JP2010279994A - Method for detecting abnormality of laser beam welding system - Google Patents

Method for detecting abnormality of laser beam welding system Download PDF

Info

Publication number
JP2010279994A
JP2010279994A JP2009137437A JP2009137437A JP2010279994A JP 2010279994 A JP2010279994 A JP 2010279994A JP 2009137437 A JP2009137437 A JP 2009137437A JP 2009137437 A JP2009137437 A JP 2009137437A JP 2010279994 A JP2010279994 A JP 2010279994A
Authority
JP
Japan
Prior art keywords
light intensity
abnormality
intensity data
welding system
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009137437A
Other languages
Japanese (ja)
Other versions
JP5461070B2 (en
Inventor
Naoki Kawada
直樹 河田
Hidemitsu Morita
英充 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Car Corp
Original Assignee
Tokyu Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Car Corp filed Critical Tokyu Car Corp
Priority to JP2009137437A priority Critical patent/JP5461070B2/en
Publication of JP2010279994A publication Critical patent/JP2010279994A/en
Application granted granted Critical
Publication of JP5461070B2 publication Critical patent/JP5461070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately detect the abnormality of a laser beam welding system when forming a weld zone. <P>SOLUTION: A method for detecting the abnormality of a laser beam welding system includes an abnormality detecting step for detecting an abnormality of the component during welding in the laser beam welding system in which welding conditions are beforehand optimized before forming the weld zone on a workpiece. In the abnormality detecting step, first, when forming the reference weld zone as a normal weld zone by irradiating a reference workpiece with a laser beam in a step before welding, a reference light intensity data relating to the light intensity of the reference weld zone is obtained (S11), a moving average is calculated by applying a moving average processing to the reference light intensity data (S12) and the average of the moving average is calculated as the reference value (S13). Next, in a step during welding, the light intensity data relating to the light intensity of the weld zone when forming the weld zone is obtained and the abnormality of the component during welding is detected on the basis of the result of setting a sample line to the reference value in the light intensity data and the analysis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レーザ溶接システムの異常検出方法に関し、特に、レーザ溶接システムにおいて溶接部を形成する際に作動する要素に関する異常を検出するための異常検出方法に関する。   The present invention relates to an abnormality detection method for a laser welding system, and more particularly to an abnormality detection method for detecting an abnormality relating to an element that operates when forming a welded part in a laser welding system.

従来のレーザ溶接システムの異常検出方法としては、被加工物にレーザビームを照射し溶接部を形成する際、その溶接部の光強度情報を取得し、取得した光強度情報に基づいて溶接の異常を検出するものが知られている(例えば、特許文献1参照)。   As a conventional method for detecting an abnormality in a laser welding system, when forming a welded part by irradiating a workpiece with a laser beam, the light intensity information of the welded part is obtained, and the welding abnormality is based on the obtained light intensity information. Is known (for example, see Patent Document 1).

特開2007−253220号公報JP 2007-253220 A

ところで、一般的に、レーザ溶接システムでは、溶接部を形成する際(つまり、溶接中)に異常が特に生じ易い。そのため、上述したようなレーザ溶接システムの異常検出方法では、溶接中の異常を精度よく検出できることが特に要求される。さらに、近年のレーザ溶接システムの異常検出方法では、レーザ溶接システムの異常を容易に検出できることが望まれる。   Incidentally, in general, in a laser welding system, an abnormality is particularly likely to occur when forming a welded portion (that is, during welding). Therefore, the abnormality detection method for the laser welding system as described above is particularly required to be able to accurately detect abnormality during welding. Furthermore, it is desired that the abnormality detection method of the laser welding system in recent years can easily detect the abnormality of the laser welding system.

そこで、本発明は、溶接部を形成する際のレーザ溶接システムの異常を、容易に且つ精度よく検出することができるレーザ溶接システムの異常検出方法を提供することを課題とする。   Then, this invention makes it a subject to provide the abnormality detection method of the laser welding system which can detect the abnormality of the laser welding system at the time of forming a welding part easily and accurately.

上記課題を解決するため、本発明者らは鋭意検討を重ねた結果、レーザ溶接システムの溶接条件を最適化した場合、溶接中に検出される異常は、通常、溶接中に作動する要素に関する異常(例えば、ガス吹込み角異常、ガス流量異常、又はガス成分異常等)に限られるという知見を得た。そして、このように異常を限定できる場合、溶接部の光強度データに基づきレーザ溶接システムの異常と正常とを比較的容易に区別できることを見出した。そこで、本発明者らは鋭意検討をさらに重ね、光強度データに標本線を適宜設定すると、溶接部を形成する際のレーザ溶接システムの異常を容易に且つ精度よく検出できるという知見を得、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, when the welding conditions of the laser welding system are optimized, the abnormality detected during welding is usually an abnormality related to an element that operates during welding. The knowledge that it is limited to (for example, abnormal gas injection angle, abnormal gas flow rate, abnormal gas component, etc.) was obtained. And when abnormality could be limited in this way, it discovered that abnormality and normal of a laser welding system were distinguishable comparatively easily based on the light intensity data of a welding part. Therefore, the present inventors have made further studies and obtained the knowledge that if the sample line is appropriately set in the light intensity data, it is possible to easily and accurately detect the abnormality of the laser welding system when forming the welded portion. The invention has been completed.

すなわち、本発明に係るレーザ溶接システムの異常検出方法は、レーザビームの照射で被加工物に溶接部を形成する前に溶接条件が予め最適化されたレーザ溶接システムにおいて溶接部を形成する際に作動する要素に関する異常を検出するための異常検出工程を備え、異常検出工程は、溶接部を形成する前に、異常を検出するための基準値を求める第1工程と、溶接部を形成する際に該溶接部の光強度に関する光強度データを取得し、光強度データにおいて基準値に標本線を設定して解析した結果に基づいて、異常を検出する第2工程と、を含み、第1工程では、基準用被加工物にレーザビームを照射し正常な溶接部としての基準用溶接部を形成する際、基準用溶接部の光強度に関する基準用光強度データを取得し、基準用光強度データに移動平均処理を施して移動平均値を算出し、移動平均値の平均値を基準値として算出することを特徴とする。   That is, the abnormality detection method of the laser welding system according to the present invention is performed when forming a welded part in a laser welding system in which welding conditions are optimized in advance before forming a welded part on a workpiece by laser beam irradiation. An abnormality detection step for detecting an abnormality relating to an operating element is provided, and the abnormality detection step is a first step for obtaining a reference value for detecting an abnormality before forming a welded portion, and when forming a welded portion. A second step of acquiring light intensity data relating to the light intensity of the welded portion, and detecting an abnormality based on a result obtained by analyzing the light intensity data by setting a sample line as a reference value. Then, when the reference workpiece is irradiated with a laser beam to form a reference weld as a normal weld, reference light intensity data relating to the light intensity of the reference weld is obtained, and the reference light intensity data is obtained. Moved to Calculating a moving average value by performing averaging processing, and calculates the average value of the moving average value as a reference value.

このレーザ溶接システムの異常検出方法では、溶接条件が予め最適化されたレーザ溶接システムの異常を検出することから、溶接中に検出される異常は、溶接部を形成する際に作動する要素に関する異常(以下、「溶接中要素異常」ともいう)に限定される。よって、正常なデータである基準用光強度データの移動平均値をさらに平均化して基準値を求め、光強度データにおいて基準値に標本線を設定し解析することで、正常時の光強度データと溶接中要素異常時の光強度データとを容易に且つ精度よく区別することができる。従って、かかる解析結果に基づくことで、溶接部を形成する際のレーザ溶接システムの異常を容易に且つ精度よく検出することが可能となる。   In this laser welding system abnormality detection method, an abnormality of the laser welding system in which the welding conditions are optimized in advance is detected. Therefore, the abnormality detected during welding is an abnormality relating to an element that operates when forming a welded portion. (Hereinafter, also referred to as “element abnormality during welding”). Therefore, the moving average value of the reference light intensity data, which is normal data, is further averaged to obtain a reference value, and the sample line is set to the reference value in the light intensity data and analyzed, so that the normal light intensity data and It is possible to easily and accurately distinguish the light intensity data at the time of element abnormality during welding. Therefore, based on the analysis result, it is possible to easily and accurately detect the abnormality of the laser welding system when forming the welded portion.

また、第2工程では、光強度データと標本線との交差数が、予め設定された閾値よりも小さい場合に、異常を検出することが好ましい。この場合、正常時の光強度データと溶接中要素異常時の光強度データとを好適に区別することができる。よって、溶接部を形成する際のレーザ溶接システムの異常を容易に且つ精度よく検出するという上記作用効果を、好適に発揮させることが可能となる。   In the second step, it is preferable to detect an abnormality when the number of intersections between the light intensity data and the sample line is smaller than a preset threshold value. In this case, the light intensity data at the normal time and the light intensity data at the time of abnormality in the element being welded can be suitably distinguished. Therefore, it is possible to preferably exhibit the above-described effect of easily and accurately detecting an abnormality of the laser welding system when forming the welded portion.

このとき、閾値は、基準用光強度データと標本線との交差数の80%の値であることが好ましい。これにより、正常時の光強度データと溶接中要素異常時の光強度データとを、光強度データのばらつき(誤差)を考慮して区別することができる。   At this time, the threshold value is preferably 80% of the number of intersections between the reference light intensity data and the sample line. Thereby, the light intensity data at the normal time and the light intensity data at the abnormal state of the welding element can be distinguished in consideration of the variation (error) of the light intensity data.

また、第2工程では、標本線を超えた光強度データのデータ数が、予め設定された下限閾値よりも小さい又は予め設定された上限閾値よりも大きい場合に、異常を検出することが好ましい。この場合においても、正常時の光強度データと溶接中要素異常時の光強度データとを好適に区別することができ、よって、上記作用効果を好適に発揮させることが可能となる。   In the second step, it is preferable to detect an abnormality when the number of light intensity data exceeding the sample line is smaller than a preset lower threshold or larger than a preset upper threshold. Even in this case, the light intensity data at the normal time and the light intensity data at the time of abnormality in the element being welded can be suitably distinguished, and thus the above-described effects can be preferably exhibited.

このとき、下限閾値は、標本線を超えた基準用光強度データのデータ数の80%の値であり、上限閾値は、標本線を超えた基準用光強度データのデータ数の120%の値であることが好ましい。これにより、正常時の光強度データと溶接中要素異常時の光強度データとを、光強度データのばらつきを考慮して区別することができる。   At this time, the lower limit threshold is a value of 80% of the number of data of the reference light intensity data exceeding the sample line, and the upper limit threshold is a value of 120% of the number of the data of the reference light intensity data exceeding the sample line. It is preferable that Thereby, the light intensity data at the normal time and the light intensity data at the time of abnormality of the element being welded can be distinguished in consideration of the variation of the light intensity data.

また、溶接部を形成する際に作動する要素は、ガス吹込み角異常、ガス流量異常、及びガス成分異常の少なくとも1つを含む場合がある。   In addition, the element that operates when forming the welded portion may include at least one of an abnormal gas injection angle, an abnormal gas flow rate, and an abnormal gas component.

本発明によれば、溶接部を形成する際のレーザ溶接システムの異常を、容易に且つ精度よく検出することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to detect the abnormality of the laser welding system at the time of forming a welding part easily and accurately.

本発明の一実施形態に係る異常検出方法を実施するレーザ溶接システムの構成を示す概略図である。It is the schematic which shows the structure of the laser welding system which implements the abnormality detection method which concerns on one Embodiment of this invention. 図1のレーザ溶接システムによる処理工程を示すフローチャートである。It is a flowchart which shows the process process by the laser welding system of FIG. 図2の溶接前工程において溶接中要素異常を検出するための基準値及び閾値を求める工程を示すフローチャートである。It is a flowchart which shows the process of calculating | requiring the reference value and threshold value for detecting element abnormality during welding in the pre-welding process of FIG. 図2の溶接中工程において溶接中要素異常を検出する工程を示すフローチャートである。It is a flowchart which shows the process of detecting element abnormality during welding in the process during welding of FIG. 基準用光強度データの一例を示すグラフである。6 is a graph showing an example of reference light intensity data. 光強度データの一例を示すグラフである。It is a graph which shows an example of light intensity data. 微分特性値の一例を示すグラフである。It is a graph which shows an example of a differential characteristic value.

以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当要素には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.

図1は、本発明の一実施形態に係る異常検出方法を実施するレーザ溶接システムの構成を示す概略図である。図1に示すように、レーザ溶接システム1は、ワーク(被加工物)10A,10Bの略中央部分に直線状の溶接部Wを形成し、ワーク10A,10Bを重ね溶接する。ワーク10A,10Bとしては、ステンレス等の金属で形成され鉄道車両構体に用いられる板状の外板パネル及び骨部材が用いられている。このレーザ溶接システム1は、レーザ溶接装置2と、異常検出装置3とを備えている。   FIG. 1 is a schematic diagram showing a configuration of a laser welding system that performs an abnormality detection method according to an embodiment of the present invention. As shown in FIG. 1, the laser welding system 1 forms a linear welded portion W at a substantially central portion of workpieces (workpieces) 10A and 10B, and lap welds the workpieces 10A and 10B. As the workpieces 10A and 10B, plate-like outer plate panels and bone members that are formed of a metal such as stainless steel and are used for a railway vehicle structure are used. The laser welding system 1 includes a laser welding device 2 and an abnormality detection device 3.

レーザ溶接装置2は、レーザビームを照射して溶接部Wを形成するものであり、送り装置21と、ワーク固定装置22と、レーザ照射装置23と、ガス供給装置24とを備えている。これらの各装置21〜24は、上位の制御装置(不図示)に接続され、この制御装置から出力される動作指示情報に従って、各動作を自動で実行するようになっている。   The laser welding apparatus 2 forms a welded portion W by irradiating a laser beam, and includes a feeding device 21, a workpiece fixing device 22, a laser irradiation device 23, and a gas supply device 24. Each of these devices 21 to 24 is connected to a host control device (not shown), and automatically executes each operation in accordance with operation instruction information output from this control device.

送り装置21は、ワーク10A,10Bへのレーザビームの照射位置を走査する。具体的には、送り装置21は、可動ステージ25に載置されたワーク10A,10Bを、レーザ照射装置23によるレーザビームに対し溶接予定領域Rに沿って相対的に移動させる。   The feeding device 21 scans the irradiation position of the laser beam on the workpieces 10A and 10B. Specifically, the feeding device 21 moves the workpieces 10 </ b> A and 10 </ b> B placed on the movable stage 25 relative to the laser beam by the laser irradiation device 23 along the planned welding region R.

ワーク固定装置22は、ワーク10A,10Bを可動ステージ25に固定する。このワーク固定装置22では、長尺の押さえ板26aによって、溶接予定領域Rを挟んだワーク10A,10Bの両端部分が可動ステージ25に押し付けられる。   The workpiece fixing device 22 fixes the workpieces 10A and 10B to the movable stage 25. In the workpiece fixing device 22, both end portions of the workpieces 10 </ b> A and 10 </ b> B sandwiching the planned welding region R are pressed against the movable stage 25 by a long pressing plate 26 a.

レーザ照射装置23は、ワーク10A,10Bの溶接予定領域Rに向けてレーザビームを照射する。具体的には、レーザ照射装置23は、ワーク10A,10Bの上方のレーザヘッド27における先端から、例えばYAGレーザやCOレーザ等のレーザビームを所定時間出射する。なお、レーザ照射装置23は、内部に出力切替機構(不図示)を備えており、レーザビームを連続的に照射する場合と、レーザビームをパルス状に照射する場合とで切り替え可能とされている。 The laser irradiation device 23 irradiates a laser beam toward the planned welding region R of the workpieces 10A and 10B. Specifically, the laser irradiation device 23 emits a laser beam such as a YAG laser or a CO 2 laser for a predetermined time from the tip of the laser head 27 above the workpieces 10A and 10B. The laser irradiation device 23 includes an output switching mechanism (not shown) inside, and can be switched between continuous irradiation with the laser beam and irradiation with the laser beam in pulses. .

ガス供給装置24は、ワーク10A,10Bの溶接予定領域Rに対してアシストガス(アルゴンガス等)を供給する。ここでのガス供給装置24では、供給ノズル28がワーク10A,10Bの厚さ方向に対し約30度傾斜するように配置されている。このガス供給装置24は、所定の供給量でワーク10A,10Bのレーザビーム照射位置(以下、「加工点」という)にアシストガスを供給する。   The gas supply device 24 supplies assist gas (argon gas or the like) to the planned welding region R of the workpieces 10A and 10B. In the gas supply device 24 here, the supply nozzle 28 is disposed so as to be inclined by about 30 degrees with respect to the thickness direction of the workpieces 10A and 10B. The gas supply device 24 supplies assist gas to laser beam irradiation positions (hereinafter referred to as “processing points”) of the workpieces 10A and 10B with a predetermined supply amount.

異常検出装置3は、レーザ溶接システム1において溶接部Wを形成する際に作動する要素に関する異常(以下、「溶接中要素異常」ともいう)を検出するためのものである。この異常検出装置3は、物理的には、CPU、メモリ、通信インタフェイス、ハードディスクといった格納部、ディスプレイといった表示部等を備えたコンピュータシステムである。   The abnormality detection device 3 is for detecting an abnormality related to an element that operates when forming the welded portion W in the laser welding system 1 (hereinafter, also referred to as “element abnormality during welding”). The abnormality detection device 3 is physically a computer system including a CPU, a memory, a communication interface, a storage unit such as a hard disk, a display unit such as a display, and the like.

この異常検出装置3には、フィルタ5を介して光強度検出センサ4が接続されている。光強度検出センサ4は、加工点の光強度に関する光強度データを取得するためのフォトセンサであり、レーザビームの照射位置の近傍に配置されている。フィルタ5は、所定波長を選択的に通過させる光学フィルタが用いられている。これにより、異常検出装置3には、光強度データが光強度検出センサ4からフィルタ5を介して入力される。   A light intensity detection sensor 4 is connected to the abnormality detection device 3 via a filter 5. The light intensity detection sensor 4 is a photosensor for acquiring light intensity data relating to the light intensity at the processing point, and is disposed in the vicinity of the irradiation position of the laser beam. The filter 5 is an optical filter that selectively passes a predetermined wavelength. As a result, the light intensity data is input from the light intensity detection sensor 4 to the abnormality detection device 3 via the filter 5.

また、異常検出装置3は、機能的な構成要素として、異常検出部31と、格納部32とを有している。異常検出部31は、入力された光強度データに基づいて、溶接中要素異常を検出する(詳しくは、後述)。格納部32は、異常検出部31から出力される検出結果を受け取り格納する。また、この格納部32は、溶接中要素異常を検出するために光強度データに設定される標本線の値となる基準値を格納する。なお、ここでの「標本線」とは、データ波形上に適当に設定された横線をいう。   In addition, the abnormality detection device 3 includes an abnormality detection unit 31 and a storage unit 32 as functional components. The abnormality detection unit 31 detects an element abnormality during welding based on the input light intensity data (details will be described later). The storage unit 32 receives and stores the detection result output from the abnormality detection unit 31. In addition, the storage unit 32 stores a reference value that is a sample line value set in the light intensity data in order to detect an element abnormality during welding. The “sample line” here means a horizontal line appropriately set on the data waveform.

次に、上述したレーザ溶接システム1の処理工程について、図2〜4に示すフローチャートを参照しつつ説明する。   Next, the processing steps of the laser welding system 1 described above will be described with reference to the flowcharts shown in FIGS.

レーザ溶接システム1では、まず、溶接前工程として、ワーク10A,10Bを可動ステージ25に載置し、上方から加圧治具26を下降させて基準用ワーク10A,10Bを可動ステージ25に固定する。そして、レーザ溶接システム1において溶接条件を最適化すると共に、動作確認を行う(S1)。ここでの溶接条件の最適化では、送り装置21、ワーク固定装置22、レーザ照射装置23、ガス供給装置24、及びこれら各装置21〜24に電力を供給する電源等についてプロセス管理を行うことで検出した異常を、正常化して最適化している。   In the laser welding system 1, as a pre-welding process, the workpieces 10 </ b> A and 10 </ b> B are first placed on the movable stage 25, and the pressing jig 26 is lowered from above to fix the reference workpieces 10 </ b> A and 10 </ b> B to the movable stage 25. . Then, the laser welding system 1 optimizes the welding conditions and confirms the operation (S1). In the optimization of the welding conditions here, process management is performed for the feeding device 21, the workpiece fixing device 22, the laser irradiation device 23, the gas supply device 24, and the power source that supplies power to these devices 21 to 24. Detected abnormalities are normalized and optimized.

続いて、溶接中工程として、レーザヘッド27からレーザビームを照射すると共に、可動ステージ25を移動させてワーク10A,10Bを矢印A方向(図1参照)に走査する。これに併せて、ガス供給装置24によって、15L/minの流量でアシストガスを供給する。これにより、ワーク10A,10Bの溶接予定領域Rに沿って、溶接部Wを形成する(S2)。最後に、溶接後工程として、溶接部Wの良否を判定し、ワーク固定装置22を解除し、互いに溶接されたワーク10A,10Bを搬出する(S3)。   Subsequently, as a welding process, a laser beam is irradiated from the laser head 27 and the movable stage 25 is moved to scan the workpieces 10A and 10B in the direction of arrow A (see FIG. 1). At the same time, the assist gas is supplied by the gas supply device 24 at a flow rate of 15 L / min. Thereby, the welding part W is formed along the welding planned area | region R of workpiece | work 10A, 10B (S2). Finally, as a post-welding process, the quality of the welded portion W is determined, the workpiece fixing device 22 is released, and the workpieces 10A and 10B welded to each other are carried out (S3).

ここで、本実施形態にあっては、溶接中要素異常を検出するための異常検出工程を備えている。ここでは、溶接中要素異常として、ガス供給装置24によって供給されるアシストガスに関する異常、すなわち、ガス吹込み角異常(ガスノズルの設置姿勢異常)又はガス流量異常を検出している。以下、詳細に説明する。   Here, in this embodiment, the abnormality detection process for detecting element abnormality during welding is provided. Here, as an element abnormality during welding, an abnormality related to the assist gas supplied by the gas supply device 24, that is, a gas injection angle abnormality (gas nozzle installation attitude abnormality) or a gas flow rate abnormality is detected. Details will be described below.

まず、溶接前工程においては、溶接中要素異常を検出するための基準値及び閾値を求める。具体的には、基準用ワーク10A,10Bに対し、レーザヘッド27からレーザビームを照射すると共に、可動ステージ25を移動させてワーク10A,10Bを走査する。併せて、ガス供給装置24によってアシストガスを供給する。これにより、基準用ワーク10A,10Bに、正常な溶接部としての基準用溶接部Wを形成する。   First, in the pre-welding process, a reference value and a threshold value for detecting an element abnormality during welding are obtained. Specifically, the reference workpieces 10A and 10B are irradiated with a laser beam from the laser head 27, and the movable stage 25 is moved to scan the workpieces 10A and 10B. In addition, the assist gas is supplied by the gas supply device 24. As a result, the reference welded portion W as a normal welded portion is formed on the reference workpieces 10A and 10B.

この基準用溶接部Wの形成の際、光強度検出センサ4によって、加工点の光強度に関する基準用光強度データを取得する(S11)。図5に示すように、ここでの基準用光強度データD0は、横軸を時間、縦軸を光強度とする時系列波形で表すことができる。なお、横軸の時間は、光強度検出センサ4の時間分解能に基づくと、データ番号として表すことも勿論可能である。   When forming the reference weld W, the light intensity detection sensor 4 acquires reference light intensity data relating to the light intensity at the processing point (S11). As shown in FIG. 5, the reference light intensity data D0 can be represented by a time-series waveform with the horizontal axis representing time and the vertical axis representing light intensity. Of course, the time on the horizontal axis can be expressed as a data number based on the time resolution of the light intensity detection sensor 4.

続いて、異常検出部31において、基準用光強度データD0に対し、例えば200データ数の時間間隔で移動平均処理を施し、移動平均値MAを算出する(S12)。そして、移動平均値MAを平均化し、この平均値を基準値Sとして算出する(S13)。   Subsequently, the abnormality detecting unit 31 performs a moving average process on the reference light intensity data D0 at a time interval of, for example, 200 data, and calculates a moving average value MA (S12). Then, the moving average value MA is averaged, and this average value is calculated as the reference value S (S13).

続いて、基準用光強度データD0の基準値Sに標本線Lを設定する。所定時間(所定データ数間)における光強度データDと標本線Lとの交差数である時系列波形としての微分特性値(変化量)を算出する(S14)。この微分特性値の最小値の80%の値を閾値α(図7参照)として算出する(S15)。最後に、これら基準値S及び閾値αを、格納部32に格納する。   Subsequently, the sample line L is set to the reference value S of the reference light intensity data D0. A differential characteristic value (amount of change) as a time-series waveform that is the number of intersections between the light intensity data D and the sample line L in a predetermined time (between a predetermined number of data) is calculated (S14). A value of 80% of the minimum value of the differential characteristic value is calculated as a threshold value α (see FIG. 7) (S15). Finally, the reference value S and the threshold value α are stored in the storage unit 32.

次に、溶接中工程においては、溶接部Wを形成する際、光強度検出センサ4によって溶接部Wの光強度に関する光強度データを取得する(S21)。ここでの光強度データD(図6参照)は、上記の基準用光強度データと同様に構成されており、横軸を時間、縦軸を光強度とする時系列波形で表すことができる。   Next, in the process during welding, when forming the welded portion W, the light intensity detection sensor 4 acquires light intensity data relating to the light intensity of the welded portion W (S21). Here, the light intensity data D (see FIG. 6) is configured in the same manner as the above-described reference light intensity data, and can be represented by a time-series waveform with the horizontal axis representing time and the vertical axis representing light intensity.

続いて、異常検出部31において、光強度データDの基準値Sに標本線Lを設定し解析した結果に基づいて、溶接中要素異常の有無を検出する。すなわち、所定時間(所定データ数間)における光強度データDと標本線Lとの交差数である時系列波形としての微分特性値を算出する(S22)。この微分特性値が閾値αよりも小さい場合、溶接中要素異常を検出し、「溶接中要素異常あり」とする検出結果を格納部32に格納する(S23→S24)。一方、この微分特性値が閾値α以上の場合、「溶接中要素異常なし」とする検出結果を格納部32に格納する(S23→S25)   Subsequently, the abnormality detection unit 31 detects the presence / absence of an element abnormality during welding based on the result of setting and analyzing the sample line L to the reference value S of the light intensity data D. That is, a differential characteristic value as a time series waveform that is the number of intersections between the light intensity data D and the sample line L in a predetermined time (between a predetermined number of data) is calculated (S22). If this differential characteristic value is smaller than the threshold value α, an element abnormality during welding is detected, and a detection result indicating “element abnormality during welding” is stored in the storage unit 32 (S23 → S24). On the other hand, when the differential characteristic value is equal to or greater than the threshold value α, the detection result “no welding element abnormality” is stored in the storage unit 32 (S23 → S25).

以上、本実施形態では、上述したように、溶接条件が予め最適化されたレーザ溶接システム1の異常を検出している。これは、レーザ溶接システム1の溶接条件を最適化した場合、溶接中に発生する異常が、ガス吹込み角異常又はガス流量異常等の溶接中要素異常に限定できるためである。そして、この場合、正常時の光強度データと、溶接中要素異常時の光強度データと、が比較的容易に区別されることが見出される。   As described above, in the present embodiment, as described above, the abnormality of the laser welding system 1 in which the welding conditions are optimized in advance is detected. This is because, when the welding conditions of the laser welding system 1 are optimized, an abnormality that occurs during welding can be limited to an element abnormality during welding such as a gas injection angle abnormality or a gas flow rate abnormality. In this case, it is found that the light intensity data at the normal time and the light intensity data at the time of abnormality of the element being welded can be distinguished relatively easily.

そこで、本実施形態では、上述したように、正常なデータである基準用光強度データD0の移動平均値MAをさらに平均化して基準値Sを求め、光強度データDにおいて基準値Sに標本線Lを設定して解析し、溶接中要素異常の有無を検出している。すなわち、光強度データDに標本線Lを好適に設定して、正常時の光強度データDと溶接中要素異常時の光強度データDとを識別しているのである。よって、本実施形態によれば、レーザ溶接システム1における溶接中の異常の有無を、容易に且つ精度よく検出することが可能となる。   Therefore, in this embodiment, as described above, the moving average value MA of the reference light intensity data D0, which is normal data, is further averaged to obtain the reference value S, and the sample line is added to the reference value S in the light intensity data D. L is set and analyzed to detect the presence or absence of element abnormality during welding. That is, the sample line L is suitably set in the light intensity data D, and the light intensity data D at the normal time and the light intensity data D at the time of abnormality of the element being welded are identified. Therefore, according to the present embodiment, it is possible to easily and accurately detect the presence or absence of abnormality during welding in the laser welding system 1.

また、本実施形態では、上述したように、微分特性値が予め設定された閾値αよりも小さい場合に、溶接中要素異常を検出している。このように微分特性値を用いると、正常時の微分特性値が溶接中要素異常時の微分特性値よりも必ず大きくなるという特性を有することから、正常時の光強度データDと溶接中要素異常時の光強度データDとを1つの閾値αで容易に区別できる。よって、レーザ溶接システム1における溶接中の異常の有無を容易に且つ精度よく検出するという上記作用効果を好適に発揮させることが可能となる。   In the present embodiment, as described above, an element abnormality during welding is detected when the differential characteristic value is smaller than a preset threshold value α. When the differential characteristic value is used in this way, the differential characteristic value at the normal time is necessarily larger than the differential characteristic value at the time of the abnormal element during welding. The light intensity data D at the time can be easily distinguished by one threshold value α. Therefore, it is possible to preferably exhibit the above-described effect of easily and accurately detecting the presence or absence of abnormality during welding in the laser welding system 1.

図6は、光強度データの一例を示すグラフである。図6において、実線波形は正常なときの光強度データD1を示し、波線波形はガス吹込み角異常のときの光強度データD2を示し、一点鎖線波形はガス流量異常のときの光強度データD3を示している。図6に示す例から、3つの波形を分離する可能性を確認でき、正常時の光強度データD1と溶接中要素異常時の光強度データD2,D3とを比較的容易に区別できることが確認できる。   FIG. 6 is a graph showing an example of light intensity data. In FIG. 6, the solid line waveform indicates the light intensity data D1 when normal, the wavy line waveform indicates the light intensity data D2 when the gas blowing angle is abnormal, and the alternate long and short dash line waveform indicates the light intensity data D3 when the gas flow rate is abnormal. Is shown. From the example shown in FIG. 6, the possibility of separating the three waveforms can be confirmed, and it can be confirmed that the light intensity data D1 at the normal time and the light intensity data D2 and D3 at the time of abnormality in the welding element can be distinguished relatively easily. .

図7は、微分特性値の一例を示すグラフである。図7において、実線波形は正常なときの微分特性値B1を示し、波線波形はガス吹込み角異常のときの微分特性値B2を示し、一点鎖線波形はガス流量異常のときの微分特性値B3を示している。図7に示すように、正常時の微分特性値B1と溶接中要素異常時の微分特性値B2,B3との相違は、顕著であることがわかる。また、正常時の微分特性値B1は、最も大きい値となることがわかる。よって、微分特性値B1〜B3及び閾値αに基づくと、溶接中要素異常の有無を容易に且つ精度よく検出できのがわかる。   FIG. 7 is a graph showing an example of the differential characteristic value. In FIG. 7, the solid line waveform indicates the differential characteristic value B1 when normal, the wavy line indicates the differential characteristic value B2 when the gas injection angle is abnormal, and the one-dot chain line waveform indicates the differential characteristic value B3 when the gas flow rate is abnormal. Is shown. As shown in FIG. 7, it can be seen that the difference between the normal differential characteristic value B1 and the differential characteristic values B2 and B3 when the welding element is abnormal is significant. It can also be seen that the normal differential characteristic value B1 is the largest value. Therefore, based on the differential characteristic values B1 to B3 and the threshold value α, it can be seen that the presence or absence of element abnormality during welding can be detected easily and accurately.

ところで、正常な光強度データD1のばらつきは、システム全体の構成・特性や経験上から、大きくても±20%であることがわかっている(図7参照)。従って、本実施形態の閾値αにあっては、上述したように、基準用光強度データD0と標本線Lとの交差数の80%の値として設定されている。これにより、正常な光強度データD1と異常な光強度データD2,D3とを、光強度データDのばらつき(誤差)を考慮して好適に区別することができ、溶接中要素異常を一層精度よく検出することが可能となる。   By the way, it is known that the variation of the normal light intensity data D1 is ± 20% at most from the configuration / characteristics and experience of the entire system (see FIG. 7). Accordingly, the threshold value α of the present embodiment is set as a value that is 80% of the number of intersections between the reference light intensity data D0 and the sample line L as described above. Thereby, normal light intensity data D1 and abnormal light intensity data D2 and D3 can be suitably distinguished in consideration of variations (errors) in light intensity data D, and element abnormality during welding can be more accurately detected. It becomes possible to detect.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

例えば、上記実施形態では、光強度データDと標本線Lとの交差数である微分特性値を用いて溶接中要素異常を検出したが、標本線Lを超えた光強度データDのデータ数(換言すると、標本線Lよりも上に存在する光強度データDのデータ数)である積分特性値(存在量)を用いて溶接中要素異常を検出してもよい。   For example, in the above embodiment, an element abnormality during welding is detected using the differential characteristic value that is the number of intersections between the light intensity data D and the sample line L. However, the number of data of the light intensity data D exceeding the sample line L ( In other words, an element abnormality during welding may be detected using an integral characteristic value (existence amount) which is the number of data of the light intensity data D existing above the sample line L.

具体的には、まず、溶接前工程にて、基準値Sを算出し基準用光強度データD0の基準値Sに標本線Lを設定した後(上記S13)、所定時間(所定データ数間)において標本線Lを越えた基準用光強度データD0のデータ数である時系列波形としての積分特性値を算出する。そして、この積分特性値の最小値の80%の値を下限閾値として算出すると共に、この積分特性値の最小値の120%を上限閾値として算出する。   Specifically, first, after the reference value S is calculated and the sample line L is set to the reference value S of the reference light intensity data D0 in the pre-welding process (S13 above), a predetermined time (between a predetermined number of data) The integral characteristic value as a time-series waveform that is the number of reference light intensity data D0 exceeding the sample line L is calculated. Then, 80% of the minimum value of the integral characteristic value is calculated as the lower limit threshold, and 120% of the minimum value of the integral characteristic value is calculated as the upper limit threshold.

次に、溶接中工程にて、光強度データDを取得した後(上記S21)、所定時間において標本線を越えた光強度データDのデータ数である時系列波形としての積分特性値を算出する。そして、この積分特性値が下限閾値よりも小さい、又は上限閾値よりも大きい場合、溶接中要素異常を検出する。   Next, after obtaining the light intensity data D in the mid-welding process (S21), an integral characteristic value as a time series waveform that is the number of data of the light intensity data D exceeding the sample line in a predetermined time is calculated. . When the integral characteristic value is smaller than the lower threshold or larger than the upper threshold, an element abnormality during welding is detected.

このように積分特性値を用いた場合でも、正常時の光強度データと溶接中要素異常時の光強度データとが好適に区別され、レーザ溶接システム1における溶接中の異常の有無を容易に且つ精度よく検出するという上記作用効果が発揮される。さらに、この場合、下限閾値及び上限閾値には、光強度データのばらつきが考慮されることとなる。   Even when the integral characteristic value is used as described above, the light intensity data at the normal time and the light intensity data at the time of abnormality of the element during welding are suitably distinguished, and the presence or absence of abnormality during welding in the laser welding system 1 can be easily and The above effect of detecting with high accuracy is exhibited. Furthermore, in this case, variations in the light intensity data are taken into consideration for the lower limit threshold and the upper limit threshold.

また、上記実施形態では、ガス吹込み角異常又はガス流量異常を溶接中要素異常として検出したが、ガス成分異常等を溶接中要素異常として検出してもよく、要は、溶接中要素異常は、溶接部を形成する際に作動する要素に関する異常であればよい。また、レーザ溶接の態様は、上記実施形態のような重ね溶接に限定されず、突合せ溶接等の種々の態様であってもよく、また、平ワイヤ等の溶加材を利用する態様であってもよい。   Further, in the above embodiment, a gas injection angle abnormality or a gas flow rate abnormality is detected as an element abnormality during welding, but a gas component abnormality or the like may be detected as an element abnormality during welding. Any abnormality relating to an element that operates when forming a welded portion may be used. Further, the mode of laser welding is not limited to the lap welding as in the above-described embodiment, and may be various modes such as butt welding, or a mode using a filler material such as a flat wire. Also good.

また、上記の閾値、上限閾値及び下限閾値は上述した値に限定されず、レーザ溶接の態様や環境に応じて適宜設定してもよい。なお、上記「80%」及び「120%」は、略80%及び略120%をそれぞれ含んでおり、計測上又は演算上の誤差等を含むものである。   Moreover, said threshold value, an upper limit threshold value, and a lower limit threshold value are not limited to the value mentioned above, You may set suitably according to the aspect and environment of laser welding. Note that “80%” and “120%” include approximately 80% and approximately 120%, respectively, and include errors in measurement or calculation.

また、本発明では、移動平均化されるようバンドパスフィルタを通した光強度データの値を平均化し、その平均値を基準値として算出してもよい。つまり、所定バンド幅のバンドパスフィルタで光強度データをフィルタリングした値が、上記移動平均値として取り扱われる場合もある。   In the present invention, the value of the light intensity data that has passed through the bandpass filter may be averaged so that the moving average is performed, and the average value may be calculated as the reference value. That is, a value obtained by filtering light intensity data with a bandpass filter having a predetermined bandwidth may be handled as the moving average value.

1…レーザ溶接システム、10A,10B…ワーク(被加工物)、W…溶接部。   DESCRIPTION OF SYMBOLS 1 ... Laser welding system, 10A, 10B ... Workpiece (workpiece), W ... Welding part.

Claims (6)

レーザビームの照射で被加工物に溶接部を形成する前に溶接条件が予め最適化されたレーザ溶接システムにおいて前記溶接部を形成する際に作動する要素に関する異常を検出するための異常検出工程を備え、
前記異常検出工程は、
前記溶接部を形成する前に、前記異常を検出するための基準値を求める第1工程と、
前記溶接部を形成する際に該溶接部の光強度に関する光強度データを取得し、前記光強度データにおいて前記基準値に標本線を設定して解析した結果に基づいて、前記異常を検出する第2工程と、を含み、
前記第1工程では、
基準用被加工物に前記レーザビームを照射し正常な溶接部としての基準用溶接部を形成する際、前記基準用溶接部の光強度に関する基準用光強度データを取得し、
前記基準用光強度データに移動平均処理を施して移動平均値を算出し、前記移動平均値の平均値を基準値として算出することを特徴とするレーザ溶接システムの異常検出方法。
An abnormality detection step for detecting an abnormality relating to an element operating when forming the welded part in a laser welding system in which welding conditions are optimized in advance before forming the welded part on the workpiece by irradiation with a laser beam. Prepared,
The abnormality detection step includes
A first step of obtaining a reference value for detecting the abnormality before forming the weld;
The light intensity data relating to the light intensity of the welded portion is obtained when forming the welded portion, and the abnormality is detected based on the result of analysis by setting a sample line to the reference value in the light intensity data. Including two steps,
In the first step,
When the reference workpiece is irradiated with the laser beam to form a reference weld as a normal weld, reference light intensity data relating to the light intensity of the reference weld is obtained,
An abnormality detection method for a laser welding system, wherein a moving average value is calculated by performing a moving average process on the reference light intensity data, and the average value of the moving average values is calculated as a reference value.
前記第2工程では、前記光強度データと前記標本線との交差数が、予め設定された閾値よりも小さい場合に、前記異常を検出することを特徴とする請求項1記載のレーザ溶接システムの異常検出方法。   2. The laser welding system according to claim 1, wherein in the second step, the abnormality is detected when the number of intersections between the light intensity data and the sample line is smaller than a preset threshold value. Anomaly detection method. 前記閾値は、前記基準用光強度データと前記標本線との交差数の80%の値であることを特徴とする請求項2記載のレーザ溶接システムの異常検出方法。   3. The abnormality detection method for a laser welding system according to claim 2, wherein the threshold value is a value that is 80% of the number of intersections between the reference light intensity data and the sample line. 前記第2工程では、前記標本線を超えた前記光強度データのデータ数が、予め設定された下限閾値よりも小さい又は予め設定された上限閾値よりも大きい場合に、前記異常を検出することを特徴とする請求項1記載のレーザ溶接システムの異常検出方法。   In the second step, the abnormality is detected when the number of data of the light intensity data exceeding the sample line is smaller than a preset lower threshold or larger than a preset upper threshold. The method for detecting an abnormality of a laser welding system according to claim 1. 前記下限閾値は、前記標本線を超えた前記基準用光強度データのデータ数の80%の値であり、
前記上限閾値は、前記標本線を超えた前記基準用光強度データのデータ数の120%の値であることを特徴とする請求項4記載のレーザ溶接システムの異常検出方法。
The lower threshold is a value that is 80% of the number of the reference light intensity data exceeding the sample line,
5. The method for detecting an abnormality in a laser welding system according to claim 4, wherein the upper limit threshold value is 120% of the number of data of the reference light intensity data exceeding the sample line.
前記溶接部を形成する際に作動する要素は、ガス吹込み角異常、ガス流量異常、及びガス成分異常の少なくとも1つを含むことを特徴とする請求項1〜5の何れか一項記載のレーザ溶接システムの異常検出方法。

The element that operates when forming the welded portion includes at least one of an abnormal gas injection angle, an abnormal gas flow rate, and an abnormal gas component, according to any one of claims 1 to 5. Abnormality detection method for laser welding system.

JP2009137437A 2009-06-08 2009-06-08 Abnormality detection method for laser welding system Active JP5461070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137437A JP5461070B2 (en) 2009-06-08 2009-06-08 Abnormality detection method for laser welding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137437A JP5461070B2 (en) 2009-06-08 2009-06-08 Abnormality detection method for laser welding system

Publications (2)

Publication Number Publication Date
JP2010279994A true JP2010279994A (en) 2010-12-16
JP5461070B2 JP5461070B2 (en) 2014-04-02

Family

ID=43537229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137437A Active JP5461070B2 (en) 2009-06-08 2009-06-08 Abnormality detection method for laser welding system

Country Status (1)

Country Link
JP (1) JP5461070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466440A2 (en) 2010-12-16 2012-06-20 Nintendo Co., Ltd. Display control program, display control apparatus, display control system, and display control method
JP2015077779A (en) * 2013-09-12 2015-04-23 日本特殊陶業株式会社 Method and apparatus for producing resin welded body
US20210260698A1 (en) * 2018-11-13 2021-08-26 Trumpf Laser- Und Systemtechnik Gmbh Methods and devices for monitoring a welding process for welding glass workpieces
CN114523201A (en) * 2022-01-31 2022-05-24 扬州市恒泰人防设备有限公司 Full-automatic laser welding system of emergency exit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218701A1 (en) * 2022-05-10 2023-11-16 パナソニックIpマネジメント株式会社 Machining condition determination method and determination device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245667A (en) * 1992-03-09 1993-09-24 Mazda Motor Corp Laser beam welding method and device used for its execution
JPH06142956A (en) * 1992-11-11 1994-05-24 Nissan Motor Co Ltd Quality control method for laser welding
JPH08339182A (en) * 1995-06-12 1996-12-24 Yamaha Corp Playing controller
JP2002339178A (en) * 2001-05-15 2002-11-27 Murata Mach Ltd False-twisting machine
JP2008087028A (en) * 2006-10-02 2008-04-17 Tokyu Car Corp Laser beam welding equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245667A (en) * 1992-03-09 1993-09-24 Mazda Motor Corp Laser beam welding method and device used for its execution
JPH06142956A (en) * 1992-11-11 1994-05-24 Nissan Motor Co Ltd Quality control method for laser welding
JPH08339182A (en) * 1995-06-12 1996-12-24 Yamaha Corp Playing controller
JP2002339178A (en) * 2001-05-15 2002-11-27 Murata Mach Ltd False-twisting machine
JP2008087028A (en) * 2006-10-02 2008-04-17 Tokyu Car Corp Laser beam welding equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466440A2 (en) 2010-12-16 2012-06-20 Nintendo Co., Ltd. Display control program, display control apparatus, display control system, and display control method
JP2015077779A (en) * 2013-09-12 2015-04-23 日本特殊陶業株式会社 Method and apparatus for producing resin welded body
US20210260698A1 (en) * 2018-11-13 2021-08-26 Trumpf Laser- Und Systemtechnik Gmbh Methods and devices for monitoring a welding process for welding glass workpieces
CN114523201A (en) * 2022-01-31 2022-05-24 扬州市恒泰人防设备有限公司 Full-automatic laser welding system of emergency exit

Also Published As

Publication number Publication date
JP5461070B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US10695868B2 (en) Laser hybrid welding control systems and methods
JP5461070B2 (en) Abnormality detection method for laser welding system
JP2000167666A (en) Automatic welding, defect repair method and automatic welding equipment
JP4818029B2 (en) Laser welding evaluation method
JP2006247663A (en) Welding method and welding apparatus
CN114025904B (en) Repair welding inspection device and repair welding inspection method
JP7422337B2 (en) Repair welding control device and repair welding control method
JP2007253220A (en) Laser welding method
US10005153B2 (en) Laser beam welding apparatus and laser beam welding method
JP2008272767A (en) Laser welding apparatus and method of quality control in laser welding
JP4617324B2 (en) Laser weld formation method
JP5183369B2 (en) Abnormality detection method for laser welding system
CN104923912A (en) Laser welding inspection apparatus and laser welding inspection method
JP4719173B2 (en) Laser welding method
KR101243852B1 (en) Check device of welding torch of carbon dioxide device
JP5074265B2 (en) Laser welding method
CN115684022A (en) Welding inspection device, welding system, and welding inspection method
JP2007253197A (en) Laser welding method
JP6081833B2 (en) Laser welding method and laser welding apparatus
JP2010046679A (en) Method of and device for inspecting laser welding quality
JP2007203312A (en) Laser welding system
JP2007313564A (en) System for sensing movement of welded parts
CN115990695A (en) Control method, control device, welding system, and program for welding robot
JP2013198929A (en) Device for detecting contact of welding torch, and method of detecting contact of welding torch
JP2011167697A (en) Method and device for determining laser welding quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150