JP2016058999A - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
JP2016058999A
JP2016058999A JP2014186028A JP2014186028A JP2016058999A JP 2016058999 A JP2016058999 A JP 2016058999A JP 2014186028 A JP2014186028 A JP 2014186028A JP 2014186028 A JP2014186028 A JP 2014186028A JP 2016058999 A JP2016058999 A JP 2016058999A
Authority
JP
Japan
Prior art keywords
frequency
clo
mhz
converted
converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014186028A
Other languages
Japanese (ja)
Other versions
JP6319803B2 (en
Inventor
仲田 樹広
Tatsuhiro Nakada
樹広 仲田
中村 和彦
Kazuhiko Nakamura
和彦 中村
篤 石山
Atsushi Ishiyama
篤 石山
藤倉 幹夫
Mikio Fujikura
幹夫 藤倉
恭啓 石川
Yasuhiro Ishikawa
恭啓 石川
周 田中
Shu Tanaka
周 田中
靖文 三井
Yasubumi Mitsui
靖文 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2014186028A priority Critical patent/JP6319803B2/en
Publication of JP2016058999A publication Critical patent/JP2016058999A/en
Application granted granted Critical
Publication of JP6319803B2 publication Critical patent/JP6319803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a transmission device capable of transmitting at a stable frequency.SOLUTION: In a transmission device having a transmission controller for transmitting different modulation data signals from plural antennas at the same frequency of 1200 MHz by an OFDM system, a single cable and a transmission high frequency unit, the transmission controller frequency-converts OFDM modulation waves to positive phase and inverted phase of the frequency 3CLO which are three times as high as the frequency (10 MHz) of a common local oscillator CLO corresponding to 30 MHz of the difference of 130 MHz and 190 MHz, the signal which is frequency-converted to the positive phase and inverted phase of 30 MHz is frequency-converted by 16 CLO which is equal to 160 MHz as the average of IF2 and IF1, 130 MHz and 190 MHz are taken out, 130 MHz and 190 MHz are transmitted by using a single coaxial cable, and the transmission high frequency unit converts transmitted 130 MHz and 190 MHz to 160 MHz by 3CLO, converts 160 MHz to 1200 MHz by 104CLO, and transmits from an antenna.SELECTED DRAWING: Figure 10

Description

本発明は、例えば、送受信アンテナが複数備えられる通信方式がOFDM(Orthogonal Frequency Division Multiplexing)方式であるMIMO(Multiple Input Multiple Output)の通信装置に関する。   The present invention relates to a MIMO (Multiple Input Multiple Output) communication apparatus in which, for example, a communication system provided with a plurality of transmission / reception antennas is an OFDM (Orthogonal Frequency Division Multiplexing) system.

MIMO伝送は、複数本の送信アンテナを用いて、同一の無線周波数(又は高周波数)(RF)において無線信号を送出する。伝送路ではそれぞれのアンテナから送出されたデータが空間の中で多重化される。受信アンテナも複数本用いて、その信号を受信する。 放送用素材映像を伝送する機材は日本国内では、FPU(Field Pick Up)と称される。 FPUで送信されるデータは送信制御部にて、OFDM変調され、映像、音声その他のデータ、パイロット信号(CP:Continuaus Pilot)、伝送制御情報(TMCC:Transmission and Multiplexing Configuration and Control)、予備データ(AUX)が一つのOFDMシンボルとして構成される。   MIMO transmission uses a plurality of transmission antennas to transmit a radio signal at the same radio frequency (or high frequency) (RF). In the transmission path, data transmitted from each antenna is multiplexed in the space. A plurality of receiving antennas are also used to receive the signal. Equipment for transmitting broadcast material video is called FPU (Field Pick Up) in Japan. Data transmitted by the FPU is OFDM-modulated by a transmission control unit, and video, audio and other data, pilot signals (CP: Continuous Pilot), transmission control information (TMCC: Transmission and Multiplexing Configuration and Control), spare data ( AUX) is configured as one OFDM symbol.

MIMOモード時には無線周波数(又は高周波数)(RF)で2系統の中心周波数が異なると、各アンテナ系統間の干渉により伝送性能劣化が生じてしまう。IFケーブル1本で2つの異周波数の中間周波数(IF)信号を重畳して伝送する場合には、送信制御部と送信高周波部の発振器の相対的な周波数差により、上記劣化が生じてしまう。   In the MIMO mode, if the center frequencies of the two systems are different at the radio frequency (or high frequency) (RF), transmission performance deteriorates due to interference between the antenna systems. In the case where two intermediate frequency (IF) signals of two different frequencies are transmitted with a single IF cable, the above-described degradation occurs due to the relative frequency difference between the transmission control unit and the transmission high-frequency unit oscillator.

OFDM信号の

Figure 2016058999
番目のサブキャリア信号は式(1)に示すように、sinc関数で表現できる。
Figure 2016058999
(1)
Figure 2016058999
(デルタf)の周波数偏差が生じた場合にはサブキャリア間の干渉:ICI(Inter Carrier Interference)が発生する。式(1)に対して
Figure 2016058999
の周波数偏差(サブキャリア間隔で正規化した周波数)が生じた場合の信号は式(2)となる。
Figure 2016058999
(2)
Figure 2016058999
の周波数偏差が生じた場合の式(2)に示す波形を図1に示す。式(2)において、
Figure 2016058999
の場合が信号成分であり、
Figure 2016058999
の場合が雑音成分となる。 OFDM signal
Figure 2016058999
The th subcarrier signal can be expressed by a sinc function as shown in equation (1).
Figure 2016058999
(1)
Figure 2016058999
When a frequency deviation of (delta f) occurs, interference between subcarriers: ICI (Inter Carrier Interference) occurs. For equation (1)
Figure 2016058999
The signal when the frequency deviation (frequency normalized by the subcarrier interval) occurs is given by Equation (2).
Figure 2016058999
(2)
Figure 2016058999
FIG. 1 shows the waveform shown in the equation (2) when the frequency deviation of FIG. In equation (2):
Figure 2016058999
Is the signal component,
Figure 2016058999
The case of is a noise component.

これより、ICIによる等価的なC/Nは、

Figure 2016058999
(3)と表わされる。図2は式(3)で示した周波数偏差
Figure 2016058999
(デルタf)と等価C/N(
Figure 2016058999
)の関係を示している。図2より、等価C/Nの仕様として35dB以上を定めると、許容の周波数偏差
Figure 2016058999
は0.01程度となり、FFT-2kモードではサブキャリア間隔が10kHzであるため、許容周波数偏差は100Hzとなる。ARIBでは50Hzを仕様としている。 From this, the equivalent C / N by ICI is
Figure 2016058999
It is expressed as (3). Figure 2 shows the frequency deviation shown in equation (3).
Figure 2016058999
(Delta f) and equivalent C / N (
Figure 2016058999
) Relationship. From Fig. 2, if 35dB or more is defined as the equivalent C / N specification, the allowable frequency deviation
Figure 2016058999
Is about 0.01, and in the FFT-2k mode, the subcarrier interval is 10 kHz, so the allowable frequency deviation is 100 Hz. ARIB uses 50Hz as the specification.

送信制御部と送信高周波部で独立の基準発振器を用いた場合の許容周波数偏差について検討を行う。送信制御部の基準発振器周波数の周波数偏差を

Figure 2016058999
(デルタa)、送信高周波部の基準発振器周波数の周波数偏差を
Figure 2016058999
とすると、送信制御部からのIF周波数は、1系、2系それぞれ、 1系:
Figure 2016058999
2系:
Figure 2016058999
(4)となる。送信高周波部では一旦ダイレクトコンバージョンによって周波数を直流(DC)にシフトするが、その際の局部発振器 (LO)周波数は1系、2系それぞれ、 1系:
Figure 2016058999
2系:
Figure 2016058999
(5)である。従って、ダイレクトコンバージョン後の周波数は 1系:
Figure 2016058999
2系:
Figure 2016058999
(6)となる。よって、1系と2系の周波数差は
Figure 2016058999
(7)となる。ここで、送信制御部と高周波部の最大偏差量はほぼ同程度とし、ずれ量が最悪ケースとして正方向と負方向に最大にずれた場合の周波数偏差を式(8)で近似する。
Figure 2016058999
(8) 図3は式(8)で示した、局部発振器(LO)の周波数偏差
Figure 2016058999
(デルタa)と1系/2系の周波数偏差の関係を示した図である。IF周波数として、
Figure 2016058999
130/220MHzあるいは、130/240MHzとしている。これより、送信制御部、送信高周波部の周波数偏差をそれぞれ0.6ppm以下にする必要がある。0.6ppm以下の高精度の仕様を満足するには、一般に恒温槽付電圧制御水晶発振器あるいはデジタル型温度補償発振器などの高価な局部発振器(LO)が必要となる。 The allowable frequency deviation when independent reference oscillators are used in the transmission control unit and the transmission high-frequency unit is examined. The frequency deviation of the reference oscillator frequency of the transmission control unit
Figure 2016058999
(Delta a), the frequency deviation of the reference oscillator frequency of the transmission high-frequency part
Figure 2016058999
Then, the IF frequency from the transmission control unit is 1 system, 2 system, 1 system:
Figure 2016058999
Series 2:
Figure 2016058999
(4) In the transmission high-frequency part, the frequency is temporarily shifted to direct current (DC) by direct conversion, but the local oscillator (LO) frequency at that time is 1 system, 2 systems, 1 system:
Figure 2016058999
Series 2:
Figure 2016058999
(5). Therefore, the frequency after direct conversion is 1 system:
Figure 2016058999
Series 2:
Figure 2016058999
(6) Therefore, the frequency difference between system 1 and system 2 is
Figure 2016058999
(7) Here, the maximum deviation amount between the transmission control unit and the high frequency unit is approximately the same, and the frequency deviation when the deviation amount is shifted to the maximum in the positive direction and the negative direction as a worst case is approximated by Expression (8).
Figure 2016058999
(8) Figure 3 shows the frequency deviation of the local oscillator (LO) shown in equation (8).
Figure 2016058999
It is the figure which showed the relationship between (delta a) and the frequency deviation of 1 system / 2 system. As IF frequency,
Figure 2016058999
130 / 220MHz or 130 / 240MHz. Accordingly, it is necessary to set the frequency deviations of the transmission control unit and the transmission high-frequency unit to 0.6 ppm or less. In order to satisfy the specifications with high accuracy of 0.6 ppm or less, generally an expensive local oscillator (LO) such as a voltage controlled crystal oscillator with a thermostatic chamber or a digital type temperature compensated oscillator is required.

特許文献1では、デジタル変調ユニットが30MHz(=ω)のベースバンド信号を出力し、ベースバンドフィルタが当該ベースバンド信号の不要波を制限(帯域制限)し、局部発信器が100MHz(=Lo)の信号を出力し、ミキサが当該制限後の30MHzの信号と当該100MHzの信号を入力して周波数変換する。 ここで、ミキサによる周波数変換は、中間周波をIFとして、(IF=Lo±ω)の式のように表される。 これにより、ミキサからの出力としては、FPU装置における中間周波の国内仕様である130MHz(=Lo+ω)の信号と、海外仕様である70MHz(=Lo−ω)の信号の2つが得られる。   In Patent Document 1, a digital modulation unit outputs a baseband signal of 30 MHz (= ω), a baseband filter limits unnecessary bands of the baseband signal (band limitation), and a local oscillator has a frequency of 100 MHz (= Lo). And the mixer inputs the 30 MHz signal after the restriction and the 100 MHz signal to perform frequency conversion. Here, the frequency conversion by the mixer is expressed as (IF = Lo ± ω), where IF is the intermediate frequency. As a result, two outputs, ie, a 130 MHz (= Lo + ω) signal, which is a domestic specification of intermediate frequencies in the FPU device, and a 70 MHz (= Lo−ω) signal, which is an overseas specification, are obtained as outputs from the mixer.

また、携帯電話基地局用に、2500MHz14bitのDAC(非特許文献1参照)も5700MHz14bitのDAC(非特許文献2参照)も3600MHz12bitのADC(非特許文献3参照)も製品化された。   In addition, a 2500 MHz 14-bit DAC (see Non-Patent Document 1), a 5700 MHz 14-bit DAC (see Non-Patent Document 2), and a 3600 MHz 12-bit ADC (see Non-Patent Document 3) have been commercialized for mobile phone base stations.

特開2010−68443号公報JP 2010-68443 A

アナログデバイセズ製2.5Gbps14bitDAC AD9739A http://www.analog.com/static/imported-files/data_sheets/AD9739A.pdfAnalog Devices 2.5Gbps 14bitDAC AD9739A http://www.analog.com/static/imported-files/data_sheets/AD9739A.pdf アナログデバイセズ製5.7Gbps14bitDAC AD9129A http://www.analog.com/static/imported-files/data_sheets/AD9119_9129.pdfAnalog Devices 5.7Gbps 14bitDAC AD9129A http://www.analog.com/static/imported-files/data_sheets/AD9119_9129.pdf テキサスインスツルメンツ製3.6Gbps12bitADC ADC12D1800RF http://www.ti.com/lit/ds/snas518i/snas518i.pdfTexas Instruments 3.6Gbps 12bit ADC ADC12D1800RF http://www.ti.com/lit/ds/snas518i/snas518i.pdf

(()内は出願時削除) 本発明は、このような従来の事情に鑑み為されたもので、経年変化を考慮して、送信制御部、送信高周波部に(周波数偏差をそれぞれ偏差0.6ppm以下の)高精度の仕様を満足する高価な局部発振器(LO)を用いることなく、(偏差1ppmの)比較的安価なLOを用いて無線周波数(RFのARIB仕様50Hz)の高精度の許容周波数偏差を実現することを目的とする。 (The contents in parentheses are deleted at the time of filing.) The present invention has been made in view of such conventional circumstances. In consideration of the secular change, the transmission control unit and the transmission high-frequency unit have a frequency deviation of 0.6 ppm each. High-accuracy allowable frequency of radio frequency (RF ARIB specification 50Hz) using relatively inexpensive LO (with 1ppm deviation) without using an expensive local oscillator (LO) that satisfies high-precision specifications (below) The purpose is to realize the deviation.

(案234の共通概念) 上記目的を達成するため、本発明は、OFDM方式により同一の無線周波数(RF)(1200MHz)で複数のアンテナからそれぞれ異なる変調データ信号を送信する送信高周波部と単一の(同軸又はツイストペアの)中間周波数ケーブルと送信制御部とからなり複数の中間周波数を前記送信制御部から送信高周波部に向けて前記単一のケーブルを用いて伝送する手段を有する送信装置において、 前記送信制御部に、 (案3図9B)第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)との差の絶対値の半分の周波数(30MHz)となる共通局部発信器CLOの周波数(10MHz)の3倍の周波数3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換する手段と前記3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換した信号を前記IF1(130MHz)と第三の中間周波数IF3(70MHz)との加算平均の周波数(100MHz)となる共通局部発信器CLOの周波数(10MHz)の10倍の周波数10CLO(100MHz)で周波数変換する手段と前記10CLOで周波数変換した信号の下側波帯(70MHz)と前記10CLOで周波数変換した信号の正相の上側波帯(190MHz)とを取り出す手段と前記IF2と前記IF1の平均の周波数(160MHz)となる前記CLOの周波数(10MHz)の16倍の周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の異なる周波数(30MHzと90MHz)の正相と逆相との下側波帯を取り出す手段と前記取り出した正相と逆相との下側波帯を前記16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の異なる周波数(70MHzと130MHz)の正相の下側波帯である前記IF3(70MHz)とIF1(130MHz)と前記16CLOで周波数変換した信号の異なる周波数(190MHzと250MHz)の正相の上側波帯である前記IF2(190MHz)と第四の中間周波数IF4(250MHz)とを取り出す手段との構成と、 又は(案3図9A図10)第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)との差の絶対値の半分の周波数(30MHz)となる共通局部発信器CLOの周波数(10MHz)の3倍の周波数3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換する手段と前記3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換した信号を前記IF2と前記IF1の平均の周波数(160MHz)となる前記CLOの周波数(10MHz)の16倍の周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の逆相の下側波帯である前記IF1(130MHz)と前記16CLOで周波数変換した信号の正相の上側波帯である前記IF2(190MHz)とを取り出す手段との構成と、 又は(案2図8A図8B)前記CLOの周波数の逓倍の周波数NCLO(20MHz又は30MHz)(の正相)にOFDM変調波を周波数変換する複数の手段と前記NCLO(の正相)にOFDM変調波を周波数変換した複数の信号を前記複数の中間周波数(IF1(130MHz)とIF2(190MHz)またはIF1(130MHz)とIF2(190MHz)と第三の中間周波数IF3(70MHz)と第四の中間周波数IF4(250MHz))と前記NCLOとの差の周波数(11CLO(110MHz)と17CLO(170MHz)または11CLO(110MHz)と17CLO(170MHz)と5CLO(50MHz)と23CLO(230MHz)または10CLO(100MHz)と16CLO(160MHz)または10CLO(100MHz)と16CLO(160MHz)と4CLO(40MHz)と22CLO(220MHz))となる前記CLOの逓倍の周波数で周波数変換した複数の信号の正相の上側波帯である前記複数の中間周波数とを取り出す複数の手段との構成と、 (案4図12A図12B)OFDM変調波をデジタル領域で前記複数の中間周波数(IF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz))に変換し、前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(64CLO(640MHz)または80CLO(800MHz)または96CLO(960MHz)) でデジタル/アナログ変換(D/A)しLPFを通過させて、前記連動した周波数の前記複数の中間周波数(IF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz))に変換する手段を有する構成と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの周波数(10MHz)の逓倍周波数により周波数変換して前記CLOの周波数に連動した周波数で取り出す複数の手段の構成を有し、 前記送信高周波部に、前記単一のケーブルを用いて伝送された連動した周波数前記複数の中間周波数を前記CLOの周波数の逓倍の周波数により周波数変換して前記同一の無線周波数(RF)(1200MHz)に変換する手段と、前記変換した同一の無線周波数(RF)(1200MHz)を前記複数のアンテナから送信する手段と、を有し、 前記複数のアンテナから送信されるそれぞれ異なる変調データ信号の同一の無線周波数(RF)が前記CLOの周波数(10MHz)に連動する割合を等しくすることを特徴とする送信装置である。 (Common concept of plan 234) In order to achieve the above object, the present invention provides a single transmission high-frequency unit that transmits different modulated data signals from a plurality of antennas at the same radio frequency (RF) (1200 MHz) by the OFDM method. A transmission apparatus comprising a unit for transmitting a plurality of intermediate frequencies from the transmission control unit to a transmission high-frequency unit using the single cable, the intermediate frequency cable (coaxial or twisted pair) and a transmission control unit; In the transmission control unit (plan 3 FIG. 9B), a common local oscillator having a frequency (30 MHz) half the absolute value of the difference between the first intermediate frequency IF1 (130 MHz) and the second intermediate frequency IF2 (190 MHz) Means to convert the frequency of the OFDM modulated wave to the positive and negative phases of 3CLO (30MHz), 3 times the frequency of the CLO (10MHz), and the frequency of the OFDM modulated wave to the positive and negative phases of 3CLO (30MHz) Signal is IF3 (130MHz) and third Means of frequency conversion at 10CLO (100MHz), which is 10 times the frequency of common local oscillator CLO (10MHz), which is the average frequency (100MHz) with intermediate frequency IF3 (70MHz), and the frequency converted signal at 10CLO Means for taking out the lower sideband (70 MHz) and the positive phase upper sideband (190 MHz) of the signal frequency-converted by the 10CLO, and the frequency of the CLO (10 MHz) which is the average frequency (160 MHz) of the IF2 and IF1 ) 16 times the frequency 16CLO, means for taking out the lower side band of the positive phase and the negative phase of the different frequency (30 MHz and 90 MHz) of the signal converted by the 16 CLO, and the extracted positive phase The IF3 (70 MHz) and IF1 (70 MHz) and IF1 (which are the lower sidebands of the positive phase of different frequencies (70 MHz and 130 MHz) of the frequency converted signal by the 16CLO and the lower sideband of the negative phase are converted by the 16CLO. 130MHz) and different frequency (190MHz and 250MHz) of the signal converted by 16CLO Configuration of means for taking out IF2 (190 MHz) and the fourth intermediate frequency IF4 (250 MHz), which are the positive upper sidebands, or (plan 3 FIG. 9A and FIG. 10) first intermediate frequency IF1 (130 MHz) The positive and negative phases of the frequency 3CLO (30MHz), which is three times the frequency of the common local oscillator CLO (10MHz), which is half the absolute value (30MHz) of the difference between the IF2 and the second intermediate frequency IF2 (190MHz) Means for converting the frequency of the OFDM modulated wave and a signal obtained by converting the frequency of the OFDM modulated wave in the positive and negative phases of the 3CLO (30 MHz) to the CLO frequency (160 MHz) which is the average frequency (160 MHz) of the IF2 and the IF1. 10 MHz) 16 times the frequency of the 16CLO frequency conversion means and the IF1 (130 MHz), which is the lower sideband of the opposite phase of the signal frequency-converted by the 16CLO, and the positive-phase upper side of the signal frequency-converted by the 16CLO A configuration of means for taking out the IF2 (190 MHz) which is a band, or (plan 2 FIG. 8A and FIG. 8B) a frequency NCLO which is a multiple of the frequency of the CLO A plurality of means for frequency-converting the OFDM modulated wave to (positive phase) of 20 MHz or 30 MHz) and a plurality of signals obtained by frequency-converting the OFDM modulated wave to NCLO (positive phase) of the plurality of intermediate frequencies (IF1 (130 MHz)) And IF2 (190MHz) or IF1 (130MHz) and IF2 (190MHz), the third intermediate frequency IF3 (70MHz) and the fourth intermediate frequency IF4 (250MHz) and the frequency of the difference between the NCLO (11CLO (110MHz) and 17CLO (170MHz) or 11CLO (110MHz) and 17CLO (170MHz) and 5CLO (50MHz) and 23CLO (230MHz) or 10CLO (100MHz) and 16CLO (160MHz) or 10CLO (100MHz) and 16CLO (160MHz) and 4CLO (40MHz) 22CLO (220 MHz)) and a configuration of a plurality of means for extracting the plurality of intermediate frequencies that are the positive-phase upper sidebands of the plurality of signals frequency-converted at a frequency multiplied by the CLO. Fig. 12B) OFDM modulated wave in the digital domain with a plurality of intermediate frequencies (IF1 (130MHz), IF2 (190MHz) and IF3 (70MHz) Digital / analog conversion (D / A) at a frequency (64CLO (640MHz), 80CLO (800MHz) or 96CLO (960MHz)) multiplied by the frequency of the synchronized common local oscillator CLO converted to IF4 (250MHz) And having a means for converting the plurality of intermediate frequencies (IF1 (130 MHz), IF2 (190 MHz), IF3 (70 MHz), and IF4 (250 MHz)) of the linked frequencies through an LPF, The plurality of intermediate frequencies of one configuration have a configuration of a plurality of means for extracting the frequency with a frequency linked to the frequency of the CLO by frequency conversion by a frequency multiplied by the frequency of the CLO (10 MHz). Means for converting the plurality of intermediate frequencies transmitted using the single cable to the same radio frequency (RF) (1200 MHz) by frequency conversion of the intermediate frequencies by a frequency multiplied by the frequency of the CLO; Same as above Means for transmitting the radio frequency (RF) (1200 MHz) from the plurality of antennas, and the same radio frequency (RF) of the different modulated data signals transmitted from the plurality of antennas is the frequency of the CLO. The transmission device is characterized by equalizing the ratio of interlocking with (10 MHz).

(案234の各概念) さらに、上記送信装置のいずれか一方の構成において、(案3図9B)前記送信高周波部に、前記連動した周波数のIF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz)とを前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)と前記9CLO(90MHz)を取り出す手段と、前記取り出した3CLO(30MHz)と9CLO(90MHz)を前記16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の正相の下側波帯の前記7CLO(70MHz)と前記13CLO(130MHz)を取り出す手段と、前記取り出した7CLO(70MHz)と13CLO(130MHz)を前記を前記CLOの周波数の10倍の位相同期ループPLLの周波数10CLO(100MHz)で周波数変換する手段と前記10CLO(100MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の逆相の上側波帯の前記同一の高周波数RF(1200MHz)に変換する手段との構成と、(案3図9A)前記送信高周波部に、前記連動した周波数のIF1とIF2とを前記CLOの周波数の3倍の位相同期ループPLLの周波数3CLO(30MHz)で周波数変換する手段と前記3CLOで周波数変換した信号の下側波帯の16CLO(160MHz)と前記3CLOで周波数変換した信号の上側波帯の16CLO(90MHz)を取り出す手段と、前記取り出した16CLO(160MHz)を前記CLOの周波数の104倍の位相同期ループPLLの周波数104CLO(1040MHz)で周波数変換する手段と前記104CLOで周波数変換した信号の上側波帯である前記同一の高周波数RF(1200MHz)を取り出す手段との構成と、(案3図10)前記送信高周波部に、前記連動した周波数のIF1とIF2とを前記連動した周波数のIF1とIF2の平均周波数(160MHz)となる前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLOで周波数変換した信号の下側波帯の3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の上側波帯である前記同一の高周波数RF(1200MHz)を取り出す手段との構成と、(案2図8A図8B)前記送信制御部の共通局部発信器と前記送信制御部の共通局部発信器とを互いに位相同期ループPLLで連動させる手段を有し、前記送信制御部に前記連動させた共通局部発信器CLOの周波数の逓倍の周波数NCLO(20MHz又は30MHz)(の正相)にOFDM変調波を周波数変換する手段と前記NCLO(の正相)にOFDM変調波を周波数変換した信号を前記複数の中間周波数(IF1(130MHz)とIF2(190MHz)またはIF1(130MHz)とIF2(190MHz)と第三の中間周波数IF3(70MHz)と第四の中間周波数IF4(250MHz))と前記NCLOとの差の周波数(11CLO(110MHz)と17CLO(170MHz)または11CLO(110MHz)と17CLO(170MHz)と5CLO(50MHz)と23CLO(230MHz)または10CLO(100MHz)と16CLO(160MHz)または10CLO(100MHz)と16CLO(160MHz)と4CLO(40MHz)と22CLO(220MHz))となる前記CLOの逓倍の周波数で周波数変換した信号の正相の上側波帯である前記複数の中間周波数とを取り出す手段を有し、前記送信高周波部に前記連動した周波数の前記複数の中間周波数(IF1(130MHz)とIF2(190MHz)またはIF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz))を前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(17CLO(170MHz)と(11CLO(110MHz)または17CLO(170MHz)と(11CLO(110MHz)と23CLO(230MHz)と5CLO(50MHz)) で周波数変換する手段と前記CLOの周波数の逓倍の周波数で周波数変換した信号の上側波帯である前記CLOの周波数の30倍の周波数30CLO(300MHz)を取り出す手段と(前記送信制御部と前記送信高周波部の位相同期ループPLLの前記共通局部発信器CLOの周波数との分周比の合計等しくさせて、)前記取り出した30CLO(300MHz)を前記CLOの周波数の90倍の位相同期ループPLLの周波数90CLO(900MHz)で周波数変換した信号の上側波帯である前記同一の無線周波数(RF)(1200MHz)を取り出す手段を有する構成と、(案3)前記送信制御部の共通局部発信器と前記送信制御部の共通局部発信器とを互いに位相同期ループPLLで連動させる手段を有し、前記送信高周波部に前記同一の高周波数RF(1200MHz)と前記連動した周波数の複数の中間周波数の差の周波数の前記連動させた共通局部発信器CLOの周波数の逓倍の周波数で前記連動した周波数の複数の中間周波数周波数を前記同一の高周波数RFに直接変換して取り出す手段を有する構成と、のいずれか一方の構成を有することを特徴とする送信装置である。 (Concepts of Proposal 234) Further, in any one of the configurations of the above transmitter, (Proposal 3 FIG. 9B) IF1 (130 MHz), IF2 (190 MHz), IF3 (70 MHz ) And IF4 (250 MHz) at a frequency 16CLO (160 MHz) of the phase-locked loop PLL 16 times the frequency of the CLO and a lower sideband of the opposite phase of the signal frequency-converted at the 16 CLO (30 MHz) Means for taking out the 3CLO (30 MHz) and 9CLO (90 MHz), means for converting the extracted 3CLO (30 MHz) and 9CLO (90 MHz) with the 16 CLO (160 MHz) and the frequency conversion with the 16 CLO (30 MHz) Means for extracting the 7 CLO (70 MHz) and 13 CLO (130 MHz) of the lower sideband of the positive phase of the signal, and the extracted 7 CLO (70 MHz) and 13 CLO (130 MHz) are 10 times the phase of the CLO frequency. Means for frequency conversion at frequency 10CLO (100MHz) of synchronous loop PLL and reverse of frequency converted signal at 10CLO (100MHz) Means for extracting the 3CLO (30 MHz) in the lower sideband, means for converting the extracted 3CLO (30 MHz) at a frequency 117 CLO (1170 MHz) of a phase-locked loop PLL that is 117 times the frequency of the CLO, and the 117 CLO The structure of the means for converting to the same high frequency RF (1200 MHz) of the upper sideband of the opposite phase of the signal frequency-converted in (3) (plan 3 FIG. 9A) IF1 of the linked frequency to the transmission high-frequency unit Means for converting the frequency of IF2 at a frequency 3CLO (30 MHz) of a phase-locked loop PLL that is three times the frequency of the CLO, and the frequency conversion at the lower sideband 16CLO (160 MHz) of the signal frequency-converted by the 3CLO and the 3CLO Means for extracting the 16 CLO (90 MHz) of the upper sideband of the obtained signal, means for frequency converting the extracted 16 CLO (160 MHz) with the frequency 104 CLO (1040 MHz) of the phase-locked loop PLL 104 times the frequency of the CLO, and the 104 CLO The same high frequency RF that is the upper sideband of the signal frequency-converted at 1200 MHz), and (Claim 3 Fig. 10) The transmission high-frequency unit, IF1 and IF2 of the interlocked frequency to the average frequency (160MHz) of IF1 and IF2 of the interlocked frequency Means for converting the frequency at a frequency 16CLO (160 MHz) of a phase-locked loop PLL 16 times the frequency of the signal, means for extracting 3CLO (30 MHz) of the lower sideband of the signal frequency-converted by the 16CLO, and the extracted 3CLO (30 MHz ) Is converted at a frequency 117CLO (1170 MHz) of the phase locked loop PLL that is 117 times the frequency of the CLO, and the same high frequency RF (1200 MHz) that is the upper side band of the signal frequency-converted by the 117CLO is extracted. And (plan 2 FIG. 8A and FIG. 8B) means for linking the common local oscillator of the transmission control unit and the common local oscillator of the transmission control unit with each other by a phase-locked loop PLL. The frequency of the common local oscillator CLO linked to the control unit. A means for frequency-converting an OFDM modulated wave to a frequency multiplied by a number NCLO (20 MHz or 30 MHz) (positive phase thereof) and a signal obtained by frequency-converting the OFDM modulated wave to the NCLO (positive phase) of the plurality of intermediate frequencies (IF1 (130MHz) and IF2 (190MHz) or IF1 (130MHz) and IF2 (190MHz), third intermediate frequency IF3 (70MHz) and fourth intermediate frequency IF4 (250MHz)) and the frequency of the difference between the NCLO (11CLO ( 110MHz) and 17CLO (170MHz) or 11CLO (110MHz) and 17CLO (170MHz) and 5CLO (50MHz) and 23CLO (230MHz) or 10CLO (100MHz) and 16CLO (160MHz) or 10CLO (100MHz) and 16CLO (160MHz) and 4CLO ( 40 MHz) and 22 CLO (220 MHz)) having means for taking out the plurality of intermediate frequencies that are the upper phase bands of the positive phase of the signal frequency-converted at the frequency multiplied by the CLO, and the interlocking with the transmission high-frequency unit The intermediate frequencies (IF1 (130 MHz) and IF2 (190 MHz) or IF1 (130 MHz) and IF2 (1 90MHz), IF3 (70MHz) and IF4 (250MHz)), the frequency of the common local oscillator CLO, which is linked to the frequency (17CLO (170MHz) and (11CLO (110MHz) or 17CLO (170MHz) and (11CLO (110MHz)) ), 23CLO (230MHz) and 5CLO (50MHz)) 30CLO (300MHz), 30 times the frequency of the CLO, which is the upper sideband of the signal frequency-converted at the frequency multiplied by the frequency multiplied by the frequency of the CLO Means for taking out (by equalizing the sum of the division ratios of the frequency of the common local oscillator CLO of the phase locked loop PLL of the transmission control unit and the transmission high-frequency unit) and the 30 CLO taken out (300 MHz) to the CLO A configuration having means for extracting the same radio frequency (RF) (1200 MHz), which is the upper side band of a signal frequency-converted at a frequency 90 CLO (900 MHz) of a phase-locked loop PLL 90 times the frequency of (3) Common local oscillator of the transmission control unit and the transmission control unit A means for linking a common local oscillator with each other by a phase-locked loop PLL, and the linking of the same high frequency RF (1200 MHz) and a difference between a plurality of intermediate frequencies of the linked frequencies in the transmission high frequency section A configuration having means for directly converting and extracting a plurality of intermediate frequency frequencies of the interlocked frequencies at the frequency multiplied by the frequency of the common local oscillator CLO, and extracting the same to the same high frequency RF. It is a transmitter characterized by having.

(案4の高速DAC概念) また、上記送信装置のいずれか一つの構成において、 前記送信制御部に、 第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)との差の絶対値の半分の周波数(30MHz)となる共通局部発信器CLOの周波数(10MHz)の3倍の周波数3CLO(30MHz)の正相と逆相にOFDM変調波をデジタル領域で周波数変換する手段と前記3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換した信号を前記IF2と前記IF1の平均の周波数(160MHz)となる前記CLOの周波数(10MHz)の16倍の共通周波数16CLOでデジタル領域で周波数変換する手段と前記共通周波数16CLOで周波数変換した信号の逆相の下側波帯である前記IF1(130MHz)と前記共通周波数16CLOで周波数変換した信号の正相の上側波帯である前記IF2(190MHz)とをデジタル領域で取り出す手段と、 前記共通周波数16CLOで周波数変換しデジタル領域で取り出したIF1(130MHz)とIF2(190MHz)とを前記共通周波数16CLO(160MHz)の逓倍(320MHz又は480MHz又は640MHz又は800MHz又は960MHz又は1120MHz)の周波数または前記IF1(130MHz)と前記IF2(190MHz)との共通逓倍の共通周波数(3040MHz)でデジタル/アナログ変換(D/A)する手段との構成と 第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)と第三の中間周波数IF3(70MHz)と第四の中間周波数IF4(250MHz)とにOFDM変調波をデジタル領域で周波数変換する手段と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの逓倍の共通周波数でデジタル領域で周波数変換し前記CLOの逓倍の共通周波数の逓倍の共通周波数または前記複数の中間周波数の共通逓倍の共通周波数とのいずれか一方の共通周波数でするデジタル/アナログ変換(D/A)する手段の構成と、を有し、 前記送信高周波部に、 前記連動した周波数の複数の中間周波数(IF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz))を前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(64CLO(640MHz)または80CLO(800MHz)または96CLO(960MHz)) でアナログ/デジタル変換(A/D)しデジタル/アナログ変換(D/A)し前記CLOの周波数の16倍の逓倍の周波数16NCLO(160MHz又は320MHz)に変換する手段と前記変換した16N CLOを前記CLOの周波数の104倍又は88倍の周波数104CLO(1040MHz)又は88CLO(880MHz)で前記同一の無線周波数(RF)(1200MHz)に変換する手段の構成と、 前記送信高周波部に、前記連動した周波数のIF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz)とを前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)と前記9CLO(90MHz)を取り出す手段と、前記取り出した3CLO(30MHz)と9CLO(90MHz)を前記16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の正相の下側波帯の前記7CLO(70MHz)と前記13CLO(130MHz)を取り出す手段と、前記取り出した7CLO(70MHz)と13CLO(130MHz)を前記を前記CLOの周波数の10倍の位相同期ループPLLの周波数10CLO(100MHz)で周波数変換する手段と前記10CLO(100MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の逆相の上側波帯の前記同一の高周波数RF(1200MHz)に変換する手段との構成と、 前記連動した周波数のIF1とIF2とを前記CLOの周波数の3倍の位相同期ループPLLの周波数3CLO(30MHz)で周波数変換する手段と前記3CLOで周波数変換した信号の下側波帯の16CLO(160MHz)と前記3CLOで周波数変換した信号の上側波帯の16CLO(90MHz)を取り出す手段と、前記取り出した16CLO(160MHz)を前記CLOの周波数の104倍の位相同期ループPLLの周波数104CLO(1040MHz)で周波数変換する手段と前記104CLOで周波数変換した信号の上側波帯である前記同一の高周波数RF(1200MHz)を取り出す手段との構成と、 前記連動した周波数のIF1とIF2とを前記連動した周波数のIF1とIF2の平均周波数(160MHz)となる前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLOで周波数変換した信号の下側波帯の3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の上側波帯である前記同一の高周波数RF(1200MHz)を取り出す手段との構成と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの逓倍の共通周波数で周波数変換する手段の構成を有することを特徴とする送信装置である。 (Concept of high-speed DAC of plan 4) In any one of the configurations of the transmission device, the transmission control unit may determine a difference between the first intermediate frequency IF1 (130 MHz) and the second intermediate frequency IF2 (190 MHz). Means for frequency-converting an OFDM-modulated wave in the digital domain in the positive and negative phases of the frequency 3CLO (30MHz), which is three times the frequency of the common local oscillator CLO (10MHz), which is half the absolute value (30MHz) 3CLO (30 MHz) OFDM modulated wave frequency converted to normal phase and reverse phase of digital signal at 16 CLO common frequency 16 CLO which is the average frequency (160 MHz) of IF2 and IF1 and the CLO frequency (10 MHz) The IF1 (130 MHz), which is the lower sideband of the opposite phase of the signal frequency-converted at the common frequency 16CLO, and the positive-phase upper sideband of the signal frequency-converted at the common frequency 16CLO Means for taking out IF2 (190 MHz) in the digital domain, and the common IF1 (130 MHz) and IF2 (190 MHz) obtained by frequency conversion at a frequency of 16 CLO, and IF2 (190 MHz) are multiplied by the common frequency 16 CLO (160 MHz) (320 MHz, 480 MHz, 640 MHz, 800 MHz, 960 MHz, or 1120 MHz) or the IF1 ( 130MHz) and IF2 (190MHz) common frequency multiplication (3040MHz) common digital (analog) conversion (D / A) means, first intermediate frequency IF1 (130MHz) and second intermediate frequency IF2 (190 MHz), a third intermediate frequency IF3 (70 MHz), and a fourth intermediate frequency IF4 (250 MHz), a means for frequency-converting an OFDM modulated wave in the digital domain, and the plurality of intermediate frequencies of any one of the configurations The digital frequency is converted in the digital domain with the common frequency multiplied by the CLO and the common frequency multiplied by the common frequency multiplied by the CLO or the common frequency multiplied by the common frequency of the plurality of intermediate frequencies. The transmission high-frequency unit includes a plurality of intermediate frequencies (IF1 (130 MHz), IF2 (190 MHz), and IF3 (70 MHz)). IF4 (250 MHz)) is analog / digital converted (A / D) at a frequency (64 CLO (640 MHz), 80 CLO (800 MHz) or 96 CLO (960 MHz)) multiplied by the frequency of the synchronized local local oscillator CLO. Means for analog conversion (D / A) and conversion to a frequency 16NCLO (160 MHz or 320 MHz) multiplied by 16 times the frequency of the CLO and the converted 16N CLO at a frequency 104CLO (104 or 88 times the CLO frequency) 1040MHz) or 88CLO (880MHz), the means for converting to the same radio frequency (RF) (1200MHz), the transmission high-frequency part, IF1 (130MHz), IF2 (190MHz) and IF3 (IF3 ( 70MHz) and IF4 (250MHz) are 16 times in phase with the CLO frequency. Means for converting the frequency at a loop PLL frequency of 16 CLO (160 MHz), means for extracting the 3 CLO (30 MHz) and the 9 CLO (90 MHz) of the lower sideband of the opposite phase of the signal frequency-converted by the 16 CLO (30 MHz), Means for frequency conversion of the extracted 3CLO (30 MHz) and 9 CLO (90 MHz) with the 16 CLO (160 MHz), and the 7 CLO (70 MHz) and 13 CLO of the lower sideband of the positive phase of the signal frequency-converted with the 16 CLO (30 MHz) Means for extracting (130 MHz), means for converting the extracted 7 CLO (70 MHz) and 13 CLO (130 MHz) with a frequency 10 CLO (100 MHz) of a phase-locked loop PLL 10 times the frequency of the CLO, and the 10 CLO ( 100 MHz) means for extracting the 3CLO (30 MHz) of the lower sideband of the opposite phase of the signal whose frequency is converted, and the extracted 3CLO (30 MHz) is a frequency 117 CLO of the phase-locked loop PLL that is 117 times the frequency of the CLO. 1170MHz) before the upper sideband of the opposite phase of the signal frequency-converted by 117CLO Means for converting to the same high-frequency RF (1200 MHz), and means for frequency-converting the interlocked frequencies IF1 and IF2 at a frequency 3CLO (30 MHz) of the phase-locked loop PLL three times the frequency of the CLO And means for taking out 16 CLO (160 MHz) of the lower sideband of the signal frequency-converted by the 3CLO and 16 CLO (90 MHz) of the upper sideband of the signal frequency-converted by the 3CLO, and the 16CLO (160 MHz) taken out of the CLO The means for converting the frequency at the frequency 104CLO (1040MHz) of the phase-locked loop PLL 104 times the frequency of the signal and the means for extracting the same high frequency RF (1200MHz) which is the upper sideband of the signal frequency-converted by the 104CLO And IF1 and IF2 of the interlocked frequencies are frequency-converted at a frequency 16CLO (160 MHz) of the phase-locked loop PLL that is 16 times the frequency of the CLO that is the average frequency (160 MHz) of the IF1 and IF2 of the interlocked frequencies. And frequency-converted signal by 16CLO Means for taking out the lower sideband 3CLO (30 MHz), means for converting the extracted 3CLO (30 MHz) at a frequency 117 CLO (1170 MHz) of the phase-locked loop PLL that is 117 times the frequency of the CLO, and a frequency at the 117 CLO And a means for extracting the same high frequency RF (1200 MHz), which is the upper sideband of the converted signal, and frequency-converting the plurality of intermediate frequencies of any one of the configurations at a common frequency multiplied by the CLO A transmission apparatus characterized by having a configuration of means.

(案234共通上位概念のチャレンジ請求項) つまり、本発明は、OFDM方式により同一の無線周波数(RF)(1200MHz)で複数のアンテナからそれぞれ異なる変調データ信号を送信する送信高周波部と単一の中間周波数ケーブルと送信制御部とからなり複数の中間周波数を前記送信制御部から送信高周波部に向けて前記単一のケーブルを用いて伝送する手段を有する送信装置において、前記送信制御部にOFDM変調波を共通局部発信器CLOの第一の組の逓倍の周波数で前記複数の中間周波数に周波数変換する手段を有し、前記送信高周波部に前記複数の中間周波数を前記CLOの第二の組の逓倍の周波数で同一の高周波数RF(1200MHz)に変換する手段を有し、前記複数のアンテナから送信されるそれぞれ異なる変調データ信号の同一の無線周波数(RF)が前記CLOの周波数(10MHz)に連動する割合を等しくすることを特徴とする送信装置である。 (Draft 234 Common Higher Concept Challenge Claim) That is, the present invention provides a single transmission high-frequency unit that transmits different modulated data signals from a plurality of antennas at the same radio frequency (RF) (1200 MHz) by the OFDM method. In a transmission apparatus comprising an intermediate frequency cable and a transmission control unit and having means for transmitting a plurality of intermediate frequencies from the transmission control unit to a transmission high frequency unit using the single cable, OFDM modulation is performed on the transmission control unit. Means for frequency converting the plurality of intermediate frequencies to a plurality of intermediate frequencies at a frequency multiplied by a first set of common local oscillators CLO, and transmitting the plurality of intermediate frequencies to the second set of CLOs Means for converting to the same high frequency RF (1200 MHz) at the multiplied frequency, and the same radio frequency (RF) of each different modulated data signal transmitted from the plurality of antennas A transmitting apparatus characterized by equal proportions in conjunction with the frequency (10 MHz) of CLOs.

以上説明したように、本発明によると、系統間で共通のLoを用いることで、ミキサLO信号に周波数偏差が生じた場合、各IF周波数の周波数偏差の絶対値は等しくなることにより系統間の周波数相対偏差を0にする。そのため、比較的低価格な水晶発振器を用いても、無線周波数(RFのARIB仕様50Hz)の高精度の許容周波数偏差を実現して、同一の高周波数RF(1200MHz)に変換することが出来る。   As described above, according to the present invention, when a frequency deviation occurs in the mixer LO signal by using a common Lo between the systems, the absolute values of the frequency deviations of the IF frequencies are equalized between the systems. Set the frequency relative deviation to 0. Therefore, even with a relatively low-priced crystal oscillator, it is possible to achieve a high-accuracy allowable frequency deviation of radio frequency (RF ARIB specification 50 Hz) and convert it to the same high frequency RF (1200 MHz).

周波数偏差が生じた時の信号成分と雑音成分を説明する模式図Schematic diagram explaining signal components and noise components when frequency deviation occurs 周波数偏差デルタfと等価C/N(CNR)の関係を説明する模式図Schematic diagram explaining the relationship between frequency deviation delta f and equivalent C / N (CNR) 発振器の周波数偏差デルタaと1系/2系の周波数偏差の関係を説明する模式図Schematic diagram explaining the relationship between the frequency deviation delta a of the oscillator and the frequency deviation of the 1 system / 2 system 本発明の1実施例の(案1)MIMO−OFDM方式の送信装置のダイレクト変換&PLL構成を示すブロック図FIG. 1 is a block diagram showing a direct conversion & PLL configuration of a (plan 1) MIMO-OFDM transmission apparatus according to an embodiment of the present invention; 本発明の1実施例の(案1)MIMO−OFDM方式の送信装置のダイレクト変換&PLL構成のPLL装置構成を示すブロック図1 is a block diagram showing a PLL device configuration of a direct conversion & PLL configuration of a (plan 1) MIMO-OFDM transmission device according to an embodiment of the present invention; 本発明の1実施例の(案1)MIMO−OFDM方式の送信装置のダイレクト変換&PLL構成のPLL装置構成の詳細構成を示すブロック図1 is a block diagram showing a detailed configuration of a PLL device configuration of a direct conversion & PLL configuration of a (plan 1) MIMO-OFDM transmission device according to an embodiment of the present invention; MIMO−OFDM方式の伝送システム構成を示すブロック図((a)中間周波数(IF)とアンテナが2ケ、(b)中間周波数(IF)とアンテナが4ケ)Block diagram showing the structure of a MIMO-OFDM transmission system ((a) intermediate frequency (IF) and two antennas, (b) intermediate frequency (IF) and four antennas) 本発明の他の1実施例の(案2)送信制御部(TC)と送信高周波部(TH)間に位相同期ループ(PLL)を行いTCのPLL分周比とTHのPLL分周比の合計が等しい構成を示すブロック図(20MHzでD/A)((a)中間周波数(IF)が2ケでTCのPLL分周比とTHのPLL分周比をクロスに設定、(b)中間周波数(IF)が4ケでTCのPLL分周比とTHのPLL分周比の合計が等しい)(Draft 2) In another embodiment of the present invention, a phase-locked loop (PLL) is performed between the transmission control unit (TC) and the transmission high-frequency unit (TH), and the TC PLL division ratio and the TH PLL division ratio are set. Block diagram (D / A at 20 MHz) ((a) The intermediate frequency (IF) is two, and the TC PLL frequency division ratio and the TH PLL frequency division ratio are set to cross, (b) Intermediate (Frequency (IF) is 4 and the sum of TC PLL division ratio and TH PLL division ratio is equal) 本発明の他の1実施例の(案2)送信制御部(TC)と送信高周波部(TH)間に位相同期ループ(PLL)を行いTCのPLL分周比とTHのPLL分周比の合計が等しい構成を示すブロック図(30MHzでD/A)((a)中間周波数(IF)が2ケでTCのPLL分周比とTHのPLL分周比の合計が等しい、(b)中間周波数(IF)が4ケでTCのPLL分周比とTHのPLL分周比の合計が等しい)(Draft 2) In another embodiment of the present invention, a phase-locked loop (PLL) is performed between the transmission control unit (TC) and the transmission high-frequency unit (TH), and the TC PLL division ratio and the TH PLL division ratio are set. Block diagram showing a configuration with the same total (D / A at 30 MHz) ((a) The intermediate frequency (IF) is two and the sum of the TC PLL frequency division ratio and the TH PLL frequency division ratio is equal, (b) Intermediate (Frequency (IF) is 4 and the sum of TC PLL division ratio and TH PLL division ratio is equal) 本発明の他の1実施例の(案3)共通Loのミキサ構成を示すブロック図(中間周波数(IF)とアンテナが2ケ)(Draft 3) Block diagram showing a common Lo mixer configuration (an intermediate frequency (IF) and two antennas) of another embodiment of the present invention 本発明の他の1実施例の(案3)共通Loのミキサ構成を示すブロック図(中間周波数(IF)とアンテナが4ケ、TCで、正相と逆相各2ケ合計4ケの30MHzを100MHzでMIXし、130MHz/70MHz取り出し、160MHzでMIXし、30MHz/90MHz取り出し、160MHzでMIXし、130MHz/190MHz/70MHz/250MHz取り出し、伝送し、THで、160MHzでMIXし、30MHz/90MHz取り出し、160MHzでMIXし、130MHz/70MHz取り出し、100MHzでMIXし、30MHz取り出し、1070MHzでMIXし、1200MHz取り出す。)(Draft 3) Block diagram showing a common Lo mixer configuration (an intermediate frequency (IF) and four antennas, two TCs, two for each of the positive phase and the reverse phase, 30 MHz in total) according to another embodiment of the present invention. MIX at 100MHz, extract at 130MHz / 70MHz, mix at 160MHz, extract at 30MHz / 90MHz, mix at 160MHz, extract at 130MHz / 190MHz / 70MHz / 250MHz, transmit, mix at 160MHz with TH, extract at 30MHz / 90MHz MIX at 160MHz, 130MHz / 70MHz, MIX at 100MHz, 30MHz, MIX at 1070MHz, 1200MHz 本発明の他の1実施例の(案3)共通Loのミキサ構成を示すブロック図Block diagram showing a (Lo 3) common Lo mixer configuration of another embodiment of the present invention 本発明の他の1実施例の周波数シフトを説明する模式図Schematic diagram illustrating the frequency shift of another embodiment of the present invention. 本発明の他の1実施例の(案4)共通LoのD/A構成と共通Loのミキサ構成を示すブロック図((a)送信制御部(TC)で共通16CLO(160MHz)の逓倍(320MHz又は480MHz又は640MHz又は800MHz又は960MHz)の周波数でD/A、(b)送信制御部(TC)でIF1(130MHz)とIF2(190MHz)の共通逓倍(3040MHz)の周波数でD/A)Block diagram showing (Draft 4) common Lo D / A configuration and common Lo mixer configuration of another embodiment of the present invention ((a) Multiplication (320 MHz) of common 16 CLO (160 MHz) in transmission control unit (TC) Or D / A at a frequency of 480 MHz, 640 MHz, 800 MHz or 960 MHz), (b) D / A at a frequency of the common multiplication (3040 MHz) of IF1 (130 MHz) and IF2 (190 MHz) in the transmission control unit (TC)) 本発明の他の1実施例の(案5)4x4MIMOで共通LoのD/A構成と共通Loのミキサ構成を示すブロック図((c)4x4MIMOで送信制御部(TC)で共通16CLO(160MHz)の逓倍(480MHz又は640MHz又は800MHz又は960MHz)の周波数でD/Aし、送信高周波部(TH)で共通16CLO(160MHz)の逓倍の周波数でA/Dし、再D/Aし、16CLO(160MHz)又は32CLO(320MHz)にして、104CLO(1040MHz)で1200MHzに変換する。(d)4x4MIMOで送信制御部(TC)で共通16CLO(160MHz)の逓倍の周波数でD/Aし、送信高周波部(TH)で共通16CLO(160MHz)の逓倍の周波数でA/Dし、240CLO(2400MHz)でD/Aし、1200MHzに変換する。)Block diagram illustrating (Draft 5) 4 × 4 MIMO common Lo D / A configuration and common Lo mixer configuration of another embodiment of the present invention ((c) 4 × 4 MIMO common to transmission control unit (TC) 16 CLO (160 MHz)) D / A at a frequency multiplied by 480 MHz, 640 MHz, 800 MHz or 960 MHz, A / D at a frequency multiplied by 16 CLO (160 MHz) common in the transmission high-frequency part (TH), re-D / A, and 16 CLO (160 MHz ) Or 32 CLO (320 MHz) and converted to 1200 MHz by 104 CLO (1040 MHz) (d) D / A at a frequency multiplied by 16 CLO (160 MHz) common in the transmission control unit (TC) by 4 × 4 MIMO, and the transmission high frequency unit ( TH) A / D at a frequency multiplied by 16CLO (160MHz) common, D / A at 240CLO (2400MHz), and converted to 1200MHz.) 本発明の他の1実施例の(案5)4x4MIMOで共通LoのD/A構成と共通Loのミキサ構成を示すブロック図((e)4x4MIMOで送信制御部(TC)で共通16CLO(160MHz)の逓倍(480MHz又は640MHz又は800MHz又は960MHz)の周波数でD/Aし、送信高周波部(TH)で共通16CLO(160MHz)でMIXし、30MHz/90MHz取り出し、160MHzでMIXし、130MHz/70MHz取り出し、100MHzでMIXし、30MHz取り出し、1070MHzでMIXし、1200MHz取り出す。)Block diagram showing (Draft 5) 4 × 4 MIMO common Lo D / A configuration and common Lo mixer configuration of another embodiment of the present invention ((e) 4 × 4 MIMO common to transmission control unit (TC) 16 CLO (160 MHz)) D / A at a frequency multiplied by 480MHz or 640MHz or 800MHz or 960MHz, MIX with 16CLO (160MHz) common in the transmission high frequency part (TH), 30MHz / 90MHz extraction, MIX at 160MHz, 130MHz / 70MHz extraction, Mix at 100MHz, take out 30MHz, mix at 1070MHz, take out 1200MHz.)

本発明の実施例の全体構成として、ARIB-STD-B33に準拠したFPUの伝送システムを説明する。
MIMO−OFDM方式の伝送システムを示した説明図の図7において、(a)は中間周波数(IF)とアンテナが2ケであり、(b)は中間周波数(IF)とアンテナが4ケである。図7において、1は送信制御部、2は送信高周波部、3〜10はアンテナであり、11は送信高周波数部、12は受信制御部である。
As an overall configuration of the embodiment of the present invention, an FPU transmission system compliant with ARIB-STD-B33 will be described.
In FIG. 7 of the explanatory diagram showing the MIMO-OFDM transmission system, (a) shows two intermediate frequencies (IF) and antennas, and (b) shows four intermediate frequencies (IF) and antennas. . In FIG. 7, 1 is a transmission control unit, 2 is a transmission high frequency unit, 3 to 10 are antennas, 11 is a transmission high frequency unit, and 12 is a reception control unit.

MIMO−OFDM方式の伝送システムは1つの送信制御部と2つの送信高周波部と2つの送信アンテナで構成される送信部と、1つの受信制御部と2つの受信高周波部と2つの受信アンテナで構成される受信部での伝送システムが一般的である。送信制御部は中間周波数IF(Internal Frequency)信号を、送信高周波部に対して送信する。送信高周波部ではIF信号をRF(Radio Frequency)信号に変調し、電力増幅を行った後、送信アンテナから空間へ送出される。   A MIMO-OFDM transmission system includes a transmission unit configured by one transmission control unit, two transmission high-frequency units, and two transmission antennas, one reception control unit, two reception high-frequency units, and two reception antennas. A transmission system at a receiving unit is generally used. The transmission control unit transmits an intermediate frequency (IF) signal to the transmission high frequency unit. The transmission high-frequency unit modulates the IF signal into an RF (Radio Frequency) signal, performs power amplification, and then transmits the signal from the transmission antenna to space.

送信制御部は、二つの系統毎に異なるIF信号を出力する。送信制御部は、映像や音声その他のデータのTS信号に対して、誤り訂正符号を付加したり、周波数・時間インターリーブを行ったり、直交変調を行ったりする信号処理を行う。 送信高周波部ではIF信号をRF(Radio Frequency)信号に変調し、電力増幅を行った後、送信アンテナから空間へ送出される。送信高周波部2は同一の周波数にて送信アンテナ3〜6から信号を送信する。 受信高周波部11は同一の周波数を受信アンテナ7〜10を用いて受信する。中間周波数(IF)とアンテナが2ケの(a)では受信アンテナ7は、それぞれ異なる伝送路の影響を受けた送信アンテナ3、4からの2つの信号を受信する。受信アンテナ8も同様に、それぞれ異なる伝送路の影響を受けた送信アンテナ3、4からの2つの信号を受信する。中間周波数(IF)とアンテナが4ケの(b)では受信アンテナ7は、それぞれ異なる伝送路の影響を受けた送信アンテナ3〜6からの4つの信号を受信する。以下同様で、受信アンテナ10も同様に、それぞれ異なる伝送路の影響を受けた送信アンテナ3〜6からの4つの信号を受信する。   The transmission control unit outputs different IF signals for each of the two systems. The transmission control unit performs signal processing such as adding an error correction code, frequency / time interleaving, or quadrature modulation to a TS signal of video, audio, or other data. The transmission high-frequency unit modulates the IF signal into an RF (Radio Frequency) signal, performs power amplification, and then transmits the signal from the transmission antenna to space. The transmission high-frequency unit 2 transmits signals from the transmission antennas 3 to 6 at the same frequency. The reception high-frequency unit 11 receives the same frequency using the reception antennas 7 to 10. In (a) with two intermediate frequencies (IF) and two antennas, the receiving antenna 7 receives two signals from the transmitting antennas 3 and 4 that are affected by different transmission paths. Similarly, the receiving antenna 8 receives two signals from the transmitting antennas 3 and 4 that are affected by different transmission paths. In (b) having four intermediate frequencies (IF) and four antennas, the receiving antenna 7 receives four signals from the transmitting antennas 3 to 6 that are affected by different transmission paths. Similarly, the receiving antenna 10 similarly receives four signals from the transmitting antennas 3 to 6 that are affected by different transmission paths.

受信高周波部では、受信アンテナが受信したRF信号をIF信号に周波数変換する。 受信制御部では、IF信号を復調し、TS(Transport Stream)信号を出力する。 受信制御部では、復調したデータの誤り訂正符号の復号化、周波数・時間のインターリーブの信号処理を行う。   The reception high-frequency unit converts the frequency of the RF signal received by the reception antenna into an IF signal. The reception control unit demodulates the IF signal and outputs a TS (Transport Stream) signal. The reception control unit performs decoding of an error correction code of demodulated data and frequency / time interleaving signal processing.

本発明に係る実施例を図4から図11を参照して説明する。
本発明の1実施例の(案1)MIMO−OFDM方式の送信装置のダイレクト変換&PLL構成を示すブロック図の図4において、送信制御部ではDC周波数をダイレクトコンバージョンでIF周波数に変換する。高周波部では、逆に一旦DCに周波数変換し、その後RFまでダイレクトコンバージョンで周波数変換する。本方式は、Tc-Th間でPLLが必須となり、また、ダイレクトコンバージョン方式に起因するLoリークが発生する。
An embodiment according to the present invention will be described with reference to FIGS.
In FIG. 4 of the block diagram showing the direct conversion & PLL configuration of the (plan 1) MIMO-OFDM transmission device of one embodiment of the present invention, the transmission control unit converts the DC frequency to the IF frequency by direct conversion. In the high-frequency part, on the contrary, the frequency is once converted to DC and then converted to RF by direct conversion. This method requires a PLL between Tc and Th, and generates a Lo leak due to the direct conversion method.

本発明の1実施例の(案1)MIMO−OFDM方式の送信装置のダイレクト変換&PLL構成のPLL装置構成を示すブロック図の図5において、それぞれに搭載する発振器としては10MHzとし、送信高周波部でカウントした結果を、PLCモジュールを経由してFPGAに転送する。FPGAでは、得られたカウンタ値と自身でカウントした結果とを比較して送信制御部の発振周波数を制御する。 In FIG. 5 of the block diagram showing the PLL device configuration of the direct conversion & PLL configuration of the MIMO-OFDM transmission device according to (plan 1) of one embodiment of the present invention, the oscillator mounted on each is 10 MHz, and the transmission high-frequency unit is The counted result is transferred to the FPGA via the PLC module. The FPGA controls the oscillation frequency of the transmission control unit by comparing the obtained counter value with the result counted by itself.

本発明の1実施例の(案1)MIMO−OFDM方式の送信装置のダイレクト変換&PLL構成のPLL装置構成の詳細構成を示すブロック図の図6において、ThのCPUでは100ms毎のタイマー割り込みを発生し、転送ジッタが少なくなるように最も高い優先度でCPLD内のカウンタ値を読み出し、Tcへ転送する。TcのCPUも同様に、最も高い優先度でFPGA内のレジスタにカウント値を書き込む。TcのFPGAではレジスタ情報に基づいてPLL制御を行う。   FIG. 6 is a block diagram showing the detailed configuration of the PLL device configuration of the direct conversion & PLL configuration of the MIMO-OFDM transmission device according to (Draft 1) of one embodiment of the present invention. The Th CPU generates a timer interrupt every 100 ms. Then, the counter value in the CPLD is read with the highest priority so as to reduce the transfer jitter and transferred to Tc. Similarly, the CPU of Tc writes the count value to the register in the FPGA with the highest priority. The Tc FPGA performs PLL control based on the register information.

本発明の他の1実施例の(案2)ヘテロダイン&PLL構成を示すブロック図の図8Aと図8Bを用いて、動作を説明する。   The operation will be described with reference to FIGS. 8A and 8B of the block diagram showing the (Draft 2) heterodyne & PLL configuration of another embodiment of the present invention.

図8Aは、本発明の他の1実施例の(案2)送信制御部(TC)と送信高周波部(TH)間に位相同期ループ(PLL)を行いTCのPLL分周比とTHのPLL分周比の合計が等しい構成を示すブロック図(20MHzでD/A)((a)中間周波数(IF)が2ケでTCのPLL分周比とTHのPLL分周比をクロスに設定、(b)中間周波数(IF)が4ケでTCのPLL分周比とTHのPLL分周比の合計が等しい) 図8Bは本発明の他の1実施例の(案2)送信制御部(TC)と送信高周波部(TH)間に位相同期ループ(PLL)を行いTCのPLL分周比とTHのPLL分周比の合計が等しい構成を示すブロック図(30MHzでD/A)((a)中間周波数(IF)が2ケでTCのPLL分周比とTHのPLL分周比の合計が等しい、(b)中間周波数(IF)が4ケでTCのPLL分周比とTHのPLL分周比の合計が等しい) 図8Aと図8Bにおいて、で、71と72はD/Aで、13と14は共通局部発信器CLOで、15〜30は位相同期ループPLLで、31〜36はMIXERである。   FIG. 8A is a diagram (plan 2) of another embodiment of the present invention, in which a phase-locked loop (PLL) is performed between the transmission control unit (TC) and the transmission high-frequency unit (TH), and the PLL frequency division ratio of TC and the PLL of TH Block diagram showing a configuration in which the sum of the division ratios is equal (D / A at 20 MHz) ((a) The intermediate frequency (IF) is two, and the TC PLL division ratio and the TH PLL division ratio are set to cross, (B) The intermediate frequency (IF) is four, and the sum of the TC PLL frequency division ratio and the TH PLL frequency division ratio is equal.) FIG. 8B is a (plan 2) transmission control unit according to another embodiment of the present invention (plan 2). A block diagram (D / A at 30 MHz) showing a configuration in which the phase-locked loop (PLL) is performed between the TC) and the transmission high-frequency unit (TH), and the sum of the TC PLL frequency division ratio and the TH PLL frequency division ratio is equal ((30 MHz D / A)) a) Sum of TC PLL division ratio and TH PLL division ratio with two intermediate frequencies (IF) (B) The intermediate frequency (IF) is 4 and the sum of the PLL frequency division ratio of TC and the PLL frequency division ratio of TH is equal. In FIGS. 8A and 8B, 71 and 72 are D / A, Reference numerals 13 and 14 are common local oscillators CLO, 15 to 30 are phase locked loop PLLs, and 31 to 36 are MIXERs.

図8Aと図8Bにおいて、ヘテロダイン構成を採用する場合、Tc-Th間のPLLを行ったとしても、系統毎に異なるPLL分周比を用いたミキサ構成では系統間の周波数偏差が発生してしまう。例えば、仮に送信制御部の周波数偏差は系統間で一致しているものとして、高周波部のみの偏差を考慮する。

Figure 2016058999
で、RFのミキサ構成をヘテロダインで周波数変換すると、ミキサのLo周波数はそれぞれ、
Figure 2016058999
となる。PLLのREFクロックとして
Figure 2016058999

Figure 2016058999
は周波数偏差)を採用すると、PLLの逓倍数はぞれぞれ、107倍、101倍である。これより、周波数偏差は
Figure 2016058999
(1系)、
Figure 2016058999
(2系)となり、系統間の周波数差は
Figure 2016058999
となってしまう。これが、50Hz以内であるためには、
Figure 2016058999
(9)となり、これは0.83ppmに相当する。
このように、系統毎に異なるPLL分周比を用いたミキサ構成では系統間の周波数偏差が発生してしまう。 8A and 8B, when the heterodyne configuration is adopted, even if the Tc-Th PLL is performed, the frequency deviation between the systems is generated in the mixer configuration using a different PLL frequency division ratio for each system. . For example, assuming that the frequency deviation of the transmission control unit matches between systems, the deviation of only the high frequency unit is considered.
Figure 2016058999
So, when the RF mixer configuration is frequency converted with heterodyne, the Lo frequency of the mixer is
Figure 2016058999
It becomes. As REF clock of PLL
Figure 2016058999
(
Figure 2016058999
Is the frequency deviation), the multiplication factor of the PLL is 107 times and 101 times, respectively. From this, the frequency deviation is
Figure 2016058999
(1 series),
Figure 2016058999
(System 2), the frequency difference between systems is
Figure 2016058999
End up. For this to be within 50Hz,
Figure 2016058999
(9), which corresponds to 0.83 ppm.
Thus, in a mixer configuration using different PLL frequency division ratios for each system, a frequency deviation between systems occurs.

そこで、(案2)では送信制御部と送信高周波部のPLL構成をクロスさせた構成として、Tc-ThのPLLを行うことで、それぞれの系統の周波数偏差を同一にすることができる。(系統間の周波数差を0とすることができる)。この構成の周波数偏差について説明する。上記と同様に、送信制御部のREFクロックとして、

Figure 2016058999

Figure 2016058999
は周波数偏差)を採用すると、PLLの逓倍数はぞれぞれ、11、17倍であるため、周波数偏差は
Figure 2016058999
(1系)、
Figure 2016058999
(2系)となる。送信高周波部のREFクロックが送信制御部のREFクロックにPLLさせることを前提として、REFクロックは送信制御部と同様の
Figure 2016058999
となる。送信高周波部のPLLの逓倍数は、送信制御部と逆に17、11倍に設定すると周波数偏差は
Figure 2016058999
(1系)、
Figure 2016058999
(2系)となる。以上のことから、1系の周波数偏差は
Figure 2016058999
となり、2系の周波数偏差も
Figure 2016058999
と1系と同値になる。このことから、相対的な周波数偏差は0となり、仕様を満足することができる。 Therefore, in (Scheme 2), the frequency deviation of each system can be made the same by performing the Tc-Th PLL as a configuration in which the PLL configuration of the transmission control unit and the transmission high-frequency unit are crossed. (The frequency difference between systems can be set to 0). The frequency deviation of this configuration will be described. As above, as the REF clock of the transmission control unit,
Figure 2016058999
(
Figure 2016058999
Frequency deviation), the PLL multiplication numbers are 11 and 17, respectively.
Figure 2016058999
(1 series),
Figure 2016058999
(2 series). Assuming that the REF clock of the transmission high-frequency unit is PLLed to the REF clock of the transmission control unit, the REF clock is the same as the transmission control unit.
Figure 2016058999
It becomes. If the PLL multiplication factor of the transmission high-frequency part is set to 17 or 11 times contrary to the transmission control part, the frequency deviation will be
Figure 2016058999
(1 series),
Figure 2016058999
(2 series). From the above, the frequency deviation of system 1 is
Figure 2016058999
And the frequency deviation of system 2 is
Figure 2016058999
Equivalent to the 1 system. From this, the relative frequency deviation becomes 0, which satisfies the specification.

図8A(a)に示す周波数はミキサLo周波数の逓倍がスペクトル近傍に発生しないように選定している(中心周波数から20MHz以上離れていることを条件としている)。Lo基本周波数110MHzの2倍高調波は220MHzで3倍高調波は330MHzで4倍高調波は440MHzであるLo基本周波数170MHzの2倍高調波は340MHzで3倍高調波は510MHzで4倍高調波は680MHzである。いずれもIF周波数の130MHzと190MHz近傍に位置しないため、問題は無い。   The frequency shown in FIG. 8A (a) is selected so that multiplication of the mixer Lo frequency does not occur in the vicinity of the spectrum (provided that the frequency is 20 MHz or more away from the center frequency). Lo fundamental frequency 110MHz 2nd harmonic is 220MHz, 3rd harmonic is 330MHz, 4th harmonic is 440MHz Lo fundamental frequency 170MHz 2nd harmonic is 340MHz, 3rd harmonic is 510MHz, 4th harmonic Is 680MHz. None of these are located near the IF frequencies of 130MHz and 190MHz, so there is no problem.

本発明の他の1実施例の(案3ミキサに共通のローカルを注入する方式の)共通Loのミキサ構成を示すブロック図の図9Aと図9Bと図10を用いて、動作を説明する。本方式は図9Aと図9Bと図10に示すように、送信制御部のミキサLoを送信制御部の内部で系統間で共通にして、送信高周波部のミキサLoは送信高周波部の内部で系統間で共通にして、送信制御部と送信高周波部とでは独立のLoを用いることで、ミキサLO信号に周波数偏差が生じた場合、各IF周波数の周波数偏差の絶対値は等しくなることにより系統間の周波数相対偏差を0にする。系統間の周波数偏差を0にする。また、図11に図10の周波数シフトのイメージを示す。 図9Aと図9Bと図10において、71と72と51と52はD/Aで、13と14は共通局部発信器CLOで、25〜29は位相同期ループPLLで、31〜36と87〜102はMIXERである。   The operation will be described with reference to FIG. 9A, FIG. 9B, and FIG. 10, which are block diagrams showing a common Lo mixer configuration (of a system in which a common local is injected into the plan 3 mixer) according to another embodiment of the present invention. In this method, as shown in FIG. 9A, FIG. 9B and FIG. 10, the mixer Lo of the transmission control unit is made common among the systems inside the transmission control unit, and the mixer Lo of the transmission high frequency unit is connected to the system inside the transmission high frequency unit. When the frequency deviation occurs in the mixer LO signal by using the independent Lo for the transmission control unit and the transmission high frequency unit in common, the absolute value of the frequency deviation of each IF frequency is equalized between the systems. Set the relative frequency deviation to 0. Set frequency deviation between systems to zero. FIG. 11 shows an image of the frequency shift of FIG. 9A, 9B, and 10, 71, 72, 51, and 52 are D / A, 13 and 14 are common local oscillators CLO, 25 to 29 are phase locked loop PLLs, 31 to 36, and 87 to 87. Reference numeral 102 denotes a MIXER.

図9Aにおいて、IF周波数をそれぞれ、

Figure 2016058999
とし、ベースバンド信号を共通の周波数として
Figure 2016058999
とする。また、ミキサLo周波数を
Figure 2016058999
とすると、ミキサ出力周波数は、
Figure 2016058999
(9)となる。ここで、符号はミキサLo周波数に対して+は上側の周波数成分、−は下側の周波数成分を示している。共通周波数のベースバンド信号からそれぞれのIF信号を出力するためには、式(9)の符号を、+と−をそれぞれ式(10)のように選択する。
Figure 2016058999
(10) この式(10)から
Figure 2016058999
を算出すると、
Figure 2016058999
(11)となる。ここで、
Figure 2016058999
とすると、
Figure 2016058999
(12)であり、ミキサのLo周波数は160MHzとなる。この時のベースバンド周波数
Figure 2016058999

Figure 2016058999
(13)であり、30MHzとなる。
このように、IFミキサの周波数関係を式(12)(13)のように選定することで、ミキサLO信号に周波数偏差が生じた場合、各IF周波数の周波数偏差の絶対値は等しくなる。(相対偏差は0) In FIG. 9A, each IF frequency is
Figure 2016058999
And baseband signal as a common frequency
Figure 2016058999
And Also, mixer Lo frequency
Figure 2016058999
Then, the mixer output frequency is
Figure 2016058999
(9) Here, the reference sign indicates the upper frequency component and − indicates the lower frequency component with respect to the mixer Lo frequency. In order to output each IF signal from the baseband signal of the common frequency, the sign of Equation (9) is selected as + and − as shown in Equation (10), respectively.
Figure 2016058999
(10) From this equation (10)
Figure 2016058999
To calculate
Figure 2016058999
(11) here,
Figure 2016058999
Then,
Figure 2016058999
(12), and the Lo frequency of the mixer is 160 MHz. Baseband frequency at this time
Figure 2016058999
Is
Figure 2016058999
(13), which is 30 MHz.
In this way, by selecting the IF mixer frequency relationship as shown in equations (12) and (13), when a frequency deviation occurs in the mixer LO signal, the absolute value of the frequency deviation of each IF frequency becomes equal. (Relative deviation is 0)

次に、中間周波数(IF)とアンテナが4ケのMIMOへの拡張を図9Bを用いて説明する。 図9Bにおいて、第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)との差の絶対値の半分の周波数(30MHz)となる共通局部発信器CLOの周波数(10MHz)の3倍の周波数3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換する手段と前記3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換した信号を前記IF1(130MHz)と第三の中間周波数IF3(70MHz)との加算平均の周波数(100MHz)となる共通局部発信器CLOの周波数(10MHz)の10倍の周波数10CLO(100MHz)で周波数変換する手段と前記10CLOで周波数変換した信号の下側波帯(70MHz)と前記10CLOで周波数変換した信号の正相の上側波帯(190MHz)とを取り出す手段と前記IF2と前記IF1の平均の周波数(160MHz)となる前記CLOの周波数(10MHz)の16倍の周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の異なる周波数(30MHzと90MHz)の正相と逆相との下側波帯を取り出す手段と前記取り出した正相と逆相との下側波帯を前記16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の異なる周波数(70MHzと130MHz)の正相の下側波帯である前記IF3(70MHz)とIF1(130MHz)と前記16CLOで周波数変換した信号の異なる周波数(190MHzと250MHz)の正相の上側波帯である前記IF2(190MHz)と第四の中間周波数IF4(250MHz)とを取り出す手段との構成と、前記送信高周波部に、前記連動した周波数のIF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz)とを前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)と前記9CLO(90MHz)を取り出す手段と、前記取り出した3CLO(30MHz)と9CLO(90MHz)を前記16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の正相の下側波帯の前記7CLO(70MHz)と前記13CLO(130MHz)を取り出す手段と、前記取り出した7CLO(70MHz)と13CLO(130MHz)を前記を前記CLOの周波数の10倍の位相同期ループPLLの周波数10CLO(100MHz)で周波数変換する手段と前記10CLO(100MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の逆相の上側波帯の前記同一の高周波数RF(1200MHz)に変換する手段との構成である。   Next, the extension to MIMO with four intermediate frequencies (IF) and antennas will be described with reference to FIG. 9B. In FIG. 9B, 3 of the frequency (10 MHz) of the common local oscillator CLO that is half the absolute value (30 MHz) of the absolute value of the difference between the first intermediate frequency IF1 (130 MHz) and the second intermediate frequency IF2 (190 MHz). A means for frequency-converting an OFDM modulated wave to the positive and negative phases of the double frequency 3CLO (30 MHz), and a signal obtained by frequency-converting the OFDM modulated wave to the positive and negative phases of the 3CLO (30 MHz) and the IF1 (130 MHz) Means of frequency conversion at 10CLO (100MHz), which is 10 times the frequency of common local oscillator CLO (10MHz), which is the average frequency (100MHz) of the third intermediate frequency IF3 (70MHz), and frequency conversion at 10CLO Means for taking out the lower sideband (70 MHz) of the received signal and the positive phase upper sideband (190 MHz) of the signal frequency-converted by the 10 CLO, and the CLO of the average frequency (160 MHz) of the IF2 and IF1 There is a difference between the means for frequency conversion at a frequency 16CLO which is 16 times the frequency (10MHz) Means for extracting lower sidebands of normal phase and negative phase of frequency (30 MHz and 90 MHz), means for frequency converting lower sidebands of positive phase and negative phase taken out by 16 CLO, and frequency conversion by 16 CLO IF3 (70MHz), IF1 (130MHz), which is the lower sideband of the positive phase of different frequencies (70MHz and 130MHz) of the received signal and the positive phase of the different frequency (190MHz and 250MHz) of the signal converted by the 16CLO A structure of means for taking out the IF2 (190 MHz) and the fourth intermediate frequency IF4 (250 MHz) as the upper side band, and IF1 (130 MHz) and IF2 (190 MHz) of the interlocked frequencies in the transmission high-frequency unit Means for frequency conversion of IF3 (70 MHz) and IF4 (250 MHz) at a frequency 16 CLO (160 MHz) of the phase-locked loop PLL 16 times the frequency of the CLO and under the opposite phase of the signal frequency-converted at the 16 CLO (30 MHz) Means for taking out the 3CLO (30 MHz) and 9CLO (90 MHz) of the sideband, and the taken out 3CLO (30 MHz) and 9CL Means for frequency-converting O (90 MHz) at 16 CLO (160 MHz), means for extracting the 7 CLO (70 MHz) and 13 CLO (130 MHz) of the lower sideband of the positive phase of the signal frequency-converted at 16 CLO (30 MHz) A means for frequency-converting the extracted 7CLO (70 MHz) and 13 CLO (130 MHz) at a frequency 10 CLO (100 MHz) of a phase-locked loop PLL that is 10 times the frequency of the CLO, and a signal obtained by frequency conversion at the 10 CLO (100 MHz) Means for extracting the 3CLO (30 MHz) in the lower sideband of the opposite phase of the signal, and means for frequency-converting the extracted 3CLO (30 MHz) at a frequency 117 CLO (1170 MHz) of the phase-locked loop PLL that is 117 times the frequency of the CLO And means for converting to the same high frequency RF (1200 MHz) in the upper sideband of the opposite phase of the signal frequency-converted by the 117 CLO.

このように、送信制御部のミキサLoを送信制御部の内部で系統間で共通にして、送信高周波部のミキサLoは送信高周波部の内部で系統間で共通にして、送信制御部と送信高周波部とでは独立のLoを用いることで、ミキサLO信号に周波数偏差が生じた場合、各IF周波数の周波数偏差の絶対値は等しくなることにより系統間の周波数相対偏差を0にする。さらに系統間で共通の周波数変換ミキサの周波数関係を上記のように対称にして16CLO(160MHz)で周波数変換を繰り返することで、中間周波数(IF)とアンテナが4ケのMIMOでも系統間の周波数相対偏差を0にすることが実現する。     In this way, the mixer Lo of the transmission control unit is made common among the systems inside the transmission control unit, and the mixer Lo of the transmission high-frequency unit is made common among the systems inside the transmission high-frequency unit, so that the transmission control unit and the transmission high-frequency unit are shared. By using Lo which is independent from the unit, when a frequency deviation occurs in the mixer LO signal, the absolute value of the frequency deviation of each IF frequency becomes equal, thereby making the frequency relative deviation between systems zero. Furthermore, the frequency relationship of the common frequency conversion mixers between the systems is made symmetrical as described above, and the frequency conversion is repeated at 16 CLO (160 MHz), so that the frequency between the systems can be achieved even with MIMO with four intermediate frequencies (IF) and antennas. Realizing the relative deviation to be zero.

本発明の他の1実施例の(案3)共通Loのミキサ構成を示すブロック図の図10と本発明の他の1実施例の周波数シフトを説明する模式図の図10を用いて、動作を説明する。図10において、71と72はD/Aで、13と14は共通局部発信器CLOで、15〜30は位相同期ループPLLで、31〜36はMIXERである。   Operation (plan 3) of another embodiment of the present invention using FIG. 10 of a block diagram showing a common Lo mixer configuration and FIG. 10 of a schematic diagram illustrating frequency shift of another embodiment of the present invention Will be explained. In FIG. 10, 71 and 72 are D / A, 13 and 14 are common local oscillators CLO, 15 to 30 are phase locked loop PLLs, and 31 to 36 are MIXERs.

高周波部のミキサも式(9)と同様に、ミキサの周波数関係を表わす。

Figure 2016058999
(14) ここで、
Figure 2016058999
とすることで、高周波部で一旦、同一のIF信号を生成する。このことを考慮すると、式(14)は式(15)となる。
Figure 2016058999
(15)式(15)より、左右の項が正の値の場合には、式(15)を満足する解はない。従って、一方が負の周波数となるように考える。一般的に、負周波数は
Figure 2016058999
(16)である。ここで、上線付の記号はスペクトルが反転することを意味している。 The mixer of the high frequency part also represents the frequency relationship of the mixer in the same manner as the equation (9).
Figure 2016058999
(14) where
Figure 2016058999
By doing so, the same IF signal is once generated in the high-frequency unit. Considering this, equation (14) becomes equation (15).
Figure 2016058999
(15) From equation (15), when the left and right terms are positive values, there is no solution that satisfies equation (15). Therefore, one side is considered to have a negative frequency. In general, the negative frequency is
Figure 2016058999
(16). Here, an overlined symbol means that the spectrum is inverted.

負周波数を考慮して、式(15)において左辺が負周波数となる場合を考える。

Figure 2016058999
(17)式(17)において、
Figure 2016058999
とし、符号の組み合わせを考えると、Lo周波数
Figure 2016058999
は、30MHzと160MHzの二通りが考えられる。
Figure 2016058999
(18) Considering the negative frequency, let us consider a case where the left side in Equation (15) is a negative frequency.
Figure 2016058999
(17) In equation (17),
Figure 2016058999
And considering the combination of codes, the Lo frequency
Figure 2016058999
There are two possible ways: 30MHz and 160MHz.
Figure 2016058999
(18)

まず、

Figure 2016058999
を考える。IF周波数が同一になるように式(14)の符号を選定すると、
Figure 2016058999
(19)となり、IF周波数は160MHzが得られる。 First,
Figure 2016058999
think of. When the sign of equation (14) is selected so that the IF frequency is the same,
Figure 2016058999
(19), and the IF frequency is 160 MHz.

次に、

Figure 2016058999
とし、IF周波数が同一になるように式(14)の符号を選定すると、
Figure 2016058999
となり、IF周波数は30MHzが得られる。 next,
Figure 2016058999
And select the sign of equation (14) so that the IF frequencies are the same:
Figure 2016058999
Thus, the IF frequency is 30 MHz.

以上のミキサによる周波数変換により、共通のIF周波数が得られたため、この後の周波数変換は通常のシングルスーパーヘテロダインで周波数変換すれば良い。ただし、(ii)の30MHzは周波数が低く、ミキサ後のイメージ除去フィルタの実現が困難になるため、IF信号としては160MHzを選定するのが望ましい。
以上の、ミキサ構成により、送信制御部、送信高周波部でPLLを実装することなく、系統間の周波数偏差を一致させることが可能である。
Since a common IF frequency is obtained by the above-described frequency conversion by the mixer, the subsequent frequency conversion may be performed by a normal single superheterodyne. However, since the frequency of 30 MHz in (ii) is low and it is difficult to realize an image removal filter after the mixer, it is desirable to select 160 MHz as the IF signal.
With the above mixer configuration, it is possible to match frequency deviations between systems without mounting a PLL in the transmission control unit and the transmission high-frequency unit.

本発明の他の1実施例の(案4)共通LoのD/A構成と共通Loのミキサ構成を示すブロック図の図12Aと図12Bと図12Cとを用いて、動作を説明する。図12Aと図12Bと図12Cとにおいて、(a)は共通16CLO(160MHz)の逓倍(320MHz又は480MHz又は640MHz又は800MHz又は1040MHz)の周波数でD/Aする構成であり、(b)はIF1(130MHz)とIF2(190MHz)の共通逓倍(3040MHz)の周波数でD/Aする構成である。(c)は4x4MIMOで送信制御部(TC)で共通16CLO(160MHz)の逓倍(480MHz又は640MHz又は800MHz又は960MHz)の周波数でD/Aし、送信高周波部(TH)で共通16CLO(160MHz)の逓倍の周波数でA/Dし、再D/Aし、16CLO(160MHz)又は32CLO(320MHz)にして、104CLO(1040MHz)で1200MHzに変換する構成である。(d)は4x4MIMOで送信制御部(TC)で共通16CLO(160MHz)の逓倍の周波数でD/Aし、送信高周波部(TH)で共通16CLO(160MHz)の逓倍の周波数でA/Dし、240CLO(2400MHz)でD/Aし、1200MHzに変換する構成である。(e)は4x4MIMOで送信制御部(TC)で共通16CLO(160MHz)の逓倍(480MHz又は640MHz又は800MHz又は960MHz)の周波数でD/Aし、送信高周波部(TH)で共通16CLO(160MHz)でMIXし、30MHz/90MHz取り出し、160MHzでMIXし、130MHz/70MHz取り出し、100MHzでMIXし、30MHz取り出し、1070MHzでMIXし、1200MHzを取り出す構成である。
図12Aと図12Bと図12Cとにおいて、51と52と71と76はD/Aで、77〜80はA/Dで、13と14は共通局部発信器CLOで、15〜30と53〜56は位相同期ループPLLで、31〜36と57〜62と87〜102はMIXERである。
The operation will be described with reference to FIG. 12A, FIG. 12B and FIG. 12C, which are block diagrams showing a common Lo D / A configuration and a common Lo mixer configuration according to another embodiment of the present invention. 12A, 12B, and 12C, (a) is a configuration for D / A at a frequency of a common 16 CLO (160 MHz) multiplied (320 MHz, 480 MHz, 640 MHz, 800 MHz, or 1040 MHz), and (b) is IF1 ( 130 MHz) and IF2 (190 MHz) D / A at a common frequency (3040 MHz). (C) 4x4 MIMO, D / A at a frequency of 16CLO (160MHz) common (480MHz, 640MHz, 800MHz or 960MHz) in the transmission control unit (TC), and 16CLO (160MHz) common in the transmission high frequency unit (TH) A / D is performed at the multiplied frequency, D / A is performed again, 16CLO (160 MHz) or 32 CLO (320 MHz) is converted to 1200 MHz at 104 CLO (1040 MHz). (D) D / A is performed at a frequency multiplied by a common 16 CLO (160 MHz) in the transmission control unit (TC) in 4 × 4 MIMO, and A / D is performed at a frequency multiplied by a common 16 CLO (160 MHz) in the transmission high frequency unit (TH). It is configured to D / A at 240 CLO (2400 MHz) and convert to 1200 MHz. (E) 4x4 MIMO, D / A at the frequency of multiplication (480MHz, 640MHz, 800MHz or 960MHz) of common 16CLO (160MHz) in the transmission control unit (TC), and common 16CLO (160MHz) in the transmission high frequency unit (TH) MIX, 30MHz / 90MHz extraction, 160MHz mixing, 130MHz / 70MHz extraction, 100MHz mixing, 30MHz extraction, 1070MHz mixing, 1200MHz extraction.
12A, 12B, and 12C, 51, 52, 71, and 76 are D / A, 77 to 80 are A / D, and 13 and 14 are common local oscillators CLO. Reference numeral 56 denotes a phase locked loop PLL, and 31 to 36, 57 to 62, and 87 to 102 are MIXERs.

図12Aと図12Bと図12Cとは、送信制御部に、 第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)との差の絶対値の半分の周波数(30MHz)となる共通局部発信器CLOの周波数(10MHz)の3倍の周波数3CLO(30MHz)の正相と逆相にOFDM変調波をデジタル領域で周波数変換する手段と前記3CLO(30MHz)の正相と逆相にOFDM変調波を周波数変換した信号を前記IF2と前記IF1の平均の周波数(160MHz)となる前記CLOの周波数(10MHz)の16倍の共通周波数16CLOでデジタル領域で周波数変換する手段と前記共通周波数16CLOで周波数変換した信号の逆相の下側波帯である前記IF1(130MHz)と前記共通周波数16CLOで周波数変換した信号の正相の上側波帯である前記IF2(190MHz)とをデジタル領域で取り出す手段と、 前記共通周波数16CLOで周波数変換しデジタル領域で取り出したIF1(130MHz)とIF2(190MHz)とを前記共通周波数16CLO(160MHz)の逓倍(320MHz又は480MHz又は640MHz又は800MHz又は960MHz又は1120MHz)の周波数または前記IF1(130MHz)と前記IF2(190MHz)との共通逓倍の共通周波数(3040MHz)でデジタル/アナログ変換(D/A)する手段との構成と 第一の中間周波数IF1(130MHz)と第二の中間周波数IF2(190MHz)と第三の中間周波数IF3(70MHz)と第四の中間周波数IF4(250MHz)とにOFDM変調波をデジタル領域で周波数変換する手段と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの逓倍の共通周波数でデジタル領域で周波数変換し前記CLOの逓倍の共通周波数の逓倍の共通周波数または前記複数の中間周波数の共通逓倍の共通周波数とのいずれか一方の共通周波数でするデジタル/アナログ変換(D/A)する手段の構成と、を有する。   12A, 12B, and 12C, the transmission control unit has a frequency (30 MHz) that is half the absolute value of the difference between the first intermediate frequency IF1 (130 MHz) and the second intermediate frequency IF2 (190 MHz). Means to convert the frequency of the OFDM modulated wave in the digital domain to the positive and negative phases of the frequency 3CLO (30MHz), which is three times the frequency of the common local oscillator CLO (10MHz), and to the positive and negative phases of the 3CLO (30MHz) Means for frequency-converting a signal obtained by frequency-converting an OFDM modulated wave in a digital domain with a common frequency 16CLO that is 16 times the frequency (10 MHz) of the CLO, which is an average frequency (160 MHz) of the IF2 and the IF1, and the common frequency 16CLO IF1 (130 MHz), which is the lower sideband of the opposite phase of the signal frequency-converted in, and IF2 (190 MHz), the upper sideband of the positive phase of the signal frequency-converted at the common frequency 16 CLO, are extracted in the digital domain. And frequency conversion at the common frequency of 16 CLO and taking out in the digital domain IF1 (130 MHz) and IF2 (190 MHz) are multiplied by the common frequency 16 CLO (160 MHz) (320 MHz or 480 MHz or 640 MHz or 800 MHz or 960 MHz or 1120 MHz) or the IF1 (130 MHz) and the IF2 (190 MHz) Configuration of means for digital / analog conversion (D / A) at common frequency (3040MHz), first intermediate frequency IF1 (130MHz), second intermediate frequency IF2 (190MHz) and third intermediate frequency IF3 (70 MHz) and a fourth intermediate frequency IF4 (250 MHz) means for converting the frequency of an OFDM-modulated wave in the digital domain, and the plurality of intermediate frequencies of any one of the configurations are digitalized at a common frequency multiplied by the CLO Means for performing digital / analog conversion (D / A) by frequency conversion in a region and using the common frequency of the common frequency multiplied by the common frequency of the CLO or the common frequency of the common multiple of the plurality of intermediate frequencies Configuration and Having.

図12Aと図12Bと図12Cとは、前記送信高周波部に、 前記連動した周波数の複数の中間周波数(IF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz))を前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(64CLO(640MHz)または80CLO(800MHz)または96CLO(960MHz)) でアナログ/デジタル変換(A/D)しデジタル/アナログ変換(D/A)し前記CLOの周波数の16倍の逓倍の周波数16NCLO(160MHz又は320MHz)に変換する手段と前記変換した16N CLOを前記CLOの周波数の104倍又は88倍の周波数104CLO(1040MHz)又は88CLO(880MHz)で前記同一の無線周波数(RF)(1200MHz)に変換する手段の構成と、 前記送信高周波部に、前記連動した周波数のIF1(130MHz)とIF2(190MHz)とIF3(70MHz)とIF4(250MHz)とを前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)と前記9CLO(90MHz)を取り出す手段と、前記取り出した3CLO(30MHz)と9CLO(90MHz)を前記16CLO(160MHz)で周波数変換する手段と前記16CLO(30MHz)で周波数変換した信号の正相の下側波帯の前記7CLO(70MHz)と前記13CLO(130MHz)を取り出す手段と、前記取り出した7CLO(70MHz)と13CLO(130MHz)を前記を前記CLOの周波数の10倍の位相同期ループPLLの周波数10CLO(100MHz)で周波数変換する手段と前記10CLO(100MHz)で周波数変換した信号の逆相の下側波帯の前記3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の逆相の上側波帯の前記同一の高周波数RF(1200MHz)に変換する手段との構成と、 前記連動した周波数のIF1とIF2とを前記CLOの周波数の3倍の位相同期ループPLLの周波数3CLO(30MHz)で周波数変換する手段と前記3CLOで周波数変換した信号の下側波帯の16CLO(160MHz)と前記3CLOで周波数変換した信号の上側波帯の16CLO(90MHz)を取り出す手段と、前記取り出した16CLO(160MHz)を前記CLOの周波数の104倍の位相同期ループPLLの周波数104CLO(1040MHz)で周波数変換する手段と前記104CLOで周波数変換した信号の上側波帯である前記同一の高周波数RF(1200MHz)を取り出す手段との構成と、 前記連動した周波数のIF1とIF2とを前記連動した周波数のIF1とIF2の平均周波数(160MHz)となる前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLO(160MHz)で周波数変換する手段と前記16CLOで周波数変換した信号の下側波帯の3CLO(30MHz)を取り出す手段と、前記取り出した3CLO(30MHz)を前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLO(1170MHz)で周波数変換する手段と前記117CLOで周波数変換した信号の上側波帯である前記同一の高周波数RF(1200MHz)を取り出す手段との構成と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの逓倍の共通周波数で周波数変換する手段の構成を有する。   FIG. 12A, FIG. 12B, and FIG. 12C show that a plurality of intermediate frequencies (IF1 (130 MHz), IF2 (190 MHz), IF3 (70 MHz), and IF4 (250 MHz)) of the linked frequencies are linked to the transmission high-frequency unit. Analog / digital conversion (A / D) and digital / analog conversion (D / A) at a frequency (64CLO (640MHz), 80CLO (800MHz) or 96CLO (960MHz)) multiplied by the frequency of the common local oscillator CLO Means for converting to a frequency 16NCLO (160 MHz or 320 MHz) multiplied by 16 times the frequency of the CLO, and the converted 16N CLO at a frequency 104CLO (1040 MHz) or 88 CLO (880 MHz) 104 times or 88 times the frequency of the CLO The structure of the means for converting to the same radio frequency (RF) (1200 MHz), and the transmission high-frequency part, IF1 (130 MHz), IF2 (190 MHz), IF3 (70 MHz) and IF4 (250 MHz) of the linked frequency The phase lock loop PLL frequency 16CLO is 16 times the CLO frequency. 160 MHz), a means for taking out the 3CLO (30 MHz) and 9CLO (90 MHz) of the lower sideband of the opposite phase of the signal frequency-converted at 16 CLO (30 MHz), and the taken out 3CLO (30 MHz) Means for frequency-converting 9CLO (90 MHz) with the 16 CLO (160 MHz) and means for extracting the 7 CLO (70 MHz) and 13 CLO (130 MHz) of the lower sideband of the positive phase of the signal frequency-converted with the 16 CLO (30 MHz) Then, the extracted 7 CLO (70 MHz) and 13 CLO (130 MHz) are frequency-converted by means of the 10 CLO (100 MHz) and the means for converting the frequency at a frequency 10 CLO (100 MHz) of the phase-locked loop PLL 10 times the CLO frequency. Means for extracting the 3CLO (30 MHz) of the lower sideband of the opposite phase of the signal, and frequency-converting the extracted 3CLO (30 MHz) with the frequency 117 CLO (1170 MHz) of the phase-locked loop PLL that is 117 times the frequency of the CLO And the same high frequency RF (1200 And a means for frequency conversion of the interlocked frequencies IF1 and IF2 at a frequency 3CLO (30 MHz) of a phase-locked loop PLL three times the frequency of the CLO, and a frequency conversion by the 3CLO. Means for extracting 16 CLO (160 MHz) of the lower sideband of the obtained signal and 16 CLO (90 MHz) of the upper sideband of the signal frequency-converted by the 3CLO, and the extracted 16 CLO (160 MHz) of 104 times the frequency of the CLO. Configuration of means for frequency conversion at a frequency of 104 CLO (1040 MHz) of a phase locked loop PLL and means for extracting the same high frequency RF (1200 MHz) which is the upper side band of the signal frequency-converted by the 104 CLO, and the interlocked frequency Means for converting the frequency of IF1 and IF2 at a frequency 16CLO (160 MHz) of a phase-locked loop PLL 16 times the frequency of the CLO, which is the average frequency (160 MHz) of the interlocked frequencies IF1 and IF2, and the frequency at the 16CLO 3CLO (30MHz) in the lower sideband of the converted signal And means for converting the extracted 3CLO (30 MHz) at a frequency 117 CLO (1170 MHz) of a phase-locked loop PLL that is 117 times the frequency of the CLO, and an upper side band of the signal frequency-converted by the 117 CLO. A configuration for extracting the same high frequency RF (1200 MHz); and a configuration for converting the plurality of intermediate frequencies of any one of the configurations at a common frequency multiplied by the CLO.

つまり、本発明は、OFDM方式により同一の無線周波数(RF)(1200MHz)で複数のアンテナからそれぞれ異なる変調データ信号を送信する送信高周波部と単一の中間周波数ケーブルと送信制御部とからなり複数の中間周波数を前記送信制御部から送信高周波部に向けて前記単一のケーブルを用いて伝送する手段を有する送信装置において、前記送信制御部にOFDM変調波を共通局部発信器CLOの第一の逓倍の周波数で前記複数の中間周波数に周波数変換する手段を有し、前記送信高周波部に前記複数の中間周波数を前記CLOの第二の逓倍の周波数で同一の高周波数RF(1200MHz)に変換する手段を有し、前記複数のアンテナから送信されるそれぞれ異なる変調データ信号の同一の無線周波数(RF)が前記CLOの周波数(10MHz)に連動する割合を等しくする。   That is, the present invention includes a transmission high-frequency unit that transmits different modulated data signals from a plurality of antennas at the same radio frequency (RF) (1200 MHz) by the OFDM method, a single intermediate frequency cable, and a transmission control unit. In the transmission device having means for transmitting the intermediate frequency of the transmission control unit from the transmission control unit to the transmission high-frequency unit using the single cable, an OFDM modulated wave is transmitted to the transmission control unit in the first of the common local oscillator CLO. Means for converting the frequency into a plurality of intermediate frequencies at a multiplied frequency, and converting the plurality of intermediate frequencies into the same high frequency RF (1200 MHz) at the second multiplied frequency of the CLO in the transmission high-frequency unit Means for making the same radio frequency (RF) of different modulated data signals transmitted from the plurality of antennas interlock with the frequency (10 MHz) of the CLO.

そのため、本発明では、系統間で共通のLoを用いることで、ミキサLO信号に周波数偏差が生じた場合、各IF周波数の周波数偏差の絶対値は等しくなることにより系統間の周波数相対偏差を0にする。そのため、前記複数のアンテナから送信されるそれぞれ異なる変調データ信号の同一の無線周波数(RF)が前記CLOの周波数(10MHz)に連動する割合を等しくなり、(偏差1ppmの)比較的低価格な水晶発振器を用いて、OFDM方式変調波を無線周波数(RFのARIB仕様50Hz)の高精度の許容周波数偏差の同一の高周波数RF(1200MHz)に変換し、同一の周波数で複数のアンテナからそれぞれ異なる変調データ信号を、安定に送信することができる。   Therefore, in the present invention, when a frequency deviation occurs in the mixer LO signal by using Lo common between the systems, the absolute value of the frequency deviation of each IF frequency becomes equal, thereby reducing the frequency relative deviation between the systems to 0. To. Therefore, the ratio that the same radio frequency (RF) of different modulated data signals transmitted from the plurality of antennas is linked to the frequency (10 MHz) of the CLO becomes equal, and a relatively low-cost crystal (with a deviation of 1 ppm). Using an oscillator, the OFDM modulation wave is converted to the same high frequency RF (1200MHz) with high frequency tolerance of radio frequency (RF ARIB specification 50Hz), and different modulation from multiple antennas at the same frequency A data signal can be transmitted stably.

1:送信制御部、2:送信高周波部、3〜10:アンテナ、11:受信高周波数部、12:受信制御部、51〜52,71〜76:D/A、77〜80:A/D、13,14:共通局部発信器CLO、15〜30,53〜56:位相同期ループPLL、31〜36,57〜62,87〜102:MIXER、37:MOD(FPGA)、38:PLL制御(FPGA)、39:PLL制御(CPLD)、40,41:CPU、42,43:PxC、44:クロック分配器(CLKDIV)、45:LVDS―DRIVER,46:LVDS―RECEIVER、47,48,81〜86:LPF、 1: transmission control unit, 2: transmission high frequency unit, 3-10: antenna, 11: reception high frequency unit, 12: reception control unit, 51-52, 71-76: D / A, 77-80: A / D 13, 14: Common local oscillator CLO, 15-30, 53-56: Phase-locked loop PLL, 31-36, 57-62, 87-102: MIXER, 37: MOD (FPGA), 38: PLL control ( (FPGA), 39: PLL control (CPLD), 40, 41: CPU, 42, 43: PxC, 44: Clock distributor (CLKDIV), 45: LVDS-DRIVER, 46: LVDS-RECEIVER, 47, 48, 81- 86: LPF,

Claims (4)

OFDM方式により同一の無線周波数で複数のアンテナからそれぞれ異なる変調データ信号を送信する送信高周波部と単一の中間周波数ケーブルと送信制御部とからなり複数の中間周波数を前記送信制御部から送信高周波部に向けて前記単一のケーブルを用いて伝送する手段を有する送信装置において、 前記送信制御部に、 第一の中間周波数IF1と第二の中間周波数IF2との差の絶対値の半分の周波数となる共通局部発信器CLOの周波数の3倍の周波数3CLOの正相と逆相にOFDM変調波を周波数変換する手段と前記3CLOの正相と逆相にOFDM変調波を周波数変換した信号を前記IF1と第三の中間周波数IF3との加算平均の周波数となる共通局部発信器CLOの周波数の10倍の周波数10CLOで周波数変換する手段と前記10CLOで周波数変換した信号の下側波帯と前記10CLOで周波数変換した信号の正相の上側波帯とを取り出す手段と前記IF2と前記IF1の平均の周波数となる前記CLOの周波数の16倍の周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の異なる周波数の正相と逆相との下側波帯を取り出す手段と前記取り出した正相と逆相との下側波帯を前記16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の異なる周波数の正相の下側波帯である前記IF3とIF1と前記16CLOで周波数変換した信号の異なる周波数の正相の上側波帯である前記IF2と第四の中間周波数IF4とを取り出す手段との構成と、 第一の中間周波数IF1と第二の中間周波数IF2との差の絶対値の半分の周波数となる共通局部発信器CLOの周波数の3倍の周波数3CLOの正相と逆相にOFDM変調波を周波数変換する手段と前記3CLOの正相と逆相にOFDM変調波を周波数変換した信号を前記IF2と前記IF1の平均の周波数となる前記CLOの周波数の16倍の周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の逆相の下側波帯である前記IF1と前記16CLOで周波数変換した信号の正相の上側波帯である前記IF2とを取り出す手段との構成と、 又は前記CLOの周波数の逓倍の周波数NCLOにOFDM変調波を周波数変換する複数の手段と前記NCLOにOFDM変調波を周波数変換した複数の信号を前記複数の中間周波数(IF1とIF2またはIF1とIF2と第三の中間周波数IF3と第四の中間周波数IF4)と前記NCLOとの差の周波数(11CLOと17CLOまたは11CLOと17CLOと5CLOと23CLOまたは10CLOと16CLOまたは10CLOと16CLOと4CLOと22CLO)となる前記CLOの逓倍の周波数で周波数変換した複数の信号の正相の上側波帯である前記複数の中間周波数とを取り出す複数の手段との構成と、 又は前記連動した周波数の前記複数の中間周波数(IF1とIF2とIF3とIF4)を前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(64CLOまたは80CLOまたは96CLO)でアナログ/デジタル変換しデジタル/アナログ変換(D/A)し前記CLOの周波数の16倍の逓倍の周波数16NCLOに変換する手段と前記変換した16N CLOを前記CLOの周波数の104倍又は88倍の周波数104CLO又は88CLOで前記同一の無線周波数に変換する手段を有する構成と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの周波数の逓倍周波数により周波数変換して前記CLOの周波数に連動した周波数で取り出す複数の手段の構成を有し、 前記送信高周波部に、前記単一のケーブルを用いて伝送された連動した周波数前記複数の中間周波数を前記CLOの周波数の逓倍の周波数により周波数変換して前記同一の無線周波数に変換する手段と、前記変換した同一の無線周波数を前記複数のアンテナから送信する手段と、を有し、 前記複数のアンテナから送信されるそれぞれ異なる変調データ信号の同一の無線周波数が前記CLOの周波数に連動する割合を等しくすることを特徴とする送信装置。 A transmission high-frequency unit that transmits different modulated data signals from a plurality of antennas at the same radio frequency by the OFDM method, a single intermediate frequency cable, and a transmission control unit, and transmits a plurality of intermediate frequencies from the transmission control unit to the transmission high-frequency unit. In the transmitting apparatus having means for transmitting using the single cable toward the transmission, the transmission control unit includes a frequency that is half the absolute value of the difference between the first intermediate frequency IF1 and the second intermediate frequency IF2. Means for converting the frequency of the OFDM modulated wave to the positive and negative phases of the frequency 3CLO, which is three times the frequency of the common local oscillator CLO, and the signal obtained by converting the frequency of the OFDM modulated wave to the positive and negative phases of the 3CLO And means for frequency conversion at a frequency 10CLO that is 10 times the frequency of the common local oscillator CLO, which is the average frequency of the third intermediate frequency IF3, and the lower sideband of the signal frequency-converted by the 10CLO and the 10CLO Zhou Means for taking out the upper phase band of the positive phase of the number-converted signal, means for frequency conversion at a frequency 16CLO which is 16 times the frequency of the CLO which is the average frequency of the IF2 and IF1, and a signal frequency-converted by the 16CLO Means for taking out the lower sidebands of the positive and negative phases of different frequencies, means for converting the lower sidebands of the taken out positive and negative phases with the 16CLO, and signals converted by the 16CLO. Means for extracting the IF2 and the fourth intermediate frequency IF4, which are the positive phase upper sidebands of different frequencies of the signals frequency-converted by the IF3 and IF1 and the 16CLO, which are the lower sidebands of the positive phase of different frequencies The frequency of 3CLO is 3 times the frequency of the common local oscillator CLO, which is half the absolute value of the difference between the first intermediate frequency IF1 and the second intermediate frequency IF2. Means for frequency conversion of modulated wave and OFDM modulated wave in the positive and negative phases of 3CLO Means for converting the frequency-converted signal at a frequency 16CLO that is 16 times the frequency of the CLO, which is the average frequency of the IF2 and IF1, and the lower sideband of the opposite phase of the signal frequency-converted by the 16CLO Configuration of means for taking out IF2 which is a positive phase upper side band of a signal frequency-converted by IF1 and 16CLO, or a plurality of means for frequency-converting an OFDM modulated wave to frequency NCLO which is a multiple of the frequency of CLO And a plurality of signals obtained by frequency-converting OFDM modulated waves into the NCLO and the difference between the plurality of intermediate frequencies (IF1 and IF2 or IF1 and IF2, third intermediate frequency IF3 and fourth intermediate frequency IF4) and the NCLO It is a positive phase upper sideband of multiple signals frequency-converted at a frequency that is a multiple of the CLO that is a frequency (11CLO and 17CLO or 11CLO and 17CLO and 5CLO and 23CLO or 10CLO and 16CLO or 10CLO and 16CLO and 4CLO and 22CLO) A plurality of means for extracting the plurality of intermediate frequencies; Analog / digital at a frequency (64 CLO or 80 CLO or 96 CLO) multiplied by the frequency of the common local oscillator CLO linked to the plurality of intermediate frequencies (IF1, IF2, IF3 and IF4) of the linked frequency Means for converting and digital / analog conversion (D / A) to convert the frequency to 16NCLO which is 16 times the frequency of the CLO and the converted 16N CLO to a frequency 104CLO or 88CLO which is 104 times or 88 times the frequency of the CLO And having a means for converting to the same radio frequency, and converting the plurality of intermediate frequencies of any one of the configurations by a frequency multiplied by the frequency of the CLO and extracting it at a frequency linked to the frequency of the CLO A plurality of means, and the transmission high-frequency unit, the interlocked frequency transmitted using the single cable, the plurality of intermediate frequencies by a frequency multiplied by the frequency of the CLO Means for converting the wave number to the same radio frequency and means for transmitting the converted same radio frequency from the plurality of antennas, each of the different modulated data signals transmitted from the plurality of antennas The transmission apparatus is characterized in that the same radio frequency is linked with the CLO frequency at the same rate. 請求項1の送信装置のいずれか一方の構成において、前記送信高周波部に、前記連動した周波数のIF1とIF2とIF3とIF4とを前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の逆相の下側波帯の前記3CLOと前記9CLOを取り出す手段と、前記取り出した3CLOと9CLOを前記16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の正相の下側波帯の前記7CLOと前記13CLOを取り出す手段と、前記取り出した7CLOと13CLOを前記を前記CLOの周波数の10倍の位相同期ループPLLの周波数10CLOで周波数変換する手段と前記10CLOで周波数変換した信号の逆相の下側波帯の前記3CLOを取り出す手段と、前記取り出した3CLOを前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLOで周波数変換する手段と前記117CLOで周波数変換した信号の逆相の上側波帯の前記同一の高周波数RFに変換する手段との構成と、前記送信高周波部に、前記連動した周波数のIF1とIF2とを前記CLOの周波数の3倍の位相同期ループPLLの周波数3CLOで周波数変換する手段と前記3CLOで周波数変換した信号の下側波帯の16CLOと前記3CLOで周波数変換した信号の上側波帯の16CLOを取り出す手段と、前記取り出した16CLOを前記CLOの周波数の104倍の位相同期ループPLLの周波数104CLOで周波数変換する手段と前記104CLOで周波数変換した信号の上側波帯である前記同一の高周波数RFを取り出す手段との構成と、前記送信高周波部に、前記連動した周波数のIF1とIF2とを前記連動した周波数のIF1とIF2の平均周波数となる前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の下側波帯の3CLOを取り出す手段と、前記取り出した3CLOを前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLOで周波数変換する手段と前記117CLOで周波数変換した信号の上側波帯である前記同一の高周波数RFを取り出す手段との構成と、前記送信制御部の共通局部発信器と前記送信制御部の共通局部発信器とを互いに位相同期ループPLLで連動させる手段を有し、前記送信制御部に前記連動させた共通局部発信器CLOの周波数の逓倍の周波数NCLOにOFDM変調波を周波数変換する手段と前記NCLOにOFDM変調波を周波数変換した信号を前記複数の中間周波数(IF1とIF2またはIF1とIF2と第三の中間周波数IF3と第四の中間周波数IF4)と前記NCLOとの差の周波数(11CLOと17CLOまたは11CLOと17CLOと5CLOと23CLOまたは10CLOと16CLOまたは10CLOと16CLOと4CLOと22CLO)となる前記CLOの逓倍の周波数で周波数変換した信号の正相の上側波帯である前記複数の中間周波数とを取り出す手段を有し、前記送信高周波部に前記連動した周波数の前記複数の中間周波数(IF1とIF2またはIF1とIF2とIF3とIF4)を前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(17CLOと11CLOまたは17CLOと11CLOと23CLOと5CLO) で周波数変換する手段と前記CLOの周波数の逓倍の周波数で周波数変換した信号の上側波帯である前記CLOの周波数の30倍の周波数30CLOを取り出す手段と、前記取り出した30CLOを前記CLOの周波数の90倍の位相同期ループPLLの周波数90CLOで周波数変換した信号の上側波帯である前記同一の無線周波数を取り出す手段を有する構成と、前記送信制御部の共通局部発信器と前記送信制御部の共通局部発信器とを互いに位相同期ループPLLで連動させる手段を有し、前記送信高周波部に前記同一の高周波数RFと前記連動した周波数の複数の中間周波数の差の周波数の前記連動させた共通局部発信器CLOの周波数の逓倍の周波数で前記連動した周波数の複数の中間周波数周波数を前記同一の高周波数RFに直接変換して取り出す手段を有する構成と、のいずれか一方の構成を有することを特徴とする送信装置。   2. The transmission device according to claim 1, wherein the transmission high-frequency unit includes IF1, IF2, IF3, and IF4 of the interlocked frequencies at a frequency 16CLO of a phase-locked loop PLL that is 16 times the frequency of the CLO. Means for frequency conversion, means for extracting the 3CLO and 9CLO in the lower sideband of the phase opposite to the frequency converted by the 16CLO, means for converting the extracted 3CLO and 9CLO by the 16CLO, and frequency by the 16CLO Means for extracting the 7CLO and 13CLO in the lower sideband of the positive phase of the converted signal, and frequency-converting the extracted 7CLO and 13CLO with the frequency 10CLO of the phase-locked loop PLL that is 10 times the frequency of the CLO Means for extracting the 3CLO in the lower sideband of the opposite phase of the signal frequency-converted by the 10CLO, and means for frequency-converting the extracted 3CLO by the frequency 117CLO of the phase-locked loop PLL that is 117 times the frequency of the CLO And frequency change with 117CLO The means for converting to the same high frequency RF in the upper sideband of the opposite phase of the converted signal, and the IF1 and IF2 of the linked frequency in the transmission high-frequency unit is three times the frequency of the CLO Means for converting the frequency at the frequency 3CLO of the phase-locked loop PLL, 16CLO for the lower sideband of the signal frequency-converted by the 3CLO, and means for extracting the 16CLO of the upper sideband of the signal frequency-converted by the 3CLO; and the extracted 16CLO A means for converting the frequency at a frequency 104CLO of a phase-locked loop PLL 104 times the frequency of the CLO and a means for extracting the same high frequency RF that is the upper sideband of the signal frequency-converted by the 104CLO; and A means for frequency-converting IF1 and IF2 of the interlocked frequencies to a transmission high-frequency unit at a frequency 16CLO of a phase-locked loop PLL that is 16 times the frequency of the CLO that is an average frequency of the IF1 and IF2 of the interlocked frequencies; Frequency converted with 16CLO Means for extracting the 3CLO of the lower sideband of the signal, means for converting the extracted 3CLO at the frequency 117CLO of the phase-locked loop PLL that is 117 times the frequency of the CLO, and the upper sideband of the signal frequency-converted by the 117CLO A means for extracting the same high frequency RF, and a means for causing the common local oscillator of the transmission control unit and the common local oscillator of the transmission control unit to interlock with each other by a phase locked loop PLL, Means for frequency-converting an OFDM modulated wave to a frequency NCLO multiplied by the frequency of the common local oscillator CLO linked to the transmission control unit, and a signal obtained by frequency-converting the OFDM modulated wave to the NCLO, the plurality of intermediate frequencies (IF1 And IF2 or IF1 and IF2 and the third intermediate frequency IF3 and fourth intermediate frequency IF4) and the frequency of the difference between the NCLO (11CLO and 17CLO or 11CLO and 17CLO and 5CLO and 23CLO or 10CLO and 16CLO or 10CLO and 16CLO and 4CLO and 22CLO) Means for taking out the plurality of intermediate frequencies which are positive-phase upper sidebands of a signal frequency-converted at a double frequency, and the plurality of intermediate frequencies (IF1 and IF2 or IF2 or IF1, IF2, IF3 and IF4) means for frequency conversion at a frequency (17CLO and 11CLO or 17CLO and 11CLO, 23CLO and 5CLO) of the frequency of the common local oscillator CLO linked to the above and the frequency multiplication of the CLO Means for extracting a frequency 30CLO which is 30 times the frequency of the CLO which is the upper sideband of the signal frequency-converted by frequency, and the frequency conversion of the extracted 30CLO by a frequency 90CLO of a phase-locked loop PLL which is 90 times the frequency of the CLO And a common local oscillator of the transmission control unit and a common local transmitter of the transmission control unit are linked with each other by a phase locked loop PLL. The transmission high-frequency unit is linked to the same high frequency RF and the frequency of a frequency of the linked common local oscillator CLO multiplied by the frequency of the difference between a plurality of intermediate frequencies of the linked frequency. A transmission apparatus comprising: a configuration having means for directly converting and extracting a plurality of intermediate frequency frequencies into the same high frequency RF. 請求項1の送信装置又は請求項2の送信装置のいずれか一つの構成において、 前記送信制御部に、 第一の中間周波数IF1と第二の中間周波数IF2との差の絶対値の半分の周波数となる共通局部発信器CLOの周波数の3倍の周波数3CLOの正相と逆相にOFDM変調波をデジタル領域で周波数変換する手段と前記3CLOの正相と逆相にOFDM変調波を周波数変換した信号を前記IF2と前記IF1の平均の周波数となる前記CLOの周波数の16倍の共通周波数16CLOでデジタル領域で周波数変換する手段と前記共通周波数16CLOで周波数変換した信号の逆相の下側波帯である前記IF1と前記共通周波数16CLOで周波数変換した信号の正相の上側波帯である前記IF2とをデジタル領域で取り出す手段と、 前記共通周波数16CLOで周波数変換しデジタル領域で取り出したIF1とIF2とを前記共通周波数16CLOの逓倍の周波数または前記IF1と前記IF2との共通逓倍の共通周波数でデジタル/アナログ変換する手段との構成と 第一の中間周波数IF1と第二の中間周波数IF2と第三の中間周波数IF3と第四の中間周波数IF4とにOFDM変調波をデジタル領域で周波数変換する手段と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの逓倍の共通周波数でデジタル領域で周波数変換し前記CLOの逓倍の共通周波数の逓倍の共通周波数または前記複数の中間周波数の共通逓倍の共通周波数とのいずれか一方の共通周波数でするデジタル/アナログ変換する手段の構成と、を有し、 前記送信高周波部に、 前記連動した周波数の複数の中間周波数(IF1とIF2とIF3とIF4)を前記連動させた共通局部発信器CLOの周波数の逓倍の周波数(64CLOまたは80CLOまたは96CLO)でアナログ/デジタル変換しデジタル/アナログ変換し前記CLOの周波数の16倍の逓倍の周波数16NCLOに変換する手段と前記変換した16N CLOを前記CLOの周波数の104倍又は88倍の周波数104CLO又は88CLOで前記同一の無線周波数に変換する手段の構成と、 前記送信高周波部に、前記連動した周波数のIF1とIF2とIF3とIF4とを前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の逆相の下側波帯の前記3CLOと前記9CLOを取り出す手段と、前記取り出した3CLOと9CLOを前記16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の正相の下側波帯の前記7CLOと前記13CLOを取り出す手段と、前記取り出した7CLOと13CLOを前記を前記CLOの周波数の10倍の位相同期ループPLLの周波数10CLOで周波数変換する手段と前記10CLOで周波数変換した信号の逆相の下側波帯の前記3CLOを取り出す手段と、前記取り出した3CLOを前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLOで周波数変換する手段と前記117CLOで周波数変換した信号の逆相の上側波帯の前記同一の高周波数RFに変換する手段との構成と、 前記連動した周波数のIF1とIF2とを前記CLOの周波数の3倍の位相同期ループPLLの周波数3CLOで周波数変換する手段と前記3CLOで周波数変換した信号の下側波帯の16CLOと前記3CLOで周波数変換した信号の上側波帯の16CLOを取り出す手段と、前記取り出した16CLOを前記CLOの周波数の104倍の位相同期ループPLLの周波数104CLOで周波数変換する手段と前記104CLOで周波数変換した信号の上側波帯である前記同一の高周波数RFを取り出す手段との構成と、 前記連動した周波数のIF1とIF2とを前記連動した周波数のIF1とIF2の平均周波数となる前記CLOの周波数の16倍の位相同期ループPLLの周波数16CLOで周波数変換する手段と前記16CLOで周波数変換した信号の下側波帯の3CLOを取り出す手段と、前記取り出した3CLOを前記CLOの周波数の117倍の位相同期ループPLLの周波数117CLOで周波数変換する手段と前記117CLOで周波数変換した信号の上側波帯である前記同一の高周波数RFを取り出す手段との構成と、 のいずれか一方の構成の前記複数の中間周波数を前記CLOの逓倍の共通周波数で周波数変換する手段の構成を有することを特徴とする送信装置である。   3. The configuration of any one of the transmission device according to claim 1 or the transmission device according to claim 2, wherein the transmission control unit includes a frequency that is half the absolute value of the difference between the first intermediate frequency IF1 and the second intermediate frequency IF2. The frequency of the OFDM modulated wave is converted to the positive and negative phases of the 3CLO in the digital domain, and the frequency of the OFDM modulated wave to the positive and negative phases of the 3CLO is 3 times the frequency of the common local oscillator CLO. Means for frequency-converting the signal in the digital domain at a common frequency 16CLO which is 16 times the frequency of the CLO, which is the average frequency of the IF2 and IF1, and a lower sideband of the opposite phase of the signal frequency-converted at the common frequency 16CLO IF1 and IF2 which is the upper phase band of the positive phase of the signal frequency-converted at the common frequency 16CLO, and IF1 and IF2 frequency-converted at the common frequency 16CLO and extracted in the digital domain And the common frequency of 16 CLO The structure of the means for digital / analog conversion at the frequency of multiplication or the common frequency of the common multiplication of IF1 and IF2, the first intermediate frequency IF1, the second intermediate frequency IF2, the third intermediate frequency IF3 and the fourth Means for frequency-converting an OFDM-modulated wave to the intermediate frequency IF4 in the digital domain, and frequency-converting the plurality of intermediate frequencies in any one of the configurations in the digital domain at a common frequency multiplied by the CLO. A means for digital / analog conversion at a common frequency of either one of the common frequency multiplied by the common frequency or the common frequency common frequency of the plurality of intermediate frequencies, and the transmission high-frequency unit, A plurality of intermediate frequencies (IF1, IF2, IF3, and IF4) of the linked frequencies are analog / multiplied by a frequency (64CLO or 80CLO or 96CLO) multiplied by the frequency of the linked common local oscillator CLO. Means for digital conversion, digital / analog conversion, and conversion to a frequency 16NCLO multiplied by 16 times the frequency of the CLO, and the converted 16N CLO at the frequency 104CLO or 88CLO that is 104 times or 88 times the frequency of the CLO. Configuration of means for converting to radio frequency, and means for frequency-converting IF1, IF2, IF3, and IF4 of the interlocked frequencies to a frequency 16CLO of a phase-locked loop PLL that is 16 times the frequency of the CLO And means for extracting the 3CLO and 9CLO in the lower sideband of the phase opposite to that of the signal frequency-converted by the 16CLO, means for frequency-converting the extracted 3CLO and 9CLO by the 16CLO, and the signal frequency-converted by the 16CLO Means for taking out the 7CLO and 13CLO of the lower sideband of the positive phase, means for frequency-converting the taken out 7CLO and 13CLO with a frequency 10CLO of a phase-locked loop PLL that is 10 times the frequency of the CLO, and the 10CLO Frequency converted with Means for extracting the 3CLO in the lower sideband of the opposite phase of the signal; means for converting the extracted 3CLO at a frequency 117CLO of a phase-locked loop PLL that is 117 times the frequency of the CLO; and a signal frequency-converted by the 117CLO And the means for converting to the same high-frequency RF in the upper sideband of the opposite phase of the frequency, and the IF1 and IF2 of the interlocked frequency is a frequency 3CLO of the phase-locked loop PLL three times the frequency of the CLO Means for converting, means for extracting 16CLO of the lower sideband of the signal frequency-converted by the 3CLO, and 16CLO of the upper sideband of the signal frequency-converted by the 3CLO, and the extracted 16CLO is 104 times the frequency of the CLO. A structure of means for converting the frequency at the frequency 104CLO of the phase-locked loop PLL and means for extracting the same high frequency RF that is the upper side band of the signal frequency-converted by the 104CLO, and IF1 and IF2 of the interlocked frequencies IF of the linked frequency Means for frequency conversion at a frequency 16CLO of a phase-locked loop PLL 16 times the frequency of the CLO, which is the average frequency of 1 and IF2, means for extracting the 3CLO of the lower sideband of the signal frequency-converted by the 16CLO, and the extraction And a means for frequency-converting the 3CLO at a frequency 117CLO of a phase-locked loop PLL that is 117 times the frequency of the CLO and a means for extracting the same high-frequency RF that is the upper sideband of the signal frequency-converted by the 117CLO A transmission apparatus comprising: means for converting the frequency of the plurality of intermediate frequencies of any one of the configurations at a common frequency multiplied by the CLO. OFDM方式により同一の無線周波数で複数のアンテナからそれぞれ異なる変調データ信号を送信する送信高周波部と単一の中間周波数ケーブルと送信制御部とからなり複数の中間周波数を前記送信制御部から送信高周波部に向けて前記単一のケーブルを用いて伝送する手段を有する送信装置において、前記送信制御部にOFDM変調波を共通局部発信器CLOの第一の組の逓倍の周波数で前記複数の中間周波数に周波数変換する手段を有し、前記送信高周波部に前記複数の中間周波数を前記CLOの第二の組の逓倍の周波数で同一の高周波数RFに変換する手段を有し、前記複数のアンテナから送信されるそれぞれ異なる変調データ信号の同一の無線周波数が前記CLOの周波数に連動する割合を等しくすることを特徴とする送信装置。 A transmission high-frequency unit that transmits different modulated data signals from a plurality of antennas at the same radio frequency by the OFDM method, a single intermediate frequency cable, and a transmission control unit, and transmits a plurality of intermediate frequencies from the transmission control unit to the transmission high-frequency unit. In the transmitter having means for transmitting using the single cable toward the transmitter, the transmission control unit converts the OFDM modulated wave to the plurality of intermediate frequencies at a frequency multiplied by the first set of the common local oscillator CLO. Means for converting the frequency, and means for converting the plurality of intermediate frequencies to the same high frequency RF at a frequency multiplied by the second set of the CLO in the transmission high-frequency unit, and transmitting from the plurality of antennas A transmission apparatus characterized in that the same radio frequency of different modulated data signals is made to be equal in proportion to the CLO frequency.
JP2014186028A 2014-09-12 2014-09-12 Transmitter Active JP6319803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014186028A JP6319803B2 (en) 2014-09-12 2014-09-12 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014186028A JP6319803B2 (en) 2014-09-12 2014-09-12 Transmitter

Publications (2)

Publication Number Publication Date
JP2016058999A true JP2016058999A (en) 2016-04-21
JP6319803B2 JP6319803B2 (en) 2018-05-09

Family

ID=55759032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186028A Active JP6319803B2 (en) 2014-09-12 2014-09-12 Transmitter

Country Status (1)

Country Link
JP (1) JP6319803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059733A1 (en) * 2019-09-26 2021-04-01 株式会社日立国際電気 Wireless transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285110A (en) * 2000-03-29 2001-10-12 Clarion Co Ltd Broadcast receiver
JP2002181920A (en) * 2000-12-19 2002-06-26 Mitsubishi Electric Corp Radar device
US20040253935A1 (en) * 2003-06-12 2004-12-16 Cornell Drentea Ultra-wideband fully synthesized high-resolution receiver and method
JP2010068443A (en) * 2008-09-12 2010-03-25 Hitachi Kokusai Electric Inc Portable wireless transmission apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285110A (en) * 2000-03-29 2001-10-12 Clarion Co Ltd Broadcast receiver
JP2002181920A (en) * 2000-12-19 2002-06-26 Mitsubishi Electric Corp Radar device
US20040253935A1 (en) * 2003-06-12 2004-12-16 Cornell Drentea Ultra-wideband fully synthesized high-resolution receiver and method
JP2010068443A (en) * 2008-09-12 2010-03-25 Hitachi Kokusai Electric Inc Portable wireless transmission apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
池田 哲臣 他: "時空間トレリス符号化MIMO伝送システム〜700MHz帯FPUの周波数移行に向けて〜", 放送技術, vol. 第65巻,第11号, JPN6018010444, 1 November 2012 (2012-11-01), pages 194 - 201 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059733A1 (en) * 2019-09-26 2021-04-01 株式会社日立国際電気 Wireless transmission device
JPWO2021059733A1 (en) * 2019-09-26 2021-04-01
JP7171937B2 (en) 2019-09-26 2022-11-15 株式会社日立国際電気 radio transmission equipment

Also Published As

Publication number Publication date
JP6319803B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
US9083424B2 (en) Frequency multiplying transceiver
JP2004532551A (en) Transceiver
JPH09153882A (en) Orthogonal frequency division multiple signal transmission system, transmitting device and receiving device
JPWO2012111131A1 (en) Millimeter-wave wireless transceiver
US9906251B2 (en) Reception device and electronic apparatus
US8983413B2 (en) Communication device including multiple LO receivers
CN105830348A (en) Local oscillator signal generation using delay locked loops
CN104054272A (en) Double conversion dual-carrier radio frequency receiver
CN101784179B (en) Electronic device
JP6319803B2 (en) Transmitter
US8744380B2 (en) Unified frequency synthesizer for direct conversion receiver or transmitter
JPH1117749A (en) Demodulation circuit
JP2735025B2 (en) Frequency division multiplex signal generator
US20130223546A1 (en) Multi-carrier communication apparatus
JP3993573B2 (en) Wireless communication device compatible with multiple wireless systems
CN1513248B (en) Combining frequency multipliation and modulation
US20150117570A1 (en) Sideband suppression in angle modulated signals
JP2012049790A (en) Transmitter and receiver
US9391562B2 (en) Local oscillation generator, associated communication system and method for local oscillation generation
JP2009044446A (en) Receiver
JP2020167440A (en) Oscillation device
GB2469629A (en) Synthesising a local oscillator waveform
JP2000078051A (en) Transceiver equipment
JP2005311968A (en) Frequency conversion circuit
KR20130104837A (en) Operating method of transmitter in a wireless comunication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180329

R150 Certificate of patent or registration of utility model

Ref document number: 6319803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250