JP2016056037A - Composite oxide ceramic and constituent member of semiconductor manufacturing equipment - Google Patents

Composite oxide ceramic and constituent member of semiconductor manufacturing equipment Download PDF

Info

Publication number
JP2016056037A
JP2016056037A JP2014181421A JP2014181421A JP2016056037A JP 2016056037 A JP2016056037 A JP 2016056037A JP 2014181421 A JP2014181421 A JP 2014181421A JP 2014181421 A JP2014181421 A JP 2014181421A JP 2016056037 A JP2016056037 A JP 2016056037A
Authority
JP
Japan
Prior art keywords
amount
mol
powder
oxide
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014181421A
Other languages
Japanese (ja)
Other versions
JP6489467B2 (en
Inventor
尚史 楠瀬
Hisafumi Kususe
尚史 楠瀬
幸太 堤
Kota Tsutsumi
幸太 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Kagawa University NUC
Original Assignee
Nippon Tungsten Co Ltd
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd, Kagawa University NUC filed Critical Nippon Tungsten Co Ltd
Priority to JP2014181421A priority Critical patent/JP6489467B2/en
Publication of JP2016056037A publication Critical patent/JP2016056037A/en
Application granted granted Critical
Publication of JP6489467B2 publication Critical patent/JP6489467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered body of a composite oxide ceramic suitable as a constituent member of semiconductor manufacturing equipment, which has high corrosion resistance (plasma resistance) and whose electric resistivity can be easily controlled.SOLUTION: Provided is a sintered body of a ZrOcomposite oxide ceramic composed of ZrOin which YO, TiO, and an oxide of a fourth metal, Me, are solid-dissolved. Because presence of solid-dissolved TiOand an oxide of the fourth metal, Me (where, Me represents one or two or more of Co, Cr, and Mo) enables an electric resistivity of the sintered body to be controlled to 10to 10(Ω cm), prevention of static build-up in the sintered body of a ZrOcomposite oxide ceramic by plasma becomes possible while high plasma resistance is maintained.SELECTED DRAWING: None

Description

本発明は、半導体製造装置の構成部材、特に半導体の製造工程において腐食ガスを用いたプラズマに曝露される静電チャック、外周リング、シャワープレート、チャンバー等に好適に用いられる複合酸化物セラミックスに関する。   The present invention relates to a component oxide of a semiconductor manufacturing apparatus, and more particularly to a composite oxide ceramic suitably used for an electrostatic chuck, an outer ring, a shower plate, a chamber and the like exposed to plasma using a corrosive gas in a semiconductor manufacturing process.

半導体製造におけるプラズマエッチング装置などのチャンバー内の構成部材は、腐食ガスによる腐食環境下に曝される。前記腐食ガスがプラズマにより活性化している場合は、腐食はより顕著となる。   Components in a chamber such as a plasma etching apparatus in semiconductor manufacturing are exposed to a corrosive environment caused by a corrosive gas. When the corrosive gas is activated by plasma, the corrosion becomes more prominent.

これら腐食ガスに曝露される構成部材の表面には、その構成部材と腐食ガスとの反応物が生成する。これにより、構成部材は腐食し、その形状が変化する。そして、設計の形状を保てなくなる。前記反応物の生成では、生成物の気化、揮発、剥離が生じる。生じたこれらは、チャンバー内のパーティクルとなり、チャンバー内やエッチング処理物(特に半 導体ウェハ)を汚染する。エッチング処理物にパーティクルが付着すると、絶縁不良や形状不良などが発生する。このことは、半導体製造においての歩留向上を妨げる要因である。   A reaction product between the constituent member and the corrosive gas is generated on the surface of the constituent member exposed to the corrosive gas. Thereby, a structural member corrodes and the shape changes. In addition, the design shape cannot be maintained. In the production of the reactant, vaporization, volatilization, and peeling of the product occur. These generated particles become particles in the chamber and contaminate the chamber and the etched product (especially a semiconductor wafer). If particles adhere to the etched product, insulation failure or shape failure occurs. This is a factor that hinders yield improvement in semiconductor manufacturing.

そのため、腐食ガスを用いたプラズマに曝露させる構成部材には、セラミックスの中でもプラズマ腐食に強いAl系、Y系、MgO系の材料が用いられている。この中でも、Y系、MgO系は特に強い。 For this reason, Al 2 O 3 , Y 2 O 3 , and MgO materials that are resistant to plasma corrosion among ceramics are used for components exposed to plasma using a corrosive gas. Among these, Y 2 O 3 and MgO are particularly strong.

特許文献1は、酸化イットリウムと、酸化ジルコニウム、酸化ハフニウム、酸化スカンジウム、酸化ニオブ、酸化サマリウム、酸化イッテルビウム、酸化エルビウム、酸化セリウムのうちいずれか1種以上との固溶体からなる、電気抵抗率が10〜1015(Ω・cm)程度(図1より)のセラミック含有物品を開示している。このセラミックス含有物品は酸化イットリウム基であるために、耐プラズマ性が高く、電気抵抗も1010〜1012(Ω・cm)を含む範囲で調整できると記載されている。 Patent Document 1 has an electrical resistivity of 10 consisting of a solid solution of yttrium oxide and any one or more of zirconium oxide, hafnium oxide, scandium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, and cerium oxide. A ceramic-containing article of about 7 to 10 15 (Ω · cm) (from FIG. 1) is disclosed. Since this ceramic-containing article is based on yttrium oxide, it is described that it has high plasma resistance and electrical resistance can be adjusted within a range including 10 10 to 10 12 (Ω · cm).

特許文献2は、周期律表3A族に属する元素のうち少なくとも1種の元素と周期律表4A族に属する元素のうち少なくとも1種の元素とを含む酸化物を主体とする耐食性セラミックス材料を開示している。3A族に属する元素としてはY、La、Yb、Dyが、4A族に属する元素としてはTi、Zr、Hfが記載されている。4A族元素がTiの場合は還元雰囲気中で処理すると導電性が付与できる旨記載がある(段落0022)。   Patent Document 2 discloses a corrosion-resistant ceramic material mainly composed of an oxide containing at least one element among elements belonging to Group 3A of the periodic table and at least one element among elements belonging to Group 4A of the periodic table. doing. Y, La, Yb and Dy are described as elements belonging to Group 3A, and Ti, Zr and Hf are described as elements belonging to Group 4A. There is a statement that when the 4A group element is Ti, conductivity can be imparted by treatment in a reducing atmosphere (paragraph 0022).

特許文献3は、イットリアに、ジルコニアと、アルミナ、マグネシア、シリカ、カルシアおよびチタニアのうち1種以上が分散した耐プラズマ性セラミックス溶射膜を開示している。   Patent Document 3 discloses a plasma-resistant ceramic sprayed film in which at least one of zirconia and alumina, magnesia, silica, calcia, and titania is dispersed in yttria.

特開2009−035469号公報JP 2009-035469 A 特開2000−001362号公報JP 2000-001362 A 特開2009−068067号公報JP 2009-0608067 A

特許文献1に記載のセラミック含有物品の焼成雰囲気は段落0027などに記載のように還元雰囲気である。還元雰囲気(COガス介在中の真空雰囲気、希ガス雰囲気、水素雰囲気、窒素雰囲気など)での焼成炉は、大気焼成炉と比較して導入や運転に大きなコストがかかる。また、Y成分(Y、YAM化合物など)を60(mol%)以上含むために、原料のコストが高いという問題がある。 The firing atmosphere of the ceramic-containing article described in Patent Document 1 is a reducing atmosphere as described in paragraph 0027 and the like. A firing furnace in a reducing atmosphere (such as a vacuum atmosphere containing CO gas, a rare gas atmosphere, a hydrogen atmosphere, or a nitrogen atmosphere) is expensive to introduce and operate compared to an air firing furnace. Moreover, since the Y component (Y 2 O 3 , YAM compound, etc.) is contained in 60 (mol%) or more, there is a problem that the cost of the raw material is high.

また、特許文献2に記載の内容からは、YとTiO、YとZrOを混合した例は示されているが、Y中にZrOを混合した上で導電性を有する耐食性セラミックス材料は開示されていない。また、4A族元素酸化物としてZrOが挙げられているが、実施例中のZrOの含有量は多くても25wt%程度であり、十分な強度が得られない。YとTiOはともに強度が低い。 Further, on the contents described in Patent Document 2, an example of a mixture of Y 2 O 3 and TiO 2, Y 2 O 3 and ZrO 2 are shown, but a mixture of ZrO 2 in Y 2 O 3 No corrosion-resistant ceramic material having electrical conductivity is disclosed. Although ZrO 2 is mentioned as a 4A group element oxide, the content of ZrO 2 in the embodiment is about 25 wt% at most, sufficient strength can not be obtained. Both Y 2 O 3 and TiO 2 have low strength.

特許文献3は、組成的には耐腐食性や導電性が期待できる組成であるが、溶射膜についての提案であるために、用途は限られたものとなる。また、ZrOの含有量は多くて18(mol%)であり、十分な強度が得られない。Yは例えばZrOやAlと比較して高価である。 Patent Document 3 is a composition that can be expected to have corrosion resistance and conductivity in terms of composition, but is limited in application because it is a proposal for a thermal sprayed film. Further, the ZrO 2 content is at most 18 (mol%), and sufficient strength cannot be obtained. Y 2 O 3 is more expensive than, for example, ZrO 2 or Al 2 O 3 .

以上に説明したように、半導体製造工程における腐食ガスを用いたプラズマ処理を実施する装置内の構成部材としては、パーティクル発生の問題から酸化アルミニウムなどのセラミック材料が主に使用されている。しかし、これらの材料の耐腐食性は、イットリアやマグネシアなどと比較すると低い。そのために構成部材が腐食したり、パーティクルを発生させたりする問題を有している。   As described above, a ceramic material such as aluminum oxide is mainly used as a component in an apparatus for performing plasma treatment using a corrosive gas in a semiconductor manufacturing process because of the problem of particle generation. However, the corrosion resistance of these materials is low compared to yttria and magnesia. Therefore, there is a problem that the constituent members are corroded and particles are generated.

特許文献1〜3は、いずれも耐腐食性に優れたセラミックス材料を開示している。しかしこれらの材料は、主としてY基であり強度的には十分でない場合がある。また、単体では絶縁体であるために、プラズマによる帯電を防ぐことや、ジョンセン・ラーベックタイプの静電チャックには利用できない。また、YやYAGなどのY成分を含む材料は比較的高価であるという問題もある。 Patent Documents 1 to 3 all disclose ceramic materials having excellent corrosion resistance. However, these materials are mainly Y 2 O 3 groups and may not be sufficient in strength. Moreover, since it is an insulator alone, it cannot be charged by plasma or used for a Johnsen-Rahbek type electrostatic chuck. Further, there is a problem that a material containing a Y component such as Y 2 O 3 or YAG is relatively expensive.

以上の従来技術の問題に鑑み、本発明が解決しようとする課題は、十分な耐腐食性を有し、ジョンセン・ラーベックタイプの静電チャックや帯電防止用に使用できる程度の電気抵抗率に容易に制御できる、半導体製造装置の構成部材として好適な複合酸化物セラミックス焼結体を提供することにある。また、低コストにて製造できる大気焼結炉を用いて前記セラミックス焼結体を得ることをも課題とする。なお、本明細書でいう「耐腐食性」とは、ハロゲン系の腐食ガスまたはハロゲン系の腐食ガスを用いたプラズマへの耐性を意味し、「耐プラズマ性」あるいは「プラズマ耐性」ともいう。   In view of the above-described problems of the prior art, the problem to be solved by the present invention is to have a sufficient corrosion resistance and to have an electrical resistivity that can be used for a Johnsen-Rahbek type electrostatic chuck or antistatic. An object of the present invention is to provide a complex oxide ceramics sintered body that can be easily controlled and is suitable as a component of a semiconductor manufacturing apparatus. Another object of the present invention is to obtain the ceramic sintered body using an atmospheric sintering furnace that can be manufactured at low cost. Note that “corrosion resistance” in the present specification means resistance to plasma using halogen-based corrosive gas or halogen-based corrosive gas, and is also referred to as “plasma resistance” or “plasma resistance”.

本発明の一観点によれば、ZrOに、Y、TiO、および第4金属Meの酸化物が固溶した複合酸化物セラミックス焼結体であって、
ZrOの物質量(mol)をA、
の物質量(mol)をB、
TiOの物質量(mol)をC、
前記第4金属Meの酸化物をMeO(ただしxは0.5≦x≦3である不定数)、MeOの物質量(mol)をDとした際に、
下記の式(1)〜式(3)全てを満たし、
前記第4金属MeがMo、Cr、Coのうちのいずれか1種または2種以上である、複合酸化物セラミックス焼結体が提供される。
式(1): 0.5 ≦ A/(A+B) ≦ 0.95
式(2): 0.01 ≦ (C+D)/(A+B+C+D) ≦ 0.5
式(3): 0.01 ≦ D/(C+D) ≦ 0.50
According to one aspect of the present invention, there is provided a composite oxide ceramic sintered body in which an oxide of Y 2 O 3 , TiO 2 , and a fourth metal Me is dissolved in ZrO 2 ,
The amount (mol) of ZrO 2 is A,
The amount of substance (mol) of Y 2 O 3 is B,
The amount (mol) of TiO 2 is C,
When the oxide of the fourth metal Me is MeO x (where x is an inconstant that satisfies 0.5 ≦ x ≦ 3), and the substance amount (mol) of MeO x is D,
Satisfy all the following formulas (1) to (3),
There is provided a composite oxide ceramic sintered body in which the fourth metal Me is one or more of Mo, Cr, and Co.
Formula (1): 0.5 <= A / (A + B) <= 0.95
Formula (2): 0.01 ≦ (C + D) / (A + B + C + D) ≦ 0.5
Formula (3): 0.01 ≦ D / (C + D) ≦ 0.50

また、本発明の他の観点によれば、前記本発明の複合酸化物セラミックス焼結体からなる半導体製造装置の構成部材が提供される。   Moreover, according to the other viewpoint of this invention, the structural member of the semiconductor manufacturing apparatus which consists of the complex oxide ceramics sintered compact of the said this invention is provided.

さらに、本発明の他の観点によれば、ZrO粉末と、Y粉末と、TiO粉末と、下記第4金属Meの酸化物粉末であるMeO粉末(ただしxは0.5≦x≦3である不定数)とを混合し、プレス成形した後に大気雰囲気、1300〜1800℃にて焼結する、電気抵抗率が10〜1013(Ω・cm)である複合酸化物セラミックスの製造方法が提供される。
第4金属Me:Mo、Cr、Coのうちのいずれか1種または2種以上
Furthermore, according to another aspect of the present invention, ZrO 2 powder, Y 2 O 3 powder, TiO 2 powder, and MeO x powder which is an oxide powder of the following fourth metal Me (where x is 0.5) ≦ x ≦ 3) is mixed, press-molded, and then sintered in an air atmosphere at 1300 to 1800 ° C., a composite oxide having an electric resistivity of 10 7 to 10 13 (Ω · cm) A method for producing a ceramic is provided.
Fourth metal Me: any one or more of Mo, Cr and Co

本発明の複合酸化物セラミックス焼結体は、ZrOに、特定量のYを固溶しているので、Y基のセラミックスと同等の耐腐食性(プラズマ耐性)を発揮する。また、本発明の複合酸化物セラミックス焼結体は、特定量のTiOおよび前記第4金属Meの酸化物も固溶しているので、電気抵抗率を10〜1013(Ω・cm)程度に容易に制御できる。したがって、本発明の複合酸化物セラミックス焼結体は、高いプラズマ耐性を維持したまま、プラズマによる帯電を防止でき、ジョンセン・ラーベックタイプの静電チャックを始めとして半導体製造装置の構成部材として好適に使用できる。 Since the composite oxide ceramic sintered body of the present invention has a specific amount of Y 2 O 3 dissolved in ZrO 2 , it exhibits the same corrosion resistance (plasma resistance) as Y 2 O 3 based ceramics. To do. Moreover, since the composite oxide ceramic sintered body of the present invention also has a specific amount of TiO 2 and the oxide of the fourth metal Me, the electrical resistivity is 10 7 to 10 13 (Ω · cm). Easy to control. Therefore, the composite oxide ceramic sintered body of the present invention can prevent charging due to plasma while maintaining high plasma resistance, and is suitable as a component of a semiconductor manufacturing apparatus including a Johnsen-Rahbek type electrostatic chuck. Can be used.

また、本発明の複合酸化物セラミックス焼結体は、同等の電気抵抗率を有する従来のセラミックスでは困難であった大気雰囲気焼結にて製造可能であり、低コストにて製造可能である。   Moreover, the composite oxide ceramic sintered body of the present invention can be manufactured by air atmosphere sintering, which was difficult with conventional ceramics having equivalent electric resistivity, and can be manufactured at low cost.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明の複合酸化物セラミックスは以下に示す方法にて製造できる。また、得られた複合酸化物セラミックスは半導体製造装置の構成部材として使用できる。また、本発明の複合酸化物セラミックスの中でも10〜1012(Ω・cm)の電気抵抗率を有するものは、ジョンセン・ラーベックタイプの静電チャックとしても使用できる。 The composite oxide ceramic of the present invention can be produced by the following method. Moreover, the obtained complex oxide ceramics can be used as a constituent member of a semiconductor manufacturing apparatus. Among the complex oxide ceramics of the present invention, those having an electrical resistivity of 10 9 to 10 12 (Ω · cm) can also be used as a Johnsen-Rahbek type electrostatic chuck.

出発原料として、Yの粉末、ZrOの粉末、TiOの粉末、Cr、Mo、Coの酸化物粉末を用いる。それぞれの配合について、以下に述べる。 As starting materials, Y 2 O 3 powder, ZrO 2 powder, TiO 2 powder, Cr, Mo, and Co oxide powders are used. Each formulation is described below.

まず、ZrOの物質量(mol)を「A」、Yの物質量(mol)を「B」とした際、「式(1): 0.5 ≦ A/(A+B) ≦ 0.95」を満たすようにZrOの粉末とYの粉末を配合する。 First, when the substance amount (mol) of ZrO 2 is “A” and the substance amount (mol) of Y 2 O 3 is “B”, “Formula (1): 0.5 ≦ A / (A + B) ≦ 0 .95 "is blended with ZrO 2 powder and Y 2 O 3 powder.

ZrOに対するYの固溶限は約50(mol%)(ZrOとYの物質量の比が50:50)である。Yの占める割合が50(mol%)を超えた場合、セラミックス中にY相が生じ、セラミックスの強度が大きく低下してしまう。 The solid solubility limit of Y 2 O 3 with respect to ZrO 2 is about 50 (mol%) (the ratio of the amount of ZrO 2 to Y 2 O 3 is 50:50). When the proportion of Y 2 O 3 exceeds 50 (mol%), a Y 2 O 3 phase is generated in the ceramic, and the strength of the ceramic is greatly reduced.

ZrOはセラミックスの中では強度が高いが、プラズマ耐性はAlより若干低い。一方、Yは、強度は低いが、プラズマ耐性が非常に高い。ZrOはYを固溶することでプラズマ耐性が向上する。しかし、固溶量が5(mol%)より少ない場合は、Alより低いプラズマ耐性となってしまう。つまり、式(1)を満たすようにZrOとYを配合することで、プラズマ耐性、強度とも十分に高いセラミックスとすることができる。 ZrO 2 has high strength among ceramics, but its plasma resistance is slightly lower than that of Al 2 O 3 . On the other hand, Y 2 O 3 has a low strength but a very high plasma resistance. ZrO 2 improves plasma resistance by dissolving Y 2 O 3 in solid solution. However, when the amount of the solid solution is less than 5 (mol%), the plasma resistance is lower than that of Al 2 O 3 . That is, by blending ZrO 2 and Y 2 O 3 so as to satisfy the formula (1), a ceramic having both sufficiently high plasma resistance and strength can be obtained.

TiOと、CrO、MoO、CoOは、複合酸化物セラミックスの電気抵抗率を下げるために添加する。これらの酸化物の特徴は、還元雰囲気の焼結に限らず、大気雰囲気焼結によっても導電性を維持できる点にある。 TiO 2 , CrO x , MoO x , and CoO x are added to lower the electrical resistivity of the composite oxide ceramic. The feature of these oxides is that the conductivity can be maintained not only by sintering in a reducing atmosphere but also by atmospheric atmosphere sintering.

ここで、TiOの物質量(mol)をC、前記第4金属Meの酸化物をMeO(ただしxは0.5≦x≦3である不定数)、MeOの物質量(mol)をDと表す。TiOとCrO、MoO、CoOは、耐プラズマ性の点ではYおよびZrOよりも劣る。そのために、複合酸化物セラミックス中で含有できる量は、上限が50(mol%)(C+D:「TiOとCrO、MoO、CoOの物質量(mol)の合計」が、A+B+C+D:「ZrO、Y、TiO、CrO、MoO、CoOの物質量(mol)の合計」の50%以内)であり、この量を超えると、複合酸化物セラミックスの耐プラズマ性がアルミナと同等程度まで落ちる。 Here, the substance amount (mol) of TiO 2 is C, the oxide of the fourth metal Me is MeO x (where x is a non-constant where 0.5 ≦ x ≦ 3), and the substance amount (mol) of MeO x. Is represented as D. TiO 2 and CrO x , MoO x and CoO x are inferior to Y 2 O 3 and ZrO 2 in terms of plasma resistance. Therefore, the upper limit of the amount that can be contained in the composite oxide ceramics is 50 (mol%) (C + D: “total amount of TiO 2 and CrO x , MoO x , CoO x (mol)” is A + B + C + D: “ ZrO 2 , Y 2 O 3 , TiO 2 , CrO x , MoO x , and CoO x (within 50% of the total amount (mol)), and if this amount is exceeded, the plasma resistance of the composite oxide ceramics Falls to the same level as alumina.

複合酸化物セラミックスに、前述の導電性を付与するのに最低限必要な量(C+D)は約1(mol%)((C+D)/(A+B+C+D))である(式(2))。   The minimum amount (C + D) necessary for imparting the aforementioned conductivity to the composite oxide ceramics is about 1 (mol%) ((C + D) / (A + B + C + D)) (formula (2)).

また、TiOの物質量(mol)をC、前記第4金属Meの酸化物をMeO(ただしxは0.5≦x≦3である不定数)、MeOの物質量(mol)をDとした際に、「式(3):0.01 ≦ D/(C+D) ≦ 0.50」を満たすように、TiOの粉末、MeOの粉末を配合する。ただし、前記MeOは、CrO、MoO、CoOのうちいずれか1種または2種以上であり、前記Dはこれらの物質量の合計である。 Further, the amount of TiO 2 (mol) is C, the oxide of the fourth metal Me is MeO x (where x is a non-constant where 0.5 ≦ x ≦ 3), and the amount of MeO x (mol) is When D is set, a TiO 2 powder and a MeO x powder are blended so as to satisfy “Expression (3): 0.01 ≦ D / (C + D) ≦ 0.50”. However, the MeO x is one or more of CrO x , MoO x , and CoO x , and D is the total amount of these substances.

前記MeOのMeイオンが、焼結体中のTiサイトと置換することで、大気雰囲気焼結においても電気抵抗値が低くなる。TiOとMeOの合計量(C+D)に対し、MeO量(D)が1(mol%)より少なくなると、置換量が不十分となり、大気雰囲気焼結では電気抵抗値が下がらない。また、50(mol%)より多い場合は、置換に寄与しなかった残留MeOxが導電パスとして機能しないため、電気抵抗値が下がらない。 By replacing Me ions of MeO x with Ti sites in the sintered body, the electric resistance value is lowered even in the atmosphere atmosphere sintering. When the MeO x amount (D) is less than 1 (mol%) with respect to the total amount (C + D) of TiO 2 and MeO x , the substitution amount becomes insufficient, and the electric resistance value does not decrease in air atmosphere sintering. On the other hand, when the amount is more than 50 (mol%), the residual MeOx that has not contributed to the substitution does not function as a conductive path, and thus the electric resistance value does not decrease.

以上に述べた配合にて粉末を混合する。それぞれの粉末の粒度は0.2〜15μm程度、純度は99%以上が適当である。   The powder is mixed with the composition described above. Each powder has a particle size of about 0.2 to 15 μm and a purity of 99% or more.

前述の組成となるように原料粉末を配合した出発原料を混合する。混合は、公知の粉末混合方法で行えばよいが、ボールミルまたはビーズミルを用いて行うと、原料粉末の分散性および焼結性が良好な出発原料を得ることができる。前記混合時の溶媒は、水やエタノールなどの溶媒が適している。また、出発原料に成形用の有機バインダーを添加してよい。   The starting material in which the raw material powder is blended so as to have the above composition is mixed. The mixing may be carried out by a known powder mixing method, but if it is performed using a ball mill or a bead mill, a starting material having good dispersibility and sintering property of the raw material powder can be obtained. A solvent such as water or ethanol is suitable as the solvent for the mixing. An organic binder for molding may be added to the starting material.

混合後の出発原料に圧力を掛け、プレス成形する。プレス成形は、金型プレスまたはCIP(冷間静水圧プレス)成形で行うことができる。得られた成形体が有機バインダーを含む場合は、焼結以前に脱バインダー処理を行う。   Pressure is applied to the starting material after mixing and press molding. The press molding can be performed by a die press or CIP (cold isostatic pressing) molding. When the obtained molded body contains an organic binder, a binder removal treatment is performed before sintering.

前記成形体を、焼成温度1300℃〜1800℃程度で焼成し、焼結体を得る。この焼結体が本発明の複合酸化物セラミックスである。焼成雰囲気は、大気、アルゴン、窒素、真空など、いずれの方法を用いてもよい。本発明の複合酸化物セラミックスは大気雰囲気で焼成を行っても、プラズマによる帯電を防止でき、ジョンセン・ラーベックタイプの静電チャックに使用可能な1010〜1012(Ω・cm)程度の電気抵抗率とすることができる。 The molded body is fired at a firing temperature of about 1300 ° C. to 1800 ° C. to obtain a sintered body. This sintered body is the composite oxide ceramic of the present invention. The firing atmosphere may be any method such as air, argon, nitrogen, or vacuum. Even if the composite oxide ceramic of the present invention is fired in an air atmosphere, it is possible to prevent charging due to plasma, and an electric current of about 10 10 to 10 12 (Ω · cm) that can be used for a Johnsen-Rahbek type electrostatic chuck. It can be a resistivity.

また、得られた焼結体を、さらに大気中で熱処理して、色ムラの改善および均質化を行うことも可能である。なお、ホットプレス焼結を行う場合は、必ずしも前記成形工程は必要としない。例えば、混合後の出発原料をカーボン型に充填したまま、ホットプレスしてもよい。   Further, the obtained sintered body can be further heat-treated in the air to improve color uniformity and homogenize. In addition, when performing hot press sintering, the said formation process is not necessarily required. For example, hot pressing may be performed while the carbon fiber mold is filled with the mixed starting material.

以上の工程にて本発明の複合酸化物セラミックス焼結体が得られる。この焼結体に、必要であれば機械加工を行い所望の形状とすることにより、ジョンセン・ラーベック型の静電チャック等の、半導体製造装置の構成部材が得られる。   The composite oxide ceramic sintered body of the present invention is obtained through the above steps. If necessary, this sintered body is machined to obtain a desired shape, thereby obtaining a component of a semiconductor manufacturing apparatus such as a Johnsen-Rahbek type electrostatic chuck.

出発原料用の原料粉末は、純度99.9%以上のZrO粉末、純度99.9%以上のY粉末、純度99.9%以上のTiO粉末、純度99.9%以上のCr(酸化クロムIII)、MoO(酸化モリブデンVI)、Co(4酸化3コバルト)、Fe(酸化鉄III)粉末を選定した。これら原料粉末を秤量し、ボールミル混合した。原料粉末の配合比率を、表1〜表3に示す。なお、表1〜表3に記載の試料には本発明の範囲外の比較試料も含まれている。 The raw material powder for the starting material is a ZrO 2 powder having a purity of 99.9% or more, a Y 2 O 3 powder having a purity of 99.9% or more, a TiO 2 powder having a purity of 99.9% or more, and a purity of 99.9% or more. Cr 2 O 3 (chromium oxide III), MoO 3 (molybdenum oxide VI), Co 3 O 4 (3 cobalt oxide), and Fe 2 O 3 (iron oxide III) powders were selected. These raw material powders were weighed and mixed with a ball mill. Tables 1 to 3 show the blending ratio of the raw material powder. The samples listed in Tables 1 to 3 include comparative samples outside the scope of the present invention.

を除く原料粉末(酸化物)の配合の際は、酸化物中の金属原子の数を合わせるために、酸化物の金属元素の数を1とした上で、配合量を調整した。例えば、酸化クロム成分はCrの粉末として配合したが、Cr中にCr原子は2個存在するために、CrをCrO1.5として取り扱うことにより、物質量(mol)として他の添加物と比較できるようになる。粉末投入時の配合量の計算はこの方法にて行う。粉末配合量の物質量は同様に、CoはCoO4/3、FeはFeO1.5として扱った。MoOはMoが1個なので調整していない。たとえば、Co粉末に換えて、Co粉末を使用する場合には、これをCoO1.5として扱えばよい。 When blending the raw material powder (oxide) excluding Y 2 O 3 , the blending amount was adjusted after setting the number of metal elements of the oxide to 1 in order to match the number of metal atoms in the oxide. . For example, although the chromium oxide component has been formulated as a powder of Cr 2 O 3, in Cr 2 O 3 to Cr atoms are present two, by treating Cr 2 O 3 as CrO 1.5, amount of substance ( mol) and can be compared with other additives. Calculation of the blending amount at the time of powder charging is performed by this method. Similarly, the amount of powder blended was treated as CoO 4/3 for Co 3 O 4 and FeO 1.5 for Fe 2 O 3 . MoO 3 is not adjusted because there is only one Mo. For example, when using Co 2 O 3 powder instead of Co 3 O 4 powder, this may be handled as CoO 1.5 .

ボールミル混合には、ナイロン製の2Lポットおよび高純度で直径5mm〜12mmの球状ジルコニアボールを用いた。原料粉末を配合した出発原料にエタノール溶媒とボールを加え、ポットにて24時間混合した。混合後のスラリーを、60℃にて乾燥させてケーキを得た。ケーキをメノウ乳鉢で用いて粉砕し、目開き300μmの篩で整粒した。整粒した粉末を、20MPaで1軸金型成形した。成形体のサイズは、一辺が52.5mmの正方形、厚みが10mm程度であった。この成形体を大気雰囲気炉またはアルゴンガス雰囲気炉で焼結して、焼結体を得た。焼結温度はまず1300℃で焼成し、「密度が98%に満たない場合は50℃温度を上げて再度焼成を行う」という手順を繰り返し、密度が98%以上となった時点で焼結温度とした。上限は1800℃とした。得られた焼結体を、平面研削盤で、焼結体の表面を100μm程度研削して、これを評価用試料とした。   For the ball mill mixing, a 2L pot made of nylon and spherical zirconia balls having a high purity and a diameter of 5 mm to 12 mm were used. Ethanol solvent and balls were added to the starting material blended with the raw material powder and mixed in a pot for 24 hours. The mixed slurry was dried at 60 ° C. to obtain a cake. The cake was pulverized using an agate mortar and sized with a sieve having an opening of 300 μm. The sized powder was uniaxially molded at 20 MPa. The size of the molded body was a square having a side of 52.5 mm and a thickness of about 10 mm. This molded body was sintered in an air atmosphere furnace or an argon gas atmosphere furnace to obtain a sintered body. The sintering temperature is first fired at 1300 ° C., and the procedure of “if the density is less than 98%, raise the temperature at 50 ° C. and fire again” is repeated, and when the density reaches 98% or more, the sintering temperature It was. The upper limit was 1800 ° C. The obtained sintered body was ground on the surface of the sintered body by about 100 μm with a surface grinder, and this was used as a sample for evaluation.

評価としては、三点曲げ強度(強度)、プラズマ耐性、電気抵抗率の評価を行った。それぞれの評価方法の詳細を以下に示す。   As evaluation, three-point bending strength (strength), plasma resistance, and electrical resistivity were evaluated. Details of each evaluation method are shown below.

(三点曲げ強度)
評価用試料から3×4×40(mm)の試料を切り出し、JIS R 1601に示される三点曲げ試験を行った。表1〜表3において曲げ強度が400(MPa)以上の試料には「○」、400(MPa)未満の試料には「×」を記載した。
(3-point bending strength)
A 3 × 4 × 40 (mm) sample was cut out from the evaluation sample, and a three-point bending test shown in JIS R 1601 was performed. In Tables 1 to 3, “◯” is described for samples having a bending strength of 400 (MPa) or more, and “X” is described for samples having a bending strength of less than 400 (MPa).

(プラズマ耐性)
評価用試料を、直径30(mm)、厚み3(mm)まで機械加工した。この焼結体の一部をマスクテープにてマスクし、測定用試料とした。前記測定用試料にハロゲン系腐食ガスを用いたプラズマエッチングによるエッチングを行った。エッチングに用いた装置は、平行平板型反応性イオンプラズマエッチング装置である。エッチングの腐食ガスにはCFを使用した。前記CFの圧力は10(Pa)である。RF出力は1000W、照射合計時間は120分間である。この条件で、各試料をプラズマエッチングした。エッチング後にエッチング量を測定した。具体的には、エッチング後に測定用試料からマスクテープを剥がし、エッチング面とマスクされていた(エッチングされていない)面との段差を測定した。この段差をエッチング量(腐食量)とした。各試料のエッチング量を、Al単体の比較試料のエッチング量を1と定義して、これと比較した。前記段差は、輪郭形状測定機(サーフコム2800、株式会社東京精密製)にて測定した。
(Plasma resistance)
The sample for evaluation was machined to a diameter of 30 (mm) and a thickness of 3 (mm). A part of this sintered body was masked with a mask tape to obtain a measurement sample. The measurement sample was etched by plasma etching using a halogen-based corrosive gas. The apparatus used for etching is a parallel plate type reactive ion plasma etching apparatus. CF 4 was used as the etching corrosive gas. The pressure of the CF 4 is 10 (Pa). The RF output is 1000 W, and the total irradiation time is 120 minutes. Under these conditions, each sample was plasma etched. The etching amount was measured after the etching. Specifically, the mask tape was peeled off from the measurement sample after etching, and the step between the etched surface and the masked (unetched) surface was measured. This step was defined as the etching amount (corrosion amount). The etching amount of each sample was compared with this, defining the etching amount of a comparative sample of Al 2 O 3 alone as 1. The level difference was measured with a contour shape measuring machine (Surfcom 2800, manufactured by Tokyo Seimitsu Co., Ltd.).

(電気抵抗)
電気抵抗率測定は高抵抗率計(JIS K 6911規格)を準用して測定した。その測定条件は、大気環境中、27℃、印加電圧1000(V)である。
(Electrical resistance)
The electrical resistivity was measured using a high resistivity meter (JIS K 6911 standard). The measurement conditions are 27 ° C. and an applied voltage of 1000 (V) in the atmospheric environment.

表1〜表3に記載の試料について説明する。なお、表1〜表3において試料No.に「*」を付した試料は、本発明の範囲外の比較試料である。   The samples described in Tables 1 to 3 will be described. In Tables 1 to 3, the samples with “*” attached to the sample numbers are comparative samples outside the scope of the present invention.

表1に記載の試料No.101〜試料No.111は、TiOの物質量(C)を9(mol%)、MeO(D)の物質量を1(mol%)と一定にして、ZrO(A)とY(B)の物質量を変えた試料である。これらの試料は、試料No.108を除いて大気雰囲気にて焼結した。試料No.108は、カーボン治具を用いたアルゴンガス雰囲気(還元雰囲気)にて焼結した。 Sample No. described in Table 1 101-Sample No. 111 is the same as ZrO 2 (A) and Y 2 O 3 (B), with the amount of TiO 2 (C) being 9 (mol%) and the amount of MeO x (D) being 1 (mol%). This is a sample in which the amount of the substance is changed. These samples are designated as Sample No. Sintering was performed in an air atmosphere except for 108. Sample No. No. 108 was sintered in an argon gas atmosphere (reducing atmosphere) using a carbon jig.

Figure 2016056037
Figure 2016056037

表2に記載の試料のうち試料No.201〜試料No.216は、ZrOの物質量(A)とYの物質量(B)とを同じ比率とした上で、その物質量を変え、TiO(C)と第4金属酸化物MeOの物質量(D)を変えた試料である。これらの試料においてTiOと第4金属酸化物MeOは9:1の物質量比となるように調整した。なお、表2に記載の試料のうち試料No.217〜試料No.221は、その他本発明の範囲内の試料である。 Among the samples listed in Table 2, sample No. 201-Sample No. In 216, the amount of ZrO 2 (A) and the amount of Y 2 O 3 (B) were set to the same ratio, and the amount of TiO 2 (C) and the fourth metal oxide MeO x were changed. This is a sample in which the amount of substance (D) is changed. In these samples, TiO 2 and the fourth metal oxide MeO x were adjusted to have a mass ratio of 9: 1. Of the samples listed in Table 2, Sample No. 217 to Sample No. Reference numeral 221 denotes a sample within the scope of the present invention.

Figure 2016056037
Figure 2016056037

表3に記載の試料No.301〜試料No.317は、ZrOの物質量(A)とYの物質量(B)とをそれぞれ42.5(mol%)と一定にした上で、TiO(C)と第4金属の酸化物MeOの物質量(D)を変えた試料である。これらの試料において、TiOと第4金属酸化物の物質量の合計(C+D)が総量(A+B+C+D)の15(mol%)となるように調整した。なお、表3において第4金属Meとしては本発明の範囲外のものも含めて記載している。 Sample No. described in Table 3 301 to Sample No. In 317, the substance amount (A) of ZrO 2 and the substance amount (B) of Y 2 O 3 are kept constant at 42.5 (mol%), respectively, and then oxidation of TiO 2 (C) and the fourth metal is performed. This is a sample in which the substance amount (D) of the substance MeO x is changed. In these samples, the total amount (C + D) of TiO 2 and the fourth metal oxide was adjusted to be 15 (mol%) of the total amount (A + B + C + D). In Table 3, the fourth metal Me is described including those outside the scope of the present invention.

Figure 2016056037
Figure 2016056037

(表1の結果)
表1の結果より、ZrOの物質量(A)は、ZrOとYの物質量の合計(A+B)に対して半分以上とすることで、十分な強度の焼結体とできることが分かる。比較試料である試料No.109は、これよりもZrO量が少なく、十分な強度(400MPa以上)を得られなかった。
(Results in Table 1)
From the results in Table 1, the amount of ZrO 2 substance (A) can be made a sintered body with sufficient strength by setting it to more than half of the total amount of substances ZrO 2 and Y 2 O 3 (A + B). I understand. Sample No. which is a comparative sample. No. 109 had a smaller amount of ZrO 2 than this, and sufficient strength (400 MPa or more) could not be obtained.

また、Yの物質量(B)はZrOとYの物質量の合計(A+B)の5(mol%)以上とすることにより、十分なプラズマ耐性を有する焼結体とできた。5(mol%)未満の比較試料である試料No.101は、十分なプラズマ耐性を得られず、Alよりも劣っていた。 Further, substances of Y 2 O 3 (B) is by the sum of the amount of substance of ZrO 2 and Y 2 O 3 (A + B ) of 5 (mol%) or more, and a sintered body having a sufficient plasma resistance did it. Sample No. 5 which is a comparative sample of less than 5 (mol%). 101 was inferior to Al 2 O 3 because sufficient plasma resistance was not obtained.

試料No.108は、カーボン治具を用いたアルゴンガス雰囲気(還元雰囲気)にて焼結した試料である。還元雰囲気にて焼結した場合は、大気雰囲気の場合と比較してTiO成分の電気抵抗率が低くなるために、焼結体としての電気抵抗率も下がりやすい。すなわち、試料No.108は、試料No.107と同様の組成であるが、電気抵抗率は3桁程度低下した。 Sample No. 108 is a sample sintered in an argon gas atmosphere (reducing atmosphere) using a carbon jig. When sintered in a reducing atmosphere, the electrical resistivity of the TiO 2 component is lower than that in an air atmosphere, and the electrical resistivity as a sintered body is likely to decrease. That is, sample no. 108 is a sample No. 108. The composition was the same as that of 107, but the electrical resistivity decreased by about 3 digits.

(表2の結果)
表2の結果より、TiOと第4金属酸化物の物質量の合計(C+D)は、総量(A+B+C+D)の1〜50(mol%)の範囲とすることで、十分な強度およびプラズマ耐性を有する焼結体とできることが分かる。
(Results in Table 2)
From the results of Table 2, the total amount (C + D) of TiO 2 and the fourth metal oxide is in the range of 1 to 50 (mol%) of the total amount (A + B + C + D), so that sufficient strength and plasma resistance can be obtained. It turns out that it can be set as the sintered compact which has.

比較試料である試料No.212は、TiOと第4金属酸化物の物質量の合計(C+D)が総量(A+B+C+D)の60(mol%)と過剰であり、十分な強度を得られなかった。また、プラズマ耐性もAlよりも劣る結果となった。 Sample No. which is a comparative sample. In No. 212, the total amount (C + D) of TiO 2 and the fourth metal oxide was excessive (60% by mol) of the total amount (A + B + C + D), and sufficient strength could not be obtained. Also, the plasma resistance was inferior to that of Al 2 O 3 .

(表3の結果)
表3に示した試料は、いずれも強度、プラズマ耐性とも使用に耐えられる試料であった。導電パスを形成するTiOと第4金属酸化物の物質量の合計(C+D)を総量(A+B+C+D)の15(mol%)と固定して、TiOの物質量と第4金属の種類を様々変更し、影響を調べたデータである。なお、ZrO、Yの物質量は、それぞれ42.5(mol%)と固定している。
(Results in Table 3)
The samples shown in Table 3 were samples that could withstand both strength and plasma resistance. The total amount (C + D) of TiO 2 and the fourth metal oxide forming the conductive path is fixed to 15 (mol%) of the total amount (A + B + C + D), and the TiO 2 material amount and the type of the fourth metal are various. This is the data that has been changed and examined for effects. The substance amounts of ZrO 2 and Y 2 O 3 are fixed at 42.5 (mol%), respectively.

結果より、第4金属をCoとすることにより、より少ない添加量でも電気抵抗率が大きく下がることを確認した。また、電気抵抗率の低下は第4金属をMo、Crとした場合には添加量にしたがって低下したが、Coについては添加量を増やすにしたがって電気抵抗率が下がる傾向ではなく、微量の添加にて電気抵抗率が大きく下がり、添加量を増やすにつれて電気抵抗率が上がる傾向が見られた。これらのことから、必要となる電気抵抗率を得るためのCo、CrおよびMoの物質量(D)を容易に調整できる。   From the results, it was confirmed that by using Co as the fourth metal, the electrical resistivity greatly decreases even with a smaller addition amount. In addition, when the fourth metal is Mo or Cr, the decrease in electrical resistivity decreased according to the addition amount. However, as for Co, the electrical resistivity does not tend to decrease as the addition amount is increased. As a result, the electrical resistivity decreased greatly, and the electrical resistivity tended to increase as the amount added increased. From these facts, it is possible to easily adjust the amount (D) of Co, Cr and Mo for obtaining the required electrical resistivity.

比較試料である試料No.301は、第4金属酸化物を含まず、電気抵抗は1014(Ω・cm)以上と絶縁性を示した。また、第4金属酸化物MeOの物質量(D)が、TiO(C)と第4金属酸化物MeOの物質量(D)の総量(C+D)に対して50(mol%)を超えた試料309も絶縁性を示した。これは、Tiサイトに置換するMeOが多く、TiOが少ないために、導電パスの形成に寄与しなかったためと考えられる。一方で、0.01 ≦ D/(C+D) ≦ 0.50の範囲にある試料は1012(Ω・cm)以下と、電気抵抗が低下した。 Sample No. which is a comparative sample. 301 did not contain a fourth metal oxide, and showed an electrical resistance of 10 14 (Ω · cm) or more. Further, material of the fourth metal oxide MeO x (D) is the total amount of TiO 2 (C) and material of the fourth metal oxide MeO x (D) (C + D) with respect to 50 (mol%) Exceeded sample 309 also showed insulation. This is considered to be because it did not contribute to the formation of the conductive path because there was much MeO x to be substituted for the Ti site and less TiO 2 . On the other hand, the electrical resistance of the sample in the range of 0.01 ≦ D / (C + D) ≦ 0.50 decreased to 10 12 (Ω · cm) or less.

また、比較試料である試料No.315〜試料No.317より、表に記載の範囲で配合した際、電気抵抗率を所望の範囲にできるのは、第4金属としてMo、Cr、Coを選択した場合の特有の現象であり、遷移金属元素一般に当てはまる現象ではないことが分かった。   In addition, sample No. which is a comparative sample. From 315 to Sample No. 317, when blended in the range shown in the table, the electrical resistivity can be set to a desired range, which is a characteristic phenomenon when Mo, Cr, Co is selected as the fourth metal, It was found that this phenomenon is not applicable to transition metal elements in general.

(まとめ)
以上の結果から、前述の式(1)〜式(3)に示す物質量にてZrO、Y、TiO、第4金属酸化物を混合、焼結して得られた本発明の複合酸化物セラミックス焼結体は、いずれも十分な強度を持ち、比較的高価なY粉末の配合量をある程度小さくした上で、十分なプラズマ耐性を持つことが分かった。したがって、本発明の複合酸化物セラミックスは、その強度と耐プラズマ性の面から半導体製造部材の構成部材に適しているといえる。加えて、比較的高価であるYの量が最大でも50(mol%)と比較的少なく、製造コスト的にも優れているといえる。
(Summary)
From the above results, the present invention obtained by mixing and sintering ZrO 2 , Y 2 O 3 , TiO 2 , and the fourth metal oxide in the amounts of substances shown in the above formulas (1) to (3). It was found that all of these composite oxide ceramic sintered bodies had sufficient strength and had sufficient plasma resistance after the amount of the relatively expensive Y 2 O 3 powder was reduced to some extent. Therefore, it can be said that the composite oxide ceramic of the present invention is suitable for a constituent member of a semiconductor manufacturing member from the viewpoint of strength and plasma resistance. In addition, it can be said that the amount of Y 2 O 3 which is relatively expensive is relatively small at 50 (mol%) at the maximum, and it is excellent in production cost.

また、Moの酸化物、Crの酸化物、Coの酸化物のいずれか1種またはそれらを混合してTiOとともに添加することで、電気抵抗率が1010〜1012(Ω・cm)程度の耐プラズマ性に優れた複合酸化物セラミックスが得られた。この範囲の電気抵抗率を有する複合酸化物セラミックスは、帯電防止ができ、ジョンセン・ラーベックタイプの静電チャックとして使用可能である。電気抵抗率は、TiOの物質量(C)と、酸化物(Moの酸化物、Crの酸化物、Coの酸化物)の物質量(D)を調整することで、簡単に調整できた。 In addition, any one of Mo oxide, Cr oxide, Co oxide, or a mixture thereof and added together with TiO 2 can have an electrical resistivity of about 10 10 to 10 12 (Ω · cm). A composite oxide ceramic having excellent plasma resistance was obtained. Composite oxide ceramics having an electrical resistivity in this range can prevent charging and can be used as a Johnsen-Rahbek type electrostatic chuck. The electrical resistivity could be easily adjusted by adjusting the amount of TiO 2 (C) and the amount of oxide (Mo oxide, Cr oxide, Co oxide) (D). .

さらに、本実施例に示すように、本発明の複合酸化物セラミックス焼結体は、大気雰囲気中の焼結でも製造することができた。   Furthermore, as shown in the present Example, the composite oxide ceramic sintered body of the present invention could be produced even by sintering in an air atmosphere.

Claims (5)

ZrOに、Y、TiO、および第4金属Meの酸化物が固溶した複合酸化物セラミックス焼結体であって、
ZrOの物質量(mol)をA、
の物質量(mol)をB、
TiOの物質量(mol)をC、
前記第4金属Meの酸化物をMeO(ただしxは0.5≦x≦3である不定数)、MeOの物質量(mol)をDとした際に、
下記の式(1)〜式(3)全てを満たし、
前記第4金属MeがMo、Cr、Coのうちのいずれか1種または2種以上である、複合酸化物セラミックス焼結体。
式(1): 0.5 ≦ A/(A+B) ≦ 0.95
式(2): 0.01 ≦ (C+D)/(A+B+C+D) ≦ 0.5
式(3): 0.01 ≦ D/(C+D) ≦ 0.50
A composite oxide ceramic sintered body in which an oxide of Y 2 O 3 , TiO 2 , and the fourth metal Me is dissolved in ZrO 2 ,
The amount (mol) of ZrO 2 is A,
The amount of substance (mol) of Y 2 O 3 is B,
The amount (mol) of TiO 2 is C,
When the oxide of the fourth metal Me is MeO x (where x is an inconstant that satisfies 0.5 ≦ x ≦ 3), and the substance amount (mol) of MeO x is D,
Satisfy all the following formulas (1) to (3),
The composite oxide ceramic sintered body, wherein the fourth metal Me is one or more of Mo, Cr, and Co.
Formula (1): 0.5 <= A / (A + B) <= 0.95
Formula (2): 0.01 ≦ (C + D) / (A + B + C + D) ≦ 0.5
Formula (3): 0.01 ≦ D / (C + D) ≦ 0.50
請求項1に記載の複合酸化物セラミックス焼結体からなる半導体製造装置の構成部材。   A constituent member of a semiconductor manufacturing apparatus comprising the composite oxide ceramic sintered body according to claim 1. 用途がジョンセン・ラーベック型静電チャックである請求項2に記載の半導体製造装置の構成部材。   The component of the semiconductor manufacturing apparatus according to claim 2, wherein the use is a Johnsen-Rahbek type electrostatic chuck. ZrO粉末と、Y粉末と、TiO粉末と、下記第4金属Meの酸化物粉末であるMeO粉末(ただしxは0.5≦x≦3である不定数)とを混合し、
プレス成形した後に大気雰囲気、1300〜1800℃にて焼結する、
電気抵抗率が10〜1013(Ω・cm)である複合酸化物セラミックスの製造方法。
第4金属Me:Mo、Cr、Coのうちのいずれか1種または2種以上
Mixing ZrO 2 powder, Y 2 O 3 powder, TiO 2 powder, and MeO x powder which is an oxide powder of the following fourth metal Me (where x is an indefinite number where 0.5 ≦ x ≦ 3) And
After press molding, it is sintered in an air atmosphere at 1300 to 1800 ° C.
A method for producing a composite oxide ceramic having an electric resistivity of 10 7 to 10 13 (Ω · cm).
Fourth metal Me: any one or more of Mo, Cr and Co
前記ZrO粉末の物質量(mol)をA、
前記Y粉末の物質量(mol)をB、
前記TiO粉末の物質量(mol)をC、
前記MeO粉末の物質量(mol)をDとした際に、
下記の式(1)〜式(3)全てを満たす、請求項4に記載の複合酸化物セラミックスの製造方法。
式(1): 0.5 ≦ A/(A+B) ≦ 0.95
式(2): 0.01 ≦ (C+D)/(A+B+C+D) ≦ 0.5
式(3): 0.01 ≦ D/(C+D) ≦ 0.50
A substance amount (mol) of the ZrO 2 powder is A,
The substance amount (mol) of the Y 2 O 3 powder is B,
The substance amount (mol) of the TiO 2 powder is C,
When the substance amount (mol) of the MeO x powder is D,
The manufacturing method of the complex oxide ceramics of Claim 4 which satisfy | fills all the following formula | equation (1) -equation (3).
Formula (1): 0.5 <= A / (A + B) <= 0.95
Formula (2): 0.01 ≦ (C + D) / (A + B + C + D) ≦ 0.5
Formula (3): 0.01 ≦ D / (C + D) ≦ 0.50
JP2014181421A 2014-09-05 2014-09-05 Components of composite oxide ceramics and semiconductor manufacturing equipment Active JP6489467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014181421A JP6489467B2 (en) 2014-09-05 2014-09-05 Components of composite oxide ceramics and semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014181421A JP6489467B2 (en) 2014-09-05 2014-09-05 Components of composite oxide ceramics and semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2016056037A true JP2016056037A (en) 2016-04-21
JP6489467B2 JP6489467B2 (en) 2019-03-27

Family

ID=55757475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014181421A Active JP6489467B2 (en) 2014-09-05 2014-09-05 Components of composite oxide ceramics and semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6489467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386817A (en) * 2019-08-21 2019-10-29 重庆臻宝实业有限公司 Resisting plasma corrosion ceramics and preparation method
JP2019194351A (en) * 2018-03-07 2019-11-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Y2O3-ZrO2 EROSION RESISTANT MATERIAL FOR CHAMBER COMPONENT IN PLASMA ENVIRONMENT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232966A (en) * 1983-06-10 1984-12-27 旭硝子株式会社 Electroconductive zirconia sintered body
JP2002190512A (en) * 2000-10-11 2002-07-05 National Institute Of Advanced Industrial & Technology Electrostatic chuck and its manufacturing method
WO2008133324A1 (en) * 2007-04-25 2008-11-06 Kyocera Corporation Vacuum suction nozzle
JP2013063904A (en) * 2007-08-02 2013-04-11 Applied Materials Inc Plasma-resistant ceramics with controlled electrical resistivity
JP2013067526A (en) * 2011-09-21 2013-04-18 Tosoh Corp Plasma resistant member, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232966A (en) * 1983-06-10 1984-12-27 旭硝子株式会社 Electroconductive zirconia sintered body
JP2002190512A (en) * 2000-10-11 2002-07-05 National Institute Of Advanced Industrial & Technology Electrostatic chuck and its manufacturing method
WO2008133324A1 (en) * 2007-04-25 2008-11-06 Kyocera Corporation Vacuum suction nozzle
JP2013063904A (en) * 2007-08-02 2013-04-11 Applied Materials Inc Plasma-resistant ceramics with controlled electrical resistivity
JP2013067526A (en) * 2011-09-21 2013-04-18 Tosoh Corp Plasma resistant member, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194351A (en) * 2018-03-07 2019-11-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Y2O3-ZrO2 EROSION RESISTANT MATERIAL FOR CHAMBER COMPONENT IN PLASMA ENVIRONMENT
US11667577B2 (en) 2018-03-07 2023-06-06 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
JP7292060B2 (en) 2018-03-07 2023-06-16 アプライド マテリアルズ インコーポレイテッド Y2O3-ZrO2 Erosion Resistant Materials for Chamber Components in Plasma Environments
CN110386817A (en) * 2019-08-21 2019-10-29 重庆臻宝实业有限公司 Resisting plasma corrosion ceramics and preparation method

Also Published As

Publication number Publication date
JP6489467B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
TWI570090B (en) Composite ceramic and semiconductor manufacturing device components
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP2023543686A (en) Manufacturing equipment for large-sized sintered ceramic bodies
WO2016088867A1 (en) MgO SPUTTERING TARGET MATERIAL AND THIN FILM
KR101633035B1 (en) Yttria Based Conductive Plasma-resistant Member And Methods Thereof
JP5117891B2 (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
JP6489467B2 (en) Components of composite oxide ceramics and semiconductor manufacturing equipment
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
JP2008266069A (en) Conductive alumina sintered compact
US20230174429A1 (en) Sintered material, semiconductor manufacturing apparatus including the same, and method of manufacturing the sintered material
JP4429742B2 (en) Sintered body and manufacturing method thereof
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
KR101692219B1 (en) Composite for vacuum-chuck and manufacturing method of the same
JP5874144B2 (en) Ceramic material and manufacturing method thereof
WO2013114654A1 (en) Electrostatic chuck member
JP4860335B2 (en) Conductive corrosion-resistant member and manufacturing method thereof
KR101961836B1 (en) Pure monoclinic sintered zirconia material and method of manufacturing
KR20220066778A (en) Low temperature sintered Y2O3 ceramics and the manufacturing method of the same
JP2001244246A (en) Focus ring
JP2008288428A (en) Electrostatic chuck
WO2020189428A1 (en) Tungsten oxide sputtering target
Kim et al. Effect of added TiO 2 on the mechanical properties of sintered Al 2 O 3 insulator
US20240055266A1 (en) Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6489467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250