JP2016056405A - Method for enriching oxygen in heat insulating furnace of sintering machine, and the heat insulating furnace - Google Patents

Method for enriching oxygen in heat insulating furnace of sintering machine, and the heat insulating furnace Download PDF

Info

Publication number
JP2016056405A
JP2016056405A JP2014183134A JP2014183134A JP2016056405A JP 2016056405 A JP2016056405 A JP 2016056405A JP 2014183134 A JP2014183134 A JP 2014183134A JP 2014183134 A JP2014183134 A JP 2014183134A JP 2016056405 A JP2016056405 A JP 2016056405A
Authority
JP
Japan
Prior art keywords
oxygen
furnace
temperature gas
gaseous fuel
sintering machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014183134A
Other languages
Japanese (ja)
Other versions
JP6160839B2 (en
Inventor
長野 誠
Makoto Nagano
誠 長野
田村 浩一
Koichi Tamura
浩一 田村
富 山口
Tomu Yamaguchi
富 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014183134A priority Critical patent/JP6160839B2/en
Publication of JP2016056405A publication Critical patent/JP2016056405A/en
Application granted granted Critical
Publication of JP6160839B2 publication Critical patent/JP6160839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for enriching oxygen in a heat insulating furnace, which is used in a sintering machine having the heat insulating furnace and in which gaseous fuel can be supplied and simultaneously oxygen can be enriched without removing the heat insulating furnace, and to provide the heat insulating furnace.SOLUTION: The method for enriching oxygen in the heat insulating furnace of the sintering machine comprises a step of supplying high-temperature gas containing gaseous fuel diluted to the concentration, which is equal to or lower than the combustion lower limit concentration, to the inside of a sintering raw material charging layer which is installed on the downstream of an ignition furnace. An oxygen supply pipeline for supplying oxygen to the high-temperature gas is connected to the upstream side of a connection position of a high-temperature gas supply pipeline used for supplying the high-temperature gas to the heat insulating furnace, with the heat insulating furnace so that the high-temperature gas having the oxygen concentration exceeding 21 vol% can be supplied to the inside of the heat insulating furnace.SELECTED DRAWING: Figure 15

Description

本発明は、焼結熱源として炭材の他に、気体燃料を供給して高品質の高炉原料用焼結鉱を製造する下方吸引式ドワイトロイド(DL)焼結機における保温炉への酸素富化方法とその保温炉に関するものである。   The present invention relates to oxygen enrichment in a heat-retaining furnace in a downward suction type Dwytroid (DL) sintering machine that produces a high-quality sintered ore for blast furnace raw material by supplying gaseous fuel in addition to carbonaceous materials as a sintering heat source. The present invention relates to a crystallization method and a heat insulation furnace.

高炉製銑法の主原料である焼結鉱は、図1に示すような工程を経て製造されるのが一般的である。焼結鉱の原料は、鉄鉱石粉や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などであり、これらの原料は、ホッパー1の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2および3等によって適量の水が加えられ、混合、造粒されて、平均径が3〜6mmの擬似粒子である焼結原料とされる。この焼結原料は、その後、焼結機上に配設されているサージホッパー4、5からドラムフィーダー6と切り出しシュート7を介して、無端移動式の焼結機パレット8上に400〜800mmの厚さで装入され、焼結ベッドともいわれる焼結原料装入層(以降、単に「装入層」ともいう)9を形成する。その後、上記装入層9の上方に設置された点火炉10で装入層表層の炭材に点火するとともに、パレット8の直下に配設されたウインドボックス11を介して装入層上方の空気を下方に吸引することにより、装入層内の炭材を順次燃焼させ、このときに発生する燃焼熱で前記焼結原料を溶融して焼結ケーキを得る。このようにして得た焼結ケーキは、その後、破砕、整粒され、約5mm以上の塊成物が、成品焼結鉱として回収され、高炉に供給される。   In general, sintered ore, which is a main raw material for the blast furnace ironmaking method, is manufactured through a process as shown in FIG. The raw materials for sintered ore are iron ore powder, sintered ore sieving powder, recovered powder generated in steelworks, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, coke powder and anthracite Yes, these raw materials are cut out from each of the hoppers 1 at a predetermined ratio on a conveyor. The cut out raw material is added with an appropriate amount of water by the drum mixers 2 and 3 and the like, mixed and granulated to obtain a sintered raw material which is pseudo particles having an average diameter of 3 to 6 mm. This sintered raw material is then transferred to 400 to 800 mm on an endless moving type sintering machine pallet 8 from the surge hoppers 4 and 5 arranged on the sintering machine through the drum feeder 6 and the cutting chute 7. A sintered raw material charging layer (hereinafter also simply referred to as “charging layer”) 9, which is charged with a thickness and is also referred to as a sintering bed, is formed. Thereafter, the carbon material on the surface of the charging layer is ignited by the ignition furnace 10 installed above the charging layer 9, and the air above the charging layer is passed through the window box 11 disposed immediately below the pallet 8. Is sucked downward to sequentially burn the carbonaceous material in the charging layer, and the sintered raw material is melted by the combustion heat generated at this time to obtain a sintered cake. The sintered cake thus obtained is then crushed and sized, and an agglomerate of about 5 mm or more is recovered as a product sintered ore and supplied to a blast furnace.

上記製造プロセスにおいて、点火炉10によって点火された装入層内の炭材は、ウインドボックス11により吸引されて装入層内を上層から下層に向かって流れる空気によって燃焼を続け、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。この燃焼帯は、パレット8が下流側に移動するのに伴って次第に装入層の上層から下層に移行し、燃焼帯が通過した後には、焼結反応が完了した焼結ケーキ(以降、単に「焼結層」ともいう。)が生成される。
図2は、点火炉で点火された装入層表層の炭材が、ウインドボックスによって吸引され、装入層内に導入される空気によって燃焼を続けて燃焼帯を形成し、これが装入層の上層から下層に順次移動し、焼結ケーキが形成されていく過程を模式的に示した図である。
In the above manufacturing process, the carbonaceous material in the charging layer ignited by the ignition furnace 10 continues to be combusted by the air that is sucked by the wind box 11 and flows in the charging layer from the upper layer toward the lower layer in the thickness direction. A combustion / melting zone having a width (hereinafter simply referred to as “combustion zone”) is formed. This combustion zone gradually moves from the upper layer to the lower layer of the charging layer as the pallet 8 moves to the downstream side, and after the combustion zone has passed, the sintered cake (hereinafter simply referred to as a sintered cake). Also referred to as “sintered layer”).
FIG. 2 shows that the carbon material of the charging layer surface ignited in the ignition furnace is sucked by the wind box and continuously burned by the air introduced into the charging layer to form a combustion zone. It is the figure which showed typically the process in which it moves sequentially from an upper layer to a lower layer, and a sintered cake is formed.

一般に、焼結鉱の強度は、焼結原料の粒子が溶融し、焼結反応が起こり始める温度、即ち1200℃以上の温度に保持されるときの温度と時間の積に依存し、その値が大きいほど高くなることが知られている。したがって、1200℃以上の温度に保持される時間(以降、「高温域保持時間」という)が長い程、焼結鉱の歩留りが向上し、生産性も高くなる。
図3は、装入層の厚さ方向中間部に燃焼帯が存在するときの装入層内の温度分布を、焼結機のパレットの移動速度が速い場合(生産性が高いときに相当)と遅い場合(生産性が低いときに相当)とを比較して示したものである。図中、1200℃以上の温度に保持される時間(高温域保持時間)を、パレットの移動速度が速い場合はT、パレットの移動速度が遅い場合はTで示しているが、TはTと比べて短くなる。高温域保持時間が短くなると、焼結不足となり、焼結鉱の冷間強度が低下し、歩留りが低下してしまう。したがって、高強度の焼結鉱を、短時間でかつ高歩留りで、生産性よく製造するためには、何らかの手段を講じて、高温域保持時間を延長し、焼結鉱の冷間強度を高めてやる必要がある。
In general, the strength of sintered ore depends on the product of temperature and time when the sintering raw material particles melt and the sintering reaction begins to occur, that is, when the temperature is maintained at a temperature of 1200 ° C. or higher. It is known that the larger the value, the higher the value. Therefore, the longer the time of holding at a temperature of 1200 ° C. or higher (hereinafter referred to as “high temperature region holding time”), the higher the yield of sintered ore and the higher the productivity.
FIG. 3 shows the temperature distribution in the charging layer when the combustion zone exists in the middle part in the thickness direction of the charging layer when the moving speed of the pallet of the sintering machine is high (corresponding to high productivity). And a slow case (equivalent when productivity is low). In the figure, the time held in 1200 ° C. or more temperature (high temperature zone holding time), T 1 if the moving speed of the pallet is high, but when the moving speed of the pallet is low is indicated by T 2, T 1 It is shorter than the T 2 is. When the high temperature region holding time is shortened, the sintering is insufficient, the cold strength of the sintered ore is lowered, and the yield is lowered. Therefore, in order to produce high-strength sintered ore in a short time with a high yield and high productivity, some measures are taken to extend the holding time in the high temperature range and increase the cold strength of the sintered ore. I need to do it.

また、図4(a)は、図2に示した太枠内に示した装入層の上層部、中層部および下層部の各位置に燃焼帯が存在しているときの、装入層内の厚さ方向の温度分布を模式的に示したものである。装入層の中層部や下層部は、装入層上層部の炭材の燃焼熱が装入層内に吸引される空気によって運ばれて予熱されるため、その部分の高温域保持時間は安定して長時間となるが、装入層上層部は、上記予熱効果がないため、高温域保持時間は短く、燃焼溶融反応(焼結反応)が不十分となり易い。その結果、装入層のパレット幅方向断面における焼結鉱の歩留り分布は、図4(b)に示したように、装入層上層部ほど低くなる。なお、図4(b)では、装入層のパレット幅方向断面の両幅端部側も歩留りが大きく低下しているが、これは、パレット側壁からの放熱や、通過する空気による過冷却によって、高温域保持時間が十分に確保できないためである。   FIG. 4A shows the inside of the charging layer when the combustion zone exists at each of the upper layer portion, middle layer portion and lower layer portion of the charging layer shown in the thick frame shown in FIG. The temperature distribution in the thickness direction is schematically shown. The middle layer and lower layer of the charging layer are preheated by the combustion heat of the carbon material in the upper layer of the charging layer being carried by the air sucked into the charging layer. However, since the upper layer portion of the charging layer does not have the preheating effect, the high temperature region holding time is short, and the combustion melting reaction (sintering reaction) tends to be insufficient. As a result, the yield distribution of the sintered ore in the cross section in the pallet width direction of the charge layer becomes lower as the charge layer upper layer part as shown in FIG. In addition, in FIG.4 (b), although the yield has also reduced significantly also in the both width | variety edge part side of the pallet width direction cross section of a charging layer, this is due to the heat dissipation from a pallet side wall or the overcooling by the air which passes. This is because the high temperature region holding time cannot be secured sufficiently.

上記の問題、特に、装入層厚さ方向の歩留り不均一問題に対する対応策としては、従来、熱源として焼結原料中に添加している炭材(粉コークス)を増量することが行われてきた。しかし、焼結原料中のコークス量を増加させた場合には、図5に示したように、1200℃以上の温度に保持される高温域保持時間を延長することができるものの、装入層内の最高到達温度が1400℃を超え、焼結鉱を構成する鉱物の中で強度が最も高く、被還元性にも優れるカルシウムフェライトが、冷間強度と被還元性に劣る非晶質珪酸塩(カルシウムシリケート)と、還元粉化しやすい骸晶状二次ヘマタイトとに分解してしまうため、逆に、焼結鉱の被還元性や冷間強度の低下を招き、歩留りが低下してしまう。   As a countermeasure against the above-mentioned problem, in particular, the yield non-uniformity problem in the charge layer thickness direction, conventionally, increasing the amount of carbonaceous material (powder coke) added to the sintered raw material as a heat source has been performed. It was. However, when the amount of coke in the sintered raw material is increased, as shown in FIG. 5, although the high temperature range holding time maintained at a temperature of 1200 ° C. or higher can be extended, Calcium ferrite, which has the highest ultimate temperature of over 1400 ° C and has the highest strength among the minerals constituting the sintered ore and is also excellent in reducibility, is an amorphous silicate inferior in cold strength and reducibility. Calcium silicate) and skeletal secondary hematite, which is easily reduced to powder, are decomposed, and conversely, the reducibility and cold strength of the sintered ore are lowered, and the yield is lowered.

そこで、発明者らは、上記問題点を解決する技術として、焼結原料中への炭材添加量を削減した上で、焼結機の点火炉の直下流に設置した気体燃料供給装置のフード内に気体燃料を供給して、燃焼下限濃度以下に希釈した気体燃料を装入層内に導入し、燃焼させることで、装入層内の最高到達温度および高温域保持時間の両方を適正範囲に制御する技術を開発した(例えば、特許文献1、2等参照)。
これらの技術を適用した場合には、図6に示したように、供給した気体燃料が、装入層内の炭材が燃焼する位置から離れた位置、即ち、炭材の燃焼が完了し、冷却しつつある位置で燃焼するので、燃焼帯の最高到達温度を1400℃超えとすることなく、燃焼帯の幅を装入層の厚さ方向に拡大させることができるので、効果的に高温域保持時間を延長することができる。
Accordingly, the inventors have reduced the amount of carbonaceous material added to the sintering raw material as a technique for solving the above problems, and then installed a hood of a gaseous fuel supply device installed immediately downstream of the ignition furnace of the sintering machine. By supplying gaseous fuel into the gas, introducing the gaseous fuel diluted below the lower combustion limit concentration into the charging layer and burning it, both the maximum reachable temperature and the high temperature range retention time in the charging layer are in the proper range. A technology for controlling the frequency is developed (see, for example, Patent Documents 1 and 2).
When these techniques are applied, as shown in FIG. 6, the supplied gaseous fuel is located away from the position where the carbonaceous material in the charging layer burns, that is, the combustion of the carbonaceous material is completed, Since it burns at the position being cooled, the width of the combustion zone can be expanded in the thickness direction of the charging layer without exceeding the maximum temperature of the combustion zone exceeding 1400 ° C. The holding time can be extended.

また、下方吸引式のDL焼結機では、従来、焼結機から発生し、ウインドボックスによって吸引・排出された燃焼排ガスや、排鉱部から排出された焼結鉱の冷却に用いられたクーラー排ガスは、粉塵除去等の排ガス処理を施した後、高温のまま放出することが多かった。そこで、上記排ガスが有する顕熱を有効活用するため、点火炉の下流に保温炉(保熱炉)を設けて、支燃ガスとして装入層内に吸引導入する空気の代わりに、燃焼排ガスやクーラー排ガスの一部を循環させた高温ガスを供給し、焼結原料装入層の予熱に再利用する技術が実用化されている(例えば、特許文献3等参照)。   In the downward suction type DL sintering machine, conventionally, the cooler used for cooling the combustion exhaust gas generated from the sintering machine and sucked and discharged by the wind box and the sintered ore discharged from the exhaust section. In many cases, the exhaust gas is discharged at a high temperature after being subjected to exhaust gas treatment such as dust removal. Therefore, in order to effectively use the sensible heat of the exhaust gas, a heat insulation furnace (heat insulation furnace) is provided downstream of the ignition furnace, and instead of the air sucked into the charging layer as combustion support gas, A technology for supplying a high-temperature gas in which a part of the cooler exhaust gas is circulated and reusing it for preheating the sintered raw material charging layer has been put into practical use (see, for example, Patent Document 3).

しかし、保温炉を有する焼結機に、前述した特許文献1や2に開示の気体燃料供給技術を適用しようとすると、上記保温炉は、気体燃料供給装置の設置に対する障害となる。また、保温炉を撤去しようとした場合、上記保温炉は、点火炉と同様、内部を耐火煉瓦で内貼りした堅固な構造となっているため、撤去に多大な費用が掛かるだけでなく、その間の操業停止は避けられない。そこで、特許文献4には、保温炉をそのまま残存させ、該炉を気体燃料供給設備のフード代わりに用いる技術が提案されている。   However, if the gaseous fuel supply technology disclosed in Patent Documents 1 and 2 described above is applied to a sintering machine having a thermal insulation furnace, the thermal insulation furnace becomes an obstacle to the installation of the gaseous fuel supply apparatus. In addition, when trying to remove the heat-retaining furnace, the heat-retaining furnace, like the ignition furnace, has a solid structure in which the inside is attached with refractory bricks. It is inevitable to stop the operation. Therefore, Patent Document 4 proposes a technique in which a heat-retaining furnace is left as it is, and the furnace is used as a hood for a gaseous fuel supply facility.

ところで、焼結鉱の生産性を高めるには、支燃ガスとして装入層内に導入する空気に酸素を富化して焼結反応を促進し、焼結時間を短縮することが有効であることが知られている(例えば、特許文献5、6等を参照。)。そこで、出願人らは、上記の酸素富化技術と、前述した特許文献1、2に開示の気体燃料供給技術とを組み合わせた焼結鉱の製造技術を提案している。例えば、特許文献7や特許文献8には、高温域保持時間が不足する装入層上層部で焼結反応が進行している点火炉の直下流の位置に設置した気体燃料供給装置のフード内において、気体燃料を供給すると同時に酸素を富化する焼結鉱の製造技術を提案している。   By the way, in order to increase the productivity of sintered ore, it is effective to promote the sintering reaction by enriching the oxygen introduced into the charging layer as combustion support gas and shorten the sintering time. Is known (see, for example, Patent Documents 5 and 6). Therefore, the applicants have proposed a technique for producing sintered ore in which the oxygen enrichment technique described above and the gas fuel supply technique disclosed in Patent Documents 1 and 2 described above are combined. For example, in Patent Document 7 and Patent Document 8, the inside of the hood of the gaseous fuel supply apparatus installed at the position immediately downstream of the ignition furnace in which the sintering reaction proceeds in the upper part of the charging layer where the high temperature region holding time is insufficient Proposes a technique for producing sintered ore that supplies gaseous fuel and enriches oxygen at the same time.

特開2008−095170号公報JP 2008-095170 A 特開2008−291354号公報JP 2008-291354 A 特開昭50−015702号公報JP 50-015702 A 特開2010−132946号公報JP 2010-132946 A WO98/07891号公報WO98 / 077891 特開平02−073924号公報Japanese Patent Laid-Open No. 02-073924 特開2012−207236号公報JP 2012-207236 A 特開2014−031580号公報JP 2014-031580 A

しかしながら、上記特許文献7および特許文献8に提案された気体燃料の供給と酸素の富化を同時に行う装置を、特許文献4に記載の保熱炉を有する焼結機に適用しようとした場合には、保温炉を撤去する必要があり、前述したように現実的ではない。   However, when the apparatus for simultaneously supplying gaseous fuel and enriching oxygen proposed in Patent Document 7 and Patent Document 8 is applied to a sintering machine having a heat-retaining furnace described in Patent Document 4, It is necessary to remove the heat-retaining furnace, which is not realistic as described above.

本発明は、従来技術における上記問題点に鑑みてなされたものであり、その目的は、保温炉を有する焼結機において、保温炉を撤去することなく、気体燃料の供給と同時に酸素を富化することができる保温炉への酸素富化方法を提案するとともに、その保温炉を提供することにある。   The present invention has been made in view of the above-mentioned problems in the prior art, and its purpose is to enrich oxygen simultaneously with the supply of gaseous fuel without removing the heat retention furnace in a sintering machine having a heat retention furnace. The present invention proposes an oxygen enrichment method for a heat-retaining furnace and provides the heat-retaining furnace.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、高温ガスを供給する保温炉を残存させたままで、気体燃料の供給と酸素の富化を実現するには、保温炉に酸素を直接供給するのではなく、保温炉に供給する高温ガス中の酸素濃度を予め高めた上で保温炉に供給することが有効であることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, in order to realize the supply of gaseous fuel and enrichment of oxygen while leaving the thermal insulation furnace that supplies the high temperature gas, the high temperature gas supplied to the thermal insulation furnace is not supplied directly to the thermal insulation furnace. It has been found that it is effective to increase the oxygen concentration in the reactor in advance and then supply it to the heat-retaining furnace, leading to the development of the present invention.

すなわち、本発明は、点火炉下流に設置され、燃焼下限濃度以下に希釈した気体燃料を含有する高温ガスを焼結原料装入層内に供給する焼結機の保温炉への酸素富化方法であって、予め酸素濃度を高めた高温ガスを保温炉内に供給することを特徴とする焼結機の保温炉への酸素富化方法を提案する。   That is, the present invention is a method for enriching oxygen in a heat retaining furnace of a sintering machine that is installed downstream of an ignition furnace and supplies a high-temperature gas containing gaseous fuel diluted below a lower combustion limit concentration into a sintering material charging layer. Then, the oxygen enrichment method to the heat retention furnace of the sintering machine characterized by supplying the high temperature gas which increased oxygen concentration beforehand in a heat retention furnace is proposed.

本発明の上記焼結機の保温炉への酸素富化方法は、高温ガスを保温炉に供給する高温ガス供給配管に、酸素を供給する酸素供給配管を接続して高温ガス中の酸素濃度を高めることを特徴とする。   The oxygen enrichment method of the above-mentioned sintering machine of the present invention to the heat-retaining furnace is performed by connecting an oxygen supply pipe for supplying oxygen to a high-temperature gas supply pipe for supplying high-temperature gas to the heat-retaining furnace. It is characterized by increasing.

また、本発明の上記焼結機の保温炉への酸素富化方法は、上記保温炉に供給する高温ガス中の酸素濃度を21vol%超えに高めることを特徴とする。   Moreover, the oxygen enrichment method to the heat retention furnace of the said sintering machine of this invention is characterized by raising oxygen concentration in the high temperature gas supplied to the said heat retention furnace over 21 vol%.

また、本発明の上記焼結機の保温炉への酸素富化方法に用いる上記高温ガスは、焼結機から発生した燃焼排ガスおよび/または焼結鉱の冷却に使用したクーラー排ガスであることを特徴とする。   Further, the high-temperature gas used in the method for enriching oxygen in a heat retaining furnace of the sintering machine of the present invention is a combustion exhaust gas generated from the sintering machine and / or a cooler exhaust gas used for cooling the sintered ore. Features.

また、本発明は、点火炉下流に設置され、燃焼下限濃度以下に希釈した気体燃料を含有する高温ガスを焼結原料装入層内に供給する焼結機の保温炉であって、上記保温炉の上面に、高温ガスを供給する高温ガス供給配管が接続され、上記高温ガス供給配管の接続位置の保温炉内部側に、上記高温ガス供給配管から供給される高温ガス流に対して気体燃料を噴出する気体燃料供給ノズルが配設されてなるとともに、上記高温ガス供給配管の保温炉との接続位置より上流側に、高温ガスに酸素を供給する酸素供給配管が接続されてなることを特徴とする焼結機の保温炉である。   The present invention is also a heat retention furnace of a sintering machine installed downstream of the ignition furnace and supplying a high temperature gas containing gaseous fuel diluted below the lower combustion limit concentration into the sintering material charging layer, A high-temperature gas supply pipe for supplying a high-temperature gas is connected to the upper surface of the furnace, and a gaseous fuel is supplied to the high-temperature gas flow supplied from the high-temperature gas supply pipe to the inside of the heat insulation furnace at the connection position of the high-temperature gas supply pipe. A gas fuel supply nozzle for ejecting gas is disposed, and an oxygen supply pipe for supplying oxygen to the high-temperature gas is connected upstream of the connection position of the high-temperature gas supply pipe with the heat-retaining furnace. It is a heat retention furnace of the sintering machine.

本発明に上記焼結機の保温炉は、上記高温ガス供給配管の保温炉との接続位置と酸素供給配管との接続位置との間に、酸素濃度計が設置され、該酸素濃度計の酸素濃度測定値に基いて高温ガスへの酸素供給量を制御することを特徴とする。   In the heat retention furnace of the sintering machine according to the present invention, an oxygen concentration meter is installed between a connection position of the high temperature gas supply pipe with the heat retention furnace and a connection position of the oxygen supply pipe, The oxygen supply amount to the hot gas is controlled based on the measured concentration value.

また、本発明に上記焼結機の保温炉は、下流側に、燃焼下限濃度以下に希釈した気体燃料を含有する空気を焼結原料装入層内に供給する気体燃料供給装置、あるいは、燃焼下限濃度以下に希釈した気体燃料を含有しかつ酸素を富化した空気を焼結原料装入層内に供給する気体燃料供給装置を有することを特徴とする。   Further, the heat retaining furnace of the above-described sintering machine according to the present invention is a gas fuel supply device for supplying air containing gaseous fuel diluted below the lower combustion limit concentration into the sintered raw material charging layer, or combustion on the downstream side. It is characterized by having a gaseous fuel supply device for supplying air enriched with oxygen containing gaseous fuel diluted below the lower limit concentration into the sintering raw material charging layer.

本発明によれば、下方吸引式のドワイトロイド焼結機の保温炉においても、気体燃料を供給すると同時に酸素を富化することができるので、高強度でかつ被還元性に優れる、高品質の高炉原料用焼結鉱を安定して製造することが可能となる。   According to the present invention, since oxygen can be enriched at the same time as supplying gaseous fuel even in a heat retaining furnace of a downward suction type Dwytroid sintering machine, it is of high quality and excellent in reducibility. Stable ore for blast furnace raw material can be produced stably.

焼結鉱の製造プロセスの概要を説明する図である。It is a figure explaining the outline | summary of the manufacturing process of a sintered ore. 装入層内の焼結の進行に伴う変化を説明する図である。It is a figure explaining the change accompanying progress of sintering in an insertion layer. 焼結時における装入層内の温度分布を、高生産時と低生産時とで比較して示した図である。It is the figure which showed the temperature distribution in the charging layer at the time of sintering compared with the time of high production and the time of low production. 燃焼帯が装入層の上層部、中層部および下層部の各位置に存在しているときの装入層内の温度分布と、装入層のパレット幅方向断面内における焼結鉱の歩留り分布を説明する図である。Temperature distribution in the charging layer when the combustion zone exists in the upper layer, middle layer and lower layer of the charging layer, and yield distribution of sintered ore in the pallet width direction cross section of the charging layer FIG. 炭材添加量を増加したときの装入層内の温度分布の変化を説明する図である。It is a figure explaining the change of the temperature distribution in a charging layer when increasing carbon material addition amount. 気体燃料を供給したときの焼結層内の温度分布の変化を説明する図である。It is a figure explaining the change of the temperature distribution in a sintered layer when gaseous fuel is supplied. 焼結実験に用いる試験鍋を説明する図である。It is a figure explaining the test pan used for a sintering experiment. 酸素を富化する位置が焼結鉱の生産性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the position which enriches oxygen has on the productivity of a sintered ore. 酸素を富化する濃度が焼結鉱の生産性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the density | concentration which enriches oxygen has on the productivity of a sintered ore. 酸素を富化する位置が焼結時の温度パターンに及ぼす影響を説明する図である。It is a figure explaining the influence which the position which enriches oxygen has on the temperature pattern at the time of sintering. 酸素を富化する位置が高温域保持時間、最高到達温度に及ぼす影響を示すグラフである。It is a graph which shows the influence which the position which enriches oxygen has on the high temperature range holding time and the highest ultimate temperature. 気体燃料と高温ガスを供給する従来技術の保温炉を説明する図である。It is a figure explaining the conventional heat retention furnace which supplies gaseous fuel and high temperature gas. 酸素を富化する従来技術の気体燃料供給装置を説明する図である。It is a figure explaining the gaseous fuel supply apparatus of the prior art which enriches oxygen. 気体燃料と酸素を富化した高温ガスを供給する本発明の保温炉を説明する図である。It is a figure explaining the heat retention furnace of this invention which supplies the high temperature gas which enriched gaseous fuel and oxygen. 保温炉で気体燃料供給に加えて酸素を富化したときの焼結鉱の生産性に及ぼす効果を示すグラフである。It is a graph which shows the effect which it has on the productivity of a sintered ore when oxygen is enriched in addition to gaseous fuel supply with a thermal insulation furnace.

発明者らは、特許文献4に開示の焼結機のように、保温炉と気体燃料供給装置を有する焼結機において、酸素を富化するときの最適位置および最適酸素濃度を決定するべく、焼結機を模した焼結試験鍋を用いた焼結実験を行った。ここで、上記試験鍋は、図7に示すように、内径300mmφ×高さ400mmの円筒状で、底部が格子状で通気性を有する石英製の焼結原料装入容器(鍋部)内に、炭材を添加した焼結原料を充填して装入層を形成した後、上記装入層の上表面に図示のない点火装置で点火するとともに、容器の下方に配設したブロアーで排気して装入層上方の空気を装入層内に吸引・導入し、焼結原料中の炭材を燃焼させることで焼結を行うことができるようにしたものである。   In order to determine the optimum position and the optimum oxygen concentration when enriching oxygen in a sintering machine having a heat retaining furnace and a gaseous fuel supply device, such as the sintering machine disclosed in Patent Document 4, A sintering experiment using a sintering test pot simulating a sintering machine was performed. Here, as shown in FIG. 7, the test pan has a cylindrical shape with an inner diameter of 300 mmφ × a height of 400 mm, a bottom portion in a lattice shape and a breathable quartz-made sintered raw material charging container (pot portion). After charging the sintered raw material added with the carbon material to form the charging layer, the upper surface of the charging layer is ignited by an ignition device (not shown) and exhausted by a blower disposed below the container. Then, the air above the charging layer is sucked and introduced into the charging layer, and the carbonaceous material in the sintering raw material is burned so that the sintering can be performed.

<実験1>
表1に示したように、焼結試験鍋に供給する空気中に、気体燃料として都市ガスを0.25vol%(一定)の濃度になるよう添加し、点火から320sec間(全焼結時間の約1/3の時間に相当)供給するとともに、酸素を24vol%に富化し、富化する時間を点火から80sec間、160sec間および320sec間の3水準に変化させた焼結実験を行い、焼結時間、焼結鉱の歩留りを測定し、それらの結果から生産率(単位時間、単位炉床面積当たりの焼結鉱の生産量(t/h・m))を求めた。
ここで、上記酸素を富化する時間80secは、上述した焼結機の保温炉のみで酸素富化する条件、供給時間160secは、保温炉と#1気体燃料供給装置のフードで酸素富化する条件、供給時間320secは、保温炉〜#3気体燃料供給装置のすべてのフードに酸素富化する条件に相当する。
<Experiment 1>
As shown in Table 1, city gas as a gaseous fuel is added to the air supplied to the sintering test pan to a concentration of 0.25 vol% (constant), and 320 seconds after ignition (about the total sintering time) Sintering experiment was conducted, in which oxygen was enriched to 24 vol% and the enrichment time was changed to three levels between 80 sec, 160 sec and 320 sec after ignition. The time and the yield of the sintered ore were measured, and the production rate (unit time, the amount of sintered ore production per unit hearth area (t / h · m 2 )) was determined from the results.
Here, the oxygen enrichment time of 80 sec is the condition for oxygen enrichment only in the above-described sintering furnace, and the supply time of 160 sec is oxygen enrichment in the insulation furnace and the hood of the # 1 gas fuel supply device. The conditions and the supply time of 320 seconds correspond to the conditions for oxygen enrichment in all the hoods of the warming furnace to the # 3 gaseous fuel supply apparatus.

Figure 2016056405
Figure 2016056405

上記実験の結果を表1中に併記するとともに、図8に示した。なお、上記表1中の歩留り変化量は、酸素富化しない場合(酸素濃度21vol%)をベースとしたきの変化量である。この結果から、酸素を富化することによる生産率の向上効果は、水準T1、即ち、保温炉のみで酸素を富化する条件が最も大きく、水準T2やT3のように、保温炉以降の気体燃料供給装置で酸素を富化する条件では生産率の向上効果は小さく、焼結鉱の歩留りの点では、却って逆効果となることがわかった。   The results of the experiment are shown together in Table 1 and shown in FIG. The yield change amount in Table 1 is a change amount based on the case where oxygen is not enriched (oxygen concentration 21 vol%). From this result, the effect of improving the production rate by enriching oxygen is the largest at the level T1, that is, the condition for enriching oxygen only in the heat-retaining furnace, and the gas after the heat-retaining furnace as in the levels T2 and T3. It was found that the effect of improving the production rate was small under the condition of enriching oxygen with the fuel supply device, and the reverse effect was obtained in terms of the yield of sintered ore.

<実験2>
次いで、上記<実験1>の結果に基き、酸素を富化する時間を保温炉のみに限定した条件で、富化する酸素濃度の好適範囲を調査する焼結実験を行った。
上記実験は、表2に示したように、焼結試験鍋に供給する空気中に、都市ガスを0.25vol%に希釈して添加し、点火から320秒間供給するとともに、空気中の酸素濃度を21vol%(酸素富化なし)、24vol%、27vol%、30vol%および33vol%の5水準に変化させて、点火から80秒間供給し、その後は、通常の空気に切り替えて焼結を行い、<実験1>と同様、焼結時間、焼結鉱の歩留りを測定するとともに、それらの結果から生産率(単位時間、単位炉床面積当たりの焼結鉱の生産量(t/h・m))を求めた。
<Experiment 2>
Next, based on the result of the above <Experiment 1>, a sintering experiment was conducted in which the preferred range of the oxygen concentration to be enriched was investigated under the condition that the time for enriching oxygen was limited to only a heat-retaining furnace.
In the experiment, as shown in Table 2, city gas was diluted to 0.25 vol% and added to the air supplied to the sintering test pot, and supplied for 320 seconds after ignition, and the oxygen concentration in the air Was changed to 5 levels of 21 vol% (no oxygen enrichment), 24 vol%, 27 vol%, 30 vol% and 33 vol%, and supplied for 80 seconds after ignition, and then switched to normal air for sintering, Similar to <Experiment 1>, the sintering time and the yield of sintered ore were measured, and the production rate (the production rate of sintered ore per unit time and unit hearth area (t / h · m 2) was determined from the results. )).

Figure 2016056405
Figure 2016056405

上記実験の結果を表2に併記するとともに、図9に、酸素濃度と、焼結時間および焼結鉱の歩留りとの関係を示した。これらの結果から、酸素濃度が高いほど焼結時間は短縮されるが、焼結鉱の歩留りは27〜30vol%で最大となり、それ以上では低下すること、その結果、生産率の上昇効果は、酸素濃度が27vol%以上で飽和状態となり、33vol%では却って低下することがわかった。   The results of the experiment are shown in Table 2 and FIG. 9 shows the relationship between the oxygen concentration, the sintering time, and the yield of the sintered ore. From these results, the higher the oxygen concentration, the shorter the sintering time, but the yield of sintered ore becomes maximum at 27-30 vol%, and it decreases below that. As a result, the effect of increasing the production rate is It was found that when the oxygen concentration was 27 vol% or higher, the saturation state was reached, and at 33 vol%, the oxygen concentration decreased.

上記のように、酸素を富化する位置として、点火炉の直下流の保温炉が最も有効である理由について、発明者らは、以下のように考えている。
前述したように、適度の濃度への酸素富化は、高温域保持時間を延長するのに有効である。これは、図4からわかるように、焼結に必要な高温域保持時間が不足している装入層の厚さ方向位置は、装入層の上層部であるからである。したがって、上記部分で焼結反応が進行している領域において酸素を富化する、すなわち、点火炉の直下流で酸素を富化することが、装入層上層部の高温域保持時間の延長に対して有効であると考えられる。
As described above, the inventors consider the reason why the heat insulation furnace immediately downstream of the ignition furnace is most effective as a position to enrich oxygen as follows.
As described above, oxygen enrichment to an appropriate concentration is effective for extending the high temperature range retention time. This is because, as can be seen from FIG. 4, the position in the thickness direction of the charging layer where the high temperature region holding time necessary for sintering is insufficient is the upper layer portion of the charging layer. Therefore, enriching oxygen in the region where the sintering reaction is proceeding in the above-mentioned part, that is, enriching oxygen immediately downstream of the ignition furnace, extends the high temperature region holding time of the upper part of the charging layer. It is considered effective against this.

図10は、前述した<実験1>の焼結実験において、酸素を富化する範囲を変えたときの、試験鍋に装入した原料装入層の上表面から100mmの深さにおける高温域保持時間(1200℃以上に保持される時間)と、最高到達温度の測定結果を示したものである。
この結果から、保温炉のみで酸素を富化した条件(水準1)と比較し、その下流の気体燃料供給装置でも酸素を富化した条件(水準2,3)では、1200℃以上に保持される時間(高温域保持時間)が低下するとともに、焼結時の最高到達温度も低下している。
FIG. 10 shows a high temperature region holding at a depth of 100 mm from the upper surface of the raw material charging layer charged in the test pan when the oxygen enrichment range was changed in the above-described <Experiment 1> sintering experiment. The measurement result of time (time hold | maintained at 1200 degreeC or more) and the highest attained temperature is shown.
From this result, compared with the condition (level 1) enriched with oxygen only by the heat-retaining furnace, the gas fuel supply device downstream thereof is maintained at 1200 ° C. or higher under the condition (level 2 and 3) enriched with oxygen. Time (high temperature range holding time) decreases, and the maximum temperature reached during sintering also decreases.

上記の変化理由は、以下のように推定している。
図11に示したように、保温炉でのみ酸素を富化した条件(水準1)では、都市ガスのみを供給する場合(図11(a))に対して、図11(b)のように、気体燃料の燃焼位置が装入層の上層側に移行するため、最高到達温度は若干低下するものの、燃焼帯の装入層厚さ方向の幅は拡大され、高温域保持時間が延長される。しかし、保温炉に加えて、気体燃料供給装置でも酸素を富化する条件(水準2,3)では、図11(c)のように、上記気体燃料の燃焼位置がさらに装入層の上方に移動する。その結果、上記コークスと気体燃料の燃焼位置の乖離幅が大きくなり過ぎ、高温域保持時間の延長効果得られなくなるだけでなく、最高到達温度も低下してしまう。
The reason for the change is estimated as follows.
As shown in FIG. 11, under the condition (level 1) enriched with oxygen only in the heat-retaining furnace, as shown in FIG. 11 (b), when only city gas is supplied (FIG. 11 (a)). Because the combustion position of the gaseous fuel shifts to the upper layer side of the charging layer, the maximum temperature is slightly lowered, but the width of the combustion zone in the charging layer thickness direction is expanded, and the high temperature region holding time is extended. . However, under the conditions (levels 2 and 3) in which the gaseous fuel supply apparatus enriches oxygen in addition to the thermal insulation furnace, the combustion position of the gaseous fuel is further above the charging layer as shown in FIG. Moving. As a result, the difference between the combustion positions of the coke and the gaseous fuel becomes too large, and not only the effect of extending the high temperature region holding time cannot be obtained, but also the maximum temperature reached is lowered.

また、上記のように酸素濃度に最適範囲がある理由について、発明者らは、以下のように考えている。
コークスCの燃焼反応は、下記式;
C+O→CO
で表され、その反応速度式は、下記式;
=A×αexp(−Ea/RT)×[O
で表されるのに対して、都市ガスの主成分であるメタンCHの燃焼反応は、下記式;
CH+2O→CO+2H
で表され、その反応速度式は、下記式;
CH4=A×αexp(−Ea/RT)×[O
で表される。
Further, the inventors consider the reason why there is an optimum range of the oxygen concentration as described above as follows.
The combustion reaction of coke C is represented by the following formula:
C + O 2 → CO 2
The reaction rate equation is represented by the following formula:
r C = A × αexp (−Ea / RT) × [O 2 ]
The combustion reaction of methane CH 4 , which is the main component of city gas, is represented by the following formula:
CH 4 + 2O 2 → CO 2 + 2H 2 O
The reaction rate equation is represented by the following formula:
r CH4 = A × αexp (−Ea / RT) × [O 2 ] 2
It is represented by

すなわち、コークスの燃焼速度は、酸素濃度の1乗に比例するのに対して、気体燃料(都市ガス)の燃焼速度は、酸素濃度の2乗に比例するため、酸素濃度が適度に上昇した場合には、気体燃料の方が相対的に早く燃焼するようになる。また、酸素濃度が上昇すると、気体燃料の燃焼開始温度も低下する。その結果、図11(b)と同様の現象が起こり、コークスが燃焼する位置と、気体燃料が燃焼する位置との乖離幅が拡大し、高温域保持時間が延長される。しかし、酸素濃度が高くなり過ぎると、気体燃料の燃焼位置が、装入層に上方にさらに移動するため、図11(c)と同様の現象が起こり、コークスと気体燃料の燃焼位置の乖離幅が大きくなり過ぎ、高温域保持時間の延長効果得られなくなる。
また、酸素富化は、コークスや気体燃料の燃焼速度を高め、燃焼時間を短縮するため、高温域保持時間はより短縮し、焼結鉱の歩留りが低下する。
さらに、気体燃料を供給する場合には、最高到達温度の上昇を抑制するため、焼結原料中に添加する炭材量を削減しているため、上記負の効果はより大きくなる。
That is, while the combustion rate of coke is proportional to the first power of the oxygen concentration, the combustion speed of gaseous fuel (city gas) is proportional to the second power of the oxygen concentration. In some cases, gaseous fuel burns relatively quickly. Further, when the oxygen concentration increases, the combustion start temperature of the gaseous fuel also decreases. As a result, the same phenomenon as in FIG. 11 (b) occurs, the gap between the position where the coke burns and the position where the gaseous fuel burns increases, and the high temperature range holding time is extended. However, if the oxygen concentration becomes too high, the combustion position of the gaseous fuel further moves upward in the charging layer, so that the same phenomenon as in FIG. 11C occurs, and the deviation width between the combustion position of the coke and the gaseous fuel. Becomes too large, and the effect of extending the holding time in the high temperature range cannot be obtained.
In addition, oxygen enrichment increases the combustion rate of coke and gaseous fuel and shortens the combustion time, so the high temperature region retention time is further shortened and the yield of sintered ore is reduced.
Furthermore, when supplying gaseous fuel, since the amount of carbonaceous material added to the sintering raw material is reduced in order to suppress an increase in the maximum temperature reached, the negative effect is further increased.

上記<実験1>および<実験2>の結果から、保温炉を有する焼結機において、気体燃料を供給するとともに酸素を富化して焼結鉱を製造する場合には、点火炉と気体燃料供給装置間の保温炉において酸素を21vol%超えの濃度に富化することが有効であること、また、その場合の富化後の酸素濃度は27〜30vol%の範囲が好ましいことがわかった。   From the results of <Experiment 1> and <Experiment 2>, in the sintering machine having a heat-retaining furnace, when supplying gaseous fuel and enriching oxygen to produce sintered ore, an ignition furnace and gaseous fuel supply It has been found that it is effective to enrich oxygen to a concentration exceeding 21 vol% in a heat retaining furnace between apparatuses, and that the oxygen concentration after enrichment in that case is preferably in the range of 27 to 30 vol%.

なお、実機の焼結機において酸素を富化した焼結操業を行う場合には、大量の酸素を必要とするため、そのコストも考慮する必要があり、上記表2に示された酸素富化による生産率向上効果の場合には、費用対効果の観点から、酸素濃度の最適値は27vol%程度(酸素のコストに依存するが)である。   In addition, when performing a sintering operation enriched with oxygen in an actual sintering machine, since a large amount of oxygen is required, it is necessary to consider the cost, and the oxygen enrichment shown in Table 2 above is required. In the case of the production rate improvement effect by the above, the optimum value of the oxygen concentration is about 27 vol% (depending on the cost of oxygen) from the viewpoint of cost effectiveness.

次に、発明者らは、特許文献4に開示の気体燃料を供給する機能を有する保温炉で、酸素を富化する方法について検討した。
図12は、前述した特許文献4に記載された保温炉を有する焼結機の上流部分を模式的に示したものである。給鉱部の下流には点火炉が設置され、該点火炉の下流には、上流から下流に向かって、1つの保温炉と3つの気体燃料供給装置が配設されている。
ここで、上記気体燃料供給装置においては、気体燃料が、フードの高さ方向下部に、パレット幅方向に配設された複数列の気体燃料供給配管からフード内の空気中に供給され、瞬時に燃焼下限濃度以下の濃度に希釈される。また、上記気体燃料供給配管の上方(フードの高さ方向中段)には、段面がへの字状の邪魔板がパレット幅方向に複数列かつフード高さ方向に複数段千鳥状に配設されており、パレット下方に配設された図示のないウインドボックスによって装入層内に吸引・導入される空気の流れを制御するとともに、上記気体燃料供給配管から供給される気体燃料の装置外への漏洩を防止している。
Next, the inventors examined a method for enriching oxygen in a heat-retaining furnace having a function of supplying gaseous fuel disclosed in Patent Document 4.
FIG. 12 schematically shows an upstream portion of a sintering machine having a heat retaining furnace described in Patent Document 4 described above. An ignition furnace is installed downstream of the feed section, and one heat retention furnace and three gaseous fuel supply devices are arranged downstream from the ignition furnace from upstream to downstream.
Here, in the gaseous fuel supply apparatus, the gaseous fuel is supplied into the air in the hood from a plurality of rows of gaseous fuel supply pipes arranged in the pallet width direction at the lower part in the height direction of the hood, and instantly. Diluted to a concentration below the lower combustion limit concentration. Also, above the gaseous fuel supply pipe (in the middle of the hood height direction), baffle-shaped baffles are arranged in multiple rows in the pallet width direction and in multiple rows in a staggered manner in the hood height direction. The flow of air sucked and introduced into the charging layer is controlled by a wind box (not shown) disposed below the pallet, and the gaseous fuel supplied from the gaseous fuel supply pipe is out of the apparatus. To prevent leakage.

また、上記点火炉と気体燃料供給装置間に配設された保温炉においては、焼結機のウインドボックスによって吸引・排出された燃焼排ガスや、排鉱部から排出された焼結鉱を冷却するのに使用されたクーラー排ガスを再利用した高温ガスが、保温炉の上面に接続された複数の高温ガス供給配管から炉内に供給されるとともに、気体燃料が、上記高温ガス供給配管の接続位置の下部(保温炉内部)に配設されたリング状の気体燃料供給ノズルから上記高温ガス流に向かって噴出され、瞬時に高温ガスと混合して燃焼下限濃度以下に希釈される。   Further, in the heat insulation furnace disposed between the ignition furnace and the gaseous fuel supply device, the combustion exhaust gas sucked and discharged by the wind box of the sintering machine and the sintered ore discharged from the ore discharge section are cooled. The high-temperature gas reusing the cooler exhaust gas used in the process is supplied into the furnace from a plurality of high-temperature gas supply pipes connected to the upper surface of the heat insulation furnace, and the gaseous fuel is connected to the high-temperature gas supply pipe. It is ejected from the ring-shaped gaseous fuel supply nozzle disposed in the lower part (inside the heat-retaining furnace) toward the high-temperature gas flow, instantaneously mixed with the high-temperature gas, and diluted below the lower combustion limit concentration.

また、図13は、前述した特許文献7,8に開示された気体燃料の供給と同時に酸素を富化することができる気体燃料供給装置を示したものである。この気体燃料供給装置は、気体燃料供給装置のフード内の高さ方向中段に複数列かつ複数段に配設した邪魔板の上方に、酸素供給配管を配設し、該配管から上記邪魔板の間隙に向けて酸素を噴出することで、酸素の外部への漏洩を防止しつつ、酸素の富化と濃度均一化を図っている。   FIG. 13 shows a gaseous fuel supply apparatus capable of enriching oxygen simultaneously with the supply of the gaseous fuel disclosed in Patent Documents 7 and 8 described above. In this gaseous fuel supply apparatus, an oxygen supply pipe is arranged above a baffle plate arranged in a plurality of rows and a plurality of stages in the middle in the height direction in the hood of the gaseous fuel supply apparatus, and the baffle plate is connected to the baffle plate from the pipe. By blowing out oxygen toward the gap, oxygen is prevented from leaking to the outside, while enriching oxygen and making the concentration uniform.

しかし、上記気体燃料供給装置を、特許文献4に開示の焼結機にそのまま適用することはできない。というのは、保温炉においては、供給される高温ガスが外部に漏洩するのを防止するため、圧力計が設置され、外部に対して常に負圧になるように、高温ガスの流量を管理している。しかし、ここに、新たに酸素を供給することになると、上記高温ガスの流量に加えて酸素の流量をも制御することが必要となり、保温炉内部の圧力制御が難しくなる。   However, the gaseous fuel supply device cannot be applied to the sintering machine disclosed in Patent Document 4 as it is. This is because in a thermal insulation furnace, a pressure gauge is installed to prevent the supplied hot gas from leaking to the outside, and the flow rate of the hot gas is controlled so as to be always negative with respect to the outside. ing. However, when oxygen is newly supplied here, it is necessary to control not only the flow rate of the high-temperature gas but also the flow rate of oxygen, which makes it difficult to control the pressure inside the heat insulation furnace.

また、特許文献4に開示の保温炉において、気体燃料を供給するリング状ノズルに加えて、新たに酸素を供給するノズルを配設するには、火災や爆発を防止する観点から、酸素供給ノズルの配設位置を、気体燃料が燃焼下限濃度以下に確実に希釈される、気体燃料供給ノズルから十分に離れた場所、かつ、保温炉内に供給された酸素が高温ガスと混合・均一化する時間を確保できる場所であることが必要であるが、保温炉内という限られたスペースには斯かる条件を満たす位置は存在していない。さらに、保温炉内に供給された酸素濃度を測定するには、保温炉内の複数箇所で測定する必要がある。   Further, in the heat insulation furnace disclosed in Patent Document 4, in order to dispose a nozzle for newly supplying oxygen in addition to the ring-shaped nozzle for supplying gaseous fuel, from the viewpoint of preventing fire and explosion, an oxygen supply nozzle The location where the gas fuel is surely diluted to below the lower combustion limit concentration, where it is sufficiently away from the gas fuel supply nozzle, and the oxygen supplied into the heat insulation furnace is mixed and homogenized with the hot gas Although it is necessary to be a place where time can be secured, there is no position satisfying such a condition in a limited space in the heat insulation furnace. Furthermore, in order to measure the oxygen concentration supplied into the heat insulation furnace, it is necessary to measure at a plurality of locations in the heat insulation furnace.

なお、上記問題点は、保温炉を撤去し、特許文献7や8に開示の気体燃料供給装置を新たに設けることで解決することができる。しかし、上記方法は、保温炉撤去や気体燃料供給装置の新設に多大な費用が必要となり、さらに、その工事期間における焼結鉱の生産量低下を考慮すると、現実的ではない。   In addition, the said problem can be solved by removing a heat retention furnace and newly providing the gaseous fuel supply apparatus disclosed by patent document 7 or 8. FIG. However, the above method requires a large amount of cost for removing the heat-retaining furnace and newly installing a gaseous fuel supply device, and is not practical in view of a decrease in the production of sintered ore during the construction period.

そこで、本発明では、保温炉への酸素富化を、保温炉に酸素を直接供給して富化するのではなく、保温炉に供給している高温ガスの酸素濃度を予め高めておき、これを保温炉に供給する、具体的には、図14に示したように、高温ガスを保温炉に供給する高温ガス供給配管の保温炉との接続位置より上流側に、高温ガスに酸素を供給する酸素供給配管を接続して高温ガスに酸素を供給・混合し、均一化してから保温炉に供給する方法を採用することとした。   Therefore, in the present invention, the oxygen enrichment to the heat insulation furnace is not performed by directly supplying oxygen to the heat insulation furnace, but the oxygen concentration of the high-temperature gas supplied to the heat insulation furnace is increased in advance. 14, specifically, as shown in FIG. 14, oxygen is supplied to the high-temperature gas upstream from the connection position of the high-temperature gas supply pipe for supplying the high-temperature gas to the heat-retaining furnace. We decided to adopt a method of connecting oxygen supply piping to supply oxygen to high temperature gas, supplying and mixing oxygen, and supplying it to the heat insulation furnace after homogenization.

この方法であれば、保温炉の撤去や保温炉の大きな改造を行うことなく、酸素富化を実現することができる。また、酸素の濃度管理も、高温ガスの流量と酸素ガスの流量比を制御するだけで行うことができ、酸素濃度の測定も、高温ガス供給配管の1箇所のみで行えばよいので、酸素濃度の制御や管理が容易となる。さらに、酸素を高温ガスの供給配管に供給するので、気体燃料のような供給ノズルの目詰まり等の発生がなく、メンテナンスが容易となる。   If this method is used, oxygen enrichment can be realized without removing the heat-retaining furnace or performing a large remodeling of the heat-retaining furnace. Further, the oxygen concentration can be controlled only by controlling the flow ratio of the high-temperature gas and the oxygen gas, and the oxygen concentration needs to be measured only at one location of the high-temperature gas supply pipe. Can be easily controlled and managed. Furthermore, since oxygen is supplied to the high-temperature gas supply pipe, the supply nozzle such as gaseous fuel is not clogged and maintenance is facilitated.

さらに、保温炉において酸素を供給する場合には、高濃度の酸素を保温炉に供給する必要があるが、保温炉は点火炉に隣接しているため、原料装入層上表面には気体燃料の異常燃焼(火災や爆発)を引き起こす火種が残存している可能性が高い。そのため、酸素供給配管には、配管自体の焼損を防止するため、禁油処理を施した銅製や銅合金製、Ni合金製等の高価な配管を用いて不燃化する必要がある。しかし、上記の高温ガスへの酸素混合方法では、火種が存在しないため、高価な配管の使用は不要となる。   Furthermore, when oxygen is supplied in the heat insulation furnace, it is necessary to supply high concentration oxygen to the heat insulation furnace. However, since the heat insulation furnace is adjacent to the ignition furnace, the upper surface of the raw material charging layer is a gaseous fuel. There is a high possibility that there is a residual fire that causes abnormal combustion (fire and explosion). Therefore, in order to prevent the piping itself from burning out, it is necessary to make the oxygen supply pipe incombustible by using an expensive pipe made of copper, copper alloy, Ni alloy or the like subjected to oil prohibition treatment. However, in the above oxygen mixing method for high-temperature gas, since there is no fire type, the use of expensive piping becomes unnecessary.

なお、本発明の保温炉において焼結原料層内に供給する空気中の酸素濃度は、保温炉に供給される高温ガスの量が気体燃料よりも圧倒的に多いことから、高温ガス中の酸素濃度によってほぼ決定される。したがって、焼結原料層内に供給する空気中の酸素濃度は、高温ガス中の酸素濃度を管理すればよく、例えば、図14の図中に示したように、高温排ガス供給配管の保温炉との接続位置と酸素供給配管との接続位置と間に酸素濃度計を設置し、この酸素濃度計の測定値に基いて、酸素供給配管に設置された流量調整弁の開度を調整することで、容易に酸素濃度を制御することができる。   Note that the oxygen concentration in the air supplied into the sintering raw material layer in the heat insulation furnace of the present invention is that the amount of high-temperature gas supplied to the heat insulation furnace is overwhelmingly higher than that of gaseous fuel. It is almost determined by the concentration. Therefore, the oxygen concentration in the air supplied into the sintering raw material layer may be controlled by the oxygen concentration in the high-temperature gas. For example, as shown in FIG. By installing an oxygen concentration meter between the connection position of the oxygen supply pipe and the connection position of the oxygen supply pipe, and adjusting the opening of the flow rate adjustment valve installed in the oxygen supply pipe based on the measured value of this oxygen concentration meter The oxygen concentration can be easily controlled.

次に、本発明の保温炉に供給する高温ガスについて説明する。
本発明において保温炉に供給する高温ガスとしては特に制限はないが、焼結機から発生する高温排ガス、例えば、パレット下方に配設したウインドボックスによって吸引・排出された燃焼排ガスや、焼結機の排鉱部から排出された焼結鉱の冷却に使用されたクーラー排ガスであれば好適に用いることができる。また、燃焼排ガスとクーラー排ガスの両方を用いてもよく、その場合には、燃焼排ガスとクーラー排ガスとを別々に供給してもよいし、予め混合してから供給してもよい。また、燃焼排ガスとクーラー排ガスの供給位置を違えてもよい。なお、燃焼排ガスを用いる場合には、酸素消費量が少なく酸素濃度が高いガスを用いるのが好ましい。
Next, the high temperature gas supplied to the heat retention furnace of the present invention will be described.
In the present invention, the high-temperature gas supplied to the heat-retaining furnace is not particularly limited, but high-temperature exhaust gas generated from the sintering machine, for example, combustion exhaust gas sucked / exhausted by a wind box disposed below the pallet, or sintering machine If it is a cooler exhaust gas used for cooling of the sintered ore discharged | emitted from the exhaust part of this, it can use suitably. Moreover, you may use both combustion exhaust gas and cooler exhaust gas, and in that case, combustion exhaust gas and cooler exhaust gas may be supplied separately, and may be supplied after mixing beforehand. Further, the supply position of the combustion exhaust gas and the cooler exhaust gas may be different. In addition, when using combustion exhaust gas, it is preferable to use gas with little oxygen consumption and high oxygen concentration.

また、上記高温ガスは、温度が130〜300℃の範囲が好ましい。130℃未満では、焼結原料の予熱効果が小さく、一方、300℃を超えると、造粒粒子である焼結原料が急激な乾燥により崩壊を起こすからである。   The high temperature gas preferably has a temperature in the range of 130 to 300 ° C. If the temperature is lower than 130 ° C., the effect of preheating the sintered raw material is small. On the other hand, if the temperature exceeds 300 ° C., the sintered raw material that is the granulated particles collapses due to rapid drying.

次に、本発明で保温炉や気体燃料供給装置に供給する気体燃料について説明する。
本発明で用いる気体燃料としては、都市ガスやLNG、メタンガス、エタンガス、プロパンガス、ブタンガスあるいはこれらの混合ガスの他に、製鉄所で発生する高炉ガス(Bガス)や(コークス炉ガス)Cガス、COガスあるいはこれらの混合ガス等を用いることができる。ただし、BガスやCガス、COガスを使用する場合には、COガスの漏洩対策を別途講ずることが必要となる。さらに、本発明では、上記気体燃料以外に、アルコール類、エーテル類、石油類、その他の炭化水素系の液体燃料を気化させたものを用いることもできる。ただし、この場合には、気化した燃料が再液化しないよう、気体供給配管を液体燃料の沸点以上着火温度未満の温度に保持することが好ましい。
Next, the gaseous fuel supplied to the heat retaining furnace and the gaseous fuel supply device in the present invention will be described.
Gas fuels used in the present invention include city gas, LNG, methane gas, ethane gas, propane gas, butane gas, or a mixed gas thereof, as well as blast furnace gas (B gas) and (coke oven gas) C gas generated at steelworks. CO gas or a mixed gas thereof can be used. However, when B gas, C gas, or CO gas is used, it is necessary to take measures against CO gas leakage. Further, in the present invention, in addition to the gaseous fuel, alcohols, ethers, petroleums, and other hydrocarbon-based liquid fuels that are vaporized can also be used. However, in this case, it is preferable to maintain the gas supply pipe at a temperature not less than the boiling point of the liquid fuel and less than the ignition temperature so that the vaporized fuel does not re-liquefy.

なお、保温炉や気体燃料供給装置で焼結原料装入層中に供給する空気中に含まれる気体燃料の濃度(希釈後の濃度)は、常温での燃焼下限濃度以下とする必要がある。希釈した気体燃料の濃度が燃焼下限濃度より高いと、装入層の上方で燃焼してしまい、気体燃料を供給する効果が失われてしまったり、火災や爆発を起こしたりするおそれがある。また、希釈気体燃料の濃度が高いと、燃焼温度が低下し、焼結反応が既に完了した領域で燃焼してしまうため、高温域保持時間の延長に有効に寄与し得ないおそれがある。希釈後の気体燃料の濃度は、大気中の常温における燃焼下限濃度の75%以下が好ましく、より好ましくは燃焼下限濃度の20%以下、さらに好ましくは燃焼下限濃度の10%以下である。しかし、希釈気体燃料の濃度が燃焼下限濃度の1%未満では、燃焼による発熱量が不足し、焼結鉱の品質改善効果や生産性の向上効果が得られなくなるため、燃焼下限濃度の1%以上とするのが好ましい。より好ましくは2%以上である。因みに、メタンCHを主成分とする都市ガスやLNGの燃焼下限濃度は約4.8vol%であるから、希釈気体燃料の濃度は、0.05〜3.6vol%の範囲が好ましく、0.05〜1.0vol%の範囲がより好ましく、0.05〜0.5vol%の範囲がさらに好ましい。 It should be noted that the concentration of the gaseous fuel contained in the air supplied into the sintered raw material charging layer by the heat retaining furnace or the gaseous fuel supply device (concentration after dilution) needs to be lower than the lower combustion limit concentration at normal temperature. If the concentration of the diluted gaseous fuel is higher than the lower combustion limit concentration, it may burn above the charging layer, and the effect of supplying the gaseous fuel may be lost, or a fire or explosion may occur. Further, when the concentration of the diluted gas fuel is high, the combustion temperature is lowered, and combustion is performed in a region where the sintering reaction has already been completed, so that it may not be able to contribute effectively to extending the high temperature region holding time. The concentration of the diluted gaseous fuel is preferably 75% or less of the lower limit of combustion at normal temperature in the atmosphere, more preferably 20% or less of the lower limit of combustion, and further preferably 10% or less of the lower limit of combustion. However, if the concentration of the diluted gas fuel is less than 1% of the lower combustion limit concentration, the calorific value due to combustion is insufficient, and the quality improvement effect and productivity improvement effect of sintered ore cannot be obtained. The above is preferable. More preferably, it is 2% or more. Incidentally, since the lower combustion limit concentration of city gas and LNG mainly composed of methane CH 4 is about 4.8 vol%, the concentration of the diluted gas fuel is preferably in the range of 0.05 to 3.6 vol%, and The range of 05-1.0 vol% is more preferable, and the range of 0.05-0.5 vol% is more preferable.

なお、上記本発明の説明では、焼結機の保温炉において、高温ガスとともに気体燃料を供給し、さらに酸素を富化する場合について説明しているが、焼結機の特性(例えば、保温炉の設置位置や機長方向長さ等)に応じで、上記保温炉の下流に設置した気体燃料供給装置においても、気体燃料に加えて酸素富化を実施してもよい。   In the above description of the present invention, the case of supplying gas fuel together with high-temperature gas and further enriching oxygen in the heat retaining furnace of the sintering machine has been described. In addition to the gaseous fuel, oxygen enrichment may be carried out also in the gaseous fuel supply device installed downstream of the thermal insulation furnace, depending on the installation position and the length in the machine length direction.

点火炉出側から排鉱部までの長さが90mで、図14に示したように、点火炉の下流に長さが7.5mの1つの保熱炉と、長さが7.5mの#1〜#3の気体燃料供給装置を有する実機焼結機において、上記保温炉と気体燃料供給装置から気体燃料を供給するとともに、上記保温炉で酸素を富化する焼結操業を実施し、酸素富化の効果を評価する実験を行った。なお、上記実験においては、焼結原料中の炭材(コークス)配合量を4mass%(一定)とし、気体燃料は、LNGを、上記保温炉と気体燃料供給装置において0.25vol%に希釈した後、原料装入層内に供給した。また、酸素は、保温炉に供給する高温ガスの供給配管に酸素供給配管を連結し、酸素濃度が27vol%となる量を供給し、高温ガス供給配管内で均一の濃度とした後、保温炉上面から保温炉内に供給することで、原料装入層内に供給する空気中の酸素を富化した。   As shown in FIG. 14, the length from the ignition furnace exit side to the discharge portion is 90 m, and one heat-retaining furnace having a length of 7.5 m downstream of the ignition furnace and a length of 7.5 m In the actual machine sintering machine having the gas fuel supply devices of # 1 to # 3, the gas fuel is supplied from the heat insulation furnace and the gas fuel supply device, and the sintering operation for enriching oxygen in the heat insulation furnace is performed. An experiment was conducted to evaluate the effect of oxygen enrichment. In the above experiment, the amount of carbonaceous material (coke) in the sintered raw material was 4 mass% (constant), and the gaseous fuel was LNG diluted to 0.25 vol% in the above-mentioned thermal insulation furnace and gaseous fuel supply device. Then, it supplied in the raw material charge layer. In addition, oxygen is connected to a high-temperature gas supply pipe to be supplied to the heat-retaining furnace, oxygen is supplied in an amount of 27 vol%, and the oxygen concentration is made uniform in the high-temperature gas supply pipe. The oxygen in the air supplied into the raw material charging layer was enriched by supplying it from the upper surface into the heat insulation furnace.

図15は、上記の実機焼結機を用いた焼結実験で得られた焼結鉱の回転強度(タンブラー強度TI)と生産率との関係を、酸素富化の有無で対比して示したものである。
この図から、酸素を富化することにより、焼結鉱の平均回転強度TIは69.5%から71.5%へと約2%向上し、生産率も1.37t/h・mから1.43t/h・mへと約0.06t/h・m(約4%)向上していることがわかる。
FIG. 15 shows the relationship between the rotational strength (tumbler strength TI) of the sintered ore obtained in the sintering experiment using the above-mentioned actual machine sintering machine and the production rate, with and without oxygen enrichment. Is.
From this figure, by enriching oxygen, the average rotational strength TI of the sintered ore increased by about 2% from 69.5% to 71.5%, and the production rate also increased from 1.37 t / h · m 2. 1.43t / h · m 2 to about 0.06t / h · m 2 (about 4%) it can be seen that improved.

本発明の焼結技術は、製鉄用、特に高炉用原料として使用される焼結鉱の製造技術として有用であるばかりでなく、その他鉱石の塊成化技術としても利用することができる。   The sintering technique of the present invention is not only useful as a technique for producing sintered ore used as a raw material for iron making, particularly as a blast furnace, but can also be used as an agglomeration technique for other ores.

1:原料ホッパー
2:ドラムミキサー
3:ロータリーキルン
4、5:サージホッパー
6:ドラムフィーダー
7:切り出しシュート
8:パレット
9:原料装入層
10:点火炉
11:ウインドボックス
12:カットオフプレート
1: Raw material hopper 2: Drum mixer 3: Rotary kiln 4, 5: Surge hopper 6: Drum feeder 7: Cutting chute 8: Pallet 9: Raw material charging layer 10: Ignition furnace 11: Wind box 12: Cut-off plate

Claims (7)

点火炉下流に設置され、燃焼下限濃度以下に希釈した気体燃料を含有する高温ガスを焼結原料装入層内に供給する焼結機の保温炉への酸素富化方法であって、
予め酸素濃度を高めた高温ガスを保温炉内に供給することを特徴とする焼結機の保温炉への酸素富化方法。
An oxygen enrichment method for a heat retaining furnace of a sintering machine installed downstream of an ignition furnace and supplying a high temperature gas containing a gaseous fuel diluted below a lower combustion limit concentration into a sintering raw material charging layer,
A method for enriching oxygen in a heat retention furnace of a sintering machine, characterized in that a high temperature gas whose oxygen concentration has been increased in advance is supplied into the heat retention furnace.
高温ガスを保温炉に供給する高温ガス供給配管に、酸素を供給する酸素供給配管を接続して高温ガス中の酸素濃度を高めることを特徴とする請求項1に記載の焼結機の保温炉への酸素富化方法。 2. The heat retention furnace for a sintering machine according to claim 1, wherein an oxygen supply pipe for supplying oxygen is connected to a high temperature gas supply pipe for supplying the high temperature gas to the heat retention furnace to increase the oxygen concentration in the high temperature gas. Oxygen enrichment method. 上記保温炉に供給する高温ガス中の酸素濃度を21vol%超えに高めることを特徴とする請求項1または2に記載の焼結機の保温炉への酸素富化方法。 3. The method for enriching oxygen in a warming furnace of a sintering machine according to claim 1 or 2, wherein the oxygen concentration in the high-temperature gas supplied to the warming furnace is increased to more than 21 vol%. 上記高温ガスは、焼結機から発生した燃焼排ガスおよび/または焼結鉱の冷却に使用したクーラー排ガスであることを特徴とする請求項1〜3のいずれか1項に記載の焼結機の保温炉への酸素富化方法。 4. The sintering machine according to claim 1, wherein the high-temperature gas is a combustion exhaust gas generated from the sintering machine and / or a cooler exhaust gas used for cooling the sintered ore. Oxygen enrichment method for heat insulation furnace. 点火炉下流に設置され、燃焼下限濃度以下に希釈した気体燃料を含有する高温ガスを焼結原料装入層内に供給する焼結機の保温炉であって、
上記保温炉の上面に、高温ガスを供給する高温ガス供給配管が接続され、
上記高温ガス供給配管の接続位置の保温炉内部側に、上記高温ガス供給配管から供給される高温ガス流に対して気体燃料を噴出する気体燃料供給ノズルが配設されてなるとともに、
上記高温ガス供給配管の保温炉との接続位置より上流側に、高温ガスに酸素を供給する酸素供給配管が接続されてなることを特徴とする焼結機の保温炉。
A heat retention furnace of a sintering machine installed downstream of an ignition furnace and supplying a high-temperature gas containing gaseous fuel diluted below a lower combustion limit concentration into a sintering material charging layer,
A high temperature gas supply pipe for supplying a high temperature gas is connected to the upper surface of the heat retaining furnace,
A gaseous fuel supply nozzle that ejects gaseous fuel to the high-temperature gas flow supplied from the high-temperature gas supply pipe is disposed on the inside of the heat insulation furnace at the connection position of the high-temperature gas supply pipe.
A heat retaining furnace for a sintering machine, wherein an oxygen supply pipe for supplying oxygen to a high temperature gas is connected upstream of a position where the high temperature gas supply pipe is connected to the heat retaining furnace.
上記高温ガス供給配管の保温炉との接続位置と酸素供給配管との接続位置との間に、酸素濃度計が設置され、該酸素濃度計の酸素濃度測定値に基いて高温ガスへの酸素供給量を制御することを特徴とする請求項5に記載の焼結機の保温炉。 An oxygen concentration meter is installed between the connection position of the high-temperature gas supply pipe with the heat-retaining furnace and the connection position of the oxygen supply pipe, and oxygen is supplied to the high-temperature gas based on the measured oxygen concentration value of the oxygen concentration meter. 6. The heat retaining furnace for a sintering machine according to claim 5, wherein the amount is controlled. 下流側に、燃焼下限濃度以下に希釈した気体燃料を含有する空気を焼結原料装入層内に供給する気体燃料供給装置、あるいは、燃焼下限濃度以下に希釈した気体燃料を含有しかつ酸素を富化した空気を焼結原料装入層内に供給する気体燃料供給装置を有することを特徴とする請求項5または6に記載の焼結機の保温炉。 On the downstream side, a gaseous fuel supply device for supplying air containing gaseous fuel diluted below the lower combustion limit concentration into the sintered raw material charging layer, or containing gaseous fuel diluted below the lower combustion limit concentration and oxygen The heat retention furnace for a sintering machine according to claim 5 or 6, further comprising a gaseous fuel supply device for supplying the enriched air into the sintering material charging layer.
JP2014183134A 2014-09-09 2014-09-09 Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace Active JP6160839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183134A JP6160839B2 (en) 2014-09-09 2014-09-09 Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183134A JP6160839B2 (en) 2014-09-09 2014-09-09 Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace

Publications (2)

Publication Number Publication Date
JP2016056405A true JP2016056405A (en) 2016-04-21
JP6160839B2 JP6160839B2 (en) 2017-07-12

Family

ID=55757546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183134A Active JP6160839B2 (en) 2014-09-09 2014-09-09 Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace

Country Status (1)

Country Link
JP (1) JP6160839B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254534A (en) * 1991-02-04 1992-09-09 Nippon Steel Corp Sintering method using pulverized fuel-containing gas
JP2010132946A (en) * 2008-12-03 2010-06-17 Jfe Steel Corp Sintering machine
JP2012207236A (en) * 2010-03-24 2012-10-25 Jfe Steel Corp Method for producing sintered ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254534A (en) * 1991-02-04 1992-09-09 Nippon Steel Corp Sintering method using pulverized fuel-containing gas
JP2010132946A (en) * 2008-12-03 2010-06-17 Jfe Steel Corp Sintering machine
JP2012207236A (en) * 2010-03-24 2012-10-25 Jfe Steel Corp Method for producing sintered ore

Also Published As

Publication number Publication date
JP6160839B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP5585503B2 (en) Method for producing sintered ore
JP5458560B2 (en) Sintering machine
JP4911163B2 (en) Method for producing sintered ore
JP5843063B2 (en) Sintering machine and gaseous fuel supply method
WO2014080450A1 (en) Oxygen-gas fuel supply device for sintering machine
JP2010132962A (en) Method for producing sintered ore, and sintering machine
JP2008292154A (en) Sintering machine and its operation method
JP5691250B2 (en) Method for producing sintered ore
JP5428195B2 (en) Sintering machine
JP5930213B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5561443B2 (en) Method for producing sintered ore
JP6160839B2 (en) Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace
JP6160838B2 (en) Oxygen enrichment method and oxygen enrichment apparatus for a thermal insulation furnace of a sintering machine
JP5504619B2 (en) Method for producing sintered ore
JP5888482B2 (en) Method for producing sintered ore
JP6213734B2 (en) Method for producing sintered ore
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP6037145B2 (en) Method for producing sintered ore
JP5831694B2 (en) Sintering machine
JP5825478B2 (en) Sintering machine
JP5428194B2 (en) Sintering machine
JP2010106341A (en) Method for manufacturing sintered ore
JP2010106342A (en) Method for manufacturing sintered ore
JP2010156037A (en) Method for producing sintered ore
JP2013076105A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R150 Certificate of patent or registration of utility model

Ref document number: 6160839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250