JP2016057595A - Electrophotographic photoreceptor, image forming apparatus, and cartridge - Google Patents

Electrophotographic photoreceptor, image forming apparatus, and cartridge Download PDF

Info

Publication number
JP2016057595A
JP2016057595A JP2014265618A JP2014265618A JP2016057595A JP 2016057595 A JP2016057595 A JP 2016057595A JP 2014265618 A JP2014265618 A JP 2014265618A JP 2014265618 A JP2014265618 A JP 2014265618A JP 2016057595 A JP2016057595 A JP 2016057595A
Authority
JP
Japan
Prior art keywords
layer
resin
structural formula
mass
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014265618A
Other languages
Japanese (ja)
Other versions
JP6413762B2 (en
Inventor
長田 卓博
Takahiro Osada
卓博 長田
栗原 俊一郎
Shunichiro Kurihara
俊一郎 栗原
直 水島
Sunao Mizushima
直 水島
由香 長尾
Yuka Nagao
由香 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2016057595A publication Critical patent/JP2016057595A/en
Application granted granted Critical
Publication of JP6413762B2 publication Critical patent/JP6413762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor that has excellent electrical characteristics, excellent adhesive properties, and excellent wear resistance in various use environments from high temperature and high humidity to low temperature and low humidity, an image forming apparatus, and a cartridge.SOLUTION: There is provided an electrophotographic photoreceptor that has an undercoat layer and a photosensitive layer on a conductive support, where the undercoat layer contains a binder resin, and metal oxide particles each having a surface treated with an organic metal compound having the following structural formula (I), and the photosensitive layer contains a polyarylate resin having the structural formula (II). The structural formula (I): CH=CR-COO-R-M.SELECTED DRAWING: None

Description

本発明は、下引き層を有する電子写真感光体に関するものであり、より詳しくは、低温低湿から高温高湿の初期及び繰り返しを含めた電気特性及び耐摩耗性及び接着性が良好な電子写真感光体に関するものである。   The present invention relates to an electrophotographic photosensitive member having an undercoat layer. More specifically, the present invention relates to an electrophotographic photosensitive member having good electrical characteristics, including wear resistance and adhesion, including initial and repeated low temperature and low humidity to high temperature and high humidity. It is about the body.

電子写真技術は、即時性、高品質の画像が得られることなどから、近年では複写機の分野にとどまらず、各種プリンターの分野でも広く使われ応用されている。電子写真技術の中核となる感光体については、近年ではその光導電材料として、無公害で、成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した感光体が、開発されている。特に光を吸収して電荷を発生する機能と、発生した電荷を輸送する機能を分離した電荷発生層及び、電荷移動層からなる積層型の感光体は、主流となっている。現在これらの感光体は、複写機、レーザープリンター等の画像形成装置の分野に広く用いられている。   In recent years, electrophotographic technology has been widely used and applied not only in the field of copying machines but also in the field of various printers because of its immediacy and high-quality images. As for photoconductors that are the core of electrophotographic technology, in recent years, photoconductors using organic photoconductive materials that have the advantages of non-polluting, easy film formation, easy manufacture, etc. Has been developed. In particular, a stacked type photoconductor composed of a charge generation layer and a charge transfer layer that separates the function of absorbing light to generate charges and the function of transporting the generated charges has become the mainstream. Currently, these photoreceptors are widely used in the field of image forming apparatuses such as copying machines and laser printers.

電子写真感光体は、導電性支持体上に感光層を形成したものが基本構成である。支持体から電荷注入や支持体の欠陥による画像欠陥の解消、感光層との接着性向上や帯電性の改善のために、感光層と支持体の間に下引き層を設けることが行われている。
下引き層としては、種々の樹脂材料を用いることが知られているが、中でも特に可溶性ポリアミド樹脂が好ましいことが知られている(特許文献1参照)。そして、更には特定のジアミン成分を構成成分として有する共重合ポリアミド樹脂が好ましく用いられている(特許文献2参照)。そのようなポリアミド樹脂に無機材料を分散させた下引き層として、例えば、酸化チタンと酸化スズを8−ナイロンに分散させたものが知られており(引用文献3参照)、耐リーク特性を改善するためにアクリル基を有する有機金属化合物で表面処理された金属酸化合物粒子を用いることが知られている(特許文献4参照)。
The electrophotographic photosensitive member has a basic structure in which a photosensitive layer is formed on a conductive support. An undercoat layer is provided between the photosensitive layer and the support in order to eliminate image defects due to charge injection from the support or defects in the support, improve adhesion to the photosensitive layer, and improve chargeability. Yes.
As the undercoat layer, various resin materials are known to be used, and it is known that a soluble polyamide resin is particularly preferable (see Patent Document 1). Further, a copolymerized polyamide resin having a specific diamine component as a constituent component is preferably used (see Patent Document 2). As an undercoat layer in which an inorganic material is dispersed in such a polyamide resin, for example, one in which titanium oxide and tin oxide are dispersed in 8-nylon is known (see cited reference 3), which improves the leak resistance characteristics. For this purpose, it is known to use metal acid compound particles surface-treated with an organometallic compound having an acrylic group (see Patent Document 4).

一方、感光層は、耐摩耗性を向上させるために、種々のバインダー樹脂が検討されている。特定構造を有するポリアリレート樹脂が、耐摩耗性において優れていることが知られている(特許文献5参照)。しかしながら、感光層に、特定構造を有するポリアリレート樹脂を含有させる場合は接着性が悪くなることが知られている。この問題に対し、例えばポリエーテル構造を有するポリアミド樹脂を有する下引き層とすることで、前記ポリアリレート樹脂を有する感光層を有する感光体であっても、接着性を良好に保つことができる(特許文献6参照)。   On the other hand, various binder resins have been investigated for the photosensitive layer in order to improve the wear resistance. It is known that a polyarylate resin having a specific structure is excellent in wear resistance (see Patent Document 5). However, it is known that when the photosensitive layer contains a polyarylate resin having a specific structure, the adhesiveness deteriorates. To solve this problem, for example, by using a subbing layer having a polyamide resin having a polyether structure, even a photoreceptor having a photosensitive layer having the polyarylate resin can maintain good adhesion ( (See Patent Document 6).

特開昭56−21129号公報JP 56-21129 A 特開平4−31870号公報JP-A-4-31870 特開昭62−280864号公報Japanese Patent Laid-Open No. 62-280864 特開2012−88430号公報JP 2012-88430 A 特開2006−53549号公報JP 2006-53549 A 特開2014−44417号公報JP 2014-44417 A

しかしながら、特許文献6に記載の下引き層では、接着性は向上するが、高温高湿環境での電気特性特に高温高湿下の繰り返しの電気特性が悪くなる場合があり、特定構造を有
するポリアリレート樹脂を用いた場合、従前知られた下引き層を用いた電子写真感光体では、高温高湿環境での電気特性と接着性を両立できなかった。即ち、本発明は、高温高湿から低温低湿にわたる様々な使用環境下において初期及び繰り返し共に、電気特性に優れ、しかも接着性にも優れ、耐摩耗性にも優れた電子写真感光体、画像形成装置、及びカートリッジを提供することを目的とするものである。
However, in the undercoat layer described in Patent Document 6, although the adhesiveness is improved, the electrical characteristics in a high temperature and high humidity environment, particularly the repeated electrical characteristics in a high temperature and high humidity state may be deteriorated, and the polylayer having a specific structure is deteriorated. When an arylate resin is used, the electrophotographic photoreceptor using the previously known undercoat layer cannot achieve both electrical properties and adhesiveness in a high temperature and high humidity environment. That is, the present invention is an electrophotographic photosensitive member and image forming that are excellent in electrical characteristics, excellent in adhesion, and excellent in abrasion resistance both in the initial stage and repeatedly under various usage environments ranging from high temperature and high humidity to low temperature and low humidity. An object is to provide an apparatus and a cartridge.

本発明者らは、構造式(II)を有するポリアリレート樹脂を含有する電子写真感光体において、下引き層に用いる材料について鋭意検討した結果、前記構造式(I)を有する有機金属化合物で表面処理された金属酸化合物粒子と、バインダー樹脂を含む下引き層を用いた感光体が、電気特性に優れ、しかも接着性にも優れることを見いだし、本発明に到達した。即ち、本発明の要旨は、以下<1>〜<9>に存する。
<1>導電性上に、下引き層及び感光層を有する電子写真感光体において、前記下引き層が、下記構造式(I)を有する有機金属化合物で表面処理された金属酸化物粒子と、バインダー樹脂とを含有し、前記感光層が、構造式(II)を有するポリアリレート樹脂を含有することを特徴とする、電子写真感光体。
As a result of intensive studies on materials used for the undercoat layer in the electrophotographic photoreceptor containing the polyarylate resin having the structural formula (II), the present inventors have found that the surface of the organometallic compound having the structural formula (I) The photoreceptor using the treated metal acid compound particles and the undercoat layer containing the binder resin was found to be excellent in electrical characteristics and adhesiveness, and reached the present invention. That is, the gist of the present invention resides in the following <1> to <9>.
<1> In an electrophotographic photoreceptor having an undercoat layer and a photosensitive layer on conductivity, the undercoat layer is a metal oxide particle surface-treated with an organometallic compound having the following structural formula (I): An electrophotographic photoreceptor comprising a binder resin, wherein the photosensitive layer contains a polyarylate resin having the structural formula (II).


構造式(I)
CH=CR−COO−R−M

(Rは、水素原子又はアルキル基、Rは、アルキレン基、Mは、Si(R、Ti(R、又はAl(Rを示す。Rは、アルキル基又はアルコキシ基を示す。)

Structural formula (I)
CH 2 = CR 1 -COO-R 2 -M

(R 1 is a hydrogen atom or an alkyl group, R 2 is an alkylene group, M is Si (R 3 ) 3 , Ti (R 3 ) 3 , or Al (R 3 ) 2. R 3 is alkyl. Represents a group or an alkoxy group.)

Figure 2016057595
Figure 2016057595

(式(II)中、Ar〜Arはそれぞれ独立にアルキル基を有していてもよいフェニレン基を表し、R、Rは水素原子又はアルキル基を表す。R、Rは結合して環を形成していてもよい。)
<2>該感光層が、電荷発生層及び電荷輸送層がこの順に積層された積層型感光層であることを特徴とする、<1>に記載の電子写真感光体。
<3>前記構造式(I)のRがメチル基であること特徴とする、<1>又は<2>に記載の電子写真感光体。
<4>前記構造式(I)を有する有機金属化合物が、金属酸化物粒子に対して、5質量%〜30質量%であることを特徴とする、<1>〜<3>のいずれか1つに記載の電子写真感光体。
<5>前記金属酸化物粒子が、n型半導体粒子であることを特徴とする、<1>〜<4>のいずれか1つに記載の電子写真感光体。
<6>前記金属酸化物粒子が、前記バインダー樹脂100質量部に対して100〜400質量部であることを特徴とする、<1>〜<5>のいずれか1つに記載の電子写真感光体。
<7>前記バインダー樹脂が、ポリアミド樹脂であることを特徴とする、<1>〜<6>
のいずれか1つに記載の電子写真感光体。
<8><1>〜<7>のいずれか1つに記載の電子写真感光体を用いた、画像形成装置。<9><1>〜<7>のいずれか1つに記載の電子写真感光体を用いた、画像形成装置用のカートリッジ。
(In the formula (II), Ar 1 to Ar 4 each independently represents a phenylene group optionally having an alkyl group, and R 3 and R 4 represent a hydrogen atom or an alkyl group. R 3 and R 4 represent It may be bonded to form a ring.)
<2> The electrophotographic photosensitive member according to <1>, wherein the photosensitive layer is a laminated photosensitive layer in which a charge generation layer and a charge transport layer are laminated in this order.
<3> The electrophotographic photosensitive member according to <1> or <2>, wherein R 1 in the structural formula (I) is a methyl group.
<4> The organic metal compound having the structural formula (I) is 5% by mass to 30% by mass with respect to the metal oxide particles, and any one of <1> to <3> The electrophotographic photoreceptor described in 1.
<5> The electrophotographic photosensitive member according to any one of <1> to <4>, wherein the metal oxide particles are n-type semiconductor particles.
<6> The electrophotographic photosensitive film according to any one of <1> to <5>, wherein the metal oxide particles are 100 to 400 parts by mass with respect to 100 parts by mass of the binder resin. body.
<7> The binder resin is a polyamide resin, <1> to <6>
The electrophotographic photosensitive member according to any one of the above.
<8> An image forming apparatus using the electrophotographic photosensitive member according to any one of <1> to <7>. <9> A cartridge for an image forming apparatus using the electrophotographic photosensitive member according to any one of <1> to <7>.

本発明によれば、高温高湿度条件から低温低湿度条件にわたる、様々な使用環境において、構造式(II)を有するポリアリレート樹脂を含有している場合でも感光層と導電性基体との接着性が良好であり、しかも、帯電性、残留電位などの電気特性に優れた高性能な電子写真感光体、該感光体を用いた高性能な画像形成装置、及び該感光体を用いた画像形成装置用のカートリッジを提供することができる。   According to the present invention, in various usage environments ranging from high temperature and high humidity conditions to low temperature and low humidity conditions, even when the polyarylate resin having the structural formula (II) is contained, the adhesion between the photosensitive layer and the conductive substrate. High-performance electrophotographic photosensitive member excellent in electrical characteristics such as chargeability and residual potential, high-performance image forming apparatus using the photosensitive member, and image forming apparatus using the photosensitive member Cartridges can be provided.

本発明の画像形成装置の一実施態様の要部構成を示す概略図である。1 is a schematic diagram illustrating a main configuration of an embodiment of an image forming apparatus of the present invention.

以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。
<電子写真感光体>
導電性支持体の上に下引き層が形成され、下引き層の上には感光層が形成される。
Hereinafter, embodiments of the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of the embodiments of the present invention, and is appropriately modified and implemented without departing from the spirit of the present invention. can do.
<Electrophotographic photoreceptor>
An undercoat layer is formed on the conductive support, and a photosensitive layer is formed on the undercoat layer.

[導電性支持体]
導電性支持体について特に制限は無いが、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。導電性支持体の形態としては、ドラム状、シート状、ベルト状などのものが用いられる。更には、金属材料の導電性支持体の上に、導電性・表面性などの制御や欠陥被覆のために、適当な抵抗値を有する導電性材料を塗布したものを用いても良い。
[Conductive support]
There is no particular limitation on the conductive support, but for example, metal materials such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and conductive powder such as metal, carbon, and tin oxide are added to impart conductivity. A resin material, a resin, glass, paper, or the like on which a conductive material such as aluminum, nickel, or ITO (indium tin oxide) is deposited or applied on the surface is mainly used. These may be used alone or in combination of two or more in any combination and ratio. As a form of the conductive support, a drum form, a sheet form, a belt form or the like is used. Further, a conductive material having an appropriate resistance value may be used on a conductive support made of a metal material in order to control conductivity and surface properties and to cover defects.

また、導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いても良い。陽極酸化被膜を施した場合には、公知の方法により封孔処理を施すのが望ましい。支持体表面は、平滑であっても良いし、特別な切削方法を用いたり、粗面化処理を施したりすることにより、粗面化されていても良い。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものでも良い。また、安価化のためには、切削処理を施さず、センタレス研磨処理や引き抜き管をそのまま使用することも可能である。   Moreover, when using metal materials, such as an aluminum alloy, as an electroconductive support body, you may use, after giving an anodic oxide film. When an anodized film is applied, it is desirable to perform a sealing treatment by a known method. The surface of the support may be smooth, or may be roughened by using a special cutting method or by performing a roughening treatment. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support. In order to reduce the cost, it is possible to use a centerless polishing process or a drawing tube as it is without performing a cutting process.

[下引き層]
本発明では導電性支持体上に、構造式(I)を有する有機金属化合物で表面処理された金属酸化物粒子と、バインダー樹脂とを含有する下引き層が形成される。
構造式(I)
CH=CR−COO−R−M
(Rは、水素原子又はアルキル基、Rは、アルキレン基、Mは、Si(R、Ti(R、又はAl(Rを示す。Rは、アルキル基又はアルコキシ基を示す。)
構造式(I)中、Rのアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基等の直鎖状アルキル基、i−プロピル基、t−ブチル基、エチルヘキシル基等
の分岐状アルキル基、シクロヘキシル基等の環状アルキル基が挙げられ、接着性の観点から、炭素数3以下のアルキル基であることが好ましく、メチル基であることがより好ましい。Rのアルキレン基としては、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基等が挙げられ、接着性の観点から、炭素数4以下のアルキレン基であることが好ましく、n−プロピレン基であることがより好ましい。Rのアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基等の直鎖状アルコキシ基、イソプロポキシ基、エチルヘキシロキシ基等の分岐状アルコキシ基、シクロヘキシロキシ基等の環状アルコキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、1,1,1−トリフルオロエトキシ基等のフッ素原子を有するアルコキシ基が挙げられ、アルキル基はRで例示したものが適用できる。接着性の観点から、炭素数3以下のアルコキシ基であることが好ましく、エトキシ基又はメトキシ基であることがより好ましい。構造式(I)を有する有機金属化合物としては、シランカップリング剤であることが好ましい。前記有機金属化合物の中でも、電気特性及び接着性の観点から、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシランが特に好ましい。
[Underlayer]
In the present invention, an undercoat layer containing metal oxide particles surface-treated with an organometallic compound having the structural formula (I) and a binder resin is formed on a conductive support.
Structural formula (I)
CH 2 = CR 1 -COO-R 2 -M
(R 1 is a hydrogen atom or an alkyl group, R 2 is an alkylene group, M is Si (R 3 ) 3 , Ti (R 3 ) 3 , or Al (R 3 ) 2. R 3 is alkyl. Represents a group or an alkoxy group.)
In the structural formula (I), as the alkyl group of R 1, a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, an i-propyl group, a t-butyl group, and an ethylhexyl group And a cyclic alkyl group such as a cyclohexyl group. From the viewpoint of adhesiveness, an alkyl group having 3 or less carbon atoms is preferable, and a methyl group is more preferable. Examples of the alkylene group for R 2 include a methylene group, an ethylene group, an n-propylene group, and an n-butylene group. From the viewpoint of adhesiveness, an alkylene group having 4 or less carbon atoms is preferable. More preferably, it is a group. Examples of the alkoxy group for R 3 include linear alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, and n-butoxy group, branched alkoxy groups such as isopropoxy group and ethylhexyloxy group, and cyclohexyloxy group. And an alkoxy group having a fluorine atom, such as a cyclic alkoxy group, a trifluoromethoxy group, a pentafluoroethoxy group, and a 1,1,1-trifluoroethoxy group, and those exemplified for R 1 are applicable. From the viewpoint of adhesiveness, an alkoxy group having 3 or less carbon atoms is preferable, and an ethoxy group or a methoxy group is more preferable. The organometallic compound having the structural formula (I) is preferably a silane coupling agent. Among the organometallic compounds, 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane are particularly preferable from the viewpoints of electrical characteristics and adhesiveness.

金属酸化物粒子としては、塗布液の分散安定性が高いものが好ましく、具体的には、シリカ、アルミナ、酸化チタン、チタン酸バリウム、酸化亜鉛、酸化鉛、酸化インジウム等が挙げられ、これらの中でも、電気特性の観点から、n型半導体特性を示す金属酸化物粒子が好ましく、酸化チタン、酸化亜鉛、酸化スズがより好ましく、酸化チタンがより好ましい。   As the metal oxide particles, those having high dispersion stability of the coating liquid are preferable. Specific examples include silica, alumina, titanium oxide, barium titanate, zinc oxide, lead oxide, indium oxide, and the like. Among these, from the viewpoint of electrical characteristics, metal oxide particles exhibiting n-type semiconductor characteristics are preferable, titanium oxide, zinc oxide, and tin oxide are more preferable, and titanium oxide is more preferable.

酸化チタンとしては、結晶質、非晶質いずれも使用できるが、結晶質の場合、その結晶型はアナターゼ型、ルチル型、ブルッカイト型のいずれでも良いが、吸水性、表面処理の効率等の理由からアナターゼ型又はルチル型が用いることが好ましく、ルチル型のものを用いることがより好ましい。
金属酸化物粒子の平均一次粒子径は、塗布液への分散安定性の観点から、通常平均粒径の上限は100nm以下であり、60nm以下が好ましく、40nm以下が特に好ましい。また、凝集抑制の観点から、下限は1nm以上であり、10nm以上が好ましく、20nm以上が特に好ましい。塗布液に用いる粒子の粒径は、均一であってもまた、異なる粒径の複合系でもよい。例えば平均一次粒子径が100mのものと30nmのものを混合して用いても良い。
As the titanium oxide, either crystalline or amorphous can be used. In the case of crystalline, the crystalline form may be any of anatase type, rutile type or brookite type. It is preferable to use an anatase type or rutile type, and it is more preferable to use a rutile type.
The average primary particle size of the metal oxide particles is usually 100 nm or less, preferably 60 nm or less, and particularly preferably 40 nm or less, from the viewpoint of dispersion stability in the coating solution. From the viewpoint of suppressing aggregation, the lower limit is 1 nm or more, preferably 10 nm or more, and particularly preferably 20 nm or more. The particle size of the particles used in the coating solution may be uniform or a composite system having different particle sizes. For example, a mixture having an average primary particle diameter of 100 m and 30 nm may be used.

本発明の構造式(I)を有する有機金属化合物(以下、表面処理剤ということがある)で処理された金属酸化物粒子は、乾式法及び湿式法の製造法で製造することができる。即ち、乾式法では、本発明の表面処理剤を、金属酸化物粒子と混合することによって金属酸化物粒子に被覆させ、必要に応じて加熱処理を行う方法で製造できる。湿式法では、金属酸化物粒子と、適当な溶媒に本発明の表面処理剤を混合したものを、均一に付着されるまでよく攪拌するか、メディアによって混合し、その後乾燥し、必要に応じて加熱処理を行う方法で製造することができる。   The metal oxide particles treated with the organometallic compound having the structural formula (I) of the present invention (hereinafter sometimes referred to as a surface treating agent) can be produced by a dry process and a wet process. That is, in the dry method, the surface treatment agent of the present invention can be produced by a method in which metal oxide particles are coated by mixing with the metal oxide particles, and heat treatment is performed as necessary. In the wet method, the metal oxide particles and a mixture of the surface treatment agent of the present invention mixed with an appropriate solvent are thoroughly stirred until they are uniformly attached or mixed with media, and then dried, if necessary. It can manufacture by the method of heat-processing.

本発明の表面処理剤で処理することにより、構造式(I)を有する有機金属化合物が金属酸化物粒子表面に固く結合し、該粒子を含有する塗布液の分散安定性、低吸水性、良好な電気特性を発揮する。表面処理剤の量については、処理量が少ない場合、本発明の効果が得られず、処理量が多過ぎる場合には、粒子表面に修飾されない処理剤が存在し、塗布工程等の際に塗布膜のはじき等の原因になる。従って、用いられる金属酸化物粒子100質量部に対して、接着性の観点から下限は、通常1質量部以上、好ましくは5質量部以上であり、より好ましくは10質量部以上である。電気特性の観点から上限は、通常50質量部以下、好ましくは30質量部以下であり、より好ましくは20質量部以下である。   By treating with the surface treatment agent of the present invention, the organometallic compound having the structural formula (I) is firmly bonded to the surface of the metal oxide particles, and the dispersion stability of the coating liquid containing the particles, low water absorption, good Delivers excellent electrical properties. As for the amount of the surface treatment agent, when the treatment amount is small, the effect of the present invention cannot be obtained. This may cause film repelling. Therefore, the lower limit is usually 1 part by mass or more, preferably 5 parts by mass or more, and more preferably 10 parts by mass or more with respect to 100 parts by mass of the metal oxide particles used. From the viewpoint of electrical characteristics, the upper limit is usually 50 parts by mass or less, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less.

下引き層のバインダー樹脂としては、ポリビニルアセタール、ポリアミド樹脂、フェノール樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアクリル酸等の樹脂材料を用いることができる。中でも、支持体の接着性に優れ、電荷発生層塗布液に用いられる溶媒に対する溶解性の小さなポリアミド樹脂が好ましい。そして、ポリアミド樹脂の中でも、シクロアルカン環構造を構成成分として有する共重合ポリアミドが好ましく、シクロヘキサン環構造を構成成分として有する共重合ポリアミドがより好ましく、その中でも特に、下記構造式(III)で示されるジアミン成分を構成材料として有する共重合ポリアミド樹脂が好ましい。   As the binder resin for the undercoat layer, resin materials such as polyvinyl acetal, polyamide resin, phenol resin, polyester, epoxy resin, polyurethane, and polyacrylic acid can be used. Among these, a polyamide resin having excellent adhesion to the support and low solubility in a solvent used for the charge generation layer coating solution is preferable. Among the polyamide resins, a copolymer polyamide having a cycloalkane ring structure as a constituent component is preferable, and a copolymer polyamide having a cyclohexane ring structure as a constituent component is more preferable, and among them, the following structural formula (III) is particularly preferable. A copolymerized polyamide resin having a diamine component as a constituent material is preferable.

Figure 2016057595
Figure 2016057595

(式(III)中、A、Bは、それぞれ独立して置換基を有していてもよいシクロヘキサン環を表し、Xは置換基を有していてもよいメチレン基を表す。)
表面処理剤で処理された金属酸化物粒子とバインダー樹脂の比率は、電気特性面から、バインダー樹脂100質量部に対して、通常50質量部以上であり、100質量部以上が好ましい。また、上限は、液の安定性及び塗布性の観点から、通常800質量部以下であり、400質量部以下が好ましい。下引き層は主として、構造式(I)を有する有機金属化合物で被覆された金属酸化物粒子とバインダー樹脂で構成されるが、必要に応じて、他の表面処理金属酸化合物粒子(フッ素シラン処理の酸化チタン、メチルジメトキシシラン処理の酸化チタン等)、を加えても良く、メチルジメトキシシラン処理酸化チタンを加えることが、転写性の面等で好ましい。又、表面処理無し金属化合物粒子、酸化防止剤、添加剤、導電剤等を加えても良い。
(In Formula (III), A and B each independently represent a cyclohexane ring which may have a substituent, and X represents a methylene group which may have a substituent.)
The ratio between the metal oxide particles treated with the surface treatment agent and the binder resin is usually 50 parts by mass or more and preferably 100 parts by mass or more with respect to 100 parts by mass of the binder resin in terms of electrical characteristics. The upper limit is usually 800 parts by mass or less, preferably 400 parts by mass or less, from the viewpoint of liquid stability and applicability. The undercoat layer is mainly composed of metal oxide particles coated with an organometallic compound having the structural formula (I) and a binder resin, but if necessary, other surface-treated metal acid compound particles (fluorine silane treatment). In addition, it is preferable to add methyldimethoxysilane-treated titanium oxide from the viewpoint of transferability. Moreover, you may add metal compound particle | grains without surface treatment, antioxidant, an additive, a electrically conductive agent, etc.

下引き層の膜厚は、薄すぎると局所的な帯電不良に対する効果が充分でなく、また逆に厚すぎると残留電位の上昇、あるいは導電性基体と感光層との間の接着強度の低下の原因となる。本発明は下引き層の膜厚は0.1〜20μmで、より好ましくは0.5〜10μm、更に好ましくは1〜5μmで使用される。下引き層の体積抵抗値は、通常1×1011Ω・cm以上、好ましくは1×1012Ω・cm以上であり、通常1×1014Ω・cm以下、好ましくは1×1013Ω・cm以下である。 If the film thickness of the undercoat layer is too thin, the effect on local charging failure will not be sufficient, and conversely if it is too thick, the residual potential will increase or the adhesive strength between the conductive substrate and the photosensitive layer will decrease. Cause. In the present invention, the thickness of the undercoat layer is from 0.1 to 20 μm, more preferably from 0.5 to 10 μm, still more preferably from 1 to 5 μm. The volume resistance value of the undercoat layer is usually 1 × 10 11 Ω · cm or more, preferably 1 × 10 12 Ω · cm or more, and usually 1 × 10 14 Ω · cm or less, preferably 1 × 10 13 Ω · cm. cm or less.

構造式(I)を有する有機金属化合物で被覆された金属酸化物粒子とバインダー樹脂とを含有する下引き塗布液を得るためには、遊星ミル、ボールミル、サンドミル、ビーズミル、ペイントシェーカー、アトライター、超音波などの粉砕又は分散処理装置で処理された金属酸化物粒子のスラリーと予めバインダー樹脂を適当な溶媒に溶かしたバインダー樹脂溶解液を混合し攪拌処理を行えばよい。又、金属酸化物スラリーにバインダー樹脂を添加し、溶解させることでも得られる。また、特許4985093号公報に記載されているような
小径ビーズを用いて分散することもできる。更には、バインダー樹脂溶解液に金属酸化物粒子を添加し、上記のような分散装置で、粉砕又は分散処理を行う事によってもよい。
In order to obtain an undercoat coating solution containing metal oxide particles coated with an organometallic compound having the structural formula (I) and a binder resin, a planetary mill, a ball mill, a sand mill, a bead mill, a paint shaker, an attritor, What is necessary is just to mix and stir the slurry of the metal oxide particle processed with the grinding | pulverization or dispersion processing apparatuses, such as an ultrasonic wave, and the binder resin solution which melt | dissolved binder resin in the appropriate solvent previously. It can also be obtained by adding a binder resin to the metal oxide slurry and dissolving it. Moreover, it is also possible to disperse using small-diameter beads as described in Japanese Patent No. 4949893. Furthermore, metal oxide particles may be added to the binder resin solution, and pulverization or dispersion treatment may be performed using the above-described dispersion apparatus.

[感光層]
感光層の形式としては、電荷発生物質と電荷輸送物質とが同一層に存在し、バインダー樹脂中に分散された単層型と、電荷発生物質がバインダー樹脂中に分散された電荷発生層及び電荷輸送物質がバインダー樹脂中に分散された電荷輸送層の二層からなる機能分離型(積層型)とが挙げられるが、電荷発生層及び電荷輸送層がこの順に積層された積層型感光層である場合に、前記下引き層を用いることにより、特に接着性が向上する。また、積
層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層であることが好ましい。積層型感光体、単層型感光体ともに、感光層又はそれを構成する各層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向上させる目的で、周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させても良い。
[Photosensitive layer]
As a type of the photosensitive layer, a charge generation material and a charge transport material are present in the same layer and are dispersed in a binder resin, a charge generation layer in which a charge generation material is dispersed in a binder resin, and a charge. A functional separation type (laminated type) composed of two layers of a charge transporting layer in which a transport material is dispersed in a binder resin can be mentioned, and it is a laminated type photosensitive layer in which a charge generation layer and a charge transporting layer are laminated in this order. In some cases, the adhesion is particularly improved by using the undercoat layer. In addition, the multilayer photosensitive layer is preferably a sequential multilayer photosensitive layer in which a charge generation layer and a charge transport layer are stacked in this order from the conductive support side. For the purpose of improving film forming properties, flexibility, coating properties, contamination resistance, gas resistance, light resistance, etc., in both the photosensitive layer and the layers constituting the photosensitive layer, both of the multilayer type photosensitive member and the single layer type photosensitive member. Additives such as well-known antioxidants, plasticizers, ultraviolet absorbers, electron-withdrawing compounds, leveling agents, and visible light shielding agents may be included.

[積層型感光層−電荷発生層]
積層型感光体(機能分離型感光体)の場合、電荷発生層は、電荷発生物質をバインダー樹脂で結着することにより形成される。電荷発生物質としては、セレニウム及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とが挙げられるが、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。有機顔料としては、例えば、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。これらの中でも、特にフタロシアニン顔料又はアゾ顔料が好ましい。電荷発生物質として有機顔料を使用する場合、通常はこれらの有機顔料の微粒子を、各種のバインダー樹脂で結着した分散層の形で使用する。
[Laminated Photosensitive Layer-Charge Generation Layer]
In the case of a laminated type photoreceptor (function separation type photoreceptor), the charge generation layer is formed by binding a charge generation material with a binder resin. Examples of the charge generation material include inorganic photoconductive materials such as selenium and its alloys, cadmium sulfide, and organic photoconductive materials such as organic pigments, but organic photoconductive materials are preferred, especially organic pigments. Is preferred. Examples of organic pigments include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium) pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments. . Among these, phthalocyanine pigments or azo pigments are particularly preferable. When organic pigments are used as the charge generating substance, usually, fine particles of these organic pigments are used in the form of a dispersion layer bound with various binder resins.

電荷発生物質としてフタロシアニン顔料を使用する場合、具体的には無金属フタロシアニン、銅、インジウム、ガリウム、スズ、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム、アルミニウムなどの金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシドなどの配位したフタロシアニン類の各結晶型を持ったもの、酸素原子等を架橋原子として用いたフタロシアニンダイマー類などが使用される。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、ヒドロキシインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ−オキソ−ガリウムフタロシアニン二量体、II型等のμ−オキソ−アルミニウムフタロシアニン二量体が好適である。   When using a phthalocyanine pigment as a charge generation material, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, aluminum or other metal or oxide thereof, halide, water Those having crystal forms of coordinated phthalocyanines such as oxides and alkoxides, and phthalocyanine dimers using oxygen atoms as bridging atoms are used. In particular, titanyl phthalocyanines (also known as oxytitanium) such as X-type, τ-type metal-free phthalocyanine, A-type (also known as β-type), B-type (also known as α-type), and D-type (also known as Y-type), which are highly sensitive crystal types Phthalocyanine), vanadyl phthalocyanine, chloroindium phthalocyanine, hydroxyindium phthalocyanine, chlorogallium phthalocyanine such as type II, hydroxygallium phthalocyanine such as type V, μ-oxo-gallium phthalocyanine dimer such as type G and type I, type II, etc. The [mu] -oxo-aluminum phthalocyanine dimer is preferred.

また、これらフタロシアニンの中でも、A型(別称β型)、B型(別称α型)、及び粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、V型及び28.1゜にもっとも強いピークを有すること、また26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが0.1゜≦W≦0.4゜であることを特徴とするヒドロキシガリウムフタロシアニン、G型μ−オキソ−ガリウムフタロシアニン二量体等が特に好ましい。   Among these phthalocyanines, A-type (also known as β-type), B-type (also known as α-type), and powder X-ray diffraction angle 2θ (± 0.2 °) are 27.1 ° or 27.3 °. D-type (Y-type) titanyl phthalocyanine, II-type chlorogallium phthalocyanine, V-type and 28.1 ° have the strongest peaks, and 26.2 ° have peaks Hydroxygallium phthalocyanine having a clear peak at 28.1 ° and a full width at half maximum W of 25.9 ° of 0.1 ° ≦ W ≦ 0.4 °, G-type μ-oxo -Gallium phthalocyanine dimer and the like are particularly preferable.

フタロシアニン化合物は単一の化合物のものを用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでのフタロシアニン化合物ないしは結晶状態に置ける混合状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。混晶状態を生じさせるためには、特開平10−48859号公報記載のように、2種類の結晶を混合後に機械的に磨砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法が挙げられる。   The phthalocyanine compound may be a single compound or several mixed or mixed crystal states. As the mixed state that can be put in the phthalocyanine compound or crystal state here, those obtained by mixing the respective constituent elements later may be used, or they may be mixed in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, and crystallization. It may be the one that caused the condition. As such treatment, acid paste treatment, grinding treatment, solvent treatment and the like are known. In order to generate a mixed crystal state, as described in JP-A-10-48859, two types of crystals are mixed, mechanically ground and made amorphous, and then converted into a specific crystal state by solvent treatment. The method of doing is mentioned.

電荷発生層に用いるバインダー樹脂は特に制限されないが、例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール
系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体等の塩化ビニル−酢酸ビニル系共重合体、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、スチレン−アルキッド樹脂、シリコン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーなどが挙げられるが、ポリビニルアセタール樹脂が特に好ましく、ポリビニルアセタール樹脂としては、分散性の観点からポリビニルブチラール樹脂が好ましい。これらのバインダー樹脂は、何れか1種を単独で用いても良く、2種類以上を任意の組み合わせで混合して用いても良い。
The binder resin used for the charge generation layer is not particularly limited, but examples include polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal type such as partially acetalized polyvinyl butyral resin in which a part of butyral is modified with formal, acetal, or the like. Resin, Polyarylate resin, Polycarbonate resin, Polyester resin, Modified ether type polyester resin, Phenoxy resin, Polyvinyl chloride resin, Polyvinylidene chloride resin, Polyvinyl acetate resin, Polystyrene resin, Acrylic resin, Methacrylic resin, Polyacrylamide resin, Polyamide Resin, polyvinyl pyridine resin, cellulosic resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, casein, vinyl chloride -Vinyl acetate-vinyl acetate copolymers such as vinyl acetate copolymers, hydroxy-modified vinyl chloride-vinyl acetate copolymers, carboxyl-modified vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, etc. Insulating resins such as polymers, styrene-butadiene copolymers, vinylidene chloride-acrylonitrile copolymers, styrene-alkyd resins, silicon-alkyd resins, phenol-formaldehyde resins, poly-N-vinylcarbazole, polyvinyl anthracene, polyvinyl Examples include organic photoconductive polymers such as perylene, and polyvinyl acetal resins are particularly preferable, and polyvinyl acetal resins are preferably polyvinyl butyral resins from the viewpoint of dispersibility. Any one of these binder resins may be used alone, or two or more thereof may be mixed and used in any combination.

電荷発生層において、バインダー樹脂と電荷発生物質との配合比(質量)は、バインダー樹脂100質量部に対して電荷発生物質が通常10質量部以上、好ましくは30質量部以上、また、通常1000質量部以下、好ましくは500質量部以下の範囲であり、その膜厚は通常0.1μm以上、好ましくは0.15μm以上、また、通常10μm以下、好ましくは0.6μm以下の範囲である。電荷発生物質の比率が高過ぎると、電荷発生物質の凝集等により塗布液の安定性が低下するおそれがある一方、電荷発生物質の比率が低過ぎると、感光体としての感度の低下を招くおそれがある。粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の範囲の粒子サイズに微細化することが有効である。   In the charge generation layer, the mixing ratio (mass) of the binder resin and the charge generation material is usually 10 parts by mass or more, preferably 30 parts by mass or more, and usually 1000 parts by mass with respect to 100 parts by mass of the binder resin. Part or less, preferably 500 parts by mass or less, and the film thickness is usually 0.1 μm or more, preferably 0.15 μm or more, and usually 10 μm or less, preferably 0.6 μm or less. If the ratio of the charge generation material is too high, the stability of the coating solution may be reduced due to aggregation of the charge generation material, while if the ratio of the charge generation material is too low, the sensitivity as a photoreceptor may be decreased. There is. It is effective to refine the particles to a particle size in the range of 0.5 μm or less, preferably 0.3 μm or less, more preferably 0.15 μm or less.

[積層型感光層−電荷発生層]
積層型感光体の電荷輸送層は、電荷輸送物質とバインダー樹脂を含有する。更に必要に応じてその他の成分を含有してもよい。電荷輸送物質等とバインダー樹脂とを溶剤に溶解又は分散して塗布液を作製し、電荷発生層上に、塗布、乾燥して得ることができる。積層型感光体の場合は、電荷輸送層にポリア下記構造式(II)を有するポリアリレート樹脂を含有する。
[Laminated Photosensitive Layer-Charge Generation Layer]
The charge transport layer of the multilayer photoreceptor contains a charge transport material and a binder resin. Furthermore, you may contain another component as needed. It can be obtained by dissolving or dispersing the charge transport material and the binder resin in a solvent to prepare a coating solution, and coating and drying on the charge generation layer. In the case of a laminated type photoreceptor, a polyarylate resin having the following structural formula (II) is contained in the charge transport layer.

Figure 2016057595
Figure 2016057595

(式(II)中、Ar〜Arはそれぞれ独立にアルキル基を有していてもよいフェニレン基を表し、R、Rは水素原子又はアルキル基を表す。R、Rは結合して環を形成していてもよい。)
Ar〜Arが有していてもよいアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基等の直鎖状アルキル基、i−プロピル基、t−ブチル基、エチルヘキシル基等の分岐状アルキル基、シクロヘキシル基等の環状アルキル基が挙げられ、電気特性の観点から、炭素数3以下のアルキル基であることが好ましく、メチル基であることがより好ましい。電気特性の観点から、Ar、Arはアルキル基を有さず、Ar
Arがアルキル基を有することが好ましい。R、Rのアルキル基としては、Ar〜Arが有していてもよいアルキル基として挙げたものが適用でき、耐摩耗性の観点から、Rが水素原子、Rがメチル基であることが好ましい。具体例を以下に示す。
(In the formula (II), Ar 1 to Ar 4 each independently represents a phenylene group optionally having an alkyl group, and R 3 and R 4 represent a hydrogen atom or an alkyl group. R 3 and R 4 represent It may be bonded to form a ring.)
Examples of the alkyl group that Ar 1 to Ar 4 may have include a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, an i-propyl group, a t-butyl group, Examples thereof include a branched alkyl group such as an ethylhexyl group and a cyclic alkyl group such as a cyclohexyl group. From the viewpoint of electrical characteristics, an alkyl group having 3 or less carbon atoms is preferable, and a methyl group is more preferable. From the viewpoint of electrical characteristics, Ar 1 and Ar 2 do not have an alkyl group, Ar 3 ,
Ar 4 preferably has an alkyl group. As the alkyl group for R 3 and R 4 , those exemplified as the alkyl group that Ar 1 to Ar 4 may have are applicable. From the viewpoint of wear resistance, R 3 is a hydrogen atom, and R 4 is methyl. It is preferably a group. Specific examples are shown below.

Figure 2016057595
Figure 2016057595

構造式(II)を有するポリアリレート樹脂は、耐摩耗性の面から、通常電荷輸送層の全バインダー樹脂に対して50質量%以上であり、80質量%以上が好ましい。必要に応じて他のバインダー樹脂が含まれていても良い。そのようなバインダー樹脂としては、例えばブタジエン樹脂、スチレン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ビニルアルコール樹脂、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、部分変性ポリビニルアセタール、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、セルロースエステル樹脂、フェノキシ樹脂、シリコン樹脂、シリコン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂、構造式(II)を有さないポリアリレート樹脂等が挙げられる。中でも、相溶性の観点から、ポリアリレート樹脂及びポリカーボネート樹脂が好ましい。   The polyarylate resin having the structural formula (II) is usually 50% by mass or more and preferably 80% by mass or more with respect to the total binder resin of the charge transport layer from the viewpoint of wear resistance. Other binder resins may be included as necessary. Examples of such binder resins include polymers and copolymers of vinyl compounds such as butadiene resins, styrene resins, vinyl acetate resins, vinyl chloride resins, acrylic ester resins, methacrylic ester resins, vinyl alcohol resins, and ethyl vinyl ethers. , Polyvinyl butyral resin, polyvinyl formal resin, partially modified polyvinyl acetal, polycarbonate resin, polyester resin, polyamide resin, polyurethane resin, cellulose ester resin, phenoxy resin, silicon resin, silicon-alkyd resin, poly-N-vinylcarbazole resin, structure Examples include polyarylate resin having no formula (II). Of these, polyarylate resins and polycarbonate resins are preferred from the viewpoint of compatibility.

電荷輸送物質としては特に限定されず、任意の物質を用いることが可能である。公知の電荷輸送物質の例としては、2,4,7−トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの、或いはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、電気特性の観点から、カルバゾール誘導体、3級芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましく、エナミン誘導体、3級芳香族アミン誘導体が特に好ましい。これらの電荷輸送物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせで併用しても良い。構造の具体例を以下に示す。   The charge transport material is not particularly limited, and any material can be used. Examples of known charge transport materials include aromatic nitro compounds such as 2,4,7-trinitrofluorenone, cyano compounds such as tetracyanoquinodimethane, electron withdrawing materials such as quinone compounds such as diphenoquinone, and carbazole derivatives. , Indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazole derivatives, heterocyclic compounds such as benzofuran derivatives, aniline derivatives, hydrazone derivatives, aromatic amine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives and multiple types of these compounds Or an electron donating substance such as a polymer having a group composed of these compounds in the main chain or side chain. Among these, from the viewpoint of electrical properties, carbazole derivatives, tertiary aromatic amine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives, and those in which a plurality of these compounds are combined are preferred, enamine derivatives, tertiary aromatics. Amine derivatives are particularly preferred. Any one of these charge transport materials may be used alone, or two or more thereof may be used in any combination. Specific examples of the structure are shown below.

Figure 2016057595
Figure 2016057595

Figure 2016057595
Figure 2016057595

前記電荷輸送物質の中でも、正孔輸送物質としては、残留電位の観点から以下の構造の化合物が好ましい。   Among the charge transport materials, the hole transport material is preferably a compound having the following structure from the viewpoint of residual potential.

Figure 2016057595
Figure 2016057595

前記電荷輸送物質の中でも、電子輸送物質としては、感度の観点から以下の構造の化合物が好ましい。   Among the charge transport materials, the electron transport material is preferably a compound having the following structure from the viewpoint of sensitivity.

Figure 2016057595
Figure 2016057595

バインダー樹脂と電荷輸送物質との割合としては、通常バインダー樹脂100質量部に対して電荷輸送物質を10質量部以上の比率で使用する。中でも、残留電位低減の観点から20質量部以上が好ましく、繰り返し使用した際の安定性や電荷移動度の観点から30質量部以上がより好ましい。一方、感光層の熱安定性の観点から、通常電荷輸送物質を100質量部以下の比率で使用する。中でも、電荷輸送材料とバインダー樹脂との相溶性の観点から70質量部以下が好ましく、耐摩耗性の観点から60質量部以下がより好ましく、耐傷性の観点から50質量部以下が特に好ましい。
電荷輸送層の膜厚は特に制限されないが、高解像度の観点から、通常5μm以上、好ましくは15μm以上、長寿命、画像安定性の観点から、通常30μm以下、好ましくは25μm以下である。
As a ratio of the binder resin and the charge transport material, the charge transport material is usually used at a ratio of 10 parts by mass or more with respect to 100 parts by mass of the binder resin. Among these, 20 parts by mass or more is preferable from the viewpoint of reducing the residual potential, and 30 parts by mass or more is more preferable from the viewpoint of stability and charge mobility when repeatedly used. On the other hand, from the viewpoint of thermal stability of the photosensitive layer, the charge transport material is usually used at a ratio of 100 parts by mass or less. Among them, 70 parts by mass or less is preferable from the viewpoint of compatibility between the charge transport material and the binder resin, 60 parts by mass or less is more preferable from the viewpoint of wear resistance, and 50 parts by mass or less is particularly preferable from the viewpoint of scratch resistance.
The thickness of the charge transport layer is not particularly limited, but is usually 5 μm or more, preferably 15 μm or more from the viewpoint of high resolution, and is usually 30 μm or less, preferably 25 μm or less from the viewpoint of long life and image stability.

[単層型感光層]
単層型感光層は、電荷発生物質と電荷輸送物質に加えて、積層型感光体の電荷輸送層と同様に、バインダー樹脂として構造式(II)を有するポリアリレート樹脂を使用して形成する。具体的には、電荷発生物質と電荷輸送物質とポリアリレート樹脂とを溶剤に溶解又は分散して塗布液を作製し、下引き層上に塗布、乾燥して得ることができる。
[Single-layer type photosensitive layer]
The single-layer type photosensitive layer is formed by using a polyarylate resin having the structural formula (II) as a binder resin in the same manner as the charge transport layer of the multilayer photoreceptor in addition to the charge generation material and the charge transport material. Specifically, the charge generation material, the charge transport material, and the polyarylate resin can be dissolved or dispersed in a solvent to prepare a coating solution, which can be applied to the undercoat layer and dried.

電荷輸送物質の種類並び電荷輸送物質とバインダー樹脂の使用比率は、積層型感光体の電荷輸送層について説明したものと同様である。これらの電荷輸送物質及びバインダー樹脂からなる電荷輸送媒体中に、更に電荷発生物質が分散される。電荷発生物質は、積層型感光体の電荷発生層について説明したものと同様のものが使用できる。但し、単層型感光体の感光層の場合、電荷発生物質の粒子径を充分に小さくする必要がある。具体的には、通常1μm以下、好ましくは0.5μm以下の範囲とする。単層型感光層内に分散される電荷発生物質の量は、少な過ぎると充分な感度が得られない一方で、多過ぎると帯電性の低下、感度の低下などの弊害があることから、単層型感光層全体に対して通常0.5質量%以上、好ましくは1質量%以上、また、通常50質量%以下、好ましくは20質量%以下の範囲で使用される。また、単層型感光層におけるバインダー樹脂と電荷発生物質との使用比率は、バインダー樹脂100質量部に対して電荷発生物質が通常0.1質量部以上、好ましくは1質量部以上、また、通常30質量部以下、好ましくは10質量部以下の範囲である。単層型感光層の膜厚は、通常5μm以上、好ましくは10μm以上、また、通常100μm以下、好ましくは50μm以下の範囲である。   The types of charge transport materials and the usage ratios of the charge transport material and the binder resin are the same as those described for the charge transport layer of the multilayer photoreceptor. A charge generating material is further dispersed in a charge transport medium comprising these charge transport materials and a binder resin. As the charge generation material, the same materials as those described for the charge generation layer of the multilayer photoreceptor can be used. However, in the case of a photosensitive layer of a single-layer type photoreceptor, it is necessary to sufficiently reduce the particle size of the charge generating material. Specifically, the range is usually 1 μm or less, preferably 0.5 μm or less. If the amount of the charge generating material dispersed in the single-layer type photosensitive layer is too small, sufficient sensitivity cannot be obtained, but if it is too large, there are adverse effects such as a decrease in chargeability and a decrease in sensitivity. It is used in the range of usually 0.5% by mass or more, preferably 1% by mass or more, and usually 50% by mass or less, preferably 20% by mass or less based on the whole layer-type photosensitive layer. In addition, the usage ratio of the binder resin and the charge generation material in the single-layer type photosensitive layer is such that the charge generation material is usually 0.1 parts by weight or more, preferably 1 part by weight or more, based on 100 parts by weight of the binder resin. It is 30 mass parts or less, Preferably it is the range of 10 mass parts or less. The film thickness of the single-layer type photosensitive layer is usually 5 μm or more, preferably 10 μm or more, and usually 100 μm or less, preferably 50 μm or less.

[その他の機能層]
また、積層型感光体、単層型感光体ともに、上記手順により形成された感光層を最上層、即ち表面層としてもよいが、その上に更に別の層を設け、これを表面層としてもよい。例えば、感光層の損耗を防止したり、帯電器等から発生する放電生成物等による感光層の劣化を防止・軽減する目的で、保護層を設けても良い。構造式(II)を有するポリアリレート樹脂の耐摩耗性が良いことから、その特性を生かすため、又、生産工程を少なくすることが出来ることから感光層が表面層であることが好ましい。
[Other functional layers]
Further, in both the laminated type photoreceptor and the single layer type photoreceptor, the photosensitive layer formed by the above procedure may be the uppermost layer, that is, the surface layer, but another layer may be provided on the photosensitive layer and used as the surface layer. Good. For example, a protective layer may be provided for the purpose of preventing the photosensitive layer from being worn out or preventing or reducing the deterioration of the photosensitive layer due to discharge products generated from a charger or the like. Since the polyarylate resin having the structural formula (II) has good wear resistance, it is preferable that the photosensitive layer is a surface layer in order to make use of its characteristics and to reduce the number of production steps.

[各層の形成方法]
本発明の下引き層、及び感光体を構成する各層は、各層に含有させる物質を溶剤に溶解又は分散させて得られた塗布液を、支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
[Method for forming each layer]
The undercoat layer of the present invention and each layer constituting the photoconductor are formed by dip coating, spray coating, nozzle coating, bar coating on a support obtained by dissolving or dispersing a substance contained in each layer in a solvent. It is formed by repeating the coating / drying step for each layer in order by a known method such as coating, roll coating, blade coating or the like.

塗布液の作製に用いられる溶媒又は分散媒に特に制限は無いが、具体例としては、メタノール、エタノール、プロパノール、2−メトキシエタノール等のアルコール類、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、テトラクロロエタン、1,2−ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N−メチルピロリドン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いても良く、2種以上を任意の組み合わせ及び種類で併用してもよい。   There are no particular restrictions on the solvent or dispersion medium used in the preparation of the coating solution, but specific examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol, tetrahydrofuran, 1,4-dioxane, dimethoxyethane and the like. Ethers, esters such as methyl formate and ethyl acetate, ketones such as acetone, methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1, Chlorinated hydrocarbons such as 2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene, n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine , Nitrogen-containing compounds such as triethylenediamine, acetonitrile, N- methylpyrrolidone, N, N- dimethylformamide, aprotic polar solvents such as dimethyl sulfoxide and the like. Moreover, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and kinds.

溶媒又は分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。例えば、単層型感光体、及び機能分離型感光体の電荷輸送層の場合には、塗布液の固形分濃度を通常5質量%以上、通常5質量%以上、好ましくは10質量%以上、また、通常40質量%以下、好ましくは35質量%以下の範囲とする。また、塗布液の粘度を通常10cps以上、好ましくは50cps以上、また、通常500cps以下、好ましくは400cps以下の範囲とする。   The amount of the solvent or dispersion medium used is not particularly limited, but considering the purpose of each layer and the properties of the selected solvent / dispersion medium, it is appropriate so that the physical properties such as solid content concentration and viscosity of the coating liquid are within a desired range. It is preferable to adjust. For example, in the case of a charge transport layer of a single layer type photoreceptor or a function separation type photoreceptor, the solid content concentration of the coating solution is usually 5% by mass or more, usually 5% by mass or more, preferably 10% by mass or more. The range is usually 40% by mass or less, preferably 35% by mass or less. Further, the viscosity of the coating solution is usually in the range of 10 cps or more, preferably 50 cps or more, and usually 500 cps or less, preferably 400 cps or less.

また、積層型感光体の電荷発生層の場合には、塗布液の固形分濃度は、通常0.1質量%以上、好ましくは1質量%以上、また、通常15質量%以下、好ましくは10質量%以下の範囲とする。また、塗布液の粘度は、通常0.01cps以上、好ましくは0.1cps以上、また、通常20cps以下、好ましくは10cps以下の範囲とする。
塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。
In the case of a charge generation layer of a multilayer photoreceptor, the solid content concentration of the coating solution is usually 0.1% by mass or more, preferably 1% by mass or more, and usually 15% by mass or less, preferably 10% by mass. % Or less. The viscosity of the coating solution is usually 0.01 cps or more, preferably 0.1 cps or more, and usually 20 cps or less, preferably 10 cps or less.
Examples of the coating method include a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a wire bar coating method, a blade coating method, a roller coating method, an air knife coating method, and a curtain coating method. Other known coating methods can also be used.

<画像形成装置、カートリッジ>
本発明の電子写真感光体を使用する複写機、プリンター等の画像形成装置は、少なくとも帯電、露光、現像、転写、除電の各プロセスを含むが、どのプロセスも通常用いられる方法のいずれを用いてもよい。図1に示すように、画像形成装置は、電子写真感光体1、帯電装置2、露光装置3、現像装置4を備えて構成され、更に必要に応じて転写装置5、クリーニング装置6及び定着装置7が設けられる。
<Image forming apparatus, cartridge>
An image forming apparatus such as a copying machine or a printer using the electrophotographic photosensitive member of the present invention includes at least charging, exposure, development, transfer, and static elimination processes. Also good. As shown in FIG. 1, the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further includes a transfer device 5, a cleaning device 6, and a fixing device as necessary. 7 is provided.

以下、本発明を実施例、比較例により更に詳細に説明するが、本発明はその要旨を超えない限り、これらに限定されるものではない。なお、実施例中で用いる「部」は「質量部」を示す。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention still in detail, this invention is not limited to these, unless the summary is exceeded. In addition, "part" used in an Example shows a "mass part".

<下引き層塗布形成用分散液の製造>
[下引き層形成用塗布液P1]
平均一次粒子径40nmのルチル型白色酸化チタン(石原産業(株)製、製品名 TT
O55N)と該酸化チタン100部に対して、3−メタクリロキシプロピルトリメトキシシラン15部を、せん断力により、ミキサー内の温度が160℃に達するまでスーパーミ
キサーで攪拌して、表面処理を行った。次にこの表面処理をした酸化チタンと、メタノールと1−プロパノールを5mmφのアルミナビーズでボールミル分散し、酸化チタン分散液を得た。ε−カプロラクタム[下記式(A)で表わされる化合物]/ビス(4−アミノ−3−メチルシクロヘキシル)メタン[下記式(B)で表わされる化合物]/ヘキサメチレンジアミン[下記式(C)で表わされる化合物]/デカメチレンジカルボン酸[下記式(D)で表わされる化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表わされる化合物]の組成モル比率が、60%/15%/5%/15%/5%からなる共重合ポリアミドのペレットとをメタノール/1−プロパノール/トルエン混合溶媒中で、加熱しながら撹拌混合して共重合ポリアミド樹脂溶液を得た。上記酸化チタン分散液と共重合ポリアミド樹脂溶液を撹拌混合後、周波数25kHz,出力1200Wの超音波発信器による超音波分散処理を1時間行ない、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、酸化チタン/共重合ポリアミドを質量比が3/1であり、メタノール/1−プロパノール/トルエンの混合溶媒の質量比が7/1/2であって、含有する固形分の濃度が18.0質量%の下引き層形成用塗布液
P1を得た。
<Manufacture of dispersion for undercoat layer coating formation>
[Coating liquid P1 for forming the undercoat layer]
Rutile white titanium oxide with an average primary particle size of 40 nm (product name: TT, manufactured by Ishihara Sangyo Co., Ltd.)
O55N) and 15 parts of titanium oxide were subjected to a surface treatment by stirring 15 parts of 3-methacryloxypropyltrimethoxysilane with a super mixer until the temperature in the mixer reached 160 ° C. by shearing force. . Next, this surface-treated titanium oxide, methanol and 1-propanol were ball milled with 5 mmφ alumina beads to obtain a titanium oxide dispersion. ε-caprolactam [compound represented by the following formula (A)] / bis (4-amino-3-methylcyclohexyl) methane [compound represented by the following formula (B)] / hexamethylenediamine [represented by the following formula (C) Compound] / decamethylene dicarboxylic acid [compound represented by the following formula (D)] / octadecamethylene dicarboxylic acid [compound represented by the following formula (E)] has a composition molar ratio of 60% / 15% / 5%. / 15% / 5% of the copolymerized polyamide pellets was stirred and mixed in a methanol / 1-propanol / toluene mixed solvent with heating to obtain a copolymerized polyamide resin solution. After stirring and mixing the titanium oxide dispersion and the copolymerized polyamide resin solution, an ultrasonic dispersion treatment with an ultrasonic transmitter having a frequency of 25 kHz and an output of 1200 W is performed for 1 hour, and a PTFE membrane filter having a pore size of 5 μm (Mytecs LC manufactured by Advantech). ), The mass ratio of titanium oxide / copolymerized polyamide is 3/1, the mass ratio of the mixed solvent of methanol / 1-propanol / toluene is 7/1/2, and the concentration of the solid content contained Obtained 18.0 mass% undercoat layer forming coating solution P1.

Figure 2016057595
Figure 2016057595

[下引き層形成用塗布液P2]
表面処理剤をメチルジメトキシシランに変更し、表面処理剤量を3部に変更した以外は、分散液P1と同様にして下引き形成用塗布液P2を得た。
[Undercoat layer forming coating solution P2]
Undercoat forming coating solution P2 was obtained in the same manner as dispersion P1, except that the surface treating agent was changed to methyldimethoxysilane and the amount of surface treating agent was changed to 3 parts.

[下引き層形成用塗布液P3]
平均一次粒子径40nmのルチル型白色酸化チタン(石原産業(株)製、製品名 TTO55N)と該酸化チタン100部に対して、3−メタクリロキシプロピルトリメトキシシラン15部を、せん断力により、ミキサー内の温度が160℃に達するまでスーパーミキサーで攪拌して、表面処理を行った。次にこの表面処理をした酸化チタン250gと、メタノール750gとを混合してなる原料スラリー1000gを、直径約50μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM−015型)を用い、ロータ周速10m/秒、液流量6g/秒の循環状態で、28分間分散処理し、酸化チタンの分散液を作製した。この酸化チタン分散液と、予めメタノール/1−プロパノール/トルエンの混合溶媒に溶解した市販の共重合ポリアミド樹脂(東レ(株)製、製品名CM8000)溶液を撹拌混合後、周波数25kHz,出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、酸化チタン/共重合ポリアミドを質量比が3/
1であり、メタノール/1−プロパノール/トルエンの混合溶媒の質量比が7/1/2であって、含有する固形分の濃度が18質量%の下引き層形成用塗布液P3を得た。
[Undercoat layer forming coating solution P3]
Mixing 15 parts of 3-methacryloxypropyltrimethoxysilane with shear force against rutile white titanium oxide with an average primary particle size of 40 nm (product name: TTO55N, manufactured by Ishihara Sangyo Co., Ltd.) and 100 parts of the titanium oxide Surface treatment was carried out by stirring with a supermixer until the temperature reached 160 ° C. Next, 1000 g of a raw material slurry obtained by mixing 250 g of this surface-treated titanium oxide and 750 g of methanol, with zirconia beads having a diameter of about 50 μm (YTZ manufactured by Nikkato Co., Ltd.) as a dispersion medium, a mill volume of about 0.15 L Using an ultra apex mill (UAM-015 type) manufactured by Kotobuki Industries Co., Ltd., a dispersion treatment of 28 minutes was performed in a circulating state with a rotor peripheral speed of 10 m / second and a liquid flow rate of 6 g / second to prepare a titanium oxide dispersion. After stirring and mixing this titanium oxide dispersion and a commercially available copolymerized polyamide resin (product name: CM8000, manufactured by Toray Industries, Inc.) previously dissolved in a mixed solvent of methanol / 1-propanol / toluene, the frequency is 25 kHz and the output is 1200 W. Ultrasonic dispersion treatment with an ultrasonic transmitter is performed for 1 hour, followed by filtration through a PTFE membrane filter (Advantech Mytex LC) having a pore size of 5 μm, and the mass ratio of titanium oxide / copolymerized polyamide is 3 /
1 and the mass ratio of the mixed solvent of methanol / 1-propanol / toluene was 7/1/2, and the coating solution P3 for forming the undercoat layer having a solid content concentration of 18% by mass was obtained.

[下引き層形成用塗布液P4]
表面処理剤をメチルジメトキシシランに変更し、表面処理剤量を3部に変更した以外は、分散液P3と同様にして下引き形成用塗布液P4を得た。
[Undercoat layer forming coating solution P4]
Undercoat forming coating solution P4 was obtained in the same manner as dispersion P3, except that the surface treating agent was changed to methyldimethoxysilane and the amount of surface treating agent was changed to 3 parts.

[電荷発生層形成用塗布液Q1]
CuKα線により粉末X線スペクトルパターンにおいてブラッグ角(2θ±0.2゜)27.3゜に特徴的なピークを示すオキシチタニウムフタロシニアン10部と、ポリビニルアセタール樹脂(電気化学工業(株)製、商品名DK31)5部と、1,2−ジメトキシエタン500部とを混合し、サンドグラインドミルで粉砕、分散処理を行い、電荷発生層形成用塗布液Q1を得た。
[Coating liquid Q1 for forming a charge generation layer]
10 parts of oxytitanium phthalocyanine showing a characteristic peak at a Bragg angle (2θ ± 0.2 °) of 27.3 ° in a powder X-ray spectrum pattern by CuKα ray, and polyvinyl acetal resin (manufactured by Denki Kagaku Kogyo Co., Ltd.) , Trade name DK31) 5 parts and 1,2-dimethoxyethane 500 parts were mixed and pulverized and dispersed in a sand grind mill to obtain a charge generation layer forming coating solution Q1.

[電荷発生層形成用塗布液Q2]
電荷発生層形成用塗布液Q1において、ポリビニルアセタール樹脂(電気化学工業(株)製、商品名DK31)5部に加えて、ポリビニルアセタール樹脂(積水化学工業(株)製、商品名KS1)2部を用いた以外は、Q1と同様にして、電荷発生層形成用塗布液Q2を得た。
[Coating liquid Q2 for forming a charge generation layer]
In the charge generation layer forming coating solution Q1, in addition to 5 parts of polyvinyl acetal resin (trade name DK31, manufactured by Denki Kagaku Kogyo Co., Ltd.), 2 parts of polyvinyl acetal resin (product name KS1, manufactured by Sekisui Chemical Co., Ltd.) A charge generation layer forming coating solution Q2 was obtained in the same manner as Q1 except that was used.

[電荷輸送層形成用塗布液R1]
下記構造式(IV)で表されるポリアリレート樹脂(粘度平均分子量 75,000)
100部、下記構造式(V)で表される電荷輸送物質40部、ジブチルヒドロキシトルエン4部、トリベンジルアミン1部、下記構造式(VI)で表される化合物1部を、テトラヒドロフラン:トルエン=8/2の混合溶媒に溶解、撹拌混合することで、固形分濃度15%の電荷輸送層形成用塗布液R1を得た。
[Charge transport layer forming coating solution R1]
Polyarylate resin represented by the following structural formula (IV) (viscosity average molecular weight 75,000)
100 parts, 40 parts of a charge transport material represented by the following structural formula (V), 4 parts of dibutylhydroxytoluene, 1 part of tribenzylamine and 1 part of a compound represented by the following structural formula (VI) were added to tetrahydrofuran: toluene = By dissolving and stirring in an 8/2 mixed solvent, a charge transport layer forming coating solution R1 having a solid content concentration of 15% was obtained.

Figure 2016057595
Figure 2016057595

[電荷輸送層形成用塗布液R2]
上記構造式(IV)で表されるポリアリレート樹脂100部、下記構造式(VII)で表される電荷輸送物質40部、ジブチルヒドロキシトルエン4部、トリベンジルアミン1部、上記構造式(VI)で表される化合物1部とを、テトラヒドロフラン:トルエン=8/2の混合溶媒に溶解、撹拌混合することで、固形分濃度15%の電荷輸送層形成用塗布液R2を得た。
[Coating liquid R2 for forming a charge transport layer]
100 parts of a polyarylate resin represented by the structural formula (IV), 40 parts of a charge transport material represented by the following structural formula (VII), 4 parts of dibutylhydroxytoluene, 1 part of tribenzylamine, the structural formula (VI) 1 part of the compound represented by the following formula was dissolved in a mixed solvent of tetrahydrofuran: toluene = 8/2 and mixed with stirring to obtain a charge transport layer forming coating solution R2 having a solid concentration of 15%.

Figure 2016057595
Figure 2016057595

[電荷輸送層形成用塗布液R3]
下記構造式(VIII)で表されるポリアリレート樹脂100部、上記構造式(VII)で表される電荷輸送物質40部、ジブチルヒドロキシトルエン4部、トリベンジルアミン1部、上記構造式(VI)で表される化合物1部とを、テトラヒドロフラン:トルエン=8/2の混合溶媒に溶解、撹拌混合することで、固形分濃度15%の電荷輸送層形成用塗布液R3を得た。
[Charge transport layer forming coating solution R3]
100 parts of a polyarylate resin represented by the following structural formula (VIII), 40 parts of a charge transport material represented by the above structural formula (VII), 4 parts of dibutylhydroxytoluene, 1 part of tribenzylamine, the above structural formula (VI) 1 part of the compound represented by formula (1) was dissolved in a mixed solvent of tetrahydrofuran: toluene = 8/2 and mixed by stirring to obtain a charge transport layer forming coating solution R3 having a solid concentration of 15%.

Figure 2016057595
Figure 2016057595

[電荷輸送層形成用塗布液R4]
下記構造式(VIIII)で表されるポリカーボネート樹脂100部、上記記構造式(VII)で表される電荷輸送物質40部、ジブチルヒドロキシトルエン4部、トリベンジルアミン1部、上記構造式(VI)で表される化合物1部とを、テトラヒドロフラン:トルエン=8/2の混合溶媒に溶解、撹拌混合することで、固形分濃度15%の電荷輸送層形成用塗布液R4を得た。
[Charge transport layer forming coating solution R4]
100 parts of a polycarbonate resin represented by the following structural formula (VIIII), 40 parts of a charge transport material represented by the structural formula (VII), 4 parts of dibutylhydroxytoluene, 1 part of tribenzylamine, the structural formula (VI) 1 part of the compound represented by the following formula was dissolved in a mixed solvent of tetrahydrofuran: toluene = 8/2 and mixed by stirring to obtain a charge transport layer forming coating solution R4 having a solid concentration of 15%.

Figure 2016057595
Figure 2016057595

<実施例1>
下引き層形成用塗布液P1を、表面が切削加工仕上げされた30mmφで、長さが246mmアルミニウム製シリンダーに浸漬塗布し、その乾燥膜厚が、1.5μmとなるように下引き層を設けた。下引き層上に電荷発生層形成用塗布液Q1を浸漬塗布し、その乾燥膜厚が0.4g/mとなるようにして電荷発生層を設けた。電荷発生層上に電荷輸送層形成用塗布液R1を浸漬塗布し、その乾燥膜厚が18.0μmとなるように作製した感光体を感光体D1とする。
<Example 1>
The undercoat layer forming coating solution P1 is dip-coated on an aluminum cylinder having a surface of 30 mmφ and a length of 246 mm, and an undercoat layer is provided so that the dry film thickness is 1.5 μm. It was. The charge generation layer forming coating solution Q1 was dip coated on the undercoat layer, and the charge generation layer was provided so that the dry film thickness was 0.4 g / m 2 . A photoreceptor prepared by dip-coating the charge transport layer forming coating solution R1 on the charge generation layer and having a dry film thickness of 18.0 μm is designated as a photoreceptor D1.

<実施例2>
電荷発生層形成用塗布液Q1を塗布液Q2にした以外は、感光体D1と全く同様に作製した感光体を感光体D2とする。
<実施例3>
電荷輸送層形成用塗布液R1を塗布液R2にしたこと以外は、感光体D1と全く同様に作製した感光体を感光体D3とする。
<Example 2>
A photoconductor produced in exactly the same manner as the photoconductor D1 except that the charge generation layer forming coating solution Q1 is changed to the coating solution Q2, is designated as photoconductor D2.
<Example 3>
A photoconductor prepared in the same manner as the photoconductor D1 except that the charge transport layer forming coating solution R1 is changed to the coating solution R2, is referred to as a photoconductor D3.

<実施例4>
下引き層形成用塗布液P1を、厚さ1mmのアルミ板にワイヤーバーで塗布し、その乾燥膜厚が1.5μmとなるように下引き層を設けた。下引き層上に電荷発生層形成用塗布液Q1をワイヤーバーで塗布し、その乾燥膜厚が0.3g/mとなるようにして電荷発生層を設けた。電荷発生層上に電荷輸送層形成用塗布液R1をアプリケータで塗布し、その乾燥膜厚が18μmとなるように作製した感光体を感光体S1とする。
<Example 4>
The undercoat layer forming coating solution P1 was applied to an aluminum plate having a thickness of 1 mm with a wire bar, and an undercoat layer was provided so that the dry film thickness was 1.5 μm. On the undercoat layer, the charge generation layer forming coating solution Q1 was applied with a wire bar, and the charge generation layer was provided so that the dry film thickness was 0.3 g / m 2 . A photoconductor prepared by applying the charge transport layer forming coating solution R1 on the charge generation layer with an applicator and having a dry film thickness of 18 μm is defined as a photoconductor S1.

<実施例5>
下引き層形成用塗布液P3を、厚さ1mmのアルミ板にワイヤーバーで塗布し、その乾燥膜厚が1.5μmとなるように下引き層を設けた。下引き層上に電荷発生層形成用塗布
液Q2をワイヤーバーで塗布し、その乾燥膜厚が0.3g/mとなるようにして電荷発生層を設けた。電荷発生層上に電荷輸送層形成用塗布液R2をアプリケータで塗布し、その乾燥膜厚が18μmとなるように作製した感光体を感光体S2とする。
<Example 5>
The undercoat layer forming coating solution P3 was applied to a 1 mm thick aluminum plate with a wire bar, and an undercoat layer was provided so that the dry film thickness was 1.5 μm. The charge generation layer forming coating solution Q2 was applied onto the undercoat layer with a wire bar, and the charge generation layer was provided so that the dry film thickness was 0.3 g / m 2 . The photoconductor S2 is a photoconductor prepared by applying the charge transport layer forming coating solution R2 on the charge generation layer with an applicator and having a dry film thickness of 18 μm.

<比較例1>
下引き層形成用塗布液を分散液P2にしたこと以外は、感光体D1と全く同様に作製した感光体D4とする。
<比較例2>
下引き層形成用塗布液を分散液P2にしたこと以外は、感光体S1と全く同様に作製した感光体を感光体S3とする。
<Comparative Example 1>
The photoconductor D4 was prepared in exactly the same manner as the photoconductor D1, except that the undercoat layer forming coating solution was changed to the dispersion P2.
<Comparative Example 2>
A photoconductor prepared in the same manner as the photoconductor S1 except that the undercoat layer-forming coating solution was changed to the dispersion P2 is referred to as a photoconductor S3.

<比較例3>
下引き層形成用塗布液を分散液P4にしたこと以外は、感光体S2と全く同様に作製した感光体を感光体S4とする。
<参考例1>
電荷輸送層形成用塗布液R2を塗布液R3にしたこと以外は、感光体S2と全く同様に作製した感光体を感光体S5とする。
<Comparative Example 3>
A photoconductor produced in exactly the same manner as the photoconductor S2 except that the undercoat layer forming coating solution was changed to the dispersion P4 is designated as a photoconductor S4.
<Reference Example 1>
A photoreceptor prepared in exactly the same manner as the photoreceptor S2 except that the coating liquid R2 for forming the charge transport layer is changed to the coating liquid R3 is referred to as a photoreceptor S5.

<参考例2>
下引き層形成用塗布液を分散液P4にしたこと以外は、感光体S5と全く同様に作製した感光体を感光体S6とする。
<参考例3>
電荷輸送層形成用塗布液R2を分散液R4にしたこと以外は、感光体S2と全く同様に作製した感光体を感光体S7とする。
<Reference Example 2>
A photoconductor prepared in the same manner as the photoconductor S5 except that the coating liquid for forming the undercoat layer was changed to the dispersion P4 was designated as photoconductor S6.
<Reference Example 3>
A photoconductor prepared in the same manner as the photoconductor S2 except that the charge transport layer forming coating solution R2 is changed to the dispersion R4 is referred to as a photoconductor S7.

<参考例4>
下引き層形成用塗布液を分散液P4にしたこと以外は、感光体S7と全く同様に作製した感光体を感光体S8とする。
<Reference Example 4>
A photoconductor produced in the same manner as the photoconductor S7 except that the undercoat layer forming coating solution was changed to the dispersion P4 was designated as photoconductor S8.

[電気特性の評価]
次に、これら電子写真感光体D1〜D3を、電子写真学会標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404〜405頁記載)に装着し、感光体特性測定機に装着し、以下の手順に従って、帯電(マイナス極性)、露光、電位測定、除電のサイクルによる電気特性の評価を行なった。 感光
体の初期表面電位が−600Vになるように帯電させ、ハロゲンランプの光を干渉フィルターで740nmの単色光としたものを照射して、表面電位が−300Vとなる時の照射エネルギー(半減露光エネルギー)を感度(E1/2)として測定した(μJ/cm)。また、該露光光を0.5μJ/cmの強度で照射したときの60ms後の露光後表面電位(VL)を測定した(−V)。更に−600Vに帯電して5秒放置後の電位保持率(DDR)を測定した(%)。
この電気特性評価結果を表−1に示す。
[Evaluation of electrical characteristics]
Next, an electrophotographic characteristic evaluation apparatus prepared according to the electrophotographic society standard for these electrophotographic photoreceptors D1 to D3 (basic and applied electrophotographic technology, edited by the Electrophotographic Society, Corona, pages 404 to 405) And mounted on a photoconductor characteristic measuring machine, and according to the following procedure, the electrical characteristics were evaluated by a cycle of charging (negative polarity), exposure, potential measurement, and static elimination. Irradiation energy (half-exposure exposure) when the surface potential is -300 V by charging the photosensitive body so that the initial surface potential is -600 V, and irradiating the light of the halogen lamp with monochromatic light of 740 nm with an interference filter Energy) was measured as sensitivity (E1 / 2) (μJ / cm 2 ). Further, the post-exposure surface potential (VL) after 60 ms when the exposure light was irradiated at an intensity of 0.5 μJ / cm 2 was measured (−V). Further, the potential holding ratio (DDR) after being charged to −600 V and left for 5 seconds was measured (%).
The electrical property evaluation results are shown in Table-1.

[接着性評価]
感光体D1〜D3に、カッターナイフ(KOKUYO製HA−100SN)で3×3mm角で9個の碁盤目のキズを付け、セロハンテープ(大塚商会製TSCT−18)で剥離テストを行ったところ感光体D1の剥離個数は2個、感光体D2の剥離個数は0個、感光体D3の剥離個数は3個であったが、感光体D4の剥離個数は9個(全剥がれ)であった。感光体S1〜S8を、カミソリの刃で、2mm角で25個の碁盤目のキズを付け、セロハンテープ(3M)で剥離テストを行ったところ、感光体S1及びの剥離個数は、0個であったが、感光体S3の剥離個数は、25個(全剥がれ)であり、感光体S4の剥離個数
は、13個であった。感光体S3の剥離個数は、0個であったが、感光体S5の剥離個数は、23個、感光体S6の剥離個数は、12個であった。感光体S7及び感光体S8の剥離個数は、0個であった。評価結果を表−2に示す。
[Adhesion evaluation]
Photoreceptors D1 to D3 were scratched by a 9 × 3 mm square grid with a cutter knife (KO-100YO made HA-100SN) and subjected to a peel test with cellophane tape (TSCT-18 made by Otsuka Shokai). The number of peeled bodies D1 was 2, the number of peeled photoreceptors D2 was 0, and the number of peeled photoreceptors D3 was 3. The number of peeled photoreceptors D4 was 9 (totally peeled). When the photoreceptors S1 to S8 were scratched with 25 mm squares with a razor blade and subjected to a peel test with a cellophane tape (3M), the number of peels from the photoreceptor S1 was 0. However, the number of peeled photoreceptors S3 was 25 (total peeled), and the number of peeled photoreceptors S4 was 13. The number of peeled photoreceptors S3 was 0, but the number of peeled photoreceptors S5 was 23, and the number of peeled photoreceptors S6 was 12. The number of peeled off the photoreceptors S7 and S8 was 0. The evaluation results are shown in Table-2.

Figure 2016057595
Figure 2016057595

Figure 2016057595
Figure 2016057595

本発明の感光体D1〜D3は、接着性、電気特性共に良好であったが、比較例の感光体D4は、電気特性は、良好であるが、接着性が悪かった。又、本発明の感光体S1〜S2の接着性は良好であったが、比較例の感光体S3〜S4の接着性は悪かった。参考例1〜4において、電荷輸送層のバインダー樹脂に構造式(VIII)で表されるポリアリレート樹脂、ポリカーボネート樹脂構造式(VIIII)を用いた感光体S5〜S8の接着性は良好であった。つまり、前記参考例の電荷輸送層に用いた樹脂は、下引き層との関係における接着性は課題となっていない。   The photoconductors D1 to D3 of the present invention were good in both adhesiveness and electrical characteristics, but the photoconductor D4 of the comparative example had good electrical characteristics but poor adhesiveness. Further, the adhesion of the photoreceptors S1 to S2 of the present invention was good, but the adhesion of the photoreceptors S3 to S4 of the comparative example was bad. In Reference Examples 1 to 4, the adhesion of the photoreceptors S5 to S8 using the polyarylate resin represented by the structural formula (VIII) and the polycarbonate resin structural formula (VIIII) as the binder resin of the charge transport layer was good. . That is, the resin used for the charge transport layer of the reference example has no problem with the adhesiveness in relation to the undercoat layer.

1 感光体(電子写真感光体)
2 帯電装置(帯電ローラ;帯電部)
3 露光装置(露光部)
4 現像装置(現像部)
5 転写装置
6 クリーニング装置(クリーニング部)
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラー
44 現像ローラー
45 規制部材
71 上部定着部材(加圧ローラー)
72 下部定着部材(定着ローラー)
73 加熱装置
T トナー
P 記録紙(用紙,媒体)
1 Photoconductor (Electrophotographic photoconductor)
2 Charging device (charging roller; charging unit)
3 Exposure equipment (exposure section)
4 Development device (developing part)
5 Transfer device 6 Cleaning device (cleaning part)
7 Fixing Device 41 Developing Tank 42 Agitator 43 Supply Roller 44 Developing Roller 45 Regulating Member 71 Upper Fixing Member (Pressure Roller)
72 Lower fixing member (fixing roller)
73 Heating device T Toner P Recording paper (paper, medium)

Claims (9)

導電性上に、下引き層及び感光層を有する電子写真感光体において、前記下引き層が、下記構造式(I)を有する有機金属化合物で表面処理された金属酸化物粒子と、バインダー樹脂とを含有し、前記感光層が、下記構造式(II)を有するポリアリレート樹脂を含有することを特徴とする、電子写真感光体。

構造式(I)
CH=CR−COO−R−M

(Rは、水素原子又はアルキル基、Rは、アルキレン基、Mは、Si(R、Ti(R、又はAl(Rを示す。Rは、アルキル基又はアルコキシ基を示す。)
Figure 2016057595
(式(II)中、Ar〜Arはそれぞれ独立にアルキル基を有していてもよいフェニレン基を表し、R、Rは水素原子又はアルキル基を表す。R、Rは結合して環を形成していてもよい。)
In an electrophotographic photosensitive member having an undercoat layer and a photosensitive layer on conductivity, the undercoat layer has surface-treated metal oxide particles having an organic metal compound having the following structural formula (I), a binder resin, An electrophotographic photoreceptor, wherein the photosensitive layer contains a polyarylate resin having the following structural formula (II).

Structural formula (I)
CH 2 = CR 1 -COO-R 2 -M

(R 1 is a hydrogen atom or an alkyl group, R 2 is an alkylene group, M is Si (R 3 ) 3 , Ti (R 3 ) 3 , or Al (R 3 ) 2. R 3 is alkyl. Represents a group or an alkoxy group.)
Figure 2016057595
(In the formula (II), Ar 1 to Ar 4 each independently represents a phenylene group optionally having an alkyl group, and R 3 and R 4 represent a hydrogen atom or an alkyl group. R 3 and R 4 represent It may be bonded to form a ring.)
該感光層が、電荷発生層及び電荷輸送層がこの順に積層された積層型感光層であることを特徴とする、請求項1に記載の電子写真感光体。 2. The electrophotographic photosensitive member according to claim 1, wherein the photosensitive layer is a laminated photosensitive layer in which a charge generation layer and a charge transport layer are laminated in this order. 前記構造式(I)のRがメチル基であること特徴とする、請求項1又は2に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein R 1 in the structural formula (I) is a methyl group. 前記構造式(I)を有する有機金属化合物が、金属酸化物粒子100質量部に対して、5質量部〜30質量部であることを特徴とする、請求項1〜3のいずれか1項に記載の電子写真感光体。 The organic metal compound having the structural formula (I) is 5 to 30 parts by mass with respect to 100 parts by mass of the metal oxide particles, according to any one of claims 1 to 3. The electrophotographic photosensitive member described. 前記金属酸化物粒子が、n型半導体粒子であることを特徴とする、請求項1〜4のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the metal oxide particles are n-type semiconductor particles. 前記金属酸化物粒子が、前記バインダー樹脂100質量部に対して100〜400質量部であることを特徴とする、請求項1〜5のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the metal oxide particles are 100 to 400 parts by mass with respect to 100 parts by mass of the binder resin. 前記バインダー樹脂が、ポリアミド樹脂であることを特徴とする、請求項1〜6のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the binder resin is a polyamide resin. 請求項1〜7のいずれか1項に記載の電子写真感光体を用いた、画像形成装置。 An image forming apparatus using the electrophotographic photosensitive member according to claim 1. 請求項1〜7のいずれか1項に記載の電子写真感光体を用いた、画像形成装置用のカートリッジ。 A cartridge for an image forming apparatus using the electrophotographic photosensitive member according to claim 1.
JP2014265618A 2014-09-09 2014-12-26 Electrophotographic photosensitive member, image forming apparatus, and cartridge Active JP6413762B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014183453 2014-09-09
JP2014183453 2014-09-09

Publications (2)

Publication Number Publication Date
JP2016057595A true JP2016057595A (en) 2016-04-21
JP6413762B2 JP6413762B2 (en) 2018-10-31

Family

ID=55758268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265618A Active JP6413762B2 (en) 2014-09-09 2014-12-26 Electrophotographic photosensitive member, image forming apparatus, and cartridge

Country Status (1)

Country Link
JP (1) JP6413762B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115184A (en) * 1997-06-23 1999-01-22 Sharp Corp Electrophotographic photoreceptor and its production
JP2003186219A (en) * 2001-10-09 2003-07-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, method for manufacturing the same, process cartridge, and electrophotographic apparatus
JP2006065051A (en) * 2004-08-27 2006-03-09 Konica Minolta Business Technologies Inc Method for manufacturing electrophotographic photoreceptor, stripping liquid for electrophotographic photoreceptor, and electrophotographic photoreceptor
JP2007108240A (en) * 2005-10-11 2007-04-26 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008203802A (en) * 2007-01-26 2008-09-04 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, image forming apparatus used therefor, and electrophotographic cartridge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115184A (en) * 1997-06-23 1999-01-22 Sharp Corp Electrophotographic photoreceptor and its production
JP2003186219A (en) * 2001-10-09 2003-07-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, method for manufacturing the same, process cartridge, and electrophotographic apparatus
JP2006065051A (en) * 2004-08-27 2006-03-09 Konica Minolta Business Technologies Inc Method for manufacturing electrophotographic photoreceptor, stripping liquid for electrophotographic photoreceptor, and electrophotographic photoreceptor
JP2007108240A (en) * 2005-10-11 2007-04-26 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008203802A (en) * 2007-01-26 2008-09-04 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, image forming apparatus used therefor, and electrophotographic cartridge

Also Published As

Publication number Publication date
JP6413762B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6728813B2 (en) Electrophotographic photoconductor, electrophotographic photoconductor cartridge, and image forming apparatus
JP5577722B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus
JP2007102199A (en) Electrophotographic photoconductor
WO2015190609A1 (en) Coating solution for use in production of electrophotographic photoreceptor, electrophotographic photoreceptor, and image formation device
JP6503831B2 (en) Electrophotographic photosensitive member, image forming apparatus, and cartridge
JP6146188B2 (en) Electrophotographic photosensitive member, electrophotographic process cartridge, and image forming apparatus
JP6107298B2 (en) Electrophotographic photosensitive member, electrophotographic process cartridge, and image forming apparatus
JP6051907B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP4466406B2 (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
JP4735421B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4419873B2 (en) Photoconductive material, and electrophotographic photosensitive member, electrophotographic photosensitive member cartridge and image forming apparatus using the same
JP6361218B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2017161718A (en) Electrophotographic photoreceptor, image forming apparatus, and cartridge
JP5655490B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and electrophotographic cartridge
JP5659455B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6413762B2 (en) Electrophotographic photosensitive member, image forming apparatus, and cartridge
JP4466414B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP4779850B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP6307850B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6641969B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP2014123114A (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus
JP2016138936A (en) Electrophotographic photoreceptor, electrophotographic process cartridge, and image forming apparatus
JP2016200757A (en) Electrophotographic photoreceptor, image forming apparatus, and cartridge
JP5509885B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge using the same, and image forming apparatus
JP5772264B2 (en) Electrophotographic photosensitive member, electrophotographic cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6413762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151