JP2016059930A - Laser welding equipment and laser welding process - Google Patents

Laser welding equipment and laser welding process Download PDF

Info

Publication number
JP2016059930A
JP2016059930A JP2014188172A JP2014188172A JP2016059930A JP 2016059930 A JP2016059930 A JP 2016059930A JP 2014188172 A JP2014188172 A JP 2014188172A JP 2014188172 A JP2014188172 A JP 2014188172A JP 2016059930 A JP2016059930 A JP 2016059930A
Authority
JP
Japan
Prior art keywords
welding
laser
shape
inspection
welding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014188172A
Other languages
Japanese (ja)
Other versions
JP6385763B2 (en
Inventor
聡一 上野
Soichi Ueno
聡一 上野
克典 椎原
Katsunori Shiihara
克典 椎原
千田 格
Itaru Senda
格 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014188172A priority Critical patent/JP6385763B2/en
Publication of JP2016059930A publication Critical patent/JP2016059930A/en
Application granted granted Critical
Publication of JP6385763B2 publication Critical patent/JP6385763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide laser welding equipment which can reduce construction period.SOLUTION: A laser welding equipment comprises: an oscillator generating laser beam; a transmission mechanism transmitting the laser beam generated by the oscillator; an irradiation mechanism irradiating the laser beam transmitted through the transmission mechanism to a welding point; a feeding mechanism feeding a weld material to the welding point; a shape measurement mechanism measuring a shape of the weld material after the welding; a verifier inspecting stability of the weld material after the welding; and a control unit controlling the position of the verifier on the basis of the measurement result of the shape measurement mechanism.SELECTED DRAWING: Figure 1

Description

本発明は、レーザ溶接装置及びレーザ溶接方法に関する。   The present invention relates to a laser welding apparatus and a laser welding method.

例えば、原子力プラントの炉内構造物や機器等は、長期間使用すると応力腐食割れなどの欠陥が発生する可能性がある。欠陥が発生した場合には、その構造物全体を交換するか、あるいは補助金具を取り付けるなどの処置が施されている。   For example, in-furnace structures and equipment of a nuclear power plant may cause defects such as stress corrosion cracking when used for a long period of time. When a defect occurs, measures are taken such as replacing the entire structure or attaching an auxiliary metal fitting.

また、蒸気弁の弁座肉盛施工部分の欠陥補修方法として、レーザ溶接により補修を行う方法が提案されている。この方法では、蒸気弁の弁座肉盛施工部分の欠陥部に溶接材料(ろう)を設けるとともに、欠陥部が不活性ガス雰囲気となるようにシールド板を設け、欠陥部近傍に不活性ガスを吹き付けながらレーザ光を照射して加熱することで溶接材料を欠陥部に浸透させる拡散ろう付けを行う。   Moreover, the method of repairing by the laser welding is proposed as a defect repairing method of the valve seat overlay construction part of a steam valve. In this method, a welding material (wax) is provided in the defective portion of the valve seat overlay construction portion of the steam valve, a shield plate is provided so that the defective portion becomes an inert gas atmosphere, and an inert gas is provided near the defective portion. Diffusion brazing is performed in which the welding material penetrates into the defect by irradiating and heating the laser beam while spraying.

上記の拡散ろう付けによる欠陥補修方法では、補修部に溶接材料を設ける置きろうに相当するステップがある。しかしながら、例えば原子炉内の欠陥補修においては、置きろうに相当する当該ステップは望ましくない。   In the defect repairing method by diffusion brazing described above, there is a step corresponding to placing the welding material in the repaired part. However, for example, in the repair of defects in a nuclear reactor, this step corresponding to the placing is not desirable.

また、原子炉内構造物の補修をレーザ溶接によって行う場合は、補修後に溶接部の健全性を検査する必要がある。検査手法としては超音波探傷検査、渦電流探傷検査などが用いられるが、溶接部の表面を加工した後検査を行うため、溶接部に異常が検知された場合は再施工となり、工期長期化の要因となっている。   Moreover, when repairing the reactor internal structure by laser welding, it is necessary to inspect the soundness of the welded portion after the repair. Ultrasonic flaw inspection, eddy current flaw inspection, etc. are used as inspection methods, but inspection is performed after the surface of the weld is processed, so if an abnormality is detected in the weld, it will be re-worked and the construction period will be prolonged. It is a factor.

特許第4284052号公報Japanese Patent No. 4284052

上述したとおり、従来の技術では、レーザ溶接による欠陥補修に時間を要し、その工期が長期化する傾向にあるという問題があった。また、置きろうではなく、差しろうによりレーザ溶接を行う場合、溶接状態を良好な状態に保つことが難しいという問題もあった。   As described above, the conventional technique has a problem that it takes time to repair defects by laser welding, and the construction period tends to be prolonged. In addition, when laser welding is performed by inserting instead of placing, there is a problem that it is difficult to keep the welding state in a good state.

本発明は、上記従来の事情に対処してなされたもので、工期を短縮することができるレーザ溶接装置及びレーザ溶接方法を提供することを目的とする。   The present invention has been made in response to the above-described conventional circumstances, and an object thereof is to provide a laser welding apparatus and a laser welding method capable of shortening the work period.

本発明のレーザ溶接装置の一態様は、レーザ光を発生させる発振器と、前記発振器で発生したレーザ光を伝送する伝送機構と、前記伝送機構を通じて伝送されたレーザ光を溶接箇所へ照射する照射機構と、溶接材料を前記溶接箇所へ供給する供給機構と、溶接後の溶接材料の形状を計測する形状計測機構と、前記溶接後の溶接材料の健全性を検査するための検査機構と、前記形状計測機構による計測結果に基づいて、前記検査機構の位置を制御する制御部と、を具備したことを特徴とする。   One aspect of the laser welding apparatus of the present invention includes an oscillator that generates laser light, a transmission mechanism that transmits the laser light generated by the oscillator, and an irradiation mechanism that irradiates the welding spot with the laser light transmitted through the transmission mechanism. A supply mechanism for supplying the welding material to the welding location, a shape measuring mechanism for measuring the shape of the welded material after welding, an inspection mechanism for inspecting the soundness of the welded material after welding, and the shape And a control unit that controls the position of the inspection mechanism based on the measurement result of the measurement mechanism.

本発明のレーザ溶接方法の一態様は、溶接部にレーザ光を照射して加熱する工程と、溶接材料供給機構により、加熱した前記溶接部に溶接材料を供給して前記溶接材料を溶融させて溶接する工程と、形状測定機構により、溶接後の溶接材料の形状を計測する工程と、前記形状測定機構による形状測定結果に基づいて、検査機構の位置を調整する工程と、位置を調整した前記検査機構によって、前記溶接後の溶接材料の健全性を検査する工程と、を具備したことを特徴とする。   According to one aspect of the laser welding method of the present invention, a welding part is irradiated with a laser beam and heated, and a welding material supply mechanism supplies a welding material to the heated welding part to melt the welding material. The step of welding, the step of measuring the shape of the welded material after welding by the shape measuring mechanism, the step of adjusting the position of the inspection mechanism based on the shape measurement result by the shape measuring mechanism, and the position adjusted And a step of inspecting the soundness of the welded material after the welding by an inspection mechanism.

本発明によれば、工期を短縮することができる。   According to the present invention, the construction period can be shortened.

本発明の一実施形態に係るレーザ溶接装置の概略構成を示す図。The figure which shows schematic structure of the laser welding apparatus which concerns on one Embodiment of this invention. 形状計測機構の一例の構成を示す図。The figure which shows the structure of an example of a shape measurement mechanism. レーザ光のエネルギー分布の例を示す図。The figure which shows the example of energy distribution of a laser beam. 溶接を行う工程を示すフロー図。The flowchart which shows the process of welding. 渦電流探傷によって得られる検出信号の例を説明するための図。The figure for demonstrating the example of the detection signal obtained by eddy current flaw detection. 矩形波駆動の渦電流探傷センサーの検出信号の例を説明するための図。The figure for demonstrating the example of the detection signal of the eddy current flaw detection sensor of a square wave drive. 減衰係数と厚みの関係を説明するための図。The figure for demonstrating the relationship between an attenuation coefficient and thickness. 補修材の形状をより平坦にする方法を説明するための図。The figure for demonstrating the method of making the shape of a repair material flatter. 遠隔操作によって欠陥補修を行う場合を説明するための図。The figure for demonstrating the case where defect repair is performed by remote control.

以下、本発明の実施形態を、図面を参照して説明する。
図1は、本発明の一実施形態に係るレーザ溶接装置100の概略構成を模式的に示すものである。金属部材からなる補修対象101に発生した欠陥(き裂)102に対して、欠陥102の進展を防止するためには、周囲環境と遮断することが有効である。図1に示す実施形態では、環境遮断の方法として、レーザ溶接装置100により、欠陥102に対して肉盛溶接を行う場合を示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows a schematic configuration of a laser welding apparatus 100 according to an embodiment of the present invention. In order to prevent the defect 102 from progressing with respect to the defect (crack) 102 generated in the repair target 101 made of a metal member, it is effective to block it from the surrounding environment. In the embodiment shown in FIG. 1, a case where overlay welding is performed on the defect 102 by the laser welding apparatus 100 is shown as a method for interrupting the environment.

レーザ溶接装置100は、レーザ光104を発生させるための発振器103と、レーザ光104を伝送するための伝送機構105と、補修部位に配設される照射ヘッド130とを具備している。照射ヘッド130は筐体131を具備しており、筐体131の下方には、図1中下側が開口された容器状の構造物からなり、補修部位及びその周辺を外部から隔離するための環境遮蔽機構118が配設されている。   The laser welding apparatus 100 includes an oscillator 103 for generating a laser beam 104, a transmission mechanism 105 for transmitting the laser beam 104, and an irradiation head 130 disposed at a repair site. The irradiation head 130 includes a casing 131. The casing 131 includes a container-like structure having an opening on the lower side in FIG. 1, and an environment for isolating the repair site and its periphery from the outside. A shielding mechanism 118 is provided.

筐体131及び環境遮蔽機構118内には、伝送機構105によって伝送されたレーザ光104を、溶接部位に照射するための照射機構106と、溶接部位に溶接材料(補修材)112を供給するための供給機構113と、溶接部位に肉盛溶接した溶接後の溶接材料(溶接ビード)116の形状を計測するための形状計測機構110が配設されている。また、筐体131の外側の側方(図1中左側)には、固定アーム121によって支持された検査機構117が配設されている。検査機構117は、溶接後の溶接材料116のブローホールや融合不良などの異常を検出するためのものである。   In the housing 131 and the environment shielding mechanism 118, the irradiation mechanism 106 for irradiating the welding part with the laser beam 104 transmitted by the transmission mechanism 105, and the welding material (repair material) 112 for supplying the welding part to the welding part. And a shape measuring mechanism 110 for measuring the shape of the welded material (weld bead) 116 after welding welded to the welded portion. In addition, an inspection mechanism 117 supported by a fixed arm 121 is disposed on the outer side of the housing 131 (left side in FIG. 1). The inspection mechanism 117 is for detecting abnormalities such as blow holes and poor fusion of the welding material 116 after welding.

また、レーザ溶接装置100は、コンピュータ等からなる制御部150を具備している。そして、制御部150は、発振器103、照射機構106、形状計測機構110、供給機構113、検査機構117などの動作(レーザ溶接装置100の全体の動作)を統括的に制御するとともに、形状計測機構110からの検出信号、検査機構117からの検出信号が入力されるようになっている。   Further, the laser welding apparatus 100 includes a control unit 150 including a computer or the like. The control unit 150 comprehensively controls the operations of the oscillator 103, the irradiation mechanism 106, the shape measurement mechanism 110, the supply mechanism 113, the inspection mechanism 117, and the like (the entire operation of the laser welding apparatus 100), and the shape measurement mechanism. A detection signal from 110 and a detection signal from the inspection mechanism 117 are input.

上記伝送機構105としては、例えば、光ファイバなどを用いることができる。発振器103から発生したレーザ光104は伝送機構105を通って照射機構106へと伝送される。照射機構106の内部において、レーザ光104は,集光レンズ107を通った後、分岐レンズ108によって、溶接箇所へ照射される溶接レーザ光109と形状計測機構110へ送られる形状計測レーザ光111とに分けられる。   For example, an optical fiber can be used as the transmission mechanism 105. Laser light 104 generated from the oscillator 103 is transmitted to the irradiation mechanism 106 through the transmission mechanism 105. Inside the irradiation mechanism 106, the laser beam 104 passes through the condenser lens 107, and then the welding laser beam 109 is irradiated to the welding location by the branch lens 108 and the shape measurement laser beam 111 sent to the shape measurement mechanism 110. It is divided into.

溶接材料112は、供給機構113によって溶接部位へと供給される。本実施形態において、溶接材料112はワイヤ状であり、ワイヤ供給源114にリール状に巻かれている。ワイヤ状の溶接材料112は、モータ駆動などの動力源(図示せず。)により、ワイヤ供給源114から、筒状の溶接材料加熱機構115を通って溶接箇所へと供給される。溶接材料加熱機構115は、図示しない加熱手段を具備しており、溶接材料112は、溶接材料加熱機構115を通る過程で所定の温度へと昇温された状態で溶接箇所へと供給される。加熱機構としては、通電によるジュール熱加熱、レーザ加熱、誘導加熱などを用いることができる。   The welding material 112 is supplied to the welding site by the supply mechanism 113. In the present embodiment, the welding material 112 has a wire shape and is wound around the wire supply source 114 in a reel shape. The wire-shaped welding material 112 is supplied from the wire supply source 114 to the welding site through the cylindrical welding material heating mechanism 115 by a power source (not shown) such as a motor drive. The welding material heating mechanism 115 includes heating means (not shown), and the welding material 112 is supplied to a welding location in a state where the temperature is raised to a predetermined temperature in the process of passing through the welding material heating mechanism 115. As the heating mechanism, Joule heating by energization, laser heating, induction heating, or the like can be used.

供給機構113の内部において、ワイヤ供給源114は、図示しない駆動機構によってxyz方向へ移動可能とされており、溶接材料加熱機構115は、図示しない駆動機構によってθ方向に回動可能とされている。これによって、供給機構113では、溶接材料112の供給位置を所望の位置に調節できるようになっている。   Inside the supply mechanism 113, the wire supply source 114 is movable in the xyz direction by a drive mechanism (not shown), and the welding material heating mechanism 115 is rotatable in the θ direction by a drive mechanism (not shown). . As a result, the supply mechanism 113 can adjust the supply position of the welding material 112 to a desired position.

本実施形態では、形状計測機構110がレーザ変位計によって構成されており、計測媒体に、レーザ光を用いる。分岐レンズ108にて、溶接レーザ光109と分岐された形状計測レーザ光111は、形状計測機構110の内部を通って、溶接後の溶接材料116に照射される。そして、その反射光を形状計測機構110で検出することによって、溶接後の溶接材料116の高さを検知する。なお、形状計測機構110は、溶接後の溶接材料116の中央部分の1点の測定を行う構成としてもよく、図1中y方向(溶接ビードの幅方向)の複数点における計測を行う構成としてもよい。複数点における計測を行う構成とした場合、溶接材料がy方向において偏在したような場合、その偏在した状態を検出することができる。   In the present embodiment, the shape measuring mechanism 110 is configured by a laser displacement meter, and laser light is used as a measurement medium. The shape measuring laser beam 111 branched from the welding laser beam 109 by the branch lens 108 passes through the inside of the shape measuring mechanism 110 and is irradiated to the welding material 116 after welding. And the height of the welding material 116 after welding is detected by detecting the reflected light with the shape measuring mechanism 110. In addition, the shape measuring mechanism 110 may be configured to perform measurement at one point in the central portion of the welding material 116 after welding, or as a configuration to perform measurement at a plurality of points in the y direction (width direction of the weld bead) in FIG. Also good. When the measurement is performed at a plurality of points, when the welding material is unevenly distributed in the y direction, the unevenly distributed state can be detected.

形状計測機構110は、上記したレーザ変位計に限らず、溶接後の溶接材料(溶接ビード)116の形状を計測可能なものであれば、他のセンサーも用いることができる。図2に形状計測機構110として、接触式センサーを用いた場合の構成例を示す。この場合、接触子201が溶接後の溶接材料116に直接接触することで溶接後の溶接材料116の形状を計測する。例えば、接触子201の表面を接触点感知センサーとすることで溶接後の溶接材料116との接触点を求める。接触子201が溶接後の溶接材料116との接触で破損しないように、緩衝機構202を設ける。この緩衝機構202がθ方向に回転することで接触子201が破損するのを防ぐ。また、シリンダー203は接触センサー支持機構204のz方向の変位を吸収する。最終的に溶接後の溶接材料116の形状は、シリンダー203のz方向吸収量、接触センサー支持機構204の全長、緩衝機構202の吸収角θ、接触子201の接触点座標から算出される。   The shape measuring mechanism 110 is not limited to the laser displacement meter described above, and any other sensor can be used as long as it can measure the shape of the welded material (weld bead) 116 after welding. FIG. 2 shows a configuration example when a contact sensor is used as the shape measuring mechanism 110. In this case, the shape of the welding material 116 after welding is measured by the contact 201 directly contacting the welding material 116 after welding. For example, the contact point with the welding material 116 after welding is obtained by using the surface of the contactor 201 as a contact point detection sensor. A buffer mechanism 202 is provided so that the contact 201 is not damaged by contact with the welding material 116 after welding. The contactor 201 is prevented from being damaged by the buffer mechanism 202 rotating in the θ direction. The cylinder 203 absorbs the displacement in the z direction of the contact sensor support mechanism 204. Finally, the shape of the welding material 116 after welding is calculated from the z-direction absorption amount of the cylinder 203, the total length of the contact sensor support mechanism 204, the absorption angle θ of the buffer mechanism 202, and the contact point coordinates of the contactor 201.

形状計測機構110によって計測された溶接後の溶接材料116の形状が、予め定められた溶接後の溶接材料116の基準形状と、許容範囲を超えて相違する場合、制御部150は、溶接後の溶接材料116の形状が基準形状となるように、溶接レーザ光109の照射状態、溶接材料112の供給状態の少なくともいずれか一方を調整する。溶接レーザ光109の照射状態の調整は、レーザ光104の出力の変更や、分岐レンズ108から溶接箇所までの距離であるワークディスタンスなどを変更することによって行う。また、溶接材料112の供給状態の調整は、供給機構113による溶接材料112の供給量、加熱温度、供給角度、供給位置等を変更することによって行う。これによって、差しろうによって行う溶接においても、溶接状態を良好な状態に保つことができる。   When the shape of the welded material 116 after welding measured by the shape measuring mechanism 110 is different from a predetermined reference shape of the welded material 116 after welding beyond an allowable range, the control unit 150 may At least one of the irradiation state of the welding laser beam 109 and the supply state of the welding material 112 is adjusted so that the shape of the welding material 116 becomes the reference shape. The irradiation state of the welding laser beam 109 is adjusted by changing the output of the laser beam 104 or changing the work distance that is the distance from the branch lens 108 to the welding location. Further, the supply state of the welding material 112 is adjusted by changing the supply amount, the heating temperature, the supply angle, the supply position, and the like of the welding material 112 by the supply mechanism 113. As a result, the welding state can be kept in a good state even in welding performed by soldering.

本実施形態のレーザ溶接装置100は、前述したとおり、溶接箇所周辺の雰囲気を周囲から遮蔽する環境遮蔽機構118を有する。環境遮蔽機構118には、内部に酸化防止のための不活性ガス119等を供給するためのガス供給機構133が設けられており、環境遮蔽機構118の内部を不活性ガス119雰囲気とすることができる。環境遮蔽機構118の内部に導入された不活性ガス119は、環境遮蔽機構118と補修対象101との隙間120から外部へと放出され、環境遮蔽機構118内部に水や外気が浸入することを防止できるようになっている。   As described above, the laser welding apparatus 100 of the present embodiment includes the environment shielding mechanism 118 that shields the atmosphere around the welding location from the surroundings. The environmental shielding mechanism 118 is provided with a gas supply mechanism 133 for supplying an inert gas 119 and the like for preventing oxidation therein, and the atmosphere of the environmental shielding mechanism 118 is set to an inert gas 119 atmosphere. it can. The inert gas 119 introduced into the environment shielding mechanism 118 is released to the outside through the gap 120 between the environment shielding mechanism 118 and the object to be repaired 101 to prevent water and outside air from entering the environment shielding mechanism 118. It can be done.

レーザ光104は、図3(b)に示すように、エネルギー分布が均一なレーザ光(トップハット型のレーザ光)を用いることが望ましい。これによって溶接箇所のある一点にエネルギーが集中して過熱する、あるいは低エネルギー部位が生じて加熱が不十分になることを抑制することができる。さらに、予め溶接材料112を加熱することで、溶接レーザ光109によって加熱された溶接箇所に均一に溶接材料112が広がる効果が得られる。従って図3(a)に示すようなガウス分布レーザ光を用いる場合と比較すると、同じ発振出力でより幅の広い肉盛溶接を行うことができる。この場合、発振器103として、ダイレクトダイオードレーザを用いることができる   As the laser beam 104, as shown in FIG. 3B, it is desirable to use a laser beam (top hat type laser beam) having a uniform energy distribution. As a result, it is possible to prevent the energy from concentrating at a certain point of the welded portion and overheating, or the generation of a low energy portion and insufficient heating. Furthermore, by heating the welding material 112 in advance, the effect of spreading the welding material 112 uniformly over the welded portion heated by the welding laser beam 109 can be obtained. Therefore, as compared with the case of using a Gaussian laser beam as shown in FIG. 3A, it is possible to perform overlay welding with the same oscillation output and wider. In this case, a direct diode laser can be used as the oscillator 103.

検査機構117は、溶接後の溶接材料116にブローホールや融合不良などが発生した場合の異常検知(健全性検査)に用いる。本実施形態では、検査機構117のセンサーとして、渦電流探傷センサー123を用いた場合の例を示している。渦電流探傷センサー123によって検査行う場合、渦電流探傷センサー123を溶接後の溶接材料116に近接して配置する必要がある。このため、渦電流探傷センサー123を、可動アーム122などに把持させた状態で検査を行う。   The inspection mechanism 117 is used for abnormality detection (soundness inspection) when a blow hole or poor fusion occurs in the welded material 116 after welding. In the present embodiment, an example in which an eddy current flaw detection sensor 123 is used as a sensor of the inspection mechanism 117 is shown. When the inspection is performed by the eddy current flaw detection sensor 123, it is necessary to dispose the eddy current flaw detection sensor 123 close to the welding material 116 after welding. Therefore, the inspection is performed with the eddy current flaw detection sensor 123 held by the movable arm 122 or the like.

本実施形態において、渦電流探傷センサー123による検査を行う際、形状計測機構110によって計測された溶接後の溶接材料116の形状に基づいて、可動アーム122の駆動を制御することによって渦電流探傷センサー123の位置を調節する。これによって、渦電流探傷センサー123と溶接後の溶接材料116との接触による破損を防ぐとともに、検査面に対して渦電流探傷センサー123を略垂直に配置して、精度の良い検査を行うことができる。   In the present embodiment, when the inspection by the eddy current flaw detection sensor 123 is performed, the eddy current flaw detection sensor is controlled by controlling the driving of the movable arm 122 based on the shape of the welded material 116 after welding measured by the shape measurement mechanism 110. 123 is adjusted. As a result, damage due to contact between the eddy current flaw detection sensor 123 and the welded material 116 after welding can be prevented, and the eddy current flaw detection sensor 123 can be arranged substantially perpendicular to the inspection surface to perform high-precision inspection. it can.

図4のフロー図に、本実施形態におけるレーザ溶接工程を示す。図4に示すように、先ず溶接を施工し(工程601)、この後、形状計測機構110によって溶接後の溶接材料116の形状を測定する(工程602)。そして、この形状測定結果に基づいて検査機構117の位置を調整し(工程603)、溶接後の溶接材料116の健全性を検査する(工程604)。   The laser welding process in this embodiment is shown in the flowchart of FIG. As shown in FIG. 4, first, welding is performed (step 601), and then the shape of the welded material 116 after welding is measured by the shape measuring mechanism 110 (step 602). Then, the position of the inspection mechanism 117 is adjusted based on the shape measurement result (step 603), and the soundness of the welded material 116 after welding is inspected (step 604).

上記の健全性検査の結果、溶接後の溶接材料116が健全であれば、処理を終了する。一方、ブローホールや融合不良などの異常が見出され、溶接後の溶接材料116が健全でない場合は、溶接を再施行する(工程605,606)。そして、溶接を再施行した場合は、上記工程602からの工程を繰り返して行う。   If the welded material 116 after welding is sound as a result of the soundness inspection, the process is terminated. On the other hand, when abnormalities such as blow holes and poor fusion are found and the welding material 116 after welding is not healthy, the welding is performed again (steps 605 and 606). And when welding is performed again, the process from the said process 602 is repeated.

ここで、渦電流探傷センサー123の検査結果には、縦軸を検出電圧、横軸を時間とした図5(a)のグラフに示すように、溶接後の溶接材料116の表面形状からのノイズ401が発生する可能性が想定される。溶接後の溶接材料116の内部の異常による信号402を簡便に判断する方法として、信号に閾値403を設けて、閾値403を超えたものを異常と判断する方法が挙げられる。   Here, in the inspection result of the eddy current flaw detection sensor 123, the noise from the surface shape of the welded material 116 after welding is shown in the graph of FIG. 5A where the vertical axis represents the detection voltage and the horizontal axis represents time. It is assumed that 401 may occur. As a method for easily determining the signal 402 due to the abnormality inside the welding material 116 after welding, there is a method in which a threshold value 403 is provided in the signal and a signal exceeding the threshold value 403 is determined as abnormal.

しかしながら、図5(a)に示すように、溶接後の溶接材料116の表面形状によるノイズ401が閾値を超える場合は、異常の誤判定につながる。そこで、形状計測機構110により計測した溶接後の溶接材料116の形状から、渦電流探傷によって発生するノイズ401を予め予測して検出信号からノイズを除去する。これによって、縦軸を検出電圧、横軸を時間とした図5(b)のグラフに示すように異常による信号404を容易に判定可能な検出信号を得ることができる。   However, as shown in FIG. 5A, when the noise 401 due to the surface shape of the welding material 116 after welding exceeds a threshold value, it leads to erroneous determination of abnormality. Therefore, the noise 401 generated by eddy current flaw detection is predicted in advance from the shape of the welded material 116 after welding measured by the shape measuring mechanism 110, and the noise is removed from the detection signal. As a result, a detection signal that can easily determine the signal 404 due to abnormality can be obtained as shown in the graph of FIG. 5B where the vertical axis represents the detection voltage and the horizontal axis represents time.

さらに、通常正弦波で駆動する渦電流探傷センサー123を矩形の電流(例えば、矩形のパルス電流)で駆動することで、溶接後の溶接材料116の内部に過渡的に減衰する渦電流が発生する。この過渡的な渦電流の減衰速度は渦電流が発生する金属の厚みによって決まる。すなわち、縦軸を検出電圧、横軸を時間とした図6のグラフに示すように金属の厚みが増すにつれ減衰が遅くなる。したがって、縦軸を減衰係数、横軸を厚みとした図7のグラフに示すように、減衰曲線501の減衰係数と溶接後の溶接材料116の厚みとの関係を求めておき、渦電流探傷センサー123によって渦電流の減衰時間を検出することで、溶接後の溶接材料116の厚みを求めることが可能である。   Further, by driving the eddy current flaw detection sensor 123, which is normally driven by a sine wave, with a rectangular current (for example, a rectangular pulse current), an eddy current that is transiently attenuated is generated inside the welding material 116 after welding. . The decay rate of the transient eddy current is determined by the thickness of the metal where the eddy current is generated. That is, as shown in the graph of FIG. 6 where the vertical axis represents the detection voltage and the horizontal axis represents time, the attenuation decreases as the metal thickness increases. Therefore, as shown in the graph of FIG. 7 in which the vertical axis represents the attenuation coefficient and the horizontal axis represents the thickness, the relationship between the attenuation coefficient of the attenuation curve 501 and the thickness of the welded material 116 after welding is obtained, and the eddy current flaw detection sensor is obtained. By detecting the decay time of the eddy current by 123, the thickness of the welding material 116 after welding can be obtained.

また、通常駆動の正弦波の周波数と矩形波の基本波の奇数倍高調波成分の周波数を異なる値にすることで、信号検出時の混信を避けることが可能であるため、1つの渦電流探傷センサー123で、溶接後の溶接材料116内部の異常検知と、その厚みの計測が可能である。   In addition, since it is possible to avoid interference at the time of signal detection by making the frequency of the sine wave of the normal drive and the frequency of the odd-numbered harmonic component of the fundamental wave of the rectangular wave different, one eddy current flaw detection is possible. The sensor 123 can detect an abnormality inside the welding material 116 after welding and measure its thickness.

以上のとおり、本実施形態では、検査機構117を用いることで、溶接を実施した後、早い段階で溶接状態の不備を検出することができ、再溶接を行うことができるので、後戻り工程を大幅に削減することができる。また、形状計測機構110によって溶接後の溶接材料116の形状を測定し、検査機構117の位置を調整して検査を行うので、精度良く検査を実施することができる。   As described above, in this embodiment, by using the inspection mechanism 117, it is possible to detect a defect in the welding state at an early stage after performing welding, and re-welding can be performed. Can be reduced. Moreover, since the shape measuring mechanism 110 measures the shape of the welded material 116 after welding and adjusts the position of the inspection mechanism 117 to perform the inspection, the inspection can be performed with high accuracy.

溶接後の溶接材料116の内部に異常が検知されなかった場合、多層に溶接を行う場合は、次に2層目以降の溶接を行う。この場合、1層目の溶接後の溶接材料116aにおける形状計測結果と厚みの計測結果から、2層目以降における溶接材料112の供給量と供給位置を、例えば図8に示す2層目の溶接後の溶接材料116bとなるように調整することで、多層に溶接を行った後の形状を平坦化することができる。すなわち、1層目の溶接後の溶接材料116aの間に溶接材料112を供給し、かつ、溶接材料112の供給量を、2層目の溶接後の溶接材料116bの高さが1層目の溶接後の溶接材料116aの高さを超えないように調整する。   When no abnormality is detected in the welded material 116 after welding, when performing multi-layer welding, the second and subsequent layers are welded. In this case, the supply amount and supply position of the welding material 112 in the second and subsequent layers are determined from the shape measurement result and thickness measurement result in the welding material 116a after the first layer welding, for example, the second layer welding shown in FIG. By adjusting so that it becomes the later welding material 116b, the shape after welding in multiple layers can be flattened. That is, the welding material 112 is supplied between the welding materials 116a after the first layer welding, and the supply amount of the welding material 112 is set so that the height of the welding material 116b after the second layer welding is the first layer. It adjusts so that the height of the welding material 116a after welding may not be exceeded.

本実施形態のレーザ溶接装置100において、照射機構106、供給機構113、形状計測機構110、検査機構117、環境遮蔽機構118は図示しない走査機構に把持され、補修対象101の補修箇所周辺を走査する。従って図9に示すように、発振器103から離れた補修対象101に対しても遠隔で補修を行うことができる。   In the laser welding apparatus 100 of the present embodiment, the irradiation mechanism 106, the supply mechanism 113, the shape measuring mechanism 110, the inspection mechanism 117, and the environment shielding mechanism 118 are gripped by a scanning mechanism (not shown) and scan around the repaired portion of the repair target 101. . Therefore, as shown in FIG. 9, repair can be performed remotely on the repair target 101 that is remote from the oscillator 103.

以上のとおり、本実施形態によれば、欠陥補修等に要する時間を短縮することができ工期を短縮することができるとともに、溶接状態を良好な状態に保つことができる。   As described above, according to the present embodiment, the time required for defect repair and the like can be shortened, the work period can be shortened, and the welded state can be maintained in a good state.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100……レーザ溶接装置、101……補修対象、102……欠陥、103……レーザ発振器、104……レーザ光、105……レーザ光伝送機構、106……照射機構、107……集光レンズ、108……分岐レンズ、109……溶接レーザ光、110……形状計測機構、111……形状計測レーザ光、112……溶接材料(補修材)、113……供給機構、114……ワイヤ供給源、115……溶接材料加熱機構、116……溶接後の溶接材料(溶接ビード)、117……検査機構、118……環境遮蔽機構、119……不活性ガス、120……隙間、121……固定アーム、122……可動アーム、123……渦電流探傷センサー、130……照射ヘッド、131……筐体、133……ガス供給機構、150……制御部。   DESCRIPTION OF SYMBOLS 100 ... Laser welding apparatus, 101 ... Repair object, 102 ... Defect, 103 ... Laser oscillator, 104 ... Laser beam, 105 ... Laser beam transmission mechanism, 106 ... Irradiation mechanism, 107 ... Condensing lens , 108 …… branching lens, 109 …… welding laser beam, 110 …… shape measuring mechanism, 111 …… shape measuring laser beam, 112 …… welding material (repair material), 113 …… supply mechanism, 114 …… wire supply 115 ... Welding material heating mechanism, 116 ... Welding material after welding (weld bead), 117 ... Inspection mechanism, 118 ... Environment shielding mechanism, 119 ... Inert gas, 120 ... Gap, 121 ... ... fixed arm, 122 ... movable arm, 123 ... eddy current flaw sensor, 130 ... irradiation head, 131 ... housing, 133 ... gas supply mechanism, 150 ... control unit.

Claims (9)

レーザ光を発生させる発振器と、
前記発振器で発生したレーザ光を伝送する伝送機構と、
前記伝送機構を通じて伝送されたレーザ光を溶接箇所へ照射する照射機構と、
溶接材料を前記溶接箇所へ供給する供給機構と、
溶接後の溶接材料の形状を計測する形状計測機構と、
前記溶接後の溶接材料の健全性を検査するための検査機構と、
前記形状計測機構による計測結果に基づいて、前記検査機構の位置を制御する制御部と、
を具備したことを特徴とするレーザ溶接装置。
An oscillator that generates laser light;
A transmission mechanism for transmitting laser light generated by the oscillator;
An irradiation mechanism for irradiating a welding spot with laser light transmitted through the transmission mechanism;
A supply mechanism for supplying a welding material to the welding point;
A shape measuring mechanism for measuring the shape of the welding material after welding;
An inspection mechanism for inspecting the soundness of the welding material after the welding;
Based on the measurement result by the shape measurement mechanism, a control unit that controls the position of the inspection mechanism;
A laser welding apparatus comprising:
前記制御部は、前記形状計測機構による計測結果に基づいて、前記供給機構による前記溶接材料の供給状態を制御することを特徴とする請求項1記載のレーザ溶接装置。   The laser welding apparatus according to claim 1, wherein the control unit controls a supply state of the welding material by the supply mechanism based on a measurement result by the shape measurement mechanism. 前記制御部は、前記形状計測機構による計測結果に基づいて、前記レーザ光の照射状態を制御することを特徴とする請求項1又は2記載のレーザ溶接装置。   3. The laser welding apparatus according to claim 1, wherein the control unit controls an irradiation state of the laser light based on a measurement result by the shape measurement mechanism. 前記制御部は、前記形状計測機構による計測結果に基づいて、前記検査機構によって得られる検査信号から、前記溶接後の溶接材料の表面形状により発生するノイズ信号を除去することを特徴とする請求項1〜3いずれか1項記載のレーザ溶接装置。   The said control part removes the noise signal which generate | occur | produces with the surface shape of the welding material after the said welding from the inspection signal obtained by the said inspection mechanism based on the measurement result by the said shape measurement mechanism. The laser welding apparatus of any one of 1-3. 前記溶接材料が前記溶接箇所に供給される前に、前記溶接材料を予備加熱する加熱機構を具備したことを特徴とする請求項1〜4いずれか1項記載のレーザ溶接装置。   The laser welding apparatus according to any one of claims 1 to 4, further comprising a heating mechanism that preheats the welding material before the welding material is supplied to the welding location. 前記検査機構が、渦電流探傷センサーを具備したことを特徴とする請求項1〜5いずれか1項記載のレーザ溶接装置。   The laser welding apparatus according to claim 1, wherein the inspection mechanism includes an eddy current flaw detection sensor. 前記制御部は、前記渦電流探傷センサーに対して矩形電流を供給して、前記溶接後の溶接材料の内部に生じる渦電流の減衰速度を計測し、予め求めた前記溶接後の溶接材料の厚さと前記渦電流の減衰係数との関係から、前記溶接後の溶接材料の厚みを求めることを特徴とする請求項6記載のレーザ溶接装置。   The control unit supplies a rectangular current to the eddy current flaw detection sensor, measures the decay rate of eddy current generated in the weld material after welding, and determines the thickness of the weld material after welding obtained in advance. The laser welding apparatus according to claim 6, wherein the thickness of the welding material after the welding is obtained from a relationship between the eddy current and the attenuation coefficient of the eddy current. 前記制御部は、求められた前記溶接後の溶接材料の厚みから、多層に溶接した後の前記溶接後の溶接材料の形状を平坦化するように、2層目以降の前記溶接材料の供給量と供給位置を調整することを特徴とする請求項7記載のレーザ溶接装置。   The control unit supplies the welding material in the second and subsequent layers so as to flatten the shape of the welding material after welding after multilayer welding from the obtained thickness of the welding material after welding. The laser welding apparatus according to claim 7, wherein the supply position is adjusted. 溶接部にレーザ光を照射して加熱する工程と、
溶接材料供給機構により、加熱した前記溶接部に溶接材料を供給して前記溶接材料を溶融させて溶接する工程と、
形状測定機構により、溶接後の溶接材料の形状を計測する工程と、
前記形状測定機構による形状測定結果に基づいて、検査機構の位置を調整する工程と、
位置を調整した前記検査機構によって、前記溶接後の溶接材料の健全性を検査する工程と、
を具備したことを特徴とするレーザ溶接方法。
Irradiating a laser beam to the weld and heating it;
A step of supplying a welding material to the heated welded portion by a welding material supply mechanism to melt and weld the welding material;
A step of measuring the shape of the welded material after welding by the shape measuring mechanism;
Adjusting the position of the inspection mechanism based on the shape measurement result by the shape measurement mechanism;
A step of inspecting the soundness of the welded material after the welding by the inspection mechanism adjusted in position;
A laser welding method comprising:
JP2014188172A 2014-09-16 2014-09-16 Laser welding apparatus and laser welding method Active JP6385763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014188172A JP6385763B2 (en) 2014-09-16 2014-09-16 Laser welding apparatus and laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014188172A JP6385763B2 (en) 2014-09-16 2014-09-16 Laser welding apparatus and laser welding method

Publications (2)

Publication Number Publication Date
JP2016059930A true JP2016059930A (en) 2016-04-25
JP6385763B2 JP6385763B2 (en) 2018-09-05

Family

ID=55795540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014188172A Active JP6385763B2 (en) 2014-09-16 2014-09-16 Laser welding apparatus and laser welding method

Country Status (1)

Country Link
JP (1) JP6385763B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168642A (en) * 2019-04-02 2020-10-15 株式会社神戸製鋼所 Laminated molding manufacturing method and laminated molding
WO2021182635A1 (en) * 2020-03-12 2021-09-16 アイシン・エィ・ダブリュ株式会社 Method for manufacturing stator for dynamo-electric machine
JP7405416B2 (en) 2020-04-22 2023-12-26 株式会社FADrone Position and orientation measurement method and position and orientation measurement program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514559A (en) * 1996-07-12 2000-10-31 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Eddy current inspection technology
JP2011012985A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Pulse excitation type eddy current flaw detection method and pulse excitation type eddy current flaw detector using the same
JP2012040576A (en) * 2010-08-16 2012-03-01 Mitsubishi Heavy Ind Ltd Repair method for turbine rotor
JP2014111278A (en) * 2012-11-06 2014-06-19 Toshiba Corp Defect repair device and defect repair method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514559A (en) * 1996-07-12 2000-10-31 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Eddy current inspection technology
JP2011012985A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Pulse excitation type eddy current flaw detection method and pulse excitation type eddy current flaw detector using the same
JP2012040576A (en) * 2010-08-16 2012-03-01 Mitsubishi Heavy Ind Ltd Repair method for turbine rotor
JP2014111278A (en) * 2012-11-06 2014-06-19 Toshiba Corp Defect repair device and defect repair method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168642A (en) * 2019-04-02 2020-10-15 株式会社神戸製鋼所 Laminated molding manufacturing method and laminated molding
JP7203671B2 (en) 2019-04-02 2023-01-13 株式会社神戸製鋼所 LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
WO2021182635A1 (en) * 2020-03-12 2021-09-16 アイシン・エィ・ダブリュ株式会社 Method for manufacturing stator for dynamo-electric machine
JPWO2021182635A1 (en) * 2020-03-12 2021-09-16
JP7405416B2 (en) 2020-04-22 2023-12-26 株式会社FADrone Position and orientation measurement method and position and orientation measurement program

Also Published As

Publication number Publication date
JP6385763B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5743711B2 (en) Welding system and welding method
JP5054297B2 (en) System and method for monitoring laser shock processing
JP6011598B2 (en) Laser welding method
JP5947740B2 (en) Welded part inspection device and inspection method
JP2012137471A (en) Method and device for welding inspection
JP6385763B2 (en) Laser welding apparatus and laser welding method
US20160144452A1 (en) System and method for detecting a defect in a workpiece undergoing material processing by an energy point source
JP2006247681A (en) Monitoring device for laser beam machining
WO2021182032A1 (en) Defect detection method, defect detection device, and shaping device
EP2796858A1 (en) Optical non-destructive inspection apparatus and optical non-destructive inspection method
JP2008254006A (en) Laser beam machining apparatus and method
CN113302017A (en) Method for detecting welding defects in arc welding and arc welding system
CN107740096A (en) Casing laser repair system and restorative procedure
Nomura et al. In-situ detection of weld defect during the welding process by laser ultrasonic technique
TWI836145B (en) Method for detecting the operating condition of an optical element arranged along a propagation path of a laser beam of a machine for processing a material and a laser processing machine provided with system for carrying out said method
JP2020011265A (en) Weld repair device and weld repair method
JP2015136718A (en) Defect repair apparatus and defect repair method
JP7523088B2 (en) Laser Processing Equipment
JP2014144468A (en) Welding quality guaranteeing device and welding quality guaranteeing method
US20220258248A1 (en) Am apparatus
KR101451007B1 (en) Laser processing apparatus and laser processing method
CN104923912A (en) Laser welding inspection apparatus and laser welding inspection method
JP2010279994A (en) Method for detecting abnormality of laser beam welding system
JP6139292B2 (en) Defect repair device and defect repair method
JP2010223653A (en) Device and method for measuring internal state of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6385763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150