JP2016058269A - Heating element - Google Patents

Heating element Download PDF

Info

Publication number
JP2016058269A
JP2016058269A JP2014184376A JP2014184376A JP2016058269A JP 2016058269 A JP2016058269 A JP 2016058269A JP 2014184376 A JP2014184376 A JP 2014184376A JP 2014184376 A JP2014184376 A JP 2014184376A JP 2016058269 A JP2016058269 A JP 2016058269A
Authority
JP
Japan
Prior art keywords
path portion
area
heating element
short path
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184376A
Other languages
Japanese (ja)
Inventor
公紀 石原
Kiminori Ishihara
公紀 石原
祐一郎 熊倉
Yuichiro Kumakura
祐一郎 熊倉
純一 枝国
Junichi Edakuni
純一 枝国
重直 園山
Shigenao Sonoyama
重直 園山
順次 多田
Junji Tada
順次 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Aleph Corp
Original Assignee
Tohoku University NUC
Nippon Aleph Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Aleph Corp filed Critical Tohoku University NUC
Priority to JP2014184376A priority Critical patent/JP2016058269A/en
Publication of JP2016058269A publication Critical patent/JP2016058269A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a planar heating element capable of making intra-plane temperature distribution uniform even if the heating element is formed to have a different distance in which current flows.SOLUTION: On a sheet 100, a plurality of through-holes 102 are formed from an end 100A to an end 100B. The sheet 100 is formed in such a manner that a first edge 100C becomes shorter than a second edge 100D. Further, on the sheet 100, a region closer to the first edge 100C is defined as a short route part IS and a region closer to the second edge 100D is defined as a long route part OS. At such a time, a first opening rate that is a ratio of an area in which a film 101 is not formed in the short route part IS with respect to an area projected with the edge of the short route part IS becomes greater than a second opening rate that is a ratio of an area in which the film 101 is not formed in the long route part OS with respect to an area projected with the edge of the long route part OS.SELECTED DRAWING: Figure 1

Description

本発明は、電気で発熱する発熱体に関する。   The present invention relates to a heating element that generates heat by electricity.

従来、暖房や凍結防止を目的として、暖房便座をはじめ、自動車のシートの座面、椅子の座面、またはドアノブなどの内部に発熱体を配置することが知られている。   2. Description of the Related Art Conventionally, for the purpose of heating and freezing prevention, it is known to arrange a heating element inside a heated toilet seat, a seat surface of an automobile seat, a seat surface of a chair, or a door knob.

例えば、上記の用途に用いる発熱体として線状発熱体がある。特許文献1には、発熱線と、エナメル層により構成されるエナメル線とから形成される線状発熱体が開示されている。この線状発熱体は、外周に絶縁層を設けた発熱線と、発熱線を挟み込む金属箔と、金属箔の外周に防水絶縁層を備えている。   For example, there is a linear heating element as a heating element used for the above-mentioned use. Patent Document 1 discloses a linear heating element formed from a heating wire and an enameled wire composed of an enamel layer. This linear heating element includes a heating wire provided with an insulating layer on the outer periphery, a metal foil sandwiching the heating wire, and a waterproof insulating layer on the outer periphery of the metal foil.

しかし、線状発熱体は使用により断線する可能性がある。そして、一か所でも断線してしまうと発熱しなくなるという課題がある。そのため、近年は、このような断線の可能性のない面状発熱体が多く用いられている。例えば、特許文献2には、導電性粒子を含んだインクを用いて、スクリーン印刷によって基材上に形成された抵抗体と、耐熱性の樹脂を含んだインクを用いて、スクリーン印刷によって抵抗体を覆うように形成された絶縁被覆層とを有した面状発熱体について開示されている。   However, the linear heating element may be broken by use. And there exists a subject that it will not generate | occur | produce heat | fever if it disconnects at one place. For this reason, in recent years, planar heating elements that do not have the possibility of such disconnection are often used. For example, Patent Document 2 discloses that a resistor formed on a substrate by screen printing using ink containing conductive particles and a resistor formed by screen printing using ink containing a heat-resistant resin. A planar heating element having an insulating coating layer formed so as to cover the sheet is disclosed.

特開2009−76438号公報JP 2009-76438 A 特開2011−227999号公報JP2011-227999A

ところで、特許文献2に示される面状発熱体を便座に使用した場合、便座の根元部分(ヒンジ部分)からU字状に発熱体を配置し、U字に沿って電気の流れを形成することになる。この場合、面状発熱体の電極同士の距離が近い領域と遠い領域とでU字に流れる電流の距離に差が出るため、単位時間当たりの電流量に差が生じてしまい、温度が均一にならない。すなわち、電気の流れる距離が短い領域のほうがより温まり易く、電気の流れる距離が長い領域のほうが温まり難い。   By the way, when the planar heating element shown in Patent Document 2 is used for a toilet seat, the heating element is arranged in a U shape from the root portion (hinge portion) of the toilet seat, and an electric flow is formed along the U shape. become. In this case, there is a difference in the distance of the current flowing in the U-shape between the area where the distance between the electrodes of the planar heating element is near and the area where it is far, so that a difference occurs in the amount of current per unit time and the temperature becomes uniform Don't be. That is, the region where the distance through which electricity flows is easier to warm up, and the region where the distance through which electricity flows is easier to warm up.

本発明はこのような課題に鑑みてなされたものであり、その目的は、面状の発熱体において、電流が流れる距離が異なる形状の場合でも、面内の温度分布を均一にすることが可能な発熱体を提供することにある。   The present invention has been made in view of such problems, and the purpose of the present invention is to make the in-plane temperature distribution uniform even when the planar heating element has a different current flowing distance. Is to provide a simple heating element.

上記課題を解決するために、本発明に係る発熱体は、一端と他端との間に電圧を印加することで発熱する導電性のフィルム部を有するシートと、前記一端及び前記他端にそれぞれ設けられてなる一対の電極と、を備えた発熱体であって、前記シートは、その周縁が、前記一端及び前記他端と、前記一端から前記他端までに形成される第1周縁部及び第2周縁部と、からなり、前記第1周縁部は、前記第2周縁部より短く形成され、前記第1周縁部側に形成される短経路部と、前記第2周縁部側に形成される長経路部と、が並列して形成され、前記短経路部の周縁を投影した面積に対して、前記短経路部において前記フィルム部が形成されていない面積の比である第1開口率は、前記長経路部の周縁を投影した面積に対して、前記長経路部において前記フィルム部が形成されていない面積の比である第2開口率より大きいことを特徴とする。   In order to solve the above problems, a heating element according to the present invention includes a sheet having a conductive film portion that generates heat by applying a voltage between one end and the other end, and the one end and the other end, respectively. A heating element including a pair of electrodes provided, wherein the sheet has a peripheral edge formed between the one end and the other end, and from the one end to the other end; The first peripheral edge portion is formed shorter than the second peripheral edge portion, and is formed on the first peripheral edge side and the short path portion formed on the first peripheral edge side. The first aperture ratio, which is a ratio of the area where the film portion is not formed in the short path portion to the area where the periphery of the short path portion is projected, is formed in parallel. The long path portion has an area projected from the periphery of the long path portion. Being larger than the second aperture ratio is the ratio of the area which is not the film portion formed Te.

以上のような本発明において、発熱体は、シートと、一対の電極とを備えている。電極は、シートの一端と他端とにそれぞれ設けられている。シートは、一端と他端との間に電圧を印加することで発熱する導電性のフィルム部を有している。また、シートは、その周縁が、一端及び他端と、当該一端から他端までに形成される第1周縁部及び第2周縁部とからなる。さらに、第1周縁部は第2周縁部より短い。このようなシートの形状として例えば、U字形、コの字形など様々な形状が挙げられる。   In the present invention as described above, the heating element includes a sheet and a pair of electrodes. The electrodes are respectively provided at one end and the other end of the sheet. The sheet has a conductive film portion that generates heat by applying a voltage between one end and the other end. Further, the periphery of the sheet is composed of one end and the other end, and a first peripheral edge and a second peripheral edge formed from the one end to the other end. Furthermore, the first peripheral edge is shorter than the second peripheral edge. Examples of the shape of the sheet include various shapes such as a U shape and a U shape.

さらにシートは、並列するように形成された短経路部と長経路部とが設けられている。並列するとは、短経路部の領域と長経路部の領域とが交わらないように配置されていることをいう。短経路部は、シート上の第1周縁部寄りに形成され、長経路部は、シート上の第2周縁部寄りに形成されている。このため、陽極から陰極までの長さであって、第1周縁部に沿った長さは、短経路部の方が長経路部よりも常に短い。よって、陽極から陰極へ電気を流した場合に、短経路部と長経路部とで電流が通る回路の長さが異なり、単位時間当たりに流れる電流量が異なる。その結果、単位時間当たりの電流量が多い短経路部と少ない長経路部とで温度に差が生じる。そこで、短経路部の周縁を投影した面積に対し、短経路部においてフィルム部が形成されていない面積の比である第1開口率は、長経路部の周縁を投影した面積に対し、長経路部においてフィルム部が形成されていない面積の比である第2開口率より大きくなるようにした。   Further, the sheet is provided with a short path portion and a long path portion that are formed in parallel. “Parallel” means that the region of the short path part and the region of the long path part are arranged so as not to intersect. The short path part is formed near the first peripheral part on the sheet, and the long path part is formed near the second peripheral part on the sheet. For this reason, the length from the anode to the cathode and along the first peripheral edge is always shorter in the short path than in the long path. Therefore, when electricity is passed from the anode to the cathode, the length of the circuit through which the current passes is different between the short path portion and the long path portion, and the amount of current flowing per unit time is different. As a result, a temperature difference occurs between the short path portion with a large amount of current per unit time and the short path portion with a small amount of current. Therefore, the first aperture ratio, which is the ratio of the area where the film portion is not formed in the short path portion to the area where the periphery of the short path portion is projected, is the long path relative to the area where the periphery of the long path portion is projected. It was made for it to become larger than the 2nd aperture ratio which is a ratio of the area in which the film part is not formed in the part.

第1開口率は、短経路部内の領域であってフィルム部が設けられていない領域を、短経路部の周縁を投影した面積で割った値をいう。また、第2開口率は、長経路部内の領域であってフィルム部が設けられていない領域を、長経路部の周縁を投影した面積で割った値をいう。第1開口率を第2開口率よりも大きくすることで、短経路内におけるフィルム部の割合が下がることになり、結果として、単位時間当たりに短経路部を流れる電流量が低下することになる。これによって、面内の温度分布のムラを解消することが可能となる。   The first aperture ratio refers to a value obtained by dividing a region in the short path portion that is not provided with a film portion by an area projected from the periphery of the short path portion. The second aperture ratio refers to a value obtained by dividing a region in the long path portion that is not provided with a film portion by an area projected from the periphery of the long path portion. By making the first aperture ratio larger than the second aperture ratio, the ratio of the film part in the short path is reduced, and as a result, the amount of current flowing through the short path part per unit time is reduced. . As a result, the uneven temperature distribution in the surface can be eliminated.

さらに、本発明に係る発熱体は、前記短経路部及び前記長経路部のそれぞれに複数の貫通孔が形成され、前記短経路部の面積に対し当該部に形成された前記複数の貫通孔の総開口面積の比は、前記長経路部の面積に対し当該部に形成された前記複数の貫通孔の総開口面積の比よりも大きいことも好ましい。   Furthermore, in the heating element according to the present invention, a plurality of through holes are formed in each of the short path part and the long path part, and the plurality of through holes formed in the part with respect to the area of the short path part. It is also preferable that the ratio of the total opening area is larger than the ratio of the total opening area of the plurality of through holes formed in the portion with respect to the area of the long path portion.

総開口面積は、貫通孔の開口部の面積の総和をいう。この好ましい態様では、短経路部と長経路部とのそれぞれに複数の貫通孔が形成されている。そして、短経路部の面積に対しこの短経路部に形成された複数の貫通孔の総開孔面積の比は、長経路部の面積に対しこの長経路部に形成された複数の貫通孔の総開口面積の比よりも大きい。これによって、短経路部の領域に単位時間当たりに流れる電流量を低く抑えることができ、面内の温度分布の均一化を図ることができる。   The total opening area refers to the total area of the openings of the through holes. In this preferred embodiment, a plurality of through holes are formed in each of the short path portion and the long path portion. The ratio of the total opening area of the plurality of through holes formed in the short path portion to the area of the short path portion is the ratio of the plurality of through holes formed in the long path portion to the area of the long path portion. It is larger than the ratio of the total opening area. As a result, the amount of current flowing per unit time in the short path region can be kept low, and the in-plane temperature distribution can be made uniform.

さらに、本発明に係る発熱体は、複数の貫通孔は、それぞれの開口面積が略同一となるように形成されており、長経路部に形成されている複数の貫通孔の数よりも短経路部に形成されている複数の貫通孔の数が多いことも好ましい。さらに、本発明に係る発熱体は、短経路部には複数の貫通孔が形成される一方で、長経路部には貫通孔が形成されないことも好ましい。この好ましい態様では、必要な箇所の電流量だけを抑えることによって、発熱効率を維持したまま温度分布の均一化を図ることができる。   Further, in the heating element according to the present invention, the plurality of through holes are formed so that the respective opening areas are substantially the same, and the path is shorter than the number of the plurality of through holes formed in the long path portion. It is also preferable that the number of the plurality of through holes formed in the portion is large. Furthermore, in the heating element according to the present invention, it is also preferable that a plurality of through holes are formed in the short path portion, while no through holes are formed in the long path portion. In this preferred embodiment, by suppressing only the amount of current at a required location, the temperature distribution can be made uniform while maintaining the heat generation efficiency.

本発明によれば、面状の発熱体において、電流が流れる距離が異なる形状の場合でも、面内の温度分布を均一にすることが可能な発熱体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even when it is a shape where the distance which an electric current flows differs in a planar heat generating body, the heat generating body which can make uniform temperature distribution in a surface can be provided.

本発明の実施形態における発熱体の模式的に示した平面模式図である。It is the plane schematic diagram which showed typically the heat generating body in embodiment of this invention. 本発明の実施形態における発熱体の他の態様を示す平面模式図である。It is a plane schematic diagram which shows the other aspect of the heat generating body in embodiment of this invention. 本発明の実施形態における発熱体の面内の電流を模式的に示した図である。It is the figure which showed typically the electric current in the surface of the heat generating body in embodiment of this invention. 本発明の実施形態における発熱体の適用例を示す模式図である。It is a schematic diagram which shows the example of application of the heat generating body in embodiment of this invention. 図4のA−A断面図である。It is AA sectional drawing of FIG. 本発明の実施形態における発熱体の適用例を示す模式図である。It is a schematic diagram which shows the example of application of the heat generating body in embodiment of this invention.

以下、添付図面を参照しながら本発明の実施の形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

図1は、本発明に係る発熱体を模式的に示す図である。発熱体10は、図1に示すようにシート100と、シート100の端部100A及び端部100Bに設けられた陽極201及び陰極202とからなる。   FIG. 1 is a diagram schematically showing a heating element according to the present invention. As shown in FIG. 1, the heating element 10 includes a sheet 100, and an anode 201 and a cathode 202 provided on the end portion 100 </ b> A and the end portion 100 </ b> B of the sheet 100.

シート100は、その周縁が、端部100Aと、端部100Bと、第1周縁部100Cと、第2周縁部100Dとから形成され、さらに、第1周縁部100Cが第2周縁部100Dよりも短い弧の字形状を成している。以下の説明では、第1周縁部100Cを内周、第2周縁部100Dを外周とも呼ぶ。なお、本発明のシート100の形状は、このような弧の字形に限られず、第1周縁部100Cが第2周縁部100Dよりも短くなる形状、言い換えれば、内周が外周よりも短くなる形状であればよい。例えば、U字形、コの字形、または波形など用途に応じて形成可能であり、その用途も、便座、自動車のシートの座面や椅子の座面等も含まれる。   The periphery of the sheet 100 is formed of an end portion 100A, an end portion 100B, a first peripheral portion 100C, and a second peripheral portion 100D, and the first peripheral portion 100C is more than the second peripheral portion 100D. It has a short arc shape. In the following description, the first peripheral edge portion 100C is also referred to as an inner periphery, and the second peripheral edge portion 100D is also referred to as an outer periphery. In addition, the shape of the sheet 100 of the present invention is not limited to such an arc shape, but a shape in which the first peripheral edge portion 100C is shorter than the second peripheral edge portion 100D, in other words, an inner periphery is shorter than the outer periphery. If it is. For example, it can be formed according to uses such as a U-shape, a U-shape, or a corrugated shape, and the use includes toilet seats, seat surfaces of automobile seats, chair seat surfaces, and the like.

図1では、端部100Aの中点から端部100Bの中点までを第1周縁部100Cに沿って結ぶ中心線である境界Bによって、シート100の領域を区切った場合に、第1周縁部100C側の領域を短経路部ISとし、第2周縁部100D側の領域を長経路部OSとしている。なお、短経路部ISと、長経路部OSとは並列して形成されている。並列であるとは、形成された2つの領域が交わらないように配置されている状態をいう。   In FIG. 1, when the region of the sheet 100 is divided by a boundary B that is a center line connecting the midpoint of the end portion 100A to the midpoint of the end portion 100B along the first peripheral portion 100C, the first peripheral portion The region on the 100C side is a short path portion IS, and the region on the second peripheral edge 100D side is a long path portion OS. Note that the short path portion IS and the long path portion OS are formed in parallel. “Parallel” refers to a state in which two formed regions are arranged so as not to intersect.

短経路部ISは、長経路部OSよりも、第1周縁部100C寄りに形成されているため、陽極201から陰極202までの長さであって、第1周縁部100Cに沿った長さは、短経路部ISの方が長経路部OSよりも常に短くなる。なお、ここでは、説明の便宜上、短経路部ISと長経路部OSとの境界Bを中心線としているが、本発明における短経路部ISと長経路部OSとの境界Bは、中心線に限られない。短経路部ISは第1周縁部100C寄りに形成され、かつ長経路部OSよりも第1周縁部100C側に形成される領域であれば良い。また、長経路部OSは第2周縁部100D寄りに形成され、かつ短経路部ISよりも第2周辺部100D側に形成される領域であれば良い。すなわち、短経路部ISが第1周縁部100C側からシート100を3分の2程度占有するように形成される場合もあれば、反対に長経路部OSが第2周縁部100D側からシート100を3分の2程度占有するように形成される場合もある。   Since the short path portion IS is formed closer to the first peripheral edge portion 100C than the long path portion OS, the length from the anode 201 to the cathode 202 and the length along the first peripheral edge portion 100C is The short path part IS is always shorter than the long path part OS. Here, for convenience of explanation, the boundary B between the short path portion IS and the long path portion OS is used as the center line. However, the boundary B between the short path portion IS and the long path portion OS in the present invention is the center line. Not limited. The short path portion IS may be an area formed near the first peripheral edge portion 100C and closer to the first peripheral edge portion 100C than the long path portion OS. Further, the long path portion OS may be a region that is formed closer to the second peripheral portion 100D and that is formed closer to the second peripheral portion 100D than the short path portion IS. That is, the short path portion IS may be formed so as to occupy about two thirds of the sheet 100 from the first peripheral edge portion 100C side. On the contrary, the long path portion OS is formed from the second peripheral edge portion 100D side. May be formed so as to occupy about two thirds.

シート100上に形成された領域である短経路部ISと長経路部OSにはそれぞれ、端部100A及び端部100Bから電圧を印加することで発熱する導電性のフィルム101を有している。フィルム101は、例えば、炭素系粉末などの導電性材料を用いて得られた樹脂をシート状にし、形成される。なお、フィルム101は、このような態様に限らず、例えば炭素繊維からなるシートによって構成することも可能である。   Each of the short path portion IS and the long path portion OS, which are regions formed on the sheet 100, has a conductive film 101 that generates heat when voltage is applied from the end portion 100A and the end portion 100B. The film 101 is formed, for example, by forming a sheet of resin obtained using a conductive material such as carbon-based powder. Note that the film 101 is not limited to such an embodiment, and may be formed of a sheet made of carbon fiber, for example.

発熱体10は、フィルム101の端部100A及び100Bにそれぞれ電圧がかけられることで面内に電流が流れ、これによって発熱する。本実施形態においては、一例として、端部100Aに陽極201を形成し、端部100Bに陰極202を形成したものとして説明する。すなわち、この例では、電流は端部100Aから端部100Bの向きへ流れる。   The heating element 10 generates heat by applying a voltage to the end portions 100 </ b> A and 100 </ b> B of the film 101 so that current flows in the plane. In the present embodiment, as an example, it is assumed that the anode 201 is formed at the end portion 100A and the cathode 202 is formed at the end portion 100B. That is, in this example, the current flows from the end portion 100A to the end portion 100B.

フィルム101には、端部100Aから端部100Bにわたって、複数の貫通孔102が形成されている。短経路部ISまたは長経路部OSにどの程度、貫通孔102が設けられているかは第1開口率または第2開口率で表される。第1開口率は、短経路部ISに設けられた貫通孔102の開口部の面積の和である総開口面積を、開口部を含んだ短経路部IS全体の面積で割った値をいう。また、第2開口率は、長経路部OSに設けられた貫通孔102の開口部の面積の和である総開口面積を、開口部を含んだ長経路部OS全体の面積で割った値をいう。複数の貫通孔102は、フィルム101において、第1開口率の方が第2開口率よりも大きくなるように形成されている。すなわち、短経路部IS側には割合としてより多くの貫通孔102が形成され、長経路部OS側には割合として短経路部IS側より貫通孔が少なく形成されている。なお長経路部OS側は、貫通孔102が形成されない場合も含む。   A plurality of through holes 102 are formed in the film 101 from the end portion 100A to the end portion 100B. To what extent the through hole 102 is provided in the short path portion IS or the long path portion OS is expressed by the first aperture ratio or the second aperture ratio. The first aperture ratio is a value obtained by dividing the total opening area, which is the sum of the areas of the openings of the through holes 102 provided in the short path portion IS, by the area of the entire short path portion IS including the openings. The second aperture ratio is a value obtained by dividing the total opening area, which is the sum of the areas of the openings of the through holes 102 provided in the long path portion OS, by the area of the entire long path portion OS including the openings. Say. The plurality of through holes 102 are formed in the film 101 such that the first aperture ratio is larger than the second aperture ratio. That is, a larger number of through holes 102 are formed on the short path portion IS side and a smaller number of through holes are formed on the long path portion OS side than the short path portion IS side. The long path portion OS side includes a case where the through hole 102 is not formed.

図1の例では、フィルム101に形成された各貫通孔102の面積はすべて同一になっている。そのため、この場合、第1開口率が第2開口率よりも大きいとは、単位面積当たりの貫通孔102の数が、シート100の内周側の領域である短経路部ISの方が外周側の領域である長経路部OSよりも多くなっていることを指す。例えば、境界Bが中心線でなく、より内周側やより外周側に設けられている場合であっても、内周側の領域の方が外周側の領域よりも、単位面積当たりの貫通孔102の数が多くなるように、フィルム101に貫通孔102が形成される。   In the example of FIG. 1, the areas of the through holes 102 formed in the film 101 are all the same. Therefore, in this case, the fact that the first aperture ratio is larger than the second aperture ratio means that the number of the through holes 102 per unit area is shorter on the outer peripheral side of the short path portion IS, which is a region on the inner peripheral side of the sheet 100. It means that it is larger than the long path part OS which is the area of For example, even when the boundary B is not the center line but is provided on the inner peripheral side or the outer peripheral side, the inner peripheral region is more perforated per unit area than the outer peripheral region. Through-holes 102 are formed in the film 101 so that the number of 102 increases.

なお、本発明は、このような態様に限らず、例えば、図2に示すように、短経路部ISと長経路部OSとで貫通孔102の数を同じにしつつ、貫通孔102の開口面積を複数のパターンで構成することも含む。すなわち、発熱体10Aでは、フィルム101に形成される貫通孔102の面積を、開口面積が大きい貫通孔102Aと、開口面積が中くらいの大きさである貫通孔102Bと、開口面積が小さい貫通孔102Cとで形成する。そして、短経路部ISの単位面積当たりの総開口面積が長経路部OSの単位面積当たりの総開口面積が、よりも大きくなるように、これらの貫通孔102A〜102Cを形成するものである。   Note that the present invention is not limited to such an embodiment. For example, as illustrated in FIG. 2, the opening area of the through hole 102 is the same as the number of the through holes 102 in the short path portion IS and the long path portion OS. Including a plurality of patterns. In other words, in the heating element 10A, the through holes 102 formed in the film 101 are divided into a through hole 102A having a large opening area, a through hole 102B having a medium opening area, and a through hole having a small opening area. And 102C. The through holes 102A to 102C are formed so that the total opening area per unit area of the short path portion IS is larger than the total opening area per unit area of the long path portion OS.

なお、図1の例では、貫通孔102を模式的に表しているため、実際の実施態様よりも大きく表される。実際には、貫通孔102は微細孔で形成されることが望ましい。また、貫通孔102は、円形状で表されているが、これに限定されず、楕円形や多角形、スリット形状等であってもよい。また、シート100に設けられるのは、孔に限定されず、フィルム101が設けられていない非導電性の領域であればよい。例えば貫通孔102を形成する代わりに、シート100内に樹脂等を埋め込むとしてもよい。この場合、第1開口率は、短経路部ISに形成される非導電性の領域の総面積に対する、当該非導電性の領域を含む短経路部ISの面積の比であって、また、第2開口率は、長経路部OSに形成される非導電性の領域の総面積に対する、当該非導電性の領域を含む長経路部OSの面積の比であってもよい。   In addition, in the example of FIG. 1, since the through-hole 102 is represented typically, it represents larger than an actual embodiment. Actually, it is desirable that the through hole 102 is formed of a fine hole. Moreover, although the through-hole 102 is represented by circular shape, it is not limited to this, An ellipse, a polygon, a slit shape, etc. may be sufficient. Moreover, what is provided in the sheet | seat 100 is not limited to a hole, What is necessary is just the nonelectroconductive area | region in which the film 101 is not provided. For example, instead of forming the through hole 102, a resin or the like may be embedded in the sheet 100. In this case, the first aperture ratio is the ratio of the area of the short path portion IS including the non-conductive region to the total area of the non-conductive region formed in the short path portion IS. The 2 aperture ratio may be a ratio of the area of the long path portion OS including the nonconductive region to the total area of the nonconductive region formed in the long path portion OS.

次に、図3を用いて、フィルム101における電流の流れを模式的に示す。図中の矢印は電流が通る回路を示している。この例では、長経路部OSには貫通孔102の数が少ないため、端部100Aから流れ出た電流は貫通孔102にほとんど衝突することなく端部100Bまで到達することができる(矢印30A)。そのため、長経路部OSでは、電流は貫通孔102の影響をほとんど受けない。   Next, the flow of current in the film 101 is schematically shown using FIG. The arrow in the figure indicates a circuit through which a current passes. In this example, since the number of the through holes 102 is small in the long path portion OS, the current flowing out from the end portion 100A can reach the end portion 100B with almost no collision with the through hole 102 (arrow 30A). Therefore, the current is hardly affected by the through hole 102 in the long path portion OS.

一方、短経路部ISでは、端部100Aから流れ出た電流は、端部100Bに到達するまでの間、貫通孔102の開口部を通ることができないため、貫通孔102を迂回して進む(矢印30B)。このため、短経路部ISでは迂回路の分だけ回路が長くなり、本来の端部100Aから端部100Bまでの回路の長さよりも電流が通る距離が増える。これによって、短経路部ISを単位時間当たりに流れる電流量が、貫通孔102がない場合に比べて小さくなる。   On the other hand, in the short path portion IS, the current flowing out from the end portion 100A cannot pass through the opening portion of the through hole 102 until it reaches the end portion 100B, and thus proceeds around the through hole 102 (arrow) 30B). For this reason, in the short path part IS, the circuit becomes longer by the length of the detour, and the distance through which the current passes is longer than the length of the circuit from the original end part 100A to the end part 100B. As a result, the amount of current that flows through the short path portion IS per unit time becomes smaller than when there is no through hole 102.

ここで、貫通孔102は、シート100を貫通しているので、電気はこの貫通孔102を通らない。すなわち、フィルム101上を流れる電流は、貫通孔102を迂回する。そのため、貫通孔102が形成された領域では、電流が通る回路がこの迂回路の分、長く形成されることになる。したがって、貫通孔102が形成された領域では、単位時間当たりの電流量を低下し、結果として発熱量が低下する。   Here, since the through hole 102 passes through the sheet 100, electricity does not pass through the through hole 102. That is, the current flowing on the film 101 bypasses the through hole 102. For this reason, in the region where the through hole 102 is formed, a circuit through which a current passes is formed longer by this detour. Therefore, in the region where the through hole 102 is formed, the current amount per unit time is reduced, and as a result, the heat generation amount is reduced.

従来の面状発熱体の場合、陽極から陰極までの距離が短い短経路部ISの方が、長経路部OSよりも電流が通る回路も短く、単位時間あたりに流れる電流量が多い。そのため、短経路部ISが、長経路部OSに比べて温度が上昇しやすかった。すなわち、陽極に電圧がかかると、短経路部ISの温度が長経路部OSよりも上昇し、面内の温度分布にムラが生じていた。   In the case of a conventional planar heating element, the short path portion IS having a short distance from the anode to the cathode has a shorter circuit through which current flows than the long path portion OS, and the amount of current flowing per unit time is large. For this reason, the temperature of the short path portion IS is likely to increase as compared with the long path portion OS. That is, when a voltage is applied to the anode, the temperature of the short path portion IS rises higher than that of the long path portion OS, and the in-plane temperature distribution is uneven.

そこで、シート100では、貫通孔102を、長経路部OSよりも、単位時間当たりの電流量の多い領域である短経路部ISに多く設け、第1開口率よりも第2開口率の方が大きくなるようにした。これにより、シート100上の温度分布のムラを制御した。   Therefore, in the sheet 100, the through holes 102 are provided more in the short path portion IS that is a region where the amount of current per unit time is larger than in the long path portion OS, and the second aperture ratio is more than the first aperture ratio. I tried to get bigger. Thereby, the unevenness of the temperature distribution on the sheet 100 was controlled.

このように第1開口率が、第2開口率より大きくなるような分布で貫通孔102を設けることによって、単位時間当たりに短経路部ISと長経路部OSとを通る電流の量を調整する。望ましくは、長経路部OSと、短経路部ISとの単位時間当たりに流れる電流量が等しくなるような分布で、貫通孔102を形成する。これによって、フィルム101の面内の温度分布を調整することができるようになる。特に、それぞれの貫通孔102の開口面積が同一にすることで、孔の数の多寡によって、長経路部OSと短経路部ISとの温度分布の調整を行うことができる。   By providing the through holes 102 in such a distribution that the first aperture ratio is larger than the second aperture ratio, the amount of current passing through the short path portion IS and the long path portion OS per unit time is adjusted. . Desirably, the through holes 102 are formed in such a distribution that the amount of current flowing per unit time between the long path portion OS and the short path portion IS is equal. As a result, the in-plane temperature distribution of the film 101 can be adjusted. In particular, by making the opening areas of the respective through holes 102 the same, the temperature distribution of the long path portion OS and the short path portion IS can be adjusted depending on the number of holes.

また、貫通孔102は、長経路部OSには形成していないとしてもよい。これにより、長経路部OSにおける単位時間当たりに流れる電流量の減少を伴わず、短経路部ISにおける単位時間当たりに流れる電流量だけを調整することで全体の温度分布の調整を行うことができる。   Further, the through hole 102 may not be formed in the long path portion OS. Thus, the overall temperature distribution can be adjusted by adjusting only the amount of current flowing per unit time in the short path portion IS without reducing the amount of current flowing per unit time in the long path portion OS. .

なお、貫通孔102の開口面積は、長経路部OSに形成されるものよりも、短経路部ISに形成されるもののほうが大きく構成することも可能である。この場合には、長経路部OSから短経路部ISに向けて、貫通102の数を同数にしつつ、孔の大きさを徐々に大きくしていくことで温度分布の調整が可能になる。   Note that the opening area of the through hole 102 can be configured to be larger in the short path portion IS than in the long path portion OS. In this case, the temperature distribution can be adjusted by gradually increasing the size of the holes from the long path portion OS toward the short path portion IS while maintaining the same number of the through holes 102.

続いて、本発明の発熱体10の適用例を図4〜図6に示す。図4は、発熱体10を便座に使用した例を示す模式図であり、図5は図4のA−A断面図である。同図に示すように、発熱体10を便座TSに用いた場合、便座TSの形状に沿って、U字状に配置され、端部100A及び100Bから、便座装置Tに設けられた電源Pに接続される。また、図5に示すように、発熱体10は、便座TSの断面形状に沿って湾曲して配置される。このような便座TSにおいて、従来の発熱体では、短経路部ISの温度が高くなり、長経路部OSの温度はそれほど上昇しない。これに対して、発熱体10では、短経路部ISと長経路部OSとの電流量を調整することで、短経路部ISと長経路部OSとの温度分布を均一化することができる。   Then, the application example of the heat generating body 10 of this invention is shown in FIGS. 4 is a schematic view showing an example in which the heating element 10 is used for a toilet seat, and FIG. 5 is a cross-sectional view taken along line AA of FIG. As shown in the figure, when the heating element 10 is used for the toilet seat TS, it is arranged in a U-shape along the shape of the toilet seat TS, and the power source P provided in the toilet seat device T is connected to the end portions 100A and 100B. Connected. Moreover, as shown in FIG. 5, the heat generating body 10 is curved and arranged along the cross-sectional shape of the toilet seat TS. In such a toilet seat TS, in the conventional heating element, the temperature of the short path portion IS becomes high, and the temperature of the long path portion OS does not increase so much. On the other hand, in the heating element 10, the temperature distribution between the short path portion IS and the long path portion OS can be made uniform by adjusting the amount of current between the short path portion IS and the long path portion OS.

図6は、発熱体10を自動車等に用いられるシートの座面Sに用いた例を示す平面模式図である。発熱体10を座面Sに用いた場合、座面Sの形状に沿ってU字又はコの字形に配置され、端部100A及び100Bから、座面Sの外部に設けられた電源Pに接続される。このような座面Sにおいて、便座TSの場合と同様に、従来の発熱体では、短経路部ISの温度が高くなり、長経路部OSの温度はそれほど上昇しない。これに対して、発熱体10では、短経路部ISと長経路部OSとの電流量を調整することで、短経路部ISと長経路部OSとの温度分布を均一化することができる。   FIG. 6 is a schematic plan view showing an example in which the heating element 10 is used for a seating surface S of a seat used in an automobile or the like. When the heating element 10 is used for the seating surface S, it is arranged in a U-shape or a U-shape along the shape of the seating surface S, and is connected to the power source P provided outside the seating surface S from the end portions 100A and 100B. Is done. In such a seat surface S, as in the case of the toilet seat TS, in the conventional heating element, the temperature of the short path portion IS is high and the temperature of the long path portion OS is not so increased. On the other hand, in the heating element 10, the temperature distribution between the short path portion IS and the long path portion OS can be made uniform by adjusting the amount of current between the short path portion IS and the long path portion OS.

以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, but can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.

10、10A、10B:発熱体
30A、30B:電流
100:シート
100A、100B:端部
100C:第1周縁部
100D:第2周縁部
101:フィルム
102:貫通孔
10, 10A, 10B: Heating element 30A, 30B: Current 100: Sheet 100A, 100B: End part 100C: First peripheral part 100D: Second peripheral part 101: Film 102: Through hole

Claims (5)

一端と他端との間に電圧を印加することで発熱する導電性のフィルム部を有するシートと、前記一端及び前記他端にそれぞれ設けられてなる一対の電極と、を備えた発熱体であって、
前記シートは、
その周縁が、前記一端及び前記他端と、前記一端から前記他端までに形成される第1周縁部及び第2周縁部と、からなり、
前記第1周縁部は、前記第2周縁部より短く形成され、
前記第1周縁部側に形成される短経路部と、前記第2周縁部側に形成される長経路部と、が並列して形成され、
前記短経路部の周縁を投影した面積に対して、前記短経路部において前記フィルム部が形成されていない面積の比である第1開口率は、前記長経路部の周縁を投影した面積に対して、前記長経路部において前記フィルム部が形成されていない面積の比である第2開口率より大きいことを特徴とする発熱体。
A heating element comprising a sheet having a conductive film portion that generates heat when a voltage is applied between one end and the other end, and a pair of electrodes provided on the one end and the other end, respectively. And
The sheet is
The periphery consists of the one end and the other end, and a first periphery and a second periphery formed from the one end to the other end,
The first peripheral edge is formed shorter than the second peripheral edge,
The short path part formed on the first peripheral part side and the long path part formed on the second peripheral part side are formed in parallel,
The first aperture ratio, which is the ratio of the area where the film part is not formed in the short path part to the area where the periphery of the short path part is projected, is relative to the area where the periphery of the long path part is projected. In the long path portion, the heating element is larger than a second opening ratio which is a ratio of an area where the film portion is not formed.
前記短経路部及び前記長経路部のそれぞれに複数の貫通孔が形成され、
前記短経路部の面積に対し当該部に形成された前記複数の貫通孔の総開口面積の比は、前記長経路部の面積に対し当該部に形成された前記複数の貫通孔の総開口面積の比よりも大きいことを特徴とする請求項1記載の発熱体。
A plurality of through holes are formed in each of the short path portion and the long path portion,
The ratio of the total opening area of the plurality of through holes formed in the part to the area of the short path part is the total opening area of the plurality of through holes formed in the part to the area of the long path part. The heating element according to claim 1, wherein the ratio is greater than
前記複数の貫通孔は、それぞれの開口面積が略同一となるように形成されており、
前記長経路部に形成されている前記複数の貫通孔の数よりも前記短経路部に形成されている前記複数の貫通孔の数が多いことを特徴とする請求項2記載の発熱体。
The plurality of through holes are formed so that the respective opening areas are substantially the same,
The heating element according to claim 2, wherein the number of the plurality of through holes formed in the short path portion is larger than the number of the plurality of through holes formed in the long path portion.
前記長経路部に形成されている前記貫通孔の開口面積よりも、前記短経路部に形成されている前記貫通孔の開口面積が大きいことを特徴とする請求項2記載の発熱体。   The heating element according to claim 2, wherein an opening area of the through hole formed in the short path portion is larger than an opening area of the through hole formed in the long path portion. 前記短経路部には複数の貫通孔が形成される一方で、前記長経路部には貫通孔が形成されないことを特徴とする請求項1に記載の発熱体。   The heating element according to claim 1, wherein a plurality of through holes are formed in the short path portion, but no through holes are formed in the long path portion.
JP2014184376A 2014-09-10 2014-09-10 Heating element Pending JP2016058269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184376A JP2016058269A (en) 2014-09-10 2014-09-10 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184376A JP2016058269A (en) 2014-09-10 2014-09-10 Heating element

Publications (1)

Publication Number Publication Date
JP2016058269A true JP2016058269A (en) 2016-04-21

Family

ID=55758872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184376A Pending JP2016058269A (en) 2014-09-10 2014-09-10 Heating element

Country Status (1)

Country Link
JP (1) JP2016058269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107580377A (en) * 2017-08-09 2018-01-12 东莞市瑞迪三维电子科技有限公司 A kind of method for changing electrothermal film region heating-up temperature and the micro electric backing using this method production
JP2019175625A (en) * 2018-03-27 2019-10-10 株式会社Lixil Heating device
CN112373553A (en) * 2020-11-23 2021-02-19 嘉兴方晟电子科技有限公司 Preparation method of heating cloth with uniform heating function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107580377A (en) * 2017-08-09 2018-01-12 东莞市瑞迪三维电子科技有限公司 A kind of method for changing electrothermal film region heating-up temperature and the micro electric backing using this method production
JP2019175625A (en) * 2018-03-27 2019-10-10 株式会社Lixil Heating device
JP7089915B2 (en) 2018-03-27 2022-06-23 株式会社Lixil Heat generator
CN112373553A (en) * 2020-11-23 2021-02-19 嘉兴方晟电子科技有限公司 Preparation method of heating cloth with uniform heating function

Similar Documents

Publication Publication Date Title
US20190359032A1 (en) Radiant heater device
JP2016058269A (en) Heating element
US20210136877A1 (en) Plate heater
JP2018533828A (en) Sheet heating element
JP2007299546A (en) Planar heating element
JP6502366B2 (en) Protection element
JP2010160954A (en) Surface heater
US5015986A (en) Organic positive temperature coefficient thermistor
JP2005293895A (en) Flat heating element
JP2006269241A (en) Heater mirror
JP7089915B2 (en) Heat generator
JP2014212045A (en) Planar heating element
JP2019512060A (en) Oil-water heat exchanger, especially for internal combustion engines of motor vehicles
CN111194102A (en) Electric heating plate capable of generating heat uniformly, preparation method thereof and thick film heating element
JP2007035476A (en) Planar heating element
JP3828238B2 (en) Current limiter
JP3577691B2 (en) Planar heating element
KR20190102608A (en) Plate heater
JPH0526713Y2 (en)
KR20230014105A (en) Radiant film heater with wrinkle-free fucntion
JP2008267628A (en) Heating panel
JP2014179367A (en) Ceramic resistor
JP2016039012A (en) Heating board for heater
JP5880005B2 (en) Heating toilet seat device
JP2010243740A (en) Ion generator