲気は、不活性ガス雰囲気、例えば窒素ガス、アルゴンガス雰囲気で行うのが好ましい。 The mechanical alloying conditions may be any conditions in which titanium and magnesium are uniformly dispersed, but it is preferable to add an alloying aid. As the alloying aid, an organic compound that disappears by sintering, for example, an organic wax, a fatty acid, or the like is used. Of these, hydrocarbons and C 6 -C 24 fatty acids are preferred, and stearic acid is more preferred. The amount of alloying aid used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of titanium and magnesium. When a ball mill is employed, steel and ceramics are used as the ball, but steel is preferred. The amount used is preferably about 100 to 5000 parts by mass with respect to 100 parts by mass of the total amount of titanium and magnesium. The rotation speed is preferably 200 to 800 rpm, and the treatment time is preferably 1 hour to 50 hours. The atmosphere is preferably an inert gas atmosphere such as a nitrogen gas or argon gas atmosphere.
 得られたメカニカルアロイング混合物を焼結する。焼結手段は、無加圧焼結法、ホットプレス法、熱間静水圧プレス法、高周波誘導加熱法、放電プラズマ焼結法(SPS)が挙げられるが、放電プラズマ焼結が特に好ましい。放電プラズマ焼結法としては、放電プラズマ装置に黒鉛ダイスを設置し、真空又は不活性ガス(窒素、アルゴン等)雰囲気下、黒鉛ダイスにパルス直流又は短形波を加えた直流を流すか、あるいは最初にパルス直流を流し次いで短形波を加えた直流を流して行う。放電プラズマ条件としては、原料を700~1200℃、加圧力20~80MPaに60~600秒保持するのが好ましい。
 また、得られる生体材料の形状は、焼結に用いる装置により調整することができる。
The obtained mechanical alloying mixture is sintered. Examples of the sintering means include pressureless sintering, hot pressing, hot isostatic pressing, high frequency induction heating, and discharge plasma sintering (SPS), with discharge plasma sintering being particularly preferred. As a spark plasma sintering method, a graphite die is installed in a discharge plasma apparatus, and a direct current obtained by applying a pulse direct current or a short wave to a graphite die in a vacuum or an inert gas (nitrogen, argon, etc.) atmosphere, or First, a pulse direct current is applied, and then a direct current with a short wave added is applied. As the discharge plasma conditions, the raw material is preferably held at 700 to 1200 ° C. and a pressure of 20 to 80 MPa for 60 to 600 seconds.
Moreover, the shape of the biomaterial obtained can be adjusted with the apparatus used for sintering.
 前記のメカニカルアロイング及び焼結により得られるTi-Mg材料は、Ti中にMgが均一に分散しており、全体として均一な性質を発揮する。また微量のTiCが存在する。 The Ti—Mg material obtained by mechanical alloying and sintering described above exhibits uniform properties as a whole because Mg is uniformly dispersed in Ti. There is also a trace amount of TiC.
 本発明のTi-Mg生体材料は、強度が高く、かつ弾性率が純チタンに比べて低下しており、人体骨の弾性率に近くなっている。また、Ti及びMgにより形成されており、生体親和性も良好である。従って、本発明のTi-Mg生体材料は、骨代替材料、骨補強材料、人工関節、矯正用ワイヤー、インプラント材料等として有用である。 The Ti—Mg biomaterial of the present invention is high in strength and has a lower elastic modulus than that of pure titanium, and is close to the elastic modulus of human bone. Moreover, it is formed of Ti and Mg and has good biocompatibility. Therefore, the Ti—Mg biomaterial of the present invention is useful as a bone substitute material, a bone reinforcing material, an artificial joint, a correction wire, an implant material, and the like.
 次に実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
実施例1
(1)方法
 用いた純チタン粉末の純度は99.5%、粒子径は44μm以下である((株)レアメタリック)。一方、純マグネシウム粉末は純度は99.8%、粒子径は276μm以下を使用した。
 表1に配合組成及び材料記号を示す。各組成の総量が10gになるように精密天秤を用いて秤量した。さらに、アロイング助剤(PCA)として、ステアリン酸を用い、その添加量は0.25g一定とした。これらの粉末と工具鋼製ボール70gを工具鋼製容器にアルゴンガス雰囲気中で装入した。メカニカルアロイング(MA)処理には振動型ボールミルを使用し、処理時間は4時間、8時間の2条件とした。
Example 1
(1) Method The purity of the used pure titanium powder is 99.5%, and the particle diameter is 44 μm or less (rare metallic). On the other hand, the pure magnesium powder used had a purity of 99.8% and a particle size of 276 μm or less.
Table 1 shows the composition and material symbols. Weighed using a precision balance so that the total amount of each composition was 10 g. Further, stearic acid was used as an alloying aid (PCA), and the amount added was constant 0.25 g. These powders and 70 g of tool steel balls were charged in a tool steel container in an argon gas atmosphere. A vibration type ball mill was used for the mechanical alloying (MA) treatment, and the treatment time was set to two conditions of 4 hours and 8 hours.
 作製したMA粉末は、X線回折、マイクロビッカース硬さ試験、走査型電子顕微鏡観察により評価した。
 MA粉末の焼結には、放電プラズマ焼結(SPS)装置を用いた。φ20の黒鉛ダイスを用いて、昇温速度1.67K/sで873Kまで昇温後、加圧力49MPaで0.18ks保持して成形した。
 作製したSPS材は、X線回折、ビッカース硬さ試験、SEM観察により評価した。
The prepared MA powder was evaluated by X-ray diffraction, micro Vickers hardness test, and scanning electron microscope observation.
A spark plasma sintering (SPS) apparatus was used for the sintering of the MA powder. Using a φ20 graphite die, the temperature was increased to 873 K at a temperature increase rate of 1.67 K / s, and then the mold was held at a pressure of 49 MPa for 0.18 ks.
The produced SPS material was evaluated by X-ray diffraction, Vickers hardness test, and SEM observation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)結果
 (a)純チタンに対して純マグネシウム粉末の添加量を変化させ、MA4時間又は8時間処理して得られた粉末のSEM像を図1に示す。図1に示すように、MA処理によりチタン中にマグネシウムが均一に分散した微粉末が得られたことがわかる。
(2) Results (a) The SEM image of the powder obtained by changing the addition amount of pure magnesium powder with respect to pure titanium and treating for MA 4 hours or 8 hours is shown in FIG. As shown in FIG. 1, it can be seen that a fine powder in which magnesium was uniformly dispersed in titanium was obtained by the MA treatment.
 (b)MA処理を4時間一定とし、マグネシウム添加量を変化させて得られた粉末のX線回折結果を図2に示す。図2の結果から明らかに、チタン(α-Ti)中にマグネシウムが均一に分散していることがわかる。微量のTiH2が生成していた。
 また、その粉末の硬さを測定した結果を図3に示す。図3に示すように、マグネシウムの添加量を増加させるに従ってビッカース硬さが低下することがわかる。
(B) FIG. 2 shows the X-ray diffraction results of the powder obtained by keeping the MA treatment constant for 4 hours and changing the magnesium addition amount. As can be seen from the results of FIG. 2, magnesium is uniformly dispersed in titanium (α-Ti). A trace amount of TiH 2 was generated.
Moreover, the result of having measured the hardness of the powder is shown in FIG. As shown in FIG. 3, it can be seen that the Vickers hardness decreases as the amount of magnesium added is increased.
 (c)MA処理後、プラズマ焼結して得られたSPS材のX線回折結果を図4に示す。図4から、得られたSPS材は、チタン(α-Ti)中にMgが均一に分散した焼結体であることがわかる。少量のTiH2、TiC及びMgOが存在する。
 得られたSPS材のビッカース硬さの測定結果を図5に示す。図5から、得られた焼結体は、マグネシウムの添加量の増加に伴い、ビッカース硬さが低下することがわかる。このビッカース硬さは、Tiよりも低いがMgよりも高く、人体骨に近くなっている。なお、ビッカース硬さと強度及び弾性率には比例関係があり、ビッカース硬さが低下することはこれらの特性も低下することを意味している。特に、ビッカース硬さの約3倍が強度(MPa)に等しい事も知られている。また、この焼結体の強度は、骨材料として十分なものである。
(C) The X-ray diffraction result of the SPS material obtained by plasma sintering after MA treatment is shown in FIG. As can be seen from FIG. 4, the obtained SPS material is a sintered body in which Mg is uniformly dispersed in titanium (α-Ti). Small amounts of TiH 2 , TiC and MgO are present.
The measurement result of the Vickers hardness of the obtained SPS material is shown in FIG. FIG. 5 shows that the obtained sintered body has lower Vickers hardness as the amount of magnesium added increases. This Vickers hardness is lower than Ti but higher than Mg, and is close to a human bone. Note that there is a proportional relationship between Vickers hardness, strength, and elastic modulus, and a decrease in Vickers hardness means that these characteristics also decrease. In particular, it is also known that about three times the Vickers hardness is equal to the strength (MPa). The strength of the sintered body is sufficient as a bone material.

Claims (6)

  1.  チタン及びマグネシウムの粉末をメカニカルアロイング処理して得られた混合物を焼結することにより得られる、Ti中にMgが均一分散してなるTi-Mg生体材料。 Ti-Mg biomaterial in which Mg is uniformly dispersed in Ti, obtained by sintering a mixture obtained by mechanically alloying titanium and magnesium powder.
  2.  チタン100質量部に対するマグネシウム混合質量が20~75質量部である請求項1記載のTi-Mg生体材料。 The Ti-Mg biomaterial according to claim 1, wherein the mixed mass of magnesium is 20 to 75 parts by mass with respect to 100 parts by mass of titanium.
  3.  メカニカルアロイング処理が、ボールミル処理である請求項1又は2記載のTi-Mg生体材料。 3. The Ti—Mg biomaterial according to claim 1, wherein the mechanical alloying process is a ball mill process.
  4.  焼結が、放電プラズマ焼結である請求項1~3のいずれか1項記載のTi-Mg生体材料。 The Ti-Mg biomaterial according to any one of claims 1 to 3, wherein the sintering is spark plasma sintering.
  5.  骨代替材料又は骨補強材料である請求項1~4のいずれか1項記載のTi-Mg生体材料。 The Ti-Mg biomaterial according to any one of claims 1 to 4, which is a bone substitute material or a bone reinforcing material.
  6.  チタン及びマグネシウムの粉末をメカニカルアロイング処理して得られた混合物を焼結することを特徴とする、Ti中にMgが均一分散してなるTi-Mg生体材料の製造法。 A method for producing a Ti—Mg biomaterial in which Mg is uniformly dispersed in Ti, wherein a mixture obtained by mechanically alloying titanium and magnesium powder is sintered.
PCT/JP2012/056306 2011-03-16 2012-03-12 Titanium-magnesium material having high strength and low elasticity WO2012124661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057526 2011-03-16
JP2011057526A JP2012192016A (en) 2011-03-16 2011-03-16 Titanium-magnesium material having high strength and low elasticity

Publications (1)

Publication Number Publication Date
WO2012124661A1 true WO2012124661A1 (en) 2012-09-20

Family

ID=46830730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056306 WO2012124661A1 (en) 2011-03-16 2012-03-12 Titanium-magnesium material having high strength and low elasticity

Country Status (2)

Country Link
JP (1) JP2012192016A (en)
WO (1) WO2012124661A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009805A1 (en) * 2015-07-15 2017-01-19 Ústav Materiálov A Mechaniky Strojov Sav Composite material for implants, its use and method of its production
CN108014369A (en) * 2018-01-24 2018-05-11 山东建筑大学 A kind of preparation method of the compound bone material of renewable titanium-based
CN111266592A (en) * 2020-03-25 2020-06-12 燕山大学 Titanium-magnesium composite material with double-communication structure and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263857A (en) 2013-03-14 2016-01-20 麻省理工学院 Sintered nanocrystalline alloys
US11644288B2 (en) 2015-09-17 2023-05-09 Massachusetts Institute Of Technology Nanocrystalline alloy penetrators
WO2018125314A2 (en) * 2016-09-07 2018-07-05 Massachusetts Institute Of Technology Titanium-containing alloys and associated methods of manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265226A (en) * 1999-03-16 2000-09-26 Agency Of Ind Science & Technol Manufacture of titanium alloy in high efficiency by mechanical alloying

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265226A (en) * 1999-03-16 2000-09-26 Agency Of Ind Science & Technol Manufacture of titanium alloy in high efficiency by mechanical alloying

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LIANG, G. ET AL.: "Synthesis of Mg-Ti alloy by mechanical alloying", JOURNAL OF MATERIALS SCIENCE, vol. 38, no. 6, 15 March 2003 (2003-03-15), pages 1179 - 1184 *
MACHIO, C. ET AL.: "Characterization of mechanically alloyed f.c.c. Ti-Mg-based powders", POWDER TECHNOLOGY, vol. 207, no. 1-3, 15 February 2011 (2011-02-15), pages 387 - 395 *
MITSUO NIINOMI: "Present State and Trend in Research and Development of Metallic Biomaterials", BULLETIN OF THE IRON AND STEEL INSTITUTE OF JAPAN, vol. 13, no. 4, 1 April 2008 (2008-04-01), pages 216 - 225 *
NARITOSHI AOYAGI ET AL.: "Hoden Plasma Shoketsuho ni yori Seizo shita Titanium Gokin Porous-zai no Rikigakuteki Seishitsu", KEIKINZOKU GAKKAI 114 KAI SHUNKI TAIKAI KOEN GAIYO, vol. 114, 10 April 2008 (2008-04-10), pages 189 - 190 *
YONOSUKE MURAYAMA: "Elastic modulus and structure of pure titanium and titanium alloy for human body", BULLETIN OF NIIGATA INSTITUTE OF TECHNOLOGY, vol. 11, 25 December 2006 (2006-12-25), pages 11 - 16 *
ZHANG, F. ET AL.: "Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH B: APPLIED BIOMATERIALS, vol. 94, no. 2, August 2010 (2010-08-01), pages 406 - 413 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009805A1 (en) * 2015-07-15 2017-01-19 Ústav Materiálov A Mechaniky Strojov Sav Composite material for implants, its use and method of its production
CN108014369A (en) * 2018-01-24 2018-05-11 山东建筑大学 A kind of preparation method of the compound bone material of renewable titanium-based
CN111266592A (en) * 2020-03-25 2020-06-12 燕山大学 Titanium-magnesium composite material with double-communication structure and preparation method and application thereof
CN111266592B (en) * 2020-03-25 2022-04-22 燕山大学 Titanium-magnesium composite material with double-communication structure and preparation method and application thereof

Also Published As

Publication number Publication date
JP2012192016A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
Chu et al. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis
Rao et al. Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method
WO2012124661A1 (en) Titanium-magnesium material having high strength and low elasticity
Chu et al. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique
CN105522152B (en) A kind of method of 3D printing rare earth titanium alloy material
Chu et al. Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications
US10532134B2 (en) Thixotropic processing of magnesium composites with a nanoparticles-haloed grain structure for biomedical implant applications
JP3668811B2 (en) Method for producing magnesium-based composite material
JP6916479B2 (en) Manufacturing method of magnesium-iron alloy, magnesium-iron alloy and biomedical materials using it
Schmidt et al. Powder metallurgical processing of low modulus β-type Ti-45Nb to bulk and macro-porous compacts
Ibrahim et al. Powder metallurgy fabrication of porous 51 (at.%) Ni–Ti shape memory alloys for biomedical applications
Kolawole et al. Mechanical properties of powder metallurgy processed biodegradable Zn-based alloy for biomedical application
Singh et al. Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications
Xie et al. Ti-10Mo/Hydroxyapatite composites for orthopedic applications: Microstructure, mechanical properties and biological activity
Santos et al. Isochronal sintering of the blended elemental Ti–35Nb alloy
RU2492256C9 (en) Pure titanium-based nanostructured composite and method of its production
TWI719767B (en) Biodegradable iron-based alloy composition, medical implant applying the same, and manufactruing method thereof
Kim et al. Shape memory characteristics of Ti–Ni–Mo alloys sintered by sparks plasma sintering
WO2017170964A1 (en) Calcium-base metal glass alloy molded body for medical use, and production method thereof
JP6871600B2 (en) Manufacturing method of metal material and metal material
RU2711699C1 (en) METHOD OF PRODUCING COMPOSITE MATERIAL Ti/TiB
CN115109979A (en) Ti-Ta-Nb-Zr-Mo biomedical high-entropy alloy
WO2012046773A1 (en) Titanium-hydroxyapatite composite material having high strength and excellent biocompatibility
Awad et al. Physical, mechanical, and corrosion properties of Ti–12Mo and Ti–15Mo alloys fabricated by elemental blend and mechanical alloying techniques
Yamanoglu et al. Sintering properties of mechanically alloyed Ti-5Al-2.5 Fe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758216

Country of ref document: EP

Kind code of ref document: A1