JP2016056385A - Polycarbonate resin composition, molded article - Google Patents

Polycarbonate resin composition, molded article Download PDF

Info

Publication number
JP2016056385A
JP2016056385A JP2016015425A JP2016015425A JP2016056385A JP 2016056385 A JP2016056385 A JP 2016056385A JP 2016015425 A JP2016015425 A JP 2016015425A JP 2016015425 A JP2016015425 A JP 2016015425A JP 2016056385 A JP2016056385 A JP 2016056385A
Authority
JP
Japan
Prior art keywords
resin composition
mass
polycarbonate resin
molecular weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015425A
Other languages
Japanese (ja)
Other versions
JP6427123B2 (en
Inventor
正己 瀧本
Masami Takimoto
正己 瀧本
石川 康弘
Yasuhiro Ishikawa
康弘 石川
佑介 青木
Yusuke Aoki
佑介 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2016015425A priority Critical patent/JP6427123B2/en
Publication of JP2016056385A publication Critical patent/JP2016056385A/en
Application granted granted Critical
Publication of JP6427123B2 publication Critical patent/JP6427123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polycarbonate resin composition capable of being a material for a molded body capable of maintaining excellent impact resistance at low temperature for long time even by repeated use under high temperature and high humidity environment and hardly generating discoloration or the like even retained at high temperature, and a molded body made of the resin composition.SOLUTION: There is provided the polycarbonate resin composition which contains : (A) an aromatic polycarbonate resin mixture containing 5 to 100 mass% of (A-1) an aromatic polycarbonate-polyorganosiloxane copolymer and 95 to 0 mass% of (A-2) an aromatic polycarbonate resin other than the (A-1) component with the content of a polyorganosiloxane unit of 1 mass% or more; and with respect to 100 pts.mass of the (A) aromatic polycarbonate resin mixture, 0.002 to 0.200 pts.mass of (B) a phosphorus-based antioxidant and 0 to 0.200 pts.mass of (C) an epoxidation stabilizer and which has a reduction percentage P of viscosity average molecular weight before and after a pressure cooker test calculated by the calculation formula (I) of 20% or less.SELECTED DRAWING: None

Description

本発明は、ポリカーボネート樹脂組成物、及び該樹脂組成物よりなる成形品に関する。   The present invention relates to a polycarbonate resin composition and a molded article comprising the resin composition.

例えば、特許文献1に開示されたような、芳香族ポリカーボネート−ポリオルガノシロキサン共重合体(以下、「PC−POS共重合体」ともいう)を含む芳香族ポリカーボネート樹脂組成物は、低温環境下での耐衝撃性に優れた成形品の材料となる。   For example, an aromatic polycarbonate resin composition containing an aromatic polycarbonate-polyorganosiloxane copolymer (hereinafter also referred to as “PC-POS copolymer”) as disclosed in Patent Document 1 is used in a low-temperature environment. It becomes a material for molded products with excellent impact resistance.

一方、冷凍倉庫等で使われる物流用品や容器類は、低温倉庫に入れる前には、温水や高温スチームで洗浄されることが多く、低温環境下での耐衝撃性能と共に、高温、高湿環境下にも耐える性能が要求される。   On the other hand, logistics supplies and containers used in refrigerated warehouses are often washed with hot water or high-temperature steam before they are put into a low-temperature warehouse. Performance that can withstand below is also required.

特開2010−215791号公報JP 2010-215791 A

PC−POS共重合を含むポリカーボネート樹脂組成物は、低温環境下での耐衝撃性には優れてはいるが、高温、高湿環境下では加水分解して分子量が下がり、低温での耐衝撃性能まで低下してしまう問題がある。例えば、温水やスチーム洗浄等を繰り返し行うような冷凍倉庫内で使う物流用品や容器類を、PC−POS共重合を含むポリカーボネート樹脂組成物で製造すると、温水やスチーム洗浄等を繰り返す内に加水分解で、低温衝撃性能が低下してしまう。その結果として、該物流用品や容器類が冷凍倉庫内で破損することが稀に起きることから、該樹脂組成物からなる容器類は、長期的な耐久性が劣ると指摘されている。
このため、温水やスチームを使って洗浄を繰り返した場合でも、加水分解で分子量が低下したりせず、低温での耐衝撃性能を長期間維持できる成形体の材料となり得るポリカーボネート樹脂組成物が望まれていた。
Polycarbonate resin composition containing PC-POS copolymer is excellent in impact resistance under low temperature environment, but hydrolyzed under high temperature and high humidity environment to lower molecular weight and impact resistance performance at low temperature There is a problem that it will drop to. For example, if logistics goods and containers used in a refrigerated warehouse that repeatedly perform hot water and steam cleaning, etc., are manufactured with a polycarbonate resin composition containing PC-POS copolymer, hydrolysis will occur while repeated hot water and steam cleaning, etc. As a result, the low-temperature impact performance deteriorates. As a result, it is pointed out that containers made of the resin composition are inferior in long-term durability because the logistics supplies and containers rarely break in a freezer warehouse.
Therefore, there is a demand for a polycarbonate resin composition that can be used as a molding material that can maintain impact resistance at low temperatures for a long period of time, even when washing is repeated using warm water or steam, and the molecular weight does not decrease due to hydrolysis. It was rare.

本発明は、上記問題点を鑑みてなされたものであって、高温、高湿環境下で繰り返し使用しても、優れた低温での耐衝撃性能を長期間維持できる成形体の材料となり得ると共に、射出成形機内で滞留しても変色等が生じ難い加工安定性のある、ポリカーボネート樹脂組成物、及び該樹脂組成物からなる成形体を提供することを目的とする。   The present invention has been made in view of the above problems, and can be a material for a molded body that can maintain excellent low temperature impact resistance performance for a long period of time even when used repeatedly in a high temperature and high humidity environment. Another object of the present invention is to provide a polycarbonate resin composition having a processing stability that hardly causes discoloration or the like even if it stays in an injection molding machine, and a molded body made of the resin composition.

本発明者らは、特定のポリカーボネート樹脂組成物を使って製造した平板サンプルを、所定条件のプレッシャークッカー試験に掛けた後、所定条件の自動落錘衝撃試験を行って脆性的に破壊しないような条件を探索した結果、特定の成分を特定量含有し、プレッシャークッカー試験前後の粘度平均分子量の低下率が特定値以下である、ポリカーボネート樹脂組成物が、上記課題を解決し得ることを見出し、本発明を完成した。   The inventors of the present invention do not cause a flat plate sample manufactured using a specific polycarbonate resin composition to undergo a pressure cooker test under a predetermined condition, and then perform an automatic falling weight impact test under a predetermined condition so as not to brittlely break. As a result of searching for conditions, it was found that a polycarbonate resin composition containing a specific amount of a specific component and having a decrease rate of the viscosity average molecular weight before and after the pressure cooker test is not more than a specific value can solve the above problems. Completed the invention.

すなわち、本発明は、下記〔1〕〜〔10〕を提供するものである。
〔1〕芳香族ポリカーボネート−ポリオルガノシロキサン共重合体(A−1)5〜100質量%、及び(A−1)成分以外の芳香族ポリカーボネート樹脂(A−2)95〜0質量%であり、ポリオルガノシロキサン単位の含有量が1質量%以上となる芳香族ポリカーボネート樹脂混合物(A)100質量部に対して、リン系酸化防止剤(B)0.002〜0.200質量部、エポキシ化安定剤(C)0〜0.200質量部を含む、ポリカーボネート樹脂組成物であって、下記計算式(I)から算出されるポリカーボネート樹脂組成物の粘度平均分子量の低下率Pが20%以下である、ポリカーボネート樹脂組成物。
計算式(I):P〔%〕=(M−M)/M×100
(上記式(I)中、Mは、前記ポリカーボネート樹脂組成物をペレットとした後に測定した該樹脂組成物の粘度平均分子量であり、Mは、該ペレットを、121℃に設定したプレッシャークッカー試験機に投入して300時間処理した後に測定した、プレッシャークッカー試験後の該樹脂組成物の粘度平均分子量を表す。Pは、前記プレッシャークッカー試験前の該樹脂組成物の粘度平均分子量に対する、該試験後の該樹脂組成物の粘度平均分子量の低下率を表す。)
〔2〕前記計算式(I)中のMで表される前記プレッシャークッカー試験後の前記樹脂組成物の粘度平均分子量が16000以上である、上記〔1〕に記載のポリカーボネート樹脂組成物。
〔3〕リン系酸化防止剤(B)が、ホスファイト系酸化防止剤又はホスフィン系酸化防止剤である、上記〔1〕又は〔2〕に記載のポリカーボネート樹脂組成物。
〔4〕リン系酸化防止剤(B)がホスファイト系酸化防止剤であり、且つ前記樹脂組成物中に(C)成分を実質含まない場合、(B)成分の含有量が、(A)成分100質量部に対して0.002〜0.020質量部である、上記〔1〕〜〔3〕のいずれかに記載のポリカーボネート樹脂組成物。
〔5〕リン系酸化防止剤(B)がホスフィン系酸化防止剤である場合、前記樹脂組成物中に(C)成分を実質含まない、上記〔1〕〜〔3〕のいずれかに記載のポリカーボネート樹脂組成物。
〔6〕エポキシ化安定剤(C)が、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、及び/又は、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物である、上記〔1〕〜〔3〕のいずれかに記載のポリカーボネート樹脂組成物。
〔7〕エポキシ化安定剤(C)が、オキシラン酸素濃度が4%以上のエポキシ化天然油又はエポキシ化合成油である、上記〔1〕〜〔3〕のいずれかに記載のポリカーボネート樹脂組成物。
〔8〕上記〔1〕〜〔7〕のいずれかに記載のポリカーボネート樹脂組成物からなる、成形品。
〔9〕前記成形品が、90℃以上の温水及び/又は100℃以上のスチームで洗浄が行われる製品又は部品である、上記〔8〕に記載の成形品。
〔10〕前記成形品が、温度60℃以上、相対湿度90%以上の環境下で使われる製品又は部品である、上記〔8〕又は〔9〕に記載の成形品。
That is, the present invention provides the following [1] to [10].
[1] Aromatic polycarbonate-polyorganosiloxane copolymer (A-1) 5 to 100% by mass, and aromatic polycarbonate resin (A-2) other than component (A-1) 95 to 0% by mass, For 100 parts by mass of the aromatic polycarbonate resin mixture (A) having a polyorganosiloxane unit content of 1% by mass or more, 0.002 to 0.200 parts by mass of the phosphorus-based antioxidant (B), epoxidation stability Agent (C) is a polycarbonate resin composition containing 0 to 0.200 parts by mass, and the decrease rate P of the viscosity average molecular weight of the polycarbonate resin composition calculated from the following calculation formula (I) is 20% or less Polycarbonate resin composition.
Calculation formula (I): P [%] = (M 1 −M 2 ) / M 1 × 100
(In the above formula (I), M 1 is the viscosity average molecular weight of the resin composition measured after making the polycarbonate resin composition into pellets, and M 2 is a pressure cooker in which the pellets are set at 121 ° C. It represents the viscosity average molecular weight of the resin composition after the pressure cooker test, measured after being put into a testing machine for 300 hours, and P is the viscosity average molecular weight of the resin composition before the pressure cooker test. It represents the rate of decrease in viscosity average molecular weight of the resin composition after the test.)
[2] The polycarbonate resin composition according to the above [1], wherein the resin composition after the pressure cooker test represented by M 2 in the calculation formula (I) has a viscosity average molecular weight of 16000 or more.
[3] The polycarbonate resin composition according to [1] or [2] above, wherein the phosphorus antioxidant (B) is a phosphite antioxidant or a phosphine antioxidant.
[4] When the phosphorus-based antioxidant (B) is a phosphite-based antioxidant and the resin composition does not substantially contain the (C) component, the content of the (B) component is (A) The polycarbonate resin composition according to any one of [1] to [3], which is 0.002 to 0.020 parts by mass with respect to 100 parts by mass of the component.
[5] When the phosphorus-based antioxidant (B) is a phosphine-based antioxidant, the resin composition does not substantially contain the component (C), and is any one of the above [1] to [3]. Polycarbonate resin composition.
[6] The epoxidation stabilizer (C) is 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate and / or 2,2-bis (hydroxymethyl) -1-butanol. The polycarbonate resin composition according to any one of [1] to [3] above, which is a 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct.
[7] The polycarbonate resin composition according to any one of [1] to [3], wherein the epoxidized stabilizer (C) is an epoxidized natural oil or an epoxidized synthetic oil having an oxirane oxygen concentration of 4% or more. .
[8] A molded product comprising the polycarbonate resin composition according to any one of [1] to [7].
[9] The molded product according to [8], wherein the molded product is a product or a part that is washed with warm water of 90 ° C. or higher and / or steam of 100 ° C. or higher.
[10] The molded product according to [8] or [9], wherein the molded product is a product or a part used in an environment having a temperature of 60 ° C. or higher and a relative humidity of 90% or higher.

本発明のポリカーボネート樹脂組成物は、射出成形機内で滞留しても変色等が生じ難い加工安定性に優れ、成形加工された成形体は、高温、高湿環境下で繰り返し使用されても、ポリカーボネート樹脂成形体の加水分解による分子量低下を抑制し、低温での耐衝撃性を長期間にわたり維持できる。   The polycarbonate resin composition of the present invention is excellent in processing stability in which discoloration or the like hardly occurs even if it stays in an injection molding machine, and a molded product that has been molded can be used even if it is repeatedly used in a high temperature and high humidity environment. It is possible to suppress a decrease in molecular weight due to hydrolysis of the resin molded product and maintain impact resistance at low temperatures over a long period of time.

〔ポリカーボネート樹脂組成物〕
本発明のポリカーボネート樹脂組成物(以下、単に「樹脂組成物」ともいう)は、芳香族ポリカーボネート−ポリオルガノシロキサン共重合体(A−1)(以下、「PC−POS共重合体(A−1)」ともいう)と、(A−1)成分以外の芳香族ポリカーボネート樹脂(A−2)(以下、「他のPC樹脂(A−2)」ともいう)とからなる芳香族ポリカーボネート樹脂混合物(A)100質量部に対して、特定のリン系酸化防止剤(B)と特定のエポキシ化安定剤とを、特定の質量部量を添加してなる、ポリカーボネート樹脂組成物である。本発明の樹脂組成物には、以下の特徴を有するものである。
[Polycarbonate resin composition]
The polycarbonate resin composition of the present invention (hereinafter also simply referred to as “resin composition”) is an aromatic polycarbonate-polyorganosiloxane copolymer (A-1) (hereinafter referred to as “PC-POS copolymer (A-1)”. ) ") And an aromatic polycarbonate resin mixture (A-2) other than the component (A-1) (hereinafter also referred to as" other PC resin (A-2) ") ( A) A polycarbonate resin composition obtained by adding a specific part by mass of a specific phosphorus-based antioxidant (B) and a specific epoxidation stabilizer to 100 parts by mass. The resin composition of the present invention has the following characteristics.

すなわち、本発明の樹脂組成物は、下記計算式(I)から算出される、ポリカーボネート樹脂組成物の粘度平均分子量の低下率Pが20%以下、好ましくは18%以下、より好ましくは16%以下となるようなポリカーボネート樹脂組成物である。   That is, in the resin composition of the present invention, the rate of decrease P of the viscosity average molecular weight of the polycarbonate resin composition calculated from the following calculation formula (I) is 20% or less, preferably 18% or less, more preferably 16% or less. This is a polycarbonate resin composition.

計算式(I):P〔%〕=(M−M)/M×100
(上記式(I)中、Mは、前記ポリカーボネート樹脂組成物をペレットとした後に測定した該樹脂組成物の粘度平均分子量であり、Mは、該ペレットを、121℃に設定したプレッシャークッカー試験機に投入して300時間処理した後に測定した、プレッシャークッカー試験後の該樹脂組成物の粘度平均分子量を表す。Pは、前記プレッシャークッカー試験前の該樹脂組成物の粘度平均分子量に対する、該試験後の該樹脂組成物の粘度平均分子量の低下率を表す。)
なお、本発明において、上記のペレットとは、押出機等を用いて、本発明の樹脂組成物を、溶融及び/又は混練した後に、平均代表長さ0.1〜20mm程度の大きさに粒状に加工したものである。
Calculation formula (I): P [%] = (M 1 −M 2 ) / M 1 × 100
(In the above formula (I), M 1 is the viscosity average molecular weight of the resin composition measured after making the polycarbonate resin composition into pellets, and M 2 is a pressure cooker in which the pellets are set at 121 ° C. It represents the viscosity average molecular weight of the resin composition after the pressure cooker test, measured after being put into a testing machine for 300 hours, and P is the viscosity average molecular weight of the resin composition before the pressure cooker test. It represents the rate of decrease in viscosity average molecular weight of the resin composition after the test.)
In the present invention, the above-mentioned pellets are granular to an average representative length of about 0.1 to 20 mm after melting and / or kneading the resin composition of the present invention using an extruder or the like. Is processed.

上記計算式のPの値は、本発明の樹脂組成物を混練してペレットとし(更に成形品とし)、そのペレット又は成形品を121℃、300時間のプレッシャークッカー試験を行った後の加水分解による粘度平均分子量の低下率を表している。
この様な樹脂組成物を成形加工して得られる成形体は、スチーム洗浄や温水洗浄等の高温、高湿環境化で繰り返し使っても、加水分解による分子量低下が小さいため、低温衝撃性能の低下も少なく、安全性の高い成形体が得られる。このため、樹脂組成物の仕込み分子量を小さく出来、成形体に加工しやすい流動性が得られる。
The value of P in the above formula is the hydrolysis after the resin composition of the present invention is kneaded into pellets (further molded products) and the pellets or molded products are subjected to a pressure cooker test at 121 ° C. for 300 hours. It represents the rate of decrease in viscosity average molecular weight due to.
Molded products obtained by molding such a resin composition have a low molecular weight drop due to hydrolysis, even when used repeatedly in high temperature and high humidity environments such as steam cleaning and hot water cleaning. Therefore, a highly safe molded product can be obtained. For this reason, the charged molecular weight of the resin composition can be reduced, and fluidity that can be easily processed into a molded body can be obtained.

一方、粘度平均分子量の低下率Pが20%を超えるような樹脂組成物を使って成形加工した成形体は、スチーム洗浄や温水洗浄等を繰り返していくと、分子量が加速的に低下してしまう。分子量低下に伴う低温衝撃性能の低下を補うためには、初期の分子量を余程大きくする必要があるが、分子量を大きくしていくと、成形加工性が低下して、大きな成形体の加工は困難となり易い。また、分子量が低下してくると、引張り特性、曲げ特性、クリープ特性等の機械物性も低下するので、段積み等の静的荷重に対しても、強度不足になり易い。また、分子量低下は、成形体の白化や添加剤のブリード等を引き起こし易くなるため、外観が悪化する。   On the other hand, when a molded product molded using a resin composition having a viscosity-average molecular weight reduction rate P of more than 20% is used, the molecular weight is accelerated when steam cleaning or hot water cleaning is repeated. . In order to compensate for the low-temperature impact performance drop caused by the molecular weight reduction, it is necessary to increase the initial molecular weight too much. However, as the molecular weight is increased, molding processability decreases, It tends to be difficult. Further, when the molecular weight is lowered, mechanical properties such as tensile properties, bending properties, and creep properties are also lowered, so that the strength tends to be insufficient even for static loads such as stacking. Further, the decrease in molecular weight tends to cause whitening of the molded product, bleeding of the additive, and the like, so that the appearance is deteriorated.

また、上記計算式(I)中のMで表される、上記プレッシャークッカー試験後の樹脂組成物(ペレット)の粘度平均分子量は、好ましくは16000以上、より好ましくは17000以上、更に好ましくは18000以上である。当該粘度平均分子量が16000以上であれば、スチーム洗浄等を行う冷凍倉庫用の物流用品や容器等の材料として適用できる。なお、上記プレッシャークッカー試験後の粘度平均分子量が18000以上となるような樹脂組成物であれば、これを加工して得た成形体は、過酷な衝撃であっても脆性的に破壊することはほぼ無くなる。例えば、この樹脂組成物を使って、実施例で示すような2mm厚みの試験板を20枚成形し、121℃、300時間でのプレッシャークッカー試験に掛けた後、−30℃の自動落錘衝撃試験を行っても全て延性破壊となる。
なお、当該粘度平均分子量の上限値としては、特に制限はないが、通常80000以下、好ましくは60000以下である。
Moreover, the viscosity average molecular weight of the resin composition (pellet) after the pressure cooker test represented by M 2 in the calculation formula (I) is preferably 16000 or more, more preferably 17000 or more, and further preferably 18000. That's it. If the said viscosity average molecular weight is 16000 or more, it can apply as materials, such as a distribution goods for a frozen warehouse which performs a steam washing | cleaning, a container. Note that if the resin composition has a viscosity average molecular weight of 18000 or more after the pressure cooker test, a molded product obtained by processing the resin composition may be brittlely broken even under severe impact. Almost disappear. For example, using this resin composition, 20 test plates having a thickness of 2 mm as shown in the examples were molded, subjected to a pressure cooker test at 121 ° C. for 300 hours, and then subjected to an automatic falling weight impact at −30 ° C. Even if it tests, it becomes all ductile fracture.
In addition, although there is no restriction | limiting in particular as an upper limit of the said viscosity average molecular weight, Usually, it is 80000 or less, Preferably it is 60000 or less.

上記のような耐加水分解性能と低温衝撃性を両立した樹脂組成物は以下の構成によって達成される。   The resin composition having both hydrolysis resistance and low-temperature impact properties as described above is achieved by the following constitution.

<芳香族ポリカーボネート樹脂混合物(A)>
樹脂組成物は、PC−POS共重合体(A−1)及び他のPC樹脂(A−2)よりなる樹脂混合物(A)を含む。
PC−POS共重合体(A−1)の含有量は、(A)成分の総量に対して、好ましくは5〜100質量%、より好ましくは20〜95質量%、更に好ましくは50〜90質量%である。
一方、PC樹脂(A−2)の含有量は、(A)成分の総量に対して、好ましくは0〜95質量%、より好ましくは5〜80質量%、更に好ましくは10〜50質量%である。
また、(A)成分の総量中のポリオルガノシロキサン単位の含有量は1質量%以上であり、好ましくは1.5〜30質量%の範囲、より好ましくは2〜20質量%の範囲、更に好ましくは3〜15質量%の範囲である。ポリオルガノシロキサン単位の含有量が1質量%未満であると、低温環境下での耐衝撃性能が、例えば、−30℃以下の雰囲気になるような冷凍倉庫等で使われる物流用品や容器類の材料として要求される低温衝撃性能の水準まで上がらない。
<Aromatic polycarbonate resin mixture (A)>
A resin composition contains the resin mixture (A) which consists of a PC-POS copolymer (A-1) and another PC resin (A-2).
The content of the PC-POS copolymer (A-1) is preferably 5 to 100% by mass, more preferably 20 to 95% by mass, and still more preferably 50 to 90% by mass with respect to the total amount of the component (A). %.
On the other hand, the content of the PC resin (A-2) is preferably 0 to 95% by mass, more preferably 5 to 80% by mass, and still more preferably 10 to 50% by mass with respect to the total amount of the component (A). is there.
Further, the content of the polyorganosiloxane unit in the total amount of the component (A) is 1% by mass or more, preferably in the range of 1.5 to 30% by mass, more preferably in the range of 2 to 20% by mass, and still more preferably. Is in the range of 3-15% by mass. When the content of the polyorganosiloxane unit is less than 1% by mass, the impact resistance performance under a low temperature environment is, for example, that of logistics goods and containers used in a freezing warehouse or the like in an atmosphere of −30 ° C. or lower. It does not increase to the level of low temperature impact performance required as a material.

本樹脂組成物を製造する時に仕込む際の分子量は、(A)成分の総量中のポリオルガノシロキサン単位の含有量が1質量%以上で、前記プレッシャークッカー試験後の粘度平均分子量の低下率が20%以下となる組成物であれば、樹脂組成物としての仕込みの分子量は特に制限されないが、通常80000以下、好ましくは60000以下である。
以下、(A−1)成分及び(A−2)成分について詳述する。
The molecular weight when the resin composition is prepared is such that the content of the polyorganosiloxane unit in the total amount of the component (A) is 1% by mass or more, and the rate of decrease in the viscosity average molecular weight after the pressure cooker test is 20%. The molecular weight of the charge as the resin composition is not particularly limited as long as it is a composition that is not more than%, but is usually 80,000 or less, preferably 60000 or less.
Hereinafter, the component (A-1) and the component (A-2) will be described in detail.

(PC−POS共重合体(A−1))
本発明の樹脂組成物中に含まれるPC−POS共重合体(A−1)としては、下記一般式(I)で表される構成単位からなるポリカーボネート部(PC部)と、下記一般式(II)で表される構成単位からなるポリオルガノシロキサン部(POS部)とを含む共重合体が好ましい。
(PC-POS copolymer (A-1))
As the PC-POS copolymer (A-1) contained in the resin composition of the present invention, a polycarbonate part (PC part) composed of a structural unit represented by the following general formula (I), and the following general formula ( The copolymer containing the polyorganosiloxane part (POS part) which consists of a structural unit represented by II) is preferable.

上記一般式(I)中、R及びRは、それぞれ独立に、ハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のアルコキシ基を示す。Xは単結合、炭素数1〜8のアルキレン基、炭素数2〜8のアルキリデン基、炭素数5〜15のシクロアルキレン基、炭素数5〜15のシクロアルキリデン基、−S−、−SO−、−SO−、−O−又は−CO−を示す。a及びbは、それぞれ独立に、0〜4の整数を示す。
また、上記一般式(II)中、R〜Rは、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を示す。Yは、脂肪族又は芳香族を含む有機残基を示す。nは平均繰り返し数であって、20〜1000の数を示す。
In the general formula (I), R 1 and R 2 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO- , -SO 2 -, - indicating O- or -CO- a. a and b each independently represent an integer of 0 to 4.
Moreover, in said general formula (II), R < 3 > -R < 6 > is respectively independently a hydrogen atom, a halogen atom, a C1-C6 alkyl group, a C1-C6 alkoxy group, or C6-C12. An aryl group of Y represents an organic residue containing an aliphatic group or an aromatic group. n is the average number of repetitions and represents a number of 20 to 1000.

一般式(I)中、R及びRがそれぞれ独立して示すアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下、同様である。)、各種ペンチル基、各種ヘキシル基等が挙げられる。
及びRがそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である基等が挙げられる。
Xが示すアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1〜5のアルキレン基が好ましい。
Xが示すアルキリデン基としては、例えば、エチリデン基、イソプロピリデン基等が挙げられる。
Xが示すシクロアルキレン基としては、例えば、シクロペンタンジイル基、シクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5〜10のシクロアルキレン基が好ましい。
Xが示すシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5−トリメチルシクロヘキシリデン基、2−アダマンチリデン基等が挙げられ、炭素数5〜10のシクロアルキリデン基が好ましく、炭素数5〜8のシクロアルキリデン基がより好ましい。
a及びbは、それぞれ独立に0〜4の整数を示すが、好ましくは0〜2、より好ましくは0又は1である。
In general formula (I), examples of the alkyl group independently represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various butyl groups (“various” means And the like, and the same applies hereinafter), various pentyl groups, various hexyl groups, and the like.
Examples of the alkoxy group independently represented by R 1 and R 2 include groups in which the alkyl group moiety is the alkyl group.
Examples of the alkylene group represented by X include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a hexamethylene group, and an alkylene group having 1 to 5 carbon atoms is preferable.
Examples of the alkylidene group represented by X include an ethylidene group and an isopropylidene group.
Examples of the cycloalkylene group represented by X include a cyclopentanediyl group, a cyclohexanediyl group, and a cyclooctanediyl group, and a cycloalkylene group having 5 to 10 carbon atoms is preferable.
Examples of the cycloalkylidene group represented by X include a cyclohexylidene group, a 3,5,5-trimethylcyclohexylidene group, a 2-adamantylidene group, and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is preferable. A cycloalkylidene group having 5 to 8 carbon atoms is more preferable.
a and b each independently represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1.

一般式(II)中、R〜Rがそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
〜Rがそれぞれ独立して示すアルキル基、アルコキシ基としては、R及びRの場合と同じものが挙げられる。
〜Rがそれぞれ独立して示すアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。
Yが示す脂肪族を含む有機残基としては、例えば、炭素数1〜10(好ましくは炭素数1〜6、より好ましくは炭素数1〜3)のアルキレン基等が挙げられる。
Yが示す芳香族を含む有機残基としては、例えば、フェニレン基、ナフチレン基、ビフェニルジイル基等の環形成炭素数6〜12のアリーレン基等が挙げられる。
In general formula (II), examples of the halogen atom independently represented by R 3 to R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkyl group and alkoxy group independently represented by R 3 to R 6 include the same groups as those for R 1 and R 2 .
As an aryl group which R < 3 > -R < 6 > shows each independently, a phenyl group, a naphthyl group, etc. are mentioned, for example.
As an organic residue containing the aliphatic which Y shows, a C1-C10 (preferably C1-C6, more preferably C1-C3) alkylene group etc. are mentioned, for example.
Examples of the organic residue containing an aromatic group represented by Y include arylene groups having 6 to 12 ring carbon atoms such as a phenylene group, a naphthylene group, and a biphenyldiyl group.

上記一般式(II)におけるPOS部の平均繰り返し数nは、20〜1000であるが、好ましくは30〜600、より好ましくは35〜250、更に好ましくは40〜150である。nが20以上であれば、低温での耐衝撃性を十分に向上させることができる。また、1000以下であれば、POSの取扱性について問題なく、PC−POS共重合体の製造上の観点から好ましい。なお、この平均繰り返し数nの値は、核磁気共鳴(NMR)測定により算出された値である。   The average repeating number n of the POS part in the general formula (II) is 20 to 1000, preferably 30 to 600, more preferably 35 to 250, and still more preferably 40 to 150. If n is 20 or more, impact resistance at low temperatures can be sufficiently improved. Moreover, if it is 1000 or less, there is no problem about the handleability of POS and it is preferable from a viewpoint on manufacture of a PC-POS copolymer. In addition, the value of this average repetition number n is a value calculated by nuclear magnetic resonance (NMR) measurement.

上記一般式(I)で表される構成単位(PC部)の含有量は、PC−POS共重合体(A−1)中、好ましくは70〜98質量%、より好ましくは85〜97.5質量%、更に好ましくは90〜97質量%である。
一方、上記一般式(II)で表される構成単位(POS部)の含有量は、PC−POS共重合体(A−1)中、好ましくは1〜30質量%、より好ましくは2〜20質量%、更に好ましくは3〜15質量%である。1質量%以上であれば耐衝撃強さ向上の効果が十分であり、一方、30質量%以下であれば十分な耐熱性を有する。
なお、PC−POS共重合体中の構成単位の含有量は、核磁気共鳴(NMR)測定により算出された値である。
The content of the structural unit (PC part) represented by the general formula (I) is preferably 70 to 98% by mass, more preferably 85 to 97.5 in the PC-POS copolymer (A-1). It is 90 mass%, More preferably, it is 90-97 mass%.
On the other hand, the content of the structural unit (POS part) represented by the general formula (II) is preferably 1 to 30% by mass, more preferably 2 to 20 in the PC-POS copolymer (A-1). % By mass, more preferably 3 to 15% by mass. If it is 1% by mass or more, the effect of improving impact strength is sufficient, while if it is 30% by mass or less, sufficient heat resistance is obtained.
The content of the structural unit in the PC-POS copolymer is a value calculated by nuclear magnetic resonance (NMR) measurement.

PC−POS共重合体(A−1)の粘度平均分子量としては、成形品の強度及び生産性とのバランスの観点から、好ましくは12000〜70000であり、より好ましくは14000〜50000であり、更に好ましくは16000〜30000である。   The viscosity average molecular weight of the PC-POS copolymer (A-1) is preferably 12000 to 70000, more preferably 14000 to 50000, from the viewpoint of the balance between the strength of the molded product and the productivity. Preferably it is 16000-30000.

上記一般式(I)及び(II)で表される構成単位を有するPC−POS共重合体の製造方法としては、下記一般式(1)で表される二価フェノールと、下記一般式(2)で表されるポリオルガノシロキサンと、ホスゲン、炭酸エステル、又はクロロホーメートとを共重合させて得ることが好ましい。   As a manufacturing method of the PC-POS copolymer having the structural units represented by the above general formulas (I) and (II), a dihydric phenol represented by the following general formula (1) and the following general formula (2) It is preferable to obtain by copolymerizing a polyorganosiloxane represented by) and phosgene, carbonate, or chloroformate.

ここで、一般式(1)中、R及びR、X、a及びbは、上記一般式(I)と同じであり、一般式(2)中、R〜R、Y、nは、上記一般式(II)と同じであり、mは0又は1を示し、Zはハロゲン、−ROH、−RCOOH、−RNH、−COOH又は−SHを示し、Rは直鎖、分岐鎖もしくは環状アルキレン基、アリール置換アルキレン基、環上にアルコキシ基を有してもよいアリール置換アルキレン基、アリーレン基を示す。 Here, in the general formula (1), R 1 and R 2, X, a and b are the same as the above general formula (I), the general formula (2), R 3 ~R 6 , Y, n Is the same as in the general formula (II), m represents 0 or 1, Z represents halogen, —R 7 OH, —R 7 COOH, —R 7 NH 2 , —COOH or —SH; 7 represents a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, an aryl-substituted alkylene group which may have an alkoxy group on the ring, or an arylene group.

上記一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2−ビス(4−ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好ましい。二価フェノールとしてビスフェノールAを用いた場合、一般式(I)において、Xがイソプロピリデン基であり、且つa=b=0のPC−POS共重合体となる。
ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)ナフチルメタン、1,1−ビス(4−ヒドロキシ−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−テトラメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−クロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,5,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ノルボルナン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’−ジヒドロキシフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’−ジヒロキシジフェニル等のジヒドロキシジフェニル類、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,3−ビス(4−ヒドロキシフェニル)アダマンタン、2,2−ビス(4−ヒドロキシフェニル)アダマンタン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスフェノール、10,10−ビス(4−ヒドロキシフェニル)−9−アントロン、1,5−ビス(4−ヒドロキシフェニルチオ)−2,3−ジオキサペンタエン等が挙げられる。
これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
The dihydric phenol represented by the general formula (1) is not particularly limited, but 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable. When bisphenol A is used as the dihydric phenol, in the general formula (I), X is an isopropylidene group and a PC-POS copolymer having a = b = 0 is obtained.
Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-tetramethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophene) Bis (hydroxyaryl) alkanes such as propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2, Bis (hydroxyaryl) cycloalkanes such as 2-bis (4-hydroxyphenyl) norbornane and 1,1-bis (4-hydroxyphenyl) cyclododecane, 4,4′-dihydroxyphenyl ether, 4,4′-dihydroxy Dihydroxy aryl ethers such as 3,3′-dimethylphenyl ether, 4,4′-di Droxydiphenyl sulfide, dihydroxydiaryl sulfides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-dimethyldiphenyl Dihydroxy diaryl sulfoxides such as sulfoxide, 4,4'-dihydroxydiphenyl sulfone, dihydroxy diaryl sulfones such as 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, dihydroxy such as 4,4'-dihydroxydiphenyl Dihydroxy diarylfluorenes such as diphenyls, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, bis (4-hydroxyphenyl) diphenylme Dihydroxydiaryl such as 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane Adamantanes, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5-bis (4-hydroxyphenyl) Thio) -2,3-dioxapentaene and the like.
These dihydric phenols may be used alone or in admixture of two or more.

一般式(2)で表されるポリオルガノシロキサンは、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、アリルフェノール、オイゲノール、イソプロペニルフェノール等を所定の平均繰り返し数nを有するポリオルガノシロキサン鎖の末端に、ハイドロシラネーション反応させることにより容易に製造することができる。上記フェノール類としては、アリルフェノール又はオイゲノールであることがより好ましい。この場合、一般式(II)におけるYがアリルフェノール又はオイゲノール由来の有機残基となる。   The polyorganosiloxane represented by the general formula (2) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, allylphenol, eugenol, isopropenylphenol, or the like having a predetermined average repeat number n. It can be easily produced by subjecting the end of a polyorganosiloxane chain having a hydrosilation reaction. The phenols are more preferably allylphenol or eugenol. In this case, Y in the general formula (II) is an organic residue derived from allylphenol or eugenol.

一般式(2)で表されるポリオルガノシロキサンとしては、例えば、以下の一般式(3)〜(11)の化合物が挙げられる。   Examples of the polyorganosiloxane represented by the general formula (2) include compounds represented by the following general formulas (3) to (11).

上記一般式(3)〜(11)中、R〜Rは一般式(II)と同様に、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基もしくは炭素数6〜12のアリール基を示し、nはオルガノシロキサン構成単位の平均繰り返し数であって20〜1000の数を示す。また、Rはアルキル、アルケニル、アリール又はアラルキル基を示し、cは正の整数を示し、通常2〜6の整数である。
これらの中でも、重合の容易さの観点においては、一般式(3)に示すフェノール変性ポリオルガノシロキサンが好ましい。また、入手の容易さの観点においては、一般式(4)に示す化合物中の一種であるα,ω−ビス[3−(o−ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、一般式(5)に示す化合物中の一種であるα,ω−ビス[3−(4−ヒドロキシ−3−メトキシフェニル)プロピル]ポリジメチルシロキサンが好ましい。
In the general formulas (3) to (11), R 3 to R 6 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms, 6 represents an alkoxy group having 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and n represents an average number of repeating units of the organosiloxane constituent unit and represents a number of 20 to 1000. R 8 represents an alkyl, alkenyl, aryl or aralkyl group, c represents a positive integer, and is usually an integer of 2 to 6.
Among these, from the viewpoint of ease of polymerization, a phenol-modified polyorganosiloxane represented by the general formula (3) is preferable. In terms of availability, α, ω-bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane, which is a kind of the compound represented by the general formula (4), is represented by the general formula (5). Α, ω-bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane, which is one of the compounds shown, is preferred.

上記フェノール変性ポリオルガノシロキサンは、公知の方法により製造することができる。製造法としては、例えば、以下に示す方法が挙げられる。
まず、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させ、α,ω−ジハイドロジェンオルガノポリシロキサンを合成する。このとき、シクロトリシロキサンとジシロキサンとの仕込み比を変えることで所望の平均繰り返し単位を持つα,ω−ジハイドロジェンオルガノポリシロキサンを合成することができる。次いで、ヒドロシリル化反応用触媒の存在下に、このα,ω−ジハイドロジェンオルガノポリシロキサンにアリルフェノールやオイゲノール等の不飽和脂肪族炭化水素基を有するフェノール化合物を付加反応させることで、所望の平均繰り返し単位を有するフェノール変性ポリオルガノシロキサンを製造することができる。
また、この段階では、低分子量の環状ポリオルガノシロキサンや過剰量の上記フェノール化合物が不純物として残存するために、減圧下で加熱し、これらの低分子化合物を留去することが好ましい。
The phenol-modified polyorganosiloxane can be produced by a known method. As a manufacturing method, the method shown below is mentioned, for example.
First, cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize α, ω-dihydrogenorganopolysiloxane. At this time, α, ω-dihydrogenorganopolysiloxane having a desired average repeating unit can be synthesized by changing the charging ratio of cyclotrisiloxane and disiloxane. Next, in the presence of a hydrosilylation reaction catalyst, the α, ω-dihydrogenorganopolysiloxane is subjected to an addition reaction with a phenol compound having an unsaturated aliphatic hydrocarbon group such as allylphenol or eugenol. A phenol-modified polyorganosiloxane having an average repeating unit can be produced.
Further, at this stage, since low molecular weight cyclic polyorganosiloxane and an excessive amount of the phenol compound remain as impurities, it is preferable to distill off these low molecular compounds by heating under reduced pressure.

(他のPC樹脂(A−2))
樹脂混合物(A)中には、(A−1)成分以外の芳香族ポリカーボネートである、他のPC樹脂(A−2)を含有してもよい。
他のPC樹脂(A−2)としては、反応に不活性な有機溶媒及びアルカリ水溶液の存在下、二価フェノール系化合物及びホスゲンと反応させた後、第三級アミンもしくは第四級アンモニウム塩等の重合触媒を添加して重合させる界面重合法や、二価フェノール系化合物をピリジン又はピリジンと不活性溶媒の混合溶液に溶解し、ホスゲンを導入し直接製造するピリジン法等、従来の芳香族ポリカーボネートの製造法により得られるものが使用できる。
(Other PC resin (A-2))
The resin mixture (A) may contain another PC resin (A-2) which is an aromatic polycarbonate other than the component (A-1).
Other PC resins (A-2) include tertiary amines or quaternary ammonium salts after reacting with a dihydric phenol compound and phosgene in the presence of an organic solvent inert to the reaction and an aqueous alkali solution. Conventional aromatic polycarbonate, such as interfacial polymerization method in which polymerization catalyst is added and polymerized, or pyridine method in which dihydric phenol compound is dissolved in pyridine or a mixed solution of pyridine and inert solvent and phosgene is introduced directly Those obtained by the production method can be used.

(A−2)成分の芳香族ポリカーボネートの製造に使用される二価フェノール系化合物としては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)ナフチルメタン、1,1−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−クロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,5,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ノルボルナン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’−ジヒドロキシフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’−ジヒロキシジフェニル等のジヒドロキシジフェニル類、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,3−ビス(4−ヒドロキシフェニル)アダマンタン、2,2−ビス(4−ヒドロキシフェニル)アダマンタン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスフェノール、10,10−ビス(4−ヒドロキシフェニル)−9−アントロン、1,5−ビス(4−ヒドロキシフェニルチオ)−2,3−ジオキサペンタエン等が挙げられる。これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。   Examples of the dihydric phenol compound used in the production of the component (A-2) aromatic polycarbonate include 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A], bis (4-hydroxy). Phenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) Phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-3) -T-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propa 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2-bis (4-hydroxy-3,5) -Dichlorophenyl) propane, bis (hydroxyaryl) alkanes such as 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1 -Bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 1,1-bis ( Bis (hydroxyaryl) cycloalkanes such as 4-hydroxyphenyl) cyclododecane, 4,4′-dihydroxyphenol Ethers, dihydroxyaryl ethers such as 4,4′-dihydroxy-3,3′-dimethylphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide, etc. Dihydroxydiaryl sulfoxides, 4,4′-dihydroxydiphenyl sulfoxide, dihydroxydiaryl sulfoxides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfone, 4,4′- Dihydroxy diaryl sulfones such as dihydroxy-3,3′-dimethyldiphenyl sulfone, dihydroxy diphenyls such as 4,4′-dihydroxydiphenyl, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bi Dihydroxydiarylfluorenes such as (4-hydroxy-3-methylphenyl) fluorene, bis (4-hydroxyphenyl) diphenylmethane, 1,3-bis (4-hydroxyphenyl) adamantane, 2,2-bis (4-hydroxyphenyl) ) Adamantane, dihydroxydiaryladamantanes such as 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol, 10 , 10-bis (4-hydroxyphenyl) -9-anthrone, 1,5-bis (4-hydroxyphenylthio) -2,3-dioxapentaene and the like. These dihydric phenols may be used alone or in admixture of two or more.

(A−2)成分の芳香族ポリカーボネートの製造にあたっては、必要に応じて、分子量調節剤、末端停止剤等を用いてもよい。これらは、通常、ポリカーボネート樹脂の重合に用いられるものであれば、各種のものを用いることができる。
具体的な分子量調節剤としては、一価フェノールとして、例えば、フェノール、o−n−ブチルフェノール、m−n−ブチルフェノール、p−n−ブチルフェノール、o−イソブチルフェノール、m−イソブチルフェノール、p−イソブチルフェノール、o−t−ブチルフェノール、m−t−ブチルフェノール、p−t−ブチルフェノール、o−n−ペンチルフェノール、m−n−ペンチルフェノール、p−n−ペンチルフェノール、o−n−ヘキシルフェノール、m−n−ヘキシルフェノール、p−n−ヘキシルフェノール、p−t−オクチルフェノール、o−シクロヘキシルフェノール、m−シクロヘキシルフェノール、p−シクロヘキシルフェノール、o−フェニルフェノール、m−フェニルフェノール、p−フェニルフェノール、o−n−ノニルフェノール、m−ノニルフェノール、p−n−ノニルフェノール、o−クミルフェノール、m−クミルフェノール、p−クミルフェノール、o−ナフチルフェノール、m−ナフチルフェノール、p−ナフチルフェノール、2,5−ジ−t−ブチルフェノール、2,4−ジ−t−ブチルフェノール、3,5−ジ−t−ブチルフェノール、2,5−ジクミルフェノール、3,5−ジクミルフェノール、p−クレゾール、ブロモフェノール、トリブロモフェノール、平均炭素数12〜35の直鎖状又は分岐状のアルキル基をオルト位、メタ位又はパラ位に有するモノアルキルフェノール、9−(4−ヒドロキシフェニル)−9−(4−メトキシフェニル)フルオレン、9−(4−ヒドロキシ−3−メチルフェニル)−9−(4−メトキシ−3−メチルフェニル)フルオレン、4−(1−アダマンチル)フェノール等が挙げられる。
これらの一価フェノールの中では、p−t−ブチルフェノール、p−クミルフェノール、p−フェニルフェノール等が好ましい。また、これらの化合物は、単独で又は二種以上の化合物を併用して用いることができる。
In producing the aromatic polycarbonate as the component (A-2), a molecular weight regulator, a terminal terminator, and the like may be used as necessary. Any of these can be used as long as they are usually used for polymerization of polycarbonate resin.
Specific molecular weight regulators include, for example, monohydric phenols such as phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, and p-isobutylphenol. , Ot-butylphenol, mt-butylphenol, pt-butylphenol, on-pentylphenol, mn-pentylphenol, pn-pentylphenol, on-hexylphenol, mn -Hexylphenol, pn-hexylphenol, pt-octylphenol, o-cyclohexylphenol, m-cyclohexylphenol, p-cyclohexylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, o n-nonylphenol, m-nonylphenol, pn-nonylphenol, o-cumylphenol, m-cumylphenol, p-cumylphenol, o-naphthylphenol, m-naphthylphenol, p-naphthylphenol, 2,5 -Di-t-butylphenol, 2,4-di-t-butylphenol, 3,5-di-t-butylphenol, 2,5-dicumylphenol, 3,5-dicumylphenol, p-cresol, bromophenol, Tribromophenol, monoalkylphenol having a linear or branched alkyl group having an average carbon number of 12 to 35 in the ortho, meta or para position, 9- (4-hydroxyphenyl) -9- (4-methoxyphenyl) ) Fluorene, 9- (4-hydroxy-3-methylphenyl) -9- (4-methoxy 3-methylphenyl) fluorene, 4- (1-adamantyl) phenol, and the like.
Among these monohydric phenols, pt-butylphenol, p-cumylphenol, p-phenylphenol and the like are preferable. Moreover, these compounds can be used individually or in combination of 2 or more types.

末端停止剤としては、一価のカルボン酸とその誘導体や、一価のフェノールを用いることができる。そのような末端停止剤としては、例えば、p−tert−ブチル−フェノール、p−フェニルフェノール、p−クミルフェノール、p−パーフルオロノニルフェノール、p−(パーフルオロノニルフェニル)フェノール、p−(パーフルオロキシルフェニル)フェノール、p−tert−パーフルオロブチルフェノール、1−(P−ヒドロキシベンジル)パーフルオロデカン、p−〔2−(1H,1H−パーフルオロトリドデシルオキシ)−1,1,1,3,3,3−ヘキサフルオロプロピル〕フェノール、3,5−ビス(パーフルオロヘキシルオキシカルボニル)フェノール、p−ヒドロキシ安息香酸パーフルオロドデシル、p−(1H,1H−パーフルオロオクチルオキシ)フェノール、2H,2H,9H−パーフルオロノナン酸、1,1,1,3,3,3−テトラフロロ−2−プロパノール等が挙げられる。   As the terminal terminator, monovalent carboxylic acid and derivatives thereof, or monovalent phenol can be used. Examples of such a terminal terminator include p-tert-butyl-phenol, p-phenylphenol, p-cumylphenol, p-perfluorononylphenol, p- (perfluorononylphenyl) phenol, p- (perfluorocarbon). Fluoroxylphenyl) phenol, p-tert-perfluorobutylphenol, 1- (P-hydroxybenzyl) perfluorodecane, p- [2- (1H, 1H-perfluorotridodecyloxy) -1,1,1,3 , 3,3-hexafluoropropyl] phenol, 3,5-bis (perfluorohexyloxycarbonyl) phenol, perfluorododecyl p-hydroxybenzoate, p- (1H, 1H-perfluorooctyloxy) phenol, 2H, 2H, 9H-perfluorononanoic acid, 1, , 1,3,3,3 Tetorafuroro-2-propanol.

更に、上記の二価フェノール系化合物に対して、分岐化剤を用いて、分岐化ポリカーボネートとすることもできる。この分岐化剤の添加量は、上記の二価フェノール系化合物に対して、好ましくは0.01〜3.0モル%、より好ましくは0.1〜2.0モル%である。
分岐化剤としては、例えば、1,1,1−トリス(4−ヒドロキシフェニル)エタン、4,4’−[1−[4−[1−(4−ヒドロキシフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α’’−トリス(4−ヒドロキシフェニル)−1,3,5−トリイソプロピルベンゼン、1−[α−メチル−α−(4’−ヒドロキシフェニル)エチル]−4−[α’,α’−ビス(4’’−ヒドロキシフェニル)エチル]ベンゼン、フロログリシン、トリメリト酸、イサチンビス(o−クレゾール)等の官能基を3つ以上有する化合物が挙げられる。
Furthermore, a branched polycarbonate can be obtained by using a branching agent for the above dihydric phenol compound. The addition amount of the branching agent is preferably 0.01 to 3.0 mol%, more preferably 0.1 to 2.0 mol%, based on the dihydric phenol compound.
Examples of the branching agent include 1,1,1-tris (4-hydroxyphenyl) ethane and 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl. ] Ethylidene] bisphenol, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [α-methyl-α- (4′-hydroxyphenyl) ethyl] Examples thereof include compounds having three or more functional groups such as -4- [α ′, α′-bis (4 ″ -hydroxyphenyl) ethyl] benzene, phloroglysin, trimellitic acid, and isatin bis (o-cresol).

他のPC樹脂(A−2)の粘度平均分子量としては、好ましくは15000〜80000、より好ましくは16000〜60000、更に好ましくは17000〜35000である。(A−2)成分として、種々の粘度平均分子量を有するPC樹脂を用いることで、得られる樹脂組成物の粘度平均分子量を所望の範囲に調整することができる。   As a viscosity average molecular weight of other PC resin (A-2), Preferably it is 15000-80000, More preferably, it is 16000-60000, More preferably, it is 17000-35000. (A-2) As a component, the viscosity average molecular weight of the resin composition obtained can be adjusted to a desired range by using PC resin which has various viscosity average molecular weights.

<リン系酸化防止剤(B)>
本発明の樹脂組成物は、リン系酸化防止剤(B)を含む。リン系酸化防止剤(B)を含むことで、成形加工時に樹脂組成物を高温で滞留しても、変色やシルバー発生等を抑制し得る、優れた加工安定性を樹脂組成物に付与することができる。
リン系酸化防止剤としては、高温で滞留しても変色等の発生を抑制し得る樹脂組成物を得る観点から、ホスファイト系酸化防止剤又はホスフィン系酸化防止剤が好ましい。
<Phosphorus antioxidant (B)>
The resin composition of the present invention contains a phosphorus-based antioxidant (B). By including the phosphorus-based antioxidant (B), even if the resin composition stays at a high temperature during the molding process, the resin composition is provided with excellent processing stability that can suppress discoloration, silver generation, and the like. Can do.
As the phosphorus-based antioxidant, a phosphite-based antioxidant or a phosphine-based antioxidant is preferable from the viewpoint of obtaining a resin composition that can suppress the occurrence of discoloration and the like even when staying at a high temperature.

ホスファイト系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリフェニルホスファイト、トリデシルホスファイト、トリオクタデシルホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト(BASF社製の商品名「Irgafos168」等)、ビス−(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジホスファイト(BASF社製の商品名「Irgafos126」、ADEKA社製の商品名「アデカスタブPEP−24G」等)、ビス−(2,4−ジ−t−ブチル−6−メチルフェニル)エチルホスファイト(BASF社製の商品名「Irgafos38」等)、ビス−(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジホスファイト(ADEKA社製の商品名「アデカスタブPEP−36」等)、ジステアリル−ペンタエリスリトール−ジホスファイト(ADEKA社製の商品名「アデカスタブPEP−8」、城北化学社製の商品名「JPP−2000」等)、[ビス(2,4−ジ−t−ブチル−5−メチルフェノキシ)ホスフィノ]ビフェニル(大崎工業株式会社製の商品名「GSY−P101」等)、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1,3,2]ジオキサフォスペピン(住友化学工業株式会社製の商品名「SumilizerGP」等)、N,N−bis[2−[[2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン−6−yl]oxy]−エチル]エタンアミン(BASF社製の商品名「Irgafos12」等)等が挙げられる。
他にも、下記式(12)〜(15)で表される化合物が挙げられる。
Examples of the phosphite antioxidant include trisnonylphenyl phosphite, triphenyl phosphite, tridecyl phosphite, trioctadecyl phosphite, tris (2,4-di-t-butylphenyl) phosphite (BASF) Trade name “Irgafos168”, etc.), bis- (2,4-di-t-butylphenyl) pentaerythritol diphosphite (trade name “Irgafos126” manufactured by BASF Corporation), trade name “ADEKA STAB PEP-24G manufactured by ADEKA Corporation” ), Bis- (2,4-di-t-butyl-6-methylphenyl) ethyl phosphite (trade name “Irgafos38” manufactured by BASF, etc.), bis- (2,6-di-t-butyl) -4-methylphenyl) pentaerythritol diphosphite (made by ADEKA) Trade name “Adeka Stub PEP-36”, etc.), distearyl-pentaerythritol-diphosphite (trade name “Adeka Stub PEP-8” manufactured by ADEKA, trade name “JPP-2000” manufactured by Johoku Chemical Co., Ltd.), etc. 2,4-di-t-butyl-5-methylphenoxy) phosphino] biphenyl (trade name “GSY-P101” manufactured by Osaki Kogyo Co., Ltd.), 6- [3- (3-t-butyl-4-hydroxy -5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenz [d, f] [1,3,2] dioxafospine (trade name “Sumilizer GP manufactured by Sumitomo Chemical Co., Ltd.) N, N-bis [2-[[2,4,8,10-tetrakis (1,1dimethylethyl) dibenzo [d, f] [1,3,2] dioxa Sufepin -6-yl] oxy] - ethyl] ethanamine (BASF Co., Ltd. under the trade name "Irgafos12" etc.) and the like.
In addition, compounds represented by the following formulas (12) to (15) may be mentioned.

これらのホスファイト系酸化防止剤の中でも、耐加水分解性の観点から、トリス−2,4−ジ−tert−ブチルフェニルホスファイトが好ましい。   Among these phosphite antioxidants, tris-2,4-di-tert-butylphenyl phosphite is preferable from the viewpoint of hydrolysis resistance.

ホスフィン系酸化防止剤としては、例えば、トリフェニルホスフィン(城北化学株式会社製の「JC263」)が挙げられる。
本発明において、(B)成分としてホスフィン系酸化防止剤を用いる場合、樹脂組成物中には(C)成分であるエポキシ化安定剤を実質含まない。その理由としては、(1)ホスフィン系酸化防止剤は加水分解性を有しないため、(C)成分を添加する必要がないこと、(2)ホスフィン系酸化防止剤とエポキシ化安定剤(C)との相互作用により、上述のプレッシャークッカー後の樹脂組成物の粘度平均分子量の低下率が大きくなり、該低下率の調整が困難となること、(3)(C)成分との相互作用により、成形加工時に樹脂組成物を高温で滞留した際にシルバー等が発生し、加工安定性が低下することが挙げられる。
なお、本発明において「(C)成分を実質含まない」とは、(C)成分の含有量が、(A)成分100質量部に対して、0.001質量部未満、好ましくは0.0001質量部未満であることを意味する(以下の記載でも同様のことを意味する)。
Examples of the phosphine antioxidant include triphenylphosphine (“JC263” manufactured by Johoku Chemical Co., Ltd.).
In this invention, when using a phosphine antioxidant as (B) component, the epoxidation stabilizer which is (C) component is not substantially contained in a resin composition. The reason for this is that (1) the phosphine antioxidant does not have hydrolyzability, so that it is not necessary to add the component (C), and (2) the phosphine antioxidant and the epoxidation stabilizer (C). By the interaction with the above, the decrease rate of the viscosity average molecular weight of the resin composition after the pressure cooker described above becomes large, it becomes difficult to adjust the decrease rate, (3) by the interaction with the component (C), When the resin composition is retained at a high temperature during the molding process, silver or the like is generated, and the processing stability is lowered.
In the present invention, “substantially free of component (C)” means that the content of component (C) is less than 0.001 part by mass, preferably 0.0001, per 100 parts by mass of component (A). It means less than parts by mass (the same is true in the following description).

リン系酸化防止剤(B)の含有量は、(A)成分100質量部に対して、0.002〜0.200質量部であり、好ましくは0.003〜0.100質量部、より好ましくは0.003〜0.080質量部である。0.002質量部未満であると、高温で滞留した際の樹脂組成物の変色やシルバー発生等を十分に抑制することができない。一方、0.200質量部を超えると、プレッシャークッカー試験後の粘度平均分子量の低下率が大きくなり、該低下率の調整が困難となる。   Content of phosphorus antioxidant (B) is 0.002-0.200 mass part with respect to 100 mass parts of (A) component, Preferably it is 0.003-0.100 mass part, More preferably Is 0.003 to 0.080 parts by mass. If the amount is less than 0.002 parts by mass, discoloration of the resin composition and generation of silver when staying at a high temperature cannot be sufficiently suppressed. On the other hand, if it exceeds 0.200 parts by mass, the rate of decrease in the viscosity average molecular weight after the pressure cooker test becomes large, and it becomes difficult to adjust the rate of decrease.

(B)成分としてホスファイト系酸化防止剤を用い、樹脂組成物中に(C)成分を実質含まない場合、(B)成分として用いるホスファイト系酸化防止剤の含有量は、(A)成分100質量部に対して、0.002〜0.020質量部、好ましくは0.003〜0.015質量部、より好ましくは0.003〜0.012質量部である。(C)成分を実質含まない場合に、ホスファイト系酸化防止剤の含有量が0.020質量部を超えると、ホスファイト系酸化防止剤の加水分解物が樹脂組成物に与える影響が大きく、プレッシャークッカー試験後の粘度平均分子量の低下率を所定値以下に調整することが困難となる。つまり、ホスファイト系酸化防止剤の含有量が0.020質量部以下の場合は、(C)成分を含めることなく、プレッシャークッカー試験後の樹脂組成物の粘度平均分子量の低下率を所定値以下に調整することができる。   When the phosphite antioxidant is used as the component (B) and the resin composition does not substantially contain the component (C), the content of the phosphite antioxidant used as the component (B) is: It is 0.002-0.020 mass part with respect to 100 mass parts, Preferably it is 0.003-0.015 mass part, More preferably, it is 0.003-0.012 mass part. When the content of the phosphite antioxidant exceeds 0.020 parts by mass when the component (C) is not substantially contained, the phosphite antioxidant hydrolyzate has a great influence on the resin composition, It becomes difficult to adjust the rate of decrease in the viscosity average molecular weight after the pressure cooker test to a predetermined value or less. That is, when the content of the phosphite antioxidant is 0.020 parts by mass or less, the rate of decrease in the viscosity average molecular weight of the resin composition after the pressure cooker test is not more than a predetermined value without including the component (C). Can be adjusted.

なお、(B)成分としてホスファイト系酸化防止剤を用い、樹脂組成物中に(C)成分を含む場合、もしくは、(B)成分としてホスフィン系酸化防止剤を用いる場合、(B)成分として用いる当該酸化防止剤の含有量は、上述のとおり、(A)成分100質量部に対して、0.002〜0.200質量部であり、好ましくは0.003〜0.100質量部、より好ましくは0.003〜0.080質量部である。   In addition, when using a phosphite type antioxidant as the (B) component and including the (C) component in the resin composition, or when using a phosphine type antioxidant as the (B) component, the (B) component As described above, the content of the antioxidant to be used is 0.002 to 0.200 parts by mass, preferably 0.003 to 0.100 parts by mass with respect to 100 parts by mass of the component (A). Preferably it is 0.003-0.080 mass part.

<エポキシ化安定剤(C)>
本発明の樹脂組成物は、(B)成分としてホスファイト系酸化防止剤を使った場合には、基本的にはエポキシ化安定剤(C)を含む方が好ましい。
ホスファイト系酸化防止剤は、湿熱環境下でポリカーボネート樹脂以上に加水分解しやすく、更には、加水分解で発生するリン酸類やフェノール類等の分解物が、ポリカーボネート樹脂の加水分解を著しく促進させる作用がある。
(B)成分は、加工安定性やサービス安定性から重要な成分で、樹脂組成物には一定量以上は必要となるが、上記理由により(B)成分がホスファイト系酸化防止剤の場合は、添加量が0.020質量部以下に制約されてしまう。
そこで、本発明者らは、ホスファイト系酸化防止剤の加水分解を抑制する方法について鋭意検討した結果、エポキシ化安定剤(C)に、ホスファイト系酸化防止剤の加水分解を抑制し、あるいは、ホスファイト系酸化防止剤が加水分解して発生する分解物を無毒化する作用があることを見出した。この見地により、ポリカーボネート樹脂(A)にホスファイト系酸化防止剤を0.020質量部以上添加する場合であっても、エポキシ化安定剤(C)を併用すれば、粘度平均分子量の低下率を所定値以下に調整することを可能とした。
<Epoxidation stabilizer (C)>
When the phosphite type antioxidant is used as the component (B), the resin composition of the present invention basically preferably contains an epoxidation stabilizer (C).
Phosphite-based antioxidants are more easily hydrolyzed than polycarbonate resins in a humid heat environment, and further, degradation products such as phosphoric acids and phenols generated by hydrolysis significantly promote the hydrolysis of polycarbonate resins. There is.
The component (B) is an important component from the viewpoint of processing stability and service stability, and the resin composition requires a certain amount or more. However, when the component (B) is a phosphite antioxidant for the above reason, The amount added is limited to 0.020 parts by mass or less.
Therefore, as a result of intensive studies on a method for suppressing hydrolysis of the phosphite antioxidant, the present inventors have suppressed the hydrolysis of the phosphite antioxidant to the epoxidation stabilizer (C), or The present inventors have found that a phosphite antioxidant has an action of detoxifying a decomposition product generated by hydrolysis. From this viewpoint, even when 0.020 parts by mass or more of the phosphite antioxidant is added to the polycarbonate resin (A), if the epoxidation stabilizer (C) is used in combination, the rate of decrease in the viscosity average molecular weight can be reduced. It was possible to adjust to a predetermined value or less.

エポキシ化安定剤(C)としては、構造の一部がエポキシ化された化合物が挙げられる。
そのようなエポキシ化安定剤(C)の中でも、上述の観点から、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(ダイセル化学工業株式会社製の商品名「セロキサイド2021P」等)、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(ダイセル化学工業株式会社製の商品名「EHPE3150」等)、これら2種の混合物(ダイセル化学工業株式会社製の商品名EHPE3150CE)、並びに、オキシラン酸素濃度が4%以上であるエポキシ化天然油又はエポキシ化合成油が好ましい。
さらに、樹脂組成物からなる成形体を食品用容器等の用途として用いる場合、食品を安全に保存できる成形体とする観点から、オキシラン酸素濃度が4%以上であるエポキシ化天然油又はエポキシ化合成油がより好ましい。
Examples of the epoxidation stabilizer (C) include compounds in which a part of the structure is epoxidized.
Among such epoxidized stabilizers (C), 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (trade name “Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd.” is used from the above viewpoint. , Etc.), 2,2-bis (hydroxymethyl) -1-butanol and 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct (trade name “EHPE3150” manufactured by Daicel Chemical Industries, Ltd.), These two kinds of mixtures (trade name EHPE3150CE manufactured by Daicel Chemical Industries, Ltd.) and epoxidized natural oil or epoxidized synthetic oil having an oxirane oxygen concentration of 4% or more are preferred.
Furthermore, when using the molded body made of the resin composition as a food container or the like, from the viewpoint of forming a molded body that can safely store food, epoxidized natural oil or epoxidized synthetic having an oxirane oxygen concentration of 4% or more Oil is more preferred.

オキシラン酸素濃度が4%以上であるエポキシ化天然油としては、例えば、サンソサイザーE−2000H(商品名、新日本理化株式会社製、エポキシ化大豆油、オキシラン酸素濃度6.7%以上)、サンソサイザーE−9000H(商品名、新日本理化株式会社製、エポキシ化亜麻仁油、オキシラン酸素濃度8.5%以上)等が挙げられる。
オキシラン酸素濃度が4%以上であるエポキシ化合成油としては、例えば、サンソサイザーE−PO(商品名、新日本理化株式会社製、エポキシヘキサヒドロフタル酸ジエポキシステアリル、オキシラン酸素濃度5.5%以上)、サンソサイザーE−4030(商品名、新日本理化株式会社製、エポキシ化脂肪酸ブチル、オキシラン酸素濃度4.5%以上)等が挙げられる。
Examples of the epoxidized natural oil having an oxirane oxygen concentration of 4% or more include Sanso Sizer E-2000H (trade name, manufactured by Shin Nippon Rika Co., Ltd., epoxidized soybean oil, oxirane oxygen concentration of 6.7% or more), Sanso Sizer E-9000H (trade name, manufactured by Shin Nippon Rika Co., Ltd., epoxidized linseed oil, oxirane oxygen concentration of 8.5% or more) and the like.
Examples of the epoxidized synthetic oil having an oxirane oxygen concentration of 4% or more include, for example, Sansosizer E-PO (trade name, manufactured by Shin Nippon Rika Co., Ltd., epoxyhexahydrophthalic acid diepoxy stearyl, oxirane oxygen concentration 5.5% The above), Sansosizer E-4030 (trade name, manufactured by Shin Nippon Chemical Co., Ltd., epoxidized fatty acid butyl, oxirane oxygen concentration of 4.5% or more) and the like.

エポキシ化天然油又はエポキシ化合成油のオキシラン酸素濃度は、4%以上であり、好ましくは5%以上、より好ましくは6%以上、更に好ましくは7%以上である。該オキシラン酸素濃度が4%未満であると、ホスファイト系酸化防止剤の加水分解を抑制、あるいは、加水分解で発生する分解物を無毒化する効果が低く、結果、ポリカーボネートの加水分解を抑制出来ず、分子量の低下率を所定値以下に調整することが困難となる。   The oxirane oxygen concentration of the epoxidized natural oil or epoxidized synthetic oil is 4% or more, preferably 5% or more, more preferably 6% or more, and further preferably 7% or more. When the oxirane oxygen concentration is less than 4%, the hydrolysis of the phosphite-based antioxidant is suppressed, or the effect of detoxifying the decomposition product generated by the hydrolysis is low, and as a result, the hydrolysis of the polycarbonate can be suppressed. Therefore, it is difficult to adjust the molecular weight reduction rate to a predetermined value or less.

なお、上記オキシラン酸素濃度は、ASTM−1652の規定に基づき、臭化水素の酢酸溶液を用いて測定された値を意味する。   In addition, the said oxirane oxygen concentration means the value measured using the acetic acid solution of hydrogen bromide based on the rule of ASTM-1652.

エポキシ化安定剤(C)の含有量は、(A)成分100質量部に対して、0〜0.200質量部である。該含有量が0.200質量部を超えると、ポリカーボネート樹脂組成物の流動性が上がったり、成形加工する際に焼けやシルバーの原因となる。
なお、(B)成分として加水分解性を有しないホスフィン系酸化防止剤を用いる場合、ホスファイト系酸化防止剤のような、ポリカーボネート樹脂の加水分解を促進する分解物が発生しないので、エポキシ化安定剤(C)の添加は必要としない。エポキシ化安定剤(C)及びホスフィン系酸化防止剤は、共に活性の高い化合物であることから、両者の無用な反応を起こさないために、(B)成分としてホスフィン系酸化防止剤を使用する場合は、(C)成分を実質含まないことが好ましい。
(B)成分としてホスフィン系酸化防止剤を使用する場合の(C)成分の含有量は、(A)成分100質量部に対して、好ましくは0.001質量部未満、より好ましくは0.0001質量部未満である。
Content of an epoxidation stabilizer (C) is 0-0.200 mass part with respect to 100 mass parts of (A) component. If the content exceeds 0.200 parts by mass, the fluidity of the polycarbonate resin composition will increase, or it may cause burns or silver during molding.
In addition, when using a phosphine-based antioxidant having no hydrolyzability as the component (B), a decomposition product that promotes hydrolysis of the polycarbonate resin, such as a phosphite-based antioxidant, is not generated. The addition of agent (C) is not necessary. Since the epoxidation stabilizer (C) and the phosphine antioxidant are both highly active compounds, a phosphine antioxidant is used as the component (B) in order not to cause an unnecessary reaction between them. Is preferably substantially free of component (C).
When the phosphine antioxidant is used as the component (B), the content of the component (C) is preferably less than 0.001 part by mass, more preferably 0.0001 with respect to 100 parts by mass of the component (A). Less than part by mass.

また、(B)成分として加水分解性を有するホスファイト系酸化防止剤を用いる場合、(C)成分の含有量は、得られる樹脂組成物のプレッシャークッカー後の粘度平均分子量の低下率を所定値以下に調整する観点から、(A)成分100質量部に対して、0.002〜0.200質量部、好ましくは0.01〜0.100質量部、より好ましくは0.015〜0.050質量部である。   In addition, when using a phosphite-based antioxidant having hydrolyzability as the component (B), the content of the component (C) is a predetermined value of the rate of decrease in the viscosity average molecular weight after pressure cooker of the obtained resin composition. From the viewpoint of adjusting to the following, 0.002 to 0.200 parts by mass, preferably 0.01 to 0.100 parts by mass, more preferably 0.015 to 0.050 with respect to 100 parts by mass of component (A). Part by mass.

<その他の添加剤>
本発明の樹脂組成物には、上述の(A)〜(C)成分の他、本発明の効果を損なわない範囲で、必要に応じて、従来、ポリカーボネート樹脂組成物に添加される公知の種々の添加剤の配合が可能である。
これらの添加剤としては、補強材、充填剤、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、染料、顔料、難燃剤や耐衝撃性改良用のエラストマー等が挙げられる。
<Other additives>
In the resin composition of the present invention, in addition to the components (A) to (C) described above, various known conventional additives that are conventionally added to the polycarbonate resin composition, as long as the effects of the present invention are not impaired. It is possible to add these additives.
These additives include reinforcing materials, fillers, stabilizers, antioxidants, UV absorbers, antistatic agents, lubricants, mold release agents, dyes, pigments, flame retardants and elastomers for improving impact resistance. Can be mentioned.

〔成形品〕
本発明のポリカーボネート系樹脂組成物からなる成形品は、上述の各成分を配合し、混練したものを成形することで得られる。
混練方法としては、特に制限されず、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法が挙げられる。また、混練の際の加熱温度は、通常240〜330℃、好ましくは250〜320℃の範囲で選択される。
成形方法としては、従来公知の各種成形方法を用いることができ、例えば、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等が挙げられる。
〔Molding〕
A molded article made of the polycarbonate resin composition of the present invention can be obtained by molding and kneading the above components.
The kneading method is not particularly limited, and examples thereof include a method using a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder, and the like. . Moreover, the heating temperature at the time of kneading | mixing is 240-330 degreeC normally, Preferably it is selected in 250-320 degreeC.
As the molding method, conventionally known various molding methods can be used, for example, injection molding method, injection compression molding method, extrusion molding method, blow molding method, press molding method, vacuum molding method and foam molding method. It is done.

なお、ポリカーボネート樹脂以外の含有成分は、あらかじめ、ポリカーボネート樹脂又は他の熱可塑性樹脂と溶融混練、即ち、マスターバッチとして添加することもできる。
また、ペレット化させ、射出成形することが好ましく、一般的な射出成形法又は射出圧縮成形法、そしてガスアシスト成形法等の特殊成形法を用いることができ、各種成形品を製造することができる。
In addition, the components other than the polycarbonate resin can be added in advance as a masterbatch by melt-kneading with the polycarbonate resin or other thermoplastic resin.
Further, it is preferably pelletized and injection molded, and special molding methods such as general injection molding method or injection compression molding method and gas assist molding method can be used, and various molded products can be produced. .

本発明のポリカーボネート樹脂組成物からなる成形体は、高温、高湿環境下で繰り返し使用されても、優れた低温での耐衝撃性を長期間にわたり維持できる。そのため、本発明の成形体は、90℃以上の温水及び/又は100℃以上のスチームで洗浄が行われる製品又は部品や、温度60℃以上、相対湿度90%以上の環境下及び、これらの環境と零下となるような低温環境を繰り返す環境で使われるような製品又は部品に好適である。   The molded body made of the polycarbonate resin composition of the present invention can maintain excellent impact resistance at a low temperature over a long period of time even when it is repeatedly used in a high temperature and high humidity environment. Therefore, the molded article of the present invention is a product or part that is cleaned with hot water of 90 ° C. or higher and / or steam of 100 ° C. or higher, in an environment of a temperature of 60 ° C. or higher, and a relative humidity of 90% or higher. It is suitable for products or parts that are used in an environment where the low temperature environment is repeatedly reduced to below zero.

本発明の成形体のより具体的な用途としては、冷凍使用された後にスチーム洗浄されるチョコレート加工型やアイス加工型、冷凍食品の保存用コンテナー、魚介類の加工プール、食器乾燥機、炊飯機等に用いられる容器等の用途が好ましい。また、高温、高湿環境下にある計装ボックス、ジャンクションボックス、寒冷地の地下埋設部材等の工業部品等の用途としても好適である。   More specific uses of the molded body of the present invention include chocolate processing molds and ice processing molds that are used after being frozen and steam washed, containers for storing frozen foods, processed seafood pools, tableware dryers, rice cookers Applications such as containers used for the like are preferred. Moreover, it is also suitable for uses such as industrial parts such as instrumentation boxes, junction boxes, underground buried members in cold regions, etc. in a high temperature and high humidity environment.

以下の本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。
なお、本実施例における以下の物性値等の測定方法(算出方法)は、下記のとおりである。
Examples The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In addition, the measurement methods (calculation methods) for the following physical property values and the like in this example are as follows.

(1)粘度数(VN)の測定方法
ISO1628−4(1999)に準拠して測定した。
(2)粘度平均分子量の測定方法
ウベローデ型粘度管にて、20℃における塩化メチレン溶液の極限粘度〔η〕を測定し、次の関係式(Schnellの式)より計算した。
〔η〕=1.23×10−5×Mv0.83
(1) Measuring method of viscosity number (VN) It measured based on ISO1628-4 (1999).
(2) Measuring method of viscosity average molecular weight The intrinsic viscosity [η] of a methylene chloride solution at 20 ° C. was measured with an Ubbelohde type viscosity tube and calculated from the following relational expression (Schnell's formula).
[Η] = 1.23 × 10 −5 × Mv 0.83

製造例1
(ポリカーボネートオリゴマーの合成例)
5.6質量%水酸化ナトリウム水溶液に、後から溶解するビスフェノールAに対して2000質量ppmの亜二チオン酸ナトリウムを加え、これにビスフェノールA濃度が13.5質量%になるようにビスフェノールAを溶解し、ビスフェノールAの水酸化ナトリウム水溶液を調製した。
このビスフェノールAの水酸化ナトリウム水溶液40L/hr、塩化メチレン15L/hrの流量で、ホスゲンを4.0kg/hrの流量で、内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
管型反応器を出た反応液は、後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入され、ここにさらにビスフェノールAの水酸化ナトリウム水溶液2.8L/hr、25質量%水酸化ナトリウム水溶液0.07L/hr、水17L/hr、1質量%トリエチルアミン水溶液を0.64L/hr添加して反応を行なった。槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。
このようにして得られたポリカーボネートオリゴマーは濃度318g/L、クロロホーメート基濃度0.75mol/Lであった。また、その重量平均分子量(Mw)は、1190であった。
なお、重量平均分子量(Mw)は、展開溶媒としてTHF(テトラヒドロフラン)を用い、GPC〔カラム:TOSOH TSK−GEL MULTIPORE HXL−M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI〕にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
Production Example 1
(Synthesis example of polycarbonate oligomer)
Add 2,000 mass ppm sodium dithionite to 5.6 mass% aqueous sodium hydroxide solution to bisphenol A that is dissolved later, and add bisphenol A to the bisphenol A concentration to 13.5 mass%. It melt | dissolved and the sodium hydroxide aqueous solution of bisphenol A was prepared.
At a flow rate of 40 L / hr of this sodium hydroxide aqueous solution of bisphenol A and 15 L / hr of methylene chloride, phosgene was continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m at a flow rate of 4.0 kg / hr. The tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
The reaction solution exiting the tubular reactor was continuously introduced into a 40-liter baffled tank reactor equipped with a receding blade, and further 2.8 L / hr of sodium hydroxide aqueous solution of bisphenol A, 25 The reaction was carried out by adding 0.04 L / hr of a mass% aqueous sodium hydroxide solution, 17 L / hr of water, and 0.64 L / hr of an aqueous 1 mass% triethylamine solution. The reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
The polycarbonate oligomer thus obtained had a concentration of 318 g / L and a chloroformate group concentration of 0.75 mol / L. Moreover, the weight average molecular weight (Mw) was 1190.
In addition, the weight average molecular weight (Mw) uses THF (tetrahydrofuran) as a developing solvent, GPC [column: TOSOH TSK-GEL MULTIPIORE HXL-M (two) + Shodex KF801 (one), temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].

製造例2
(PC−PDMS共重合体(SIPC−1)の合成)
邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に、製造例1で製造したポリカーボネートオリゴマー溶液15L、塩化メチレン8.9L、ジメチルシロキシ単位の平均繰り返し数nが90である2−アリルフェノール末端変性ポリジメチルシロキサン(PDMS−1)307g及びトリエチルアミン8.8mLを仕込み、攪拌下でここに6.4質量%水酸化ナトリウム水溶液1389gを加え、10分間ポリカーボネートオリゴマーと2−アリルフェノール末端変性ポリジメチルシロキサンの反応を行った。
この重合液に、p−t−ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP129gを塩化メチレン2.0Lに溶解したもの)、ビスフェノールAの水酸化ナトリウム水溶液(水酸化ナトリウム581gと亜二チオン酸ナトリウム2.3gを水8.5Lに溶解した水溶液にビスフェノールA1147gを溶解させたもの)を添加し、50分間重合反応を実施した。希釈のため塩化メチレン10Lを加えてから10分間攪拌した後、ポリカーボネートを含む有機相と過剰のビスフェノールA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。
こうして得られたポリカーボネート−ポリジメチルシロキサン共重合体の塩化メチレン溶液を、その溶液に対して順次、15容積%の0.03mol/L水酸化ナトリウム水溶液、0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.01μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート−ポリジメチルシロキサン共重合体の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。
上記のようにして得られたポリカーボネート−ポリジメチルシロキサン共重合体(PC−PDMS共重合体(SIPC−1))は、NMR測定により求めたポリジメチルシロキサン残基の量が6.0質量%、粘度数が46.9であり、粘度平均分子量は17,400であった。
Production Example 2
(Synthesis of PC-PDMS copolymer (SIPC-1))
In a 50 L tank reactor equipped with a baffle plate, a paddle type stirring blade and a cooling jacket, the polycarbonate oligomer solution 15 L produced in Production Example 1, 8.9 L methylene chloride, and the average number n of dimethylsiloxy units are 90. Charge 307 g of 2-allylphenol end-modified polydimethylsiloxane (PDMS-1) and 8.8 mL of triethylamine, add 1389 g of 6.4% by weight aqueous sodium hydroxide solution under stirring, and add polycarbonate oligomer and 2-allylphenol for 10 minutes. Reaction of terminal-modified polydimethylsiloxane was performed.
To this polymerization solution, methylene chloride solution of pt-butylphenol (PTBP) (129 g of PTBP dissolved in 2.0 L of methylene chloride), sodium hydroxide aqueous solution of bisphenol A (581 g of sodium hydroxide and sodium dithionite 2 (1147 g of bisphenol A dissolved in an aqueous solution of 3 g in 8.5 L of water) was added, and the polymerization reaction was carried out for 50 minutes. After adding 10 L of methylene chloride for dilution and stirring for 10 minutes, the organic phase was separated into an organic phase containing polycarbonate and an aqueous phase containing excess bisphenol A and sodium hydroxide, and the organic phase was isolated.
The methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer thus obtained was sequentially washed with 15% by volume of 0.03 mol / L sodium hydroxide aqueous solution and 0.2 mol / L hydrochloric acid. The washing was repeated with pure water until the electric conductivity in the aqueous phase after washing was 0.01 μS / m or less. The methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
The polycarbonate-polydimethylsiloxane copolymer (PC-PDMS copolymer (SIPC-1)) obtained as described above has an amount of polydimethylsiloxane residue determined by NMR measurement of 6.0% by mass, The viscosity number was 46.9 and the viscosity average molecular weight was 17,400.

製造例3
(PC−PDMS共重合体(SIPC−2)の合成)
邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に、製造例1で製造したポリカーボネートオリゴマー溶液15L、塩化メチレン8.9L、ジメチルシロキシ単位の平均繰り返し数nが40である2−アリルフェノール末端変性ポリジメチルシロキサン(PDMS−2)307g及びトリエチルアミン8.8mLを仕込み、攪拌下でここに6.4質量%水酸化ナトリウム水溶液1389gを加え、10分間ポリカーボネートオリゴマーと2−アリルフェノール末端変性ポリジメチルシロキサンの反応を行った。
この重合液に、p−t−ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP129gを塩化メチレン2.0Lに溶解したもの)、ビスフェノールAの水酸化ナトリウム水溶液(水酸化ナトリウム581gと亜二チオン酸ナトリウム2.3gを水8.5Lに溶解した水溶液にビスフェノールA1147gを溶解させたもの)を添加し、50分間重合反応を実施した。希釈のため塩化メチレン10Lを加えてから10分間攪拌した後、ポリカーボネートを含む有機相と過剰のビスフェノールA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。
こうして得られたポリカーボネート−ポリジメチルシロキサン共重合体の塩化メチレン溶液を、その溶液に対して順次、15容積%の0.03mol/L水酸化ナトリウム水溶液、0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.01μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネート−ポリジメチルシロキサン共重合体の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。
上記のようにして得られたポリカーボネート−ポリジメチルシロキサン共重合体(PC−PDMS共重合体(SIPC−2))は、NMR測定により求めたポリジメチルシロキサン残基の量が6.2質量%、粘度数が46.9であり、粘度平均分子量は17,400であった。
Production Example 3
(Synthesis of PC-PDMS copolymer (SIPC-2))
In a 50 L tank reactor equipped with baffle plates, paddle type stirring blades and a cooling jacket, the polycarbonate oligomer solution 15 L produced in Production Example 1, 8.9 L methylene chloride, and the average number of repetitions n of dimethylsiloxy units are 40. Charge 307 g of 2-allylphenol-terminated polydimethylsiloxane (PDMS-2) and 8.8 mL of triethylamine, add 1389 g of 6.4% by weight aqueous sodium hydroxide solution under stirring, and add polycarbonate oligomer and 2-allylphenol for 10 minutes. Reaction of terminal-modified polydimethylsiloxane was performed.
To this polymerization solution, methylene chloride solution of pt-butylphenol (PTBP) (129 g of PTBP dissolved in 2.0 L of methylene chloride), sodium hydroxide aqueous solution of bisphenol A (581 g of sodium hydroxide and sodium dithionite 2 (1147 g of bisphenol A dissolved in an aqueous solution of 3 g in 8.5 L of water) was added, and the polymerization reaction was carried out for 50 minutes. After adding 10 L of methylene chloride for dilution and stirring for 10 minutes, the organic phase was separated into an organic phase containing polycarbonate and an aqueous phase containing excess bisphenol A and sodium hydroxide, and the organic phase was isolated.
The methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer thus obtained was sequentially washed with 15% by volume of 0.03 mol / L sodium hydroxide aqueous solution and 0.2 mol / L hydrochloric acid. The washing was repeated with pure water until the electric conductivity in the aqueous phase after washing was 0.01 μS / m or less. The methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
The polycarbonate-polydimethylsiloxane copolymer (PC-PDMS copolymer (SIPC-2)) obtained as described above has an amount of polydimethylsiloxane residue determined by NMR measurement of 6.2% by mass, The viscosity number was 46.9 and the viscosity average molecular weight was 17,400.

実施例1、2、12、13、14、参考例1〜11、比較例1〜12
(ペレットの作製)
第1表及び第2表に記載の成分を記載された配合量(単位:質量部)にて樹脂組成物を調製し、単軸押し出し機「NVC−50」(製品名、中谷機械(株)社製)を用いて、ヒータ温度を280℃に設定して、30kg/時間でストランドを押出し、ストランドカッターでペレットを作製した。
Examples 1, 2, 12, 13, 14, Reference Examples 1-11, Comparative Examples 1-12
(Preparation of pellets)
A resin composition was prepared with a blending amount (unit: parts by mass) in which the components shown in Table 1 and Table 2 were described, and a single screw extruder “NVC-50” (product name, Nakatani Machine Co., Ltd.) The heater temperature was set to 280 ° C., and the strands were extruded at 30 kg / hour, and pellets were produced with a strand cutter.

(試験板の作製)
作製したペレットを充分に乾燥した後、射出成形機「IS150E」(製品名、東芝機械(株)社製)を用い、角板No.2金型を使って、成形温度310℃、金型温度80℃で射出成形して、厚み2.0mm×縦140mm×横140mmの試験板をそれぞれ30枚作製した。
(Preparation of test plate)
After the prepared pellets were sufficiently dried, an injection molding machine “IS150E” (product name, manufactured by Toshiba Machine Co., Ltd.) was used. Using two molds, injection molding was performed at a molding temperature of 310 ° C. and a mold temperature of 80 ° C. to prepare 30 test plates each having a thickness of 2.0 mm × length 140 mm × width 140 mm.

なお、第1表及び第2表に記載された各成分は、以下のとおりである。
(A−1)成分
・「SIPC−1」(製造例2で製造したPC−PDMS共重合体)
・「SIPC−2」(製造例3で製造したPC−PDMS共重合体)
(A−2)成分
・「タフロンFN1700A」(商品名、出光興産株式会社製、p−t−ブチルフェノールを末端基に有するビスフェノールAポリカーボネート、粘度数46.6、粘度平均分子量Mv=17,300)
・「タフロンFN1900A」(商品名、出光興産株式会社製、p−t−ブチルフェノールを末端基に有するビスフェノールAポリカーボネート、粘度数51.1、粘度平均分子量Mv=19,300)
・「タフロンFN2200A」(商品名、出光興産株式会社製、p−t−ブチルフェノールを末端基に有するビスフェノールAポリカーボネート、粘度数55.6、粘度平均分子量Mv=21,300)
・「タフロンFN2500A」(商品名、出光興産株式会社製、p−t−ブチルフェノールを末端基に有するビスフェノールAポリカーボネート、粘度数62.2、粘度平均分子量Mv=24,200)
・「タフロンFN2600A」(商品名、出光興産株式会社製、p−t−ブチルフェノールを末端基に有するビスフェノールAポリカーボネート、粘度数64.9、粘度平均分子量Mv=25,400)
・「ノバレックス7030PJ」(商品名、三菱エンジニアリングプラスチック株式会社製、p−t−ブチルフェノールを末端基に有するビスフェノールAポリカーボネート、粘度数73.7、粘度平均分子量Mv=29,300)
In addition, each component described in Table 1 and Table 2 is as follows.
Component (A-1) “SIPC-1” (PC-PDMS copolymer produced in Production Example 2)
"SIPC-2" (PC-PDMS copolymer produced in Production Example 3)
Component (A-2) “Taflon FN1700A” (trade name, manufactured by Idemitsu Kosan Co., Ltd., bisphenol A polycarbonate having pt-butylphenol as a terminal group, viscosity number 46.6, viscosity average molecular weight Mv = 17,300)
"Taflon FN1900A" (trade name, manufactured by Idemitsu Kosan Co., Ltd., bisphenol A polycarbonate having pt-butylphenol as a terminal group, viscosity number 51.1, viscosity average molecular weight Mv = 19,300)
"Taflon FN2200A" (trade name, manufactured by Idemitsu Kosan Co., Ltd., bisphenol A polycarbonate having pt-butylphenol as a terminal group, viscosity number 55.6, viscosity average molecular weight Mv = 21,300)
"Taflon FN2500A" (trade name, manufactured by Idemitsu Kosan Co., Ltd., bisphenol A polycarbonate having pt-butylphenol as a terminal group, viscosity number 62.2, viscosity average molecular weight Mv = 24,200)
"Taflon FN2600A" (trade name, manufactured by Idemitsu Kosan Co., Ltd., bisphenol A polycarbonate having pt-butylphenol as a terminal group, viscosity number 64.9, viscosity average molecular weight Mv = 25,400)
"Novalex 7030PJ" (trade name, manufactured by Mitsubishi Engineering Plastics, bisphenol A polycarbonate having pt-butylphenol as a terminal group, viscosity number 73.7, viscosity average molecular weight Mv = 29,300)

(B)成分
・「IRGAFOS168」(商品名、BASF社製、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト)
・「JC263」(商品名、城北化学株式会社製、トリフェニルホスフィン)
(C)成分
・「セロキサイド2021P」(商品名、株式会社ダイセル製、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート)
・「サンソサイザーE−PO」(商品名、新日本化学株式会社製、エポキシヘキサヒドロフタル酸ジエポキシステアリル、オキシラン酸素濃度:5.50%)
・「サンソサイザーE−2000H」(商品名、新日本化学株式会社製、エポキシ化大豆油、オキシラン酸素濃度:6.70%)
・「サンソサイザーE−9000H」(商品名、新日本化学株式会社製、エポキシ化亜麻仁油、オキシラン酸素濃度:8.50%)
・「サンソサイザーE−PS」(商品名、新日本化学株式会社製、エポキシヘキサヒドロフタル酸ジ2−エチルヘキシル、オキシラン酸素濃度:3.40%)
・「サンソサイザーE−6000」(商品名、新日本化学株式会社製、エポキシヘキサヒドロフタル酸ジ2−エチルヘキシル、オキシラン酸素濃度:3.50%)
Component (B) “IRGAFOS168” (trade name, manufactured by BASF, Tris (2,4-di-t-butylphenyl) phosphite)
・ "JC263" (trade name, manufactured by Johoku Chemical Co., Ltd., triphenylphosphine)
Component (C) “Celoxide 2021P” (trade name, manufactured by Daicel Corporation, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate)
・ "Sanso Sizer E-PO" (trade name, manufactured by Shin Nippon Chemical Co., Ltd., epoxyhexahydrophthalic acid diepoxy stearyl, oxirane oxygen concentration: 5.50%)
・ "Sanso Sizer E-2000H" (trade name, manufactured by Shin Nippon Chemical Co., Ltd., epoxidized soybean oil, oxirane oxygen concentration: 6.70%)
・ "Sanso Sizer E-9000H" (trade name, manufactured by Shin Nippon Chemical Co., Ltd., epoxidized linseed oil, oxirane oxygen concentration: 8.50%)
・ "Sanso Sizer E-PS" (trade name, manufactured by Shin Nippon Chemical Co., Ltd., di-2-ethylhexyl epoxyhexahydrophthalate, oxirane oxygen concentration: 3.40%)
・ "Sanso Sizer E-6000" (trade name, manufactured by Shin Nippon Chemical Co., Ltd., di-2-ethylhexyl epoxyhexahydrophthalate, oxirane oxygen concentration: 3.50%)

作製したペレット及び試験板を用いて、以下に示す試験を行った。試験結果については、第1表及び第2表に示す。   The test shown below was done using the produced pellet and test plate. The test results are shown in Tables 1 and 2.

(1)プレッシャークッカー試験前の測定項目
(1−1)粘度数(VN)、粘度平均分子量(Mv)の測定
上述の測定方法に基づいて、プレッシャークッカー試験前の樹脂組成物(ペレット)の粘度数(VN)及び粘度平均分子量(Mv)を測定した。
(1) Measurement item before pressure cooker test (1-1) Measurement of viscosity number (VN) and viscosity average molecular weight (Mv) Viscosity of resin composition (pellet) before pressure cooker test based on the measurement method described above Number (VN) and viscosity average molecular weight (Mv) were measured.

(1−2)低温落錘衝撃試験
作製した試験板を、エタノールに浸して、−30℃にて冷却した。そして、冷却した試験板を、JIS K7211−2に準じて、自動落錘衝撃試験機「HYDOSHOT」(島津製作所社製)を用いて、直径75mmの受台に固定し、直径12.7mmの撃芯を3.9m/秒の速度で突き当てて、試験板の破壊状況を確認した。撃芯が、試験板を突き抜け、試験板が割れたり、破片飛散等が起きない場合は延性破壊とし、割れて破片等が散る場合は脆性破壊とした。試験板5枚で実施して、5枚中の延性破壊した試験板の枚数をカウントした。同時に、衝撃時に発生する破壊エネルギー(J)を計測した。
(1-2) Low temperature drop weight impact test The produced test plate was immersed in ethanol and cooled at -30 ° C. Then, the cooled test plate is fixed to a pedestal having a diameter of 75 mm using an automatic falling weight impact tester “HYDOSHOT” (manufactured by Shimadzu Corporation) in accordance with JIS K7211-2, and an impact of 12.7 mm in diameter. The core was abutted at a speed of 3.9 m / sec to confirm the breaking condition of the test plate. When the strike core penetrated through the test plate and the test plate was not cracked or spattered, it was considered as ductile fracture, and when it was cracked and spattered, it was regarded as brittle fracture. The test was carried out with 5 test plates, and the number of test plates that had ductile fracture in 5 was counted. At the same time, the fracture energy (J) generated upon impact was measured.

(1−3)メルトボリュームフローレイト(MVR)の測定
MVR測定機を用いて、JIS K 7210に準じて測定した。即ち、MVR測定機を用い、測定機のシリンダーを300℃に昇温し15分間以上エージングしてから、試料(調製した樹脂組成物)を充填した。そして、当該試料の上に、加重が1.2kgとなるように、ピストンとおもりを載せ、予熱を行い、30秒間に流出した試料を切り取り、流出した試料を計量して、10分間当たりの流出量に換算した。
(1−4)流れ値(Q値)の測定
高架式フローテスターを用いて、JIS K 7210に準じて測定した、すなわち、280℃、15.7MPaの圧力下に、直径1mm、長さ10mmのノズルより流出する溶融樹脂量(mL/sec)を測定した。溶融粘度の低下と共に流れ値(Q値)は増加する。
(1-3) Measurement of melt volume flow rate (MVR) It measured according to JISK7210 using the MVR measuring machine. That is, using a MVR measuring machine, the cylinder of the measuring machine was heated to 300 ° C. and aged for 15 minutes or more, and then the sample (prepared resin composition) was filled. Then, a piston and a weight are placed on the sample so that the weight is 1.2 kg, preheating is performed, the sample that has flowed out for 30 seconds is cut out, the sample that has flowed out is weighed, and the flow out per 10 minutes is measured. Converted to quantity.
(1-4) Measurement of flow value (Q value) Measured according to JIS K 7210 using an elevated flow tester, that is, with a diameter of 1 mm and a length of 10 mm under a pressure of 280 ° C. and 15.7 MPa. The amount of molten resin (mL / sec) flowing out from the nozzle was measured. The flow value (Q value) increases as the melt viscosity decreases.

(1−4)プレッシャークッカー試験の方法
作製した厚み2.0mm×縦140mm×横140mmの試験板の端に1mmの穴を2箇所空け、試験板より大きめのステンレス製の網籠に、ステンレス製の針金で試験板を吊るした。吊るした試験板同士が接触しない様に、各試験板をクリップで止めて、試験板間を1mm以上離して、処方毎に各10枚吊るした。その籠を、約5リットルの純水を底に張った、プレッシャークッカー試験機(NAKAYAMA社製)4台に、各々5処方分入れ、121℃にて300時間、試験機内で蒸した。同時に、分子量測定用に、試験板の作製で用いたものと同じペレットを10〜20cm入れた直径40mm×高さ15mmのステンレスシャーレに入れ、試験板と同じプレッシャークッカー試験機に入れて、同時に蒸した。この操作を、繰り返して、処方毎に20枚の試験板と、その試験板の加水分解度を評価するためのペレットを得た。
(1-4) Method of pressure cooker test Two holes of 1 mm are made at the end of the test plate having a thickness of 2.0 mm × length of 140 mm × width of 140 mm, and a stainless steel net larger than the test plate is made of stainless steel. The test plate was hung with a wire. Each test plate was stopped with a clip so that the suspended test plates were not in contact with each other, and the test plates were separated from each other by 1 mm or more, and each test plate was suspended by 10 pieces. The koji was placed in four pressure cooker testers (manufactured by NAKAYAMA) each having about 5 liters of pure water at the bottom, and steamed at 121 ° C. for 300 hours in the tester. At the same time, for the molecular weight measurement, placed in a diameter 40 mm × stainless dish height 15mm same pellets 10 to 20 cm 3 brewed as used in preparation of the test plate, placed in the same pressure cooker test machine and test plate, at the same time Steamed. This operation was repeated to obtain 20 test plates for each prescription and pellets for evaluating the degree of hydrolysis of the test plates.

(2)プレッシャークッカー試験(プレッシャークッカー)後の評価
(2−1)粘度数(VN)、粘度平均分子量(Mv)の測定
プレッシャークッカー試験機に掛けた加水分解の程度を評価するペレットを用い、前述の測定方法に基づき、樹脂組成物(ペレット)の粘度数(VN)及び粘度平均分子量(Mv)を測定し、試験前の粘度平均分子量との差(ΔMv)及び、粘度平均分子量の低下率Pを以下の計算式で算出した。
P〔%〕=(M−M)/M×100
(Mは、プレッシャークッカー試験前の樹脂組成物(ペレット)の粘度平均分子量であり、Mは、プレッシャークッカー試験後の樹脂組成物(ペレット)の粘度平均分子量を表す。)
(2) Evaluation after pressure cooker test (pressure cooker) (2-1) Measurement of viscosity number (VN) and viscosity average molecular weight (Mv) Using pellets for evaluating the degree of hydrolysis applied to a pressure cooker tester, Based on the measurement method described above, the viscosity number (VN) and the viscosity average molecular weight (Mv) of the resin composition (pellet) are measured, the difference (ΔMv) from the viscosity average molecular weight before the test, and the decrease rate of the viscosity average molecular weight. P was calculated by the following formula.
P [%] = (M 1 −M 2 ) / M 1 × 100
(M 1 is a viscosity-average molecular weight of pressure cooker test before the resin composition (pellets), M 2 represents the viscosity average molecular weight of the resin composition after pressure cooker test (pellets).)

(2−2)低温耐落錘衝撃性の評価
プレッシャークッカー試験機に掛けた試験板を、前述と同じ条件で自動落錘衝撃試験を行い、破壊の状況を確認した。プレッシャークッカー試験機に掛けた試験板20枚で実施して、20枚中の延性破壊した試験板の枚数をカウントした。
(2-2) Evaluation of low-temperature drop weight impact resistance An automatic drop weight impact test was performed on the test plate placed on a pressure cooker test machine under the same conditions as described above to confirm the state of fracture. The test was carried out with 20 test plates placed on a pressure cooker tester, and the number of ductile fractured test plates in 20 was counted.

(3)成形加工安定性の評価(滞留試験)
実施例及び比較例で作製したプレッシャークッカー前のペレットを、40トン射出成形機(製品名「EC40N」、東芝機械社製)を用い、成形温度360℃、金型温度80℃で、平板状(厚み3.0mm×縦40mm×横80mm)に成形して成形体を得た。滞留評価は、成形温度360℃にて、温度条件が安定するまで20秒サイクルで20ショット分を成形し、その後に300秒にサイクルを変えて、5ショット分(20分間)を採取した。得られた成形体の変色やシルバーの発生の有無は、以下の基準により評価した。
A:成形体の変色(黄変)やシルバーの発生は見られない。
B:成形体の変色(黄変)やシルバーの発生が一部見られるが、目立つほどではない。
C:成形体の変色(黄変)やシルバーの発生が目立つ。
(3) Evaluation of molding process stability (residence test)
The pellets before the pressure cooker produced in the examples and comparative examples were formed into a flat plate using a 40-ton injection molding machine (product name “EC40N”, manufactured by Toshiba Machine Co., Ltd.) at a molding temperature of 360 ° C. and a mold temperature of 80 ° C. (Thickness 3.0 mm × length 40 mm × width 80 mm). For the evaluation of residence, 20 shots were molded in a 20-second cycle until the temperature condition was stabilized at a molding temperature of 360 ° C., and then the cycle was changed to 300 seconds to collect 5 shots (20 minutes). The resulting molded product was evaluated for discoloration and occurrence of silver according to the following criteria.
A: Discoloration (yellowing) of the molded body and generation of silver are not observed.
B: Discoloration (yellowing) of the molded product and generation of silver are partially observed, but not so conspicuous.
C: Discoloration (yellowing) of the molded body and generation of silver are conspicuous.

第1表から、特定の成分を含む実施例1、2、12、13、14、及び参考例1〜11の樹脂組成物は、プレッシャークッカー試験後の粘度平均分子量の低下率が20%以下であるため、低温での耐衝撃性に優れる。また、少なくとも15分以上高温で滞留しても、変色等の影響が小さく、加工安定性も良好である。
一方、第2表によれば、比較例1〜4の樹脂組成物は、酸化防止剤(B)を含有していないため、少なくとも10分程度高温で滞留すると、変色が見られ、加工安定性が劣ることがわかる。また、比較例5〜12の樹脂組成物は、プレッシャークッカー試験後の粘度平均分子量の低下率が20%を超えるため、本実施例に比べて、低温での耐衝撃性に問題がある結果となった。
From Table 1, the resin compositions of Examples 1, 2, 12, 13, 14 and Reference Examples 1 to 11 containing specific components have a decrease rate of the viscosity average molecular weight after the pressure cooker test of 20% or less. Therefore, it has excellent impact resistance at low temperatures. Moreover, even if it stays at a high temperature for at least 15 minutes or more, the influence of discoloration or the like is small, and the processing stability is also good.
On the other hand, according to Table 2, since the resin compositions of Comparative Examples 1 to 4 do not contain the antioxidant (B), discoloration is observed when retained at a high temperature for at least about 10 minutes, and the processing stability Is inferior. In addition, the resin compositions of Comparative Examples 5 to 12 have a problem in impact resistance at low temperatures compared to the present example because the rate of decrease in the viscosity average molecular weight after the pressure cooker test exceeds 20%. became.

本発明のポリカーボネート樹脂組成物は、高温で滞留しても変色等が生じず加工安定性が良好であると共に、該樹脂組成物からなる成形品は、高温、高湿環境下で繰り返し使用されても、優れた低温での耐衝撃性を長期間にわたり維持できる。
そのため、本発明のポリカーボネート樹脂組成物からなる成形体は、冷凍使用された後にスチーム洗浄されるチョコレート加工型やアイス加工型、あるいは、冷凍食品の保存用コンテナー、魚介類の加工プール、食器乾燥機、炊飯機等に用いられる容器等や、高温、高湿環境下にある計装ボックス、ジャンクションボックス、寒冷地の地下埋設部材等の工業部品等の用途に好適である。
The polycarbonate resin composition of the present invention has good processing stability without causing discoloration or the like even if it stays at a high temperature, and the molded product made of the resin composition is repeatedly used in a high temperature and high humidity environment. However, excellent impact resistance at low temperatures can be maintained over a long period of time.
Therefore, the molded body made of the polycarbonate resin composition of the present invention is a chocolate processing mold or ice processing mold that is steam-washed after being used frozen, or a container for storing frozen food, a processed pool for seafood, a tableware dryer It is suitable for applications such as containers used in rice cookers, etc., and industrial parts such as instrumentation boxes, junction boxes, underground buried members in cold regions under high temperature and high humidity environments.

Claims (8)

芳香族ポリカーボネート−ポリオルガノシロキサン共重合体(A−1)5〜100質量%、及び(A−1)成分以外の芳香族ポリカーボネート樹脂として、ビスフェノールAポリカーボネート(A−2)95〜0質量%であり、ポリオルガノシロキサン単位の含有量が1質量%以上となる芳香族ポリカーボネート樹脂混合物(A)100質量部に対して、リン系酸化防止剤(B)0.002〜0.200質量部を含み、エポキシ化安定剤(C)を実質含まない、ポリカーボネート樹脂組成物であって、下記計算式(I)から算出されるポリカーボネート樹脂組成物の粘度平均分子量の低下率Pが20%以下である、ポリカーボネート樹脂組成物。
計算式(I):P〔%〕=(M−M)/M×100
(上記式(I)中、Mは、前記ポリカーボネート樹脂組成物をペレットとした後に測定した該樹脂組成物の粘度平均分子量であり、Mは、該ペレットを、121℃に設定したプレッシャークッカー試験機に投入して300時間処理した後に測定した、プレッシャークッカー試験後の該樹脂組成物の粘度平均分子量を表す。Pは、前記プレッシャークッカー試験前の該樹脂組成物の粘度平均分子量に対する、該試験後の該樹脂組成物の粘度平均分子量の低下率を表す。)
As aromatic polycarbonate resin other than the aromatic polycarbonate-polyorganosiloxane copolymer (A-1) 5 to 100% by mass and the component (A-1), bisphenol A polycarbonate (A-2) 95 to 0% by mass Yes, with respect to 100 parts by mass of the aromatic polycarbonate resin mixture (A) having a polyorganosiloxane unit content of 1% by mass or more, including 0.002 to 0.200 parts by mass of the phosphorus-based antioxidant (B) The polycarbonate resin composition does not substantially contain the epoxidation stabilizer (C), and the reduction rate P of the viscosity average molecular weight of the polycarbonate resin composition calculated from the following calculation formula (I) is 20% or less. Polycarbonate resin composition.
Calculation formula (I): P [%] = (M 1 −M 2 ) / M 1 × 100
(In the above formula (I), M 1 is the viscosity average molecular weight of the resin composition measured after making the polycarbonate resin composition into pellets, and M 2 is a pressure cooker in which the pellets are set at 121 ° C. It represents the viscosity average molecular weight of the resin composition after the pressure cooker test, measured after being put into a testing machine for 300 hours, and P is the viscosity average molecular weight of the resin composition before the pressure cooker test. It represents the rate of decrease in viscosity average molecular weight of the resin composition after the test.)
前記計算式(I)中のMで表される前記プレッシャークッカー試験後の前記樹脂組成物の粘度平均分子量が16000以上である、請求項1に記載のポリカーボネート樹脂組成物。 The viscosity-average molecular weight of formula (I) wherein the resin composition after the pressure cooker test, represented by M 2 in is 16000 or more, the polycarbonate resin composition of claim 1. リン系酸化防止剤(B)が、ホスファイト系酸化防止剤又はホスフィン系酸化防止剤である、請求項1又は2に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to claim 1 or 2, wherein the phosphorus antioxidant (B) is a phosphite antioxidant or a phosphine antioxidant. リン系酸化防止剤(B)がホスファイト系酸化防止剤であり、(B)成分の含有量が、(A)成分100質量部に対して0.002〜0.020質量部である、請求項1〜3のいずれかに記載のポリカーボネート樹脂組成物。   The phosphorus-based antioxidant (B) is a phosphite-based antioxidant, and the content of the component (B) is 0.002 to 0.020 parts by mass with respect to 100 parts by mass of the component (A). Item 4. The polycarbonate resin composition according to any one of Items 1 to 3. リン系酸化防止剤(B)がホスフィン系酸化防止剤である、請求項1〜3のいずれかに記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition in any one of Claims 1-3 whose phosphorus antioxidant (B) is a phosphine antioxidant. 請求項1〜5のいずれかに記載のポリカーボネート樹脂組成物からなる、成形品。   The molded article which consists of a polycarbonate resin composition in any one of Claims 1-5. 前記成形品が、90℃以上の温水及び/又は100℃以上のスチームで洗浄が行われる製品又は部品である、請求項6に記載の成形品。   The molded article according to claim 6, wherein the molded article is a product or a part that is cleaned with warm water of 90 ° C or higher and / or steam of 100 ° C or higher. 前記成形品が、温度60℃以上、相対湿度90%以上の環境下で使われる製品又は部品である、請求項6又は7に記載の成形品。   The molded article according to claim 6 or 7, wherein the molded article is a product or a part used in an environment having a temperature of 60 ° C or higher and a relative humidity of 90% or higher.
JP2016015425A 2016-01-29 2016-01-29 Polycarbonate resin composition, molded article Active JP6427123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015425A JP6427123B2 (en) 2016-01-29 2016-01-29 Polycarbonate resin composition, molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015425A JP6427123B2 (en) 2016-01-29 2016-01-29 Polycarbonate resin composition, molded article

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012017046A Division JP5973738B2 (en) 2012-01-30 2012-01-30 Polycarbonate resin composition, molded product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017240894A Division JP6587193B2 (en) 2017-12-15 2017-12-15 Polycarbonate resin composition, molded product

Publications (2)

Publication Number Publication Date
JP2016056385A true JP2016056385A (en) 2016-04-21
JP6427123B2 JP6427123B2 (en) 2018-11-21

Family

ID=55756632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015425A Active JP6427123B2 (en) 2016-01-29 2016-01-29 Polycarbonate resin composition, molded article

Country Status (1)

Country Link
JP (1) JP6427123B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188651A (en) * 2004-12-06 2006-07-20 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded form
JP2007302793A (en) * 2006-05-11 2007-11-22 Idemitsu Kosan Co Ltd Light-diffusing resin composition and light-diffusing plate obtained using the same
JP2008208151A (en) * 2007-02-23 2008-09-11 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded article obtained therefrom
JP2008540808A (en) * 2005-05-20 2008-11-20 ゼネラル・エレクトリック・カンパニイ Light diffusing film, method for producing the same, and article using the same
JP2009280725A (en) * 2008-05-23 2009-12-03 Idemitsu Kosan Co Ltd Flame-retardant polycarbonate resin composition and light reflection member
JP2011174031A (en) * 2010-02-01 2011-09-08 Idemitsu Kosan Co Ltd Polycarbonate resin composition
JP2018062665A (en) * 2017-12-15 2018-04-19 出光興産株式会社 Polycarbonate resin composition, molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188651A (en) * 2004-12-06 2006-07-20 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded form
JP2008540808A (en) * 2005-05-20 2008-11-20 ゼネラル・エレクトリック・カンパニイ Light diffusing film, method for producing the same, and article using the same
JP2007302793A (en) * 2006-05-11 2007-11-22 Idemitsu Kosan Co Ltd Light-diffusing resin composition and light-diffusing plate obtained using the same
JP2008208151A (en) * 2007-02-23 2008-09-11 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded article obtained therefrom
JP2009280725A (en) * 2008-05-23 2009-12-03 Idemitsu Kosan Co Ltd Flame-retardant polycarbonate resin composition and light reflection member
JP2011174031A (en) * 2010-02-01 2011-09-08 Idemitsu Kosan Co Ltd Polycarbonate resin composition
JP2018062665A (en) * 2017-12-15 2018-04-19 出光興産株式会社 Polycarbonate resin composition, molded article

Also Published As

Publication number Publication date
JP6427123B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5973738B2 (en) Polycarbonate resin composition, molded product
TWI591122B (en) Copolycarbonate composition and article containing the same
JP7386297B2 (en) Polycarbonate resin compositions and molded products thereof
KR101764760B1 (en) Polycarbonate compositions, methods of their manufacture, and articles thereof
JP6913028B2 (en) Polycarbonate resin composition
JP5819587B2 (en) Polycarbonate-polydiorganosiloxane copolymer
JP5379424B2 (en) Polycarbonate resin composition for sliding, and molded product using the resin composition
KR102251220B1 (en) Halogen Free Flame Retardant Polycarbonate/Thermoplastic Polyester Molding Compositions with Polymeric Phosphorus Flame Retardant
WO2018159788A1 (en) Polycarbonate–polyorganosiloxane copolymer, flame-retardant polycarbonate resin composition including same, and molded product thereof
JP6587193B2 (en) Polycarbonate resin composition, molded product
JP5431751B2 (en) Polycarbonate resin composition excellent in slidability and molded product using the same
JP5619386B2 (en) Polycarbonate resin composition
CN112368334A (en) Polycarbonate resin composition and molded article thereof
JP6427123B2 (en) Polycarbonate resin composition, molded article
JP5753776B2 (en) Aromatic polycarbonate resin composition
KR101895384B1 (en) Polysiloxane-polycarbonate copolymer with improved flame retardancy and method for preparing the same
KR101938746B1 (en) Thermoplastic resin composition with improved flame retardancy and impact resistance, method for preparing the same and molded article thereof
KR101945370B1 (en) Polysiloxane-polycarbonate copolymer with improved flame retardancy and method for preparing the same, and molded article comprising the same
JP2018059028A (en) Polycarbonate-based resin composition and molded body
KR102213376B1 (en) Polysiloxane-polycarbonate copolymer having excellent impact resistance, flame retardancy and flowability and method for preparing the same
JPWO2018159780A1 (en) Flame-retardant polycarbonate resin composition and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181026

R150 Certificate of patent or registration of utility model

Ref document number: 6427123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150