JP2016052241A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2016052241A
JP2016052241A JP2014190507A JP2014190507A JP2016052241A JP 2016052241 A JP2016052241 A JP 2016052241A JP 2014190507 A JP2014190507 A JP 2014190507A JP 2014190507 A JP2014190507 A JP 2014190507A JP 2016052241 A JP2016052241 A JP 2016052241A
Authority
JP
Japan
Prior art keywords
capacitor
diode
power transmission
circuit
switch elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014190507A
Other languages
Japanese (ja)
Inventor
佐藤 守男
Morio Sato
守男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohira Electronics Co Ltd
Original Assignee
Ohira Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohira Electronics Co Ltd filed Critical Ohira Electronics Co Ltd
Priority to JP2014190507A priority Critical patent/JP2016052241A/en
Publication of JP2016052241A publication Critical patent/JP2016052241A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission device without need of adding a constant voltage control circuit, compatible with a wide input voltage, to the power reception side.SOLUTION: Fifth to eighth switch elements 20-23 are connected in parallel with each of first to fourth diodes 12-15 constituting a rectifier circuit on the power reception side of the non-contact power transmission device. In synchronization with a signal to alternately switch on and off a set of first to fourth switch elements 3, 6 on the power transmission side and a set of second and third switch elements 4, 5, a set of the fifth and the sixth switch elements 20, 21 and a set of the seventh and the eighth switch elements 22, 23 are alternately switched on and off.SELECTED DRAWING: Figure 1

Description

本発明はスイッチング電源に関し、特に非接触電力伝送装置に関する。  The present invention relates to a switching power supply, and more particularly to a contactless power transmission device.

従来の非接触電力伝送装置として、特許公開2002−354711が提供した方法がある。その実施例として示されている回路図の1例を図6に示す。
図6において高周波発生器101が送電コイル102に高周波電流を供給し、送電コイル102に電磁気的に結合している受電コイル103が受電し、それを整流器104が直流に変換し、リアクトル105とスイッチ素子106とダイオード107とコンデンサ108からなる昇圧チョッパが定電圧化している。
非接触電力伝送装置は送電側と受電側が切り離されているため、コンデンサ108の電圧を送電側に帰還して制御することはできない。
図6に示されている回路は整流器104とコンデンサ108の間に昇圧チョッパによる定電圧制御回路を挿入しているが、整流器104の出力電圧は負荷が無負荷のときは回路の共振条件にもよるが高い電圧まで上昇するので、定電圧制御回路は広い入力電圧に対して出力電圧を安定化しなければならない。
As a conventional non-contact power transmission apparatus, there is a method provided by Patent Publication 2002-354711. An example of a circuit diagram shown as the embodiment is shown in FIG.
In FIG. 6, the high frequency generator 101 supplies a high frequency current to the power transmission coil 102, the power reception coil 103 electromagnetically coupled to the power transmission coil 102 receives power, the rectifier 104 converts it into direct current, a reactor 105 and a switch A step-up chopper composed of the element 106, the diode 107, and the capacitor 108 has a constant voltage.
Since the non-contact power transmission device is separated from the power transmission side and the power reception side, the voltage of the capacitor 108 cannot be fed back to the power transmission side and controlled.
In the circuit shown in FIG. 6, a constant voltage control circuit using a step-up chopper is inserted between the rectifier 104 and the capacitor 108, but the output voltage of the rectifier 104 is also in the resonance condition of the circuit when the load is unloaded. However, since the voltage rises to a high voltage, the constant voltage control circuit must stabilize the output voltage with respect to a wide input voltage.

本発明は受電側の整流回路に直流電圧を安定化させる機能を持たせ、これにより受電側に広い入力電圧に対応した定電圧制御回路を付加する必要のない非接触電力伝送装置を提供することを目的としている。  The present invention provides a contactless power transmission device that does not need to add a constant voltage control circuit corresponding to a wide input voltage to the power receiving side by providing a function of stabilizing the DC voltage to the power receiving side rectifier circuit. It is an object.

請求項1記載の発明は、直流電源と、第1のコンデンサと、直流電源に並列に接続された第1と第2のスイッチ素子からなる直列回路と、直流電源に並列に接続された第3と第4のスイッチ素子からなる直列回路と、第1のスイッチ素子と第4のスイッチ素子の組と第2のスイッチ素子と第3のスイッチ素子の組を交互にオン・オフさせる発振制御回路と、第1のスイッチ素子と第2のスイッチ素子の接続点と第3のスイッチ素子と第4のスイッチ素子の接続点の間に接続された送電コイルと送電コンデンサの直列回路と、送電コイルと電磁気的に結合している受電コイルと受電コンデンサからなる直列回路と、受電コイルと受電コンデンサの直列回路の一方の端子と第1のコンデンサの一方の端子の間に接続された第1のダイオードと、受電コイルと受電コンデンサの直列回路の他方の端子と第1のコンデンサの他方の端子の間に接続された第2のダイオードと、受電コイルと受電コンデンサからなる直列回路と第1のダイオードの接続点と第2のダイオードと第1のコンデンサの接続点の間に接続された第3のダイオードと、受電コイルと受電コンデンサからなる直列回路と第2のダイオードの接続点と第1のダイオードと第1のコンデンサの接続点の間に接続された第4のダイオードからなる非接触電力伝送装置において、第1のダイオードに並列に第5のスイッチ素子を接続し、第2のダイオードに並列に第6のスイッチ素子を接続し、第3のダイオードに並列に第7のスイッチ素子を接続し、第4のダイオードに並列に第8のスイッチ素子を接続し、第1のスイッチ素子と第4のスイッチ素子の組のオン・オフに同期させて第5のスイッチ素子と第6のスイッチ素子の組をオン・オフさせ、第2のスイッチ素子と第3のスイッチ素子の組のオン・オフに同期させて第7のスイッチ素子と第8のスイッチ素子の組をオン・オフさせる同期駆動回路を付加した。  The invention described in claim 1 is a DC circuit, a first capacitor, a series circuit composed of first and second switch elements connected in parallel to the DC power supply, and a third circuit connected in parallel to the DC power supply. An oscillation control circuit for alternately turning on / off a set of the first switch element and the fourth switch element and a set of the second switch element and the third switch element; A series circuit of a power transmission coil and a power transmission capacitor connected between the connection point of the first switch element and the second switch element, the connection point of the third switch element and the fourth switch element, the power transmission coil and the electromagnetic A first circuit connected between one terminal of the series circuit of the power receiving coil and the power receiving capacitor and one terminal of the first capacitor; Receiving A second diode connected between the other terminal of the series circuit of the coil and the receiving capacitor and the other terminal of the first capacitor; a connection point between the series circuit consisting of the receiving coil and the receiving capacitor and the first diode; A third diode connected between a connection point of the second diode and the first capacitor; a series circuit including a receiving coil and a receiving capacitor; a connection point of the second diode; a first diode; In a non-contact power transmission device including a fourth diode connected between connection points of capacitors, a fifth switch element is connected in parallel to the first diode, and a sixth switch is connected in parallel to the second diode. And a seventh switch element connected in parallel to the third diode, an eighth switch element connected in parallel to the fourth diode, and the first switch element. The fifth switch element and the sixth switch element are turned on / off in synchronization with the on / off of the fourth switch element set, and the second switch element and the third switch element set are turned on / off. A synchronous drive circuit that turns on and off the set of the seventh switch element and the eighth switch element in synchronization with the off state is added.

請求項2記載の発明は、請求項1記載の第3のスイッチ素子を第2のコンデンサに置換え、第4のスイッチ素子を第3のコンデンサに置換えた。  In the invention described in claim 2, the third switch element described in claim 1 is replaced with a second capacitor, and the fourth switch element is replaced with a third capacitor.

請求項3記載の発明は請求項1または請求項2記載の第4のダイオードと第8のスイッチ素子からなる並列回路を第4のコンデンサに置換え、第2のダイオードと第6のスイッチ素子からなる並列回路を第5のコンデンサに置換えた。  According to a third aspect of the present invention, the parallel circuit comprising the fourth diode and the eighth switch element according to the first or second aspect is replaced with a fourth capacitor, and the second diode and the sixth switch element are formed. The parallel circuit was replaced with a fifth capacitor.

請求項4記載の発明は請求項1ないし請求項3記載の同期駆動回路が発生するパルスの幅を制御するPWM回路を付加した。  According to a fourth aspect of the present invention, a PWM circuit for controlling the width of a pulse generated by the synchronous drive circuit according to the first to third aspects is added.

請求項5記載の発明は請求項1ないし4記載の受電コイルと受電コンデンサからなる直列回路を受電コイルと受電コンデンサからなる並列回路に置換えた。  In the invention described in claim 5, the series circuit including the power receiving coil and the power receiving capacitor described in claims 1 to 4 is replaced with a parallel circuit including the power receiving coil and the power receiving capacitor.

発明の効果Effect of the invention

本発明の非接触電力伝送装置は受電側に定電圧制御回路を必要としないので、効率が改善され、受電側の装置内部のスペースが空き、コストが下がった。  Since the non-contact power transmission device of the present invention does not require a constant voltage control circuit on the power receiving side, the efficiency is improved, the space inside the device on the power receiving side is vacant, and the cost is reduced.

発明を実施するための最良の形態を図面を参照して説明する。  The best mode for carrying out the invention will be described with reference to the drawings.

図1は請求項1記載の発明の実施例を示す回路図である。
図において、1は直流電源、2は第1のコンデンサ、3〜6は第1ないし第4のMOSFET、7は発振制御回路、8は送電コイル、9は送電コンデンサ、10は受電コイル、11は受電コンデンサ、12〜15は第1ないし第4のダイオード、20〜23は第5ないし第8のMOSFET、24は同期駆動回路である。51〜58は電位が互いに異なるゲートに同一信号源からの信号を加えるための絶縁バッファである。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
In the figure, 1 is a DC power source, 2 is a first capacitor, 3 to 6 are first to fourth MOSFETs, 7 is an oscillation control circuit, 8 is a power transmission coil, 9 is a power transmission capacitor, 10 is a power reception coil, 11 is Power receiving capacitors, 12 to 15 are first to fourth diodes, 20 to 23 are fifth to eighth MOSFETs, and 24 is a synchronous drive circuit. Reference numerals 51 to 58 denote insulating buffers for applying signals from the same signal source to gates having different potentials.

図1の発振制御回路7は第1のMOSFET3と第4のMOSFET6の組と第2のMOSFET4と第3のMOSFET5の組を交互にオン・オフする。2つの組が同時にオン状態になることを防ぐために両方が共にオフ状態になる期間を設けている。この期間をデッドタイムと呼ぶ。  The oscillation control circuit 7 in FIG. 1 alternately turns on / off the set of the first MOSFET 3 and the fourth MOSFET 6 and the set of the second MOSFET 4 and the third MOSFET 5. In order to prevent the two sets from being turned on at the same time, a period during which both sets are turned off is provided. This period is called dead time.

発振制御回路7の発振周期は送電側と受電側の電磁的な結合によって決まる共振周期に近い値を選ぶので電流は正弦波になる。  Since the oscillation period of the oscillation control circuit 7 is selected to be close to the resonance period determined by the electromagnetic coupling between the power transmission side and the power reception side, the current becomes a sine wave.

同期駆動回路24は受電コイル10と受電コンデンサ11の直列回路両端の電圧の極性が切替るタイミングをとらえて所定のパルス幅のパルスを発生する。  The synchronous drive circuit 24 generates a pulse having a predetermined pulse width in response to the switching timing of the polarity of the voltage across the series circuit of the power receiving coil 10 and the power receiving capacitor 11.

送電コイルと受電コイルの結合度が低いので、図1の場合は第2のMOSFET4と第3のMOSFET5の組がオン状態からターンオフしたときに受電側の第1のダイオード12と第2のダイオード13の組が導通する極性になる。そこで、受電コイル10と受電コンデンサ11からなる直列回路両端の電圧が第1のダイオード12と第2のダイオード13が導通する極性に切替るタイミングからデッドタイム分だけ遅らせて、第5のMOSFET20と第6のMOSFET21をターンオンさせるパルスを発生させると送電側の発振制御回路7が第1のMOSFET3と第4のMOSFET6の組をターンオンさせるパルスと同期する。  Since the degree of coupling between the power transmission coil and the power reception coil is low, in the case of FIG. 1, the first diode 12 and the second diode 13 on the power reception side when the pair of the second MOSFET 4 and the third MOSFET 5 are turned off from the on state. It becomes the polarity which the group of becomes conductive. Therefore, the voltage at both ends of the series circuit including the power receiving coil 10 and the power receiving capacitor 11 is delayed by the dead time from the timing when the voltage is switched to the polarity in which the first diode 12 and the second diode 13 are conducted, and the fifth MOSFET 20 and the When a pulse for turning on the six MOSFETs 21 is generated, the oscillation control circuit 7 on the power transmission side synchronizes with the pulse for turning on the set of the first MOSFET 3 and the fourth MOSFET 6.

図5は発振制御回路7が発生するパルスと、受電コイル10と受電コンデンサ11からなる直列回路両端に生じる電圧と、同期駆動回路24が発生するパルスの波形を示している。図中のTon1とTd1は発振制御回路7が作り出しているパルス幅とデットタイムであり、Ton2とTd2は同期駆動回路24が作り出しているパルス幅とデットタイムである。Td2の値はTd1の値と同じである。  FIG. 5 shows waveforms of a pulse generated by the oscillation control circuit 7, a voltage generated across the series circuit including the power receiving coil 10 and the power receiving capacitor 11, and a pulse generated by the synchronous drive circuit 24. In the figure, Ton1 and Td1 are the pulse width and dead time produced by the oscillation control circuit 7, and Ton2 and Td2 are the pulse width and dead time produced by the synchronous drive circuit 24. The value of Td2 is the same as the value of Td1.

同期駆動回路24は送電側の発振制御回路のオン期間が終わる前にターンオフさせるのでTon2の値はTon1の値より小さくなる。  Since the synchronous drive circuit 24 is turned off before the on-period of the oscillation control circuit on the power transmission side ends, the value of Ton2 becomes smaller than the value of Ton1.

第1のコンデンサ2から負荷に流れる電流が軽くなると、従来の方式では第1ないし第4のダイオードを流れる幅が狭く波高値の高い電流によって第1のコンデンサの電圧が上昇する。整流回路回路がダイオードだけで構成されているといったん上昇した電圧は軽負荷の場合下がりにくい。
一方、本発明ではダイオードに並列にスイッチ素子を接続し、このスイッチ素子を強制的にオンさせるので第1のコンデンサ2から送電側にエネルギー回生がなされ、これによって電圧の上昇が抑えられる。
When the current flowing from the first capacitor 2 to the load becomes lighter, in the conventional method, the voltage of the first capacitor rises due to the current having a narrow width flowing through the first to fourth diodes and a high peak value. If the rectifier circuit is composed only of diodes, once the voltage has risen, it is difficult for the light load to drop.
On the other hand, in the present invention, a switch element is connected in parallel to the diode and the switch element is forcibly turned on, so that energy regeneration is performed from the first capacitor 2 to the power transmission side, thereby suppressing an increase in voltage.

同期駆動回路のオン期間を適当に選ぶことにより第1のコンデンサ2の電圧を無負荷のときにも所定の値以下に保つことができる。第1のコンデンサ2に負荷を接続すれば負荷に安定した電圧を供給できる。  By appropriately selecting the ON period of the synchronous drive circuit, the voltage of the first capacitor 2 can be kept below a predetermined value even when there is no load. If a load is connected to the first capacitor 2, a stable voltage can be supplied to the load.

図2は請求項2記載の発明の実施例を示す回路図である。図1と共通する部品は図1の符号をそのまま用いている。図において、第2のコンデンサ25と第3のコンデンサ26は直流電源1の電圧を2等分している。両コンデンサは送電コンデンサ9の容量より大きい値が選ばれているので回路の共振周期に影響を与えない。  FIG. 2 is a circuit diagram showing an embodiment of the second aspect of the present invention. Components common to those in FIG. 1 are the same as those in FIG. In the figure, the second capacitor 25 and the third capacitor 26 divide the voltage of the DC power source 1 into two equal parts. Since both capacitors are selected to have a value larger than the capacity of the power transmission capacitor 9, there is no effect on the resonance period of the circuit.

図3は請求項3記載の発明の実施例を示す回路図である。図1と共通する部品は図1の符号をそのまま用いている。図において第4のコンデンサ27は第1のダイオード12が導通したときに充電される。第5のコンデンサ28は第3のダイオード15が導通したときに充電される。第1のコンデンサ2は第4と第5のコンデンサの合成された電圧が充電される。  FIG. 3 is a circuit diagram showing an embodiment of the third aspect of the present invention. Components common to those in FIG. 1 are the same as those in FIG. In the figure, the fourth capacitor 27 is charged when the first diode 12 becomes conductive. The fifth capacitor 28 is charged when the third diode 15 becomes conductive. The first capacitor 2 is charged with the combined voltage of the fourth and fifth capacitors.

図2ないし図3において発振制御回路7と同期駆動回路24の動作は図1のそれと同じ。  2 to 3, the operations of the oscillation control circuit 7 and the synchronous drive circuit 24 are the same as those in FIG.

図4は請求項3記載の発明の実施例を示す回路図である。図1と共通する部品は図1の符号をそのまま用いている。
図において、PWM回路29は第1のコンデンサ2両端の電圧を監視し基準電圧より高ければ同期駆動回路24が発生するパルス幅を長くし、第5ないし第8のスイッチ素子の各々のオン期間を長くする。第5ないし第8のスイッチ素子各々のオン期間が長くなれば、受電側から送電側に戻る電力が増え、第1のコンデンサ2の電圧は下がる。これにより第1のコンデンサ2の電圧の安定さは増す。
FIG. 4 is a circuit diagram showing an embodiment of the third aspect of the present invention. Components common to those in FIG. 1 are the same as those in FIG.
In the figure, the PWM circuit 29 monitors the voltage across the first capacitor 2, and if it is higher than the reference voltage, the pulse width generated by the synchronous drive circuit 24 is lengthened, and the ON period of each of the fifth to eighth switch elements is increased. Lengthen. If the ON period of each of the fifth to eighth switch elements becomes longer, the power returning from the power reception side to the power transmission side increases, and the voltage of the first capacitor 2 decreases. This increases the stability of the voltage of the first capacitor 2.

図5は請求項5記載の発明の実施例を示す回路図である。図1と共通する部品は図1の符号をそのまま用いている。  FIG. 5 is a circuit diagram showing an embodiment of the invention as set forth in claim 5. Components common to those in FIG. 1 are the same as those in FIG.

図1ないし図5において、第5ないし第8のスイッチ素子としてMOSFETを選んだので、第1ないし第4のダイオードをMOSFETの寄生ダイオードで代用させることにより省略することもできる。  In FIGS. 1 to 5, since MOSFETs are selected as the fifth to eighth switch elements, the first to fourth diodes can be omitted by substituting the parasitic diodes of the MOSFETs.

産業上の利用の可能性Industrial applicability

従来の非接触電力伝送装置がかかえていた1つの課題である負荷に加える電圧の安定化に関して新しい手段が提供できる。これにより、非接触電力伝送装置は普及しやすくなる。  It is possible to provide a new means for stabilizing the voltage applied to the load, which is one of the problems of the conventional non-contact power transmission apparatus. Thereby, a non-contact electric power transmission apparatus becomes easy to spread.

本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 図1の回路図の波形図である。It is a wave form diagram of the circuit diagram of FIG. 従来方式の1例を示す回路図である。It is a circuit diagram which shows an example of a conventional system.

符号の簡単な説明Brief description of symbols

1 直流電源
2 コンデンサ
3〜6 MOSFET
7 発振制御回路
8 送電コイル
9 コンデンサ
10 受電コイル
11 コンデンサ
12〜15 ダイオード
20〜23 MOSFET
24 同期駆動回路
25〜28 コンデンサ
29 PWM回路
51〜58 絶縁バッファ
101 高周波電源
102,103 コイル
104 ブリッジ整流器
105 リアクトル
106 スイッチ素子
107 ダイオード
108 コンデンサ
109 負荷
112,113 コンデンサ
1 DC power supply 2 Capacitor 3-6 MOSFET
7 Oscillation Control Circuit 8 Power Transmission Coil 9 Capacitor 10 Power Receiving Coil 11 Capacitor 12-15 Diode 20-23 MOSFET
24 Synchronous Drive Circuit 25-28 Capacitor 29 PWM Circuit 51-58 Insulation Buffer 101 High Frequency Power Supply 102, 103 Coil 104 Bridge Rectifier 105 Reactor 106 Switch Element 107 Diode 108 Capacitor 109 Load 112, 113 Capacitor

Claims (5)

直流電源と第1のコンデンサと前記直流電源に並列に接続された第1と第2のスイッチ素子からなる直列回路と前記直流電源に並列に接続された第3と第4のスイッチ素子からなる直列回路と前記第1と前記第4のスイッチ素子の組と前記第2と前記第3の素子の組を交互にオン・オフさせる発振制御回路と前記第1と前記第2のスイッチ素子の接続点と前記第3と前記第4のスイッチ素子の接続点の間に接続された送電コイルと送電コンデンサからなる直列回路と前記送電コイルと電磁気的に結合している受電コイルと受電コンデンサからなる直列回路と前記受電コイルと受電コンデンサからなる直列回路の一方の端子と前記第1のコンデンサの一方の端子の間に接続された第1のダイオードと前記受電コイルと受電コンデンサからなる直列回路の他方の端子と前記第1のコンデンサの他方の端子の間に接続された第2のダイオードと前記受電コイルと受電コンデンサからなる直列回路と前記第1のダイオードの接続点と前記第2のダイオードと前記第1のコンデンサの接続点の間に接続された第3のダイオードと前記受電コイルと受電コンデンサからなる直列回路と前記第2のダイオードの接続点と前記第1のダイオードと前記第1のコンデンサの接続点の間に接続された第4のダイオードからなる非接触電力伝送装置において、前記第1のダイオードに並列に第5のスイッチ素子を接続し、前記第2のダイオードに並列に第6のスイッチ素子を接続し、前記第3のダイオードに並列に第7のスイッチ素子を接続し、前記第4のダイオードに並列に第8のスイッチ素子を接続し、前記第1と前記第4のスイッチ素子の組のオン・オフに同期させて前記第5と前記第6のスイッチ素子の組をオン・オフさせ前記第2と前記第3のスイッチ素子の組のオン・オフに同期させて前記第7と前記第8のスイッチ素子の組をオン・オフさせる同期駆動回路を付加したことを特徴とする非接触電力伝送装置。  A series circuit composed of a DC power source, a first capacitor, and a first and second switch elements connected in parallel to the DC power source, and a series composed of third and fourth switch elements connected in parallel to the DC power source. Connection point of oscillation control circuit for alternately turning on / off a circuit, a set of the first and fourth switch elements, and a set of the second and third elements, and the first and second switch elements And a series circuit composed of a power transmission coil and a power transmission capacitor connected between connection points of the third and fourth switch elements, and a series circuit composed of a power reception coil and a power reception capacitor electromagnetically coupled to the power transmission coil And a first diode connected between one terminal of a series circuit composed of the power receiving coil and the power receiving capacitor and one terminal of the first capacitor, a direct current composed of the power receiving coil and the power receiving capacitor. A second diode connected between the other terminal of the circuit and the other terminal of the first capacitor, a series circuit composed of the receiving coil and the receiving capacitor, a connection point of the first diode, and the second diode A third circuit connected between a connection point of the diode and the first capacitor, a series circuit including the power receiving coil and the power receiving capacitor, a connection point of the second diode, the first diode, and the first diode In the non-contact power transmission device including the fourth diode connected between the connection points of the capacitors, a fifth switch element is connected in parallel to the first diode, and a second diode is connected in parallel to the second diode. 6 switch elements, a seventh switch element is connected in parallel with the third diode, and an eighth switch element is connected in parallel with the fourth diode. The fifth and sixth switch elements are turned on / off in synchronization with the on / off of the first and fourth switch elements, and the second and third switch elements are set. A non-contact power transmission apparatus, wherein a synchronous drive circuit for turning on / off the set of the seventh and eighth switch elements in synchronization with on / off is added. 前記第3のスイッチ素子を第2のコンデンサに置換え、前記第4のスイッチ素子を第3のコンデンサに置換えた請求項1記載の非接触電力伝送装置。  The non-contact power transmission apparatus according to claim 1, wherein the third switch element is replaced with a second capacitor, and the fourth switch element is replaced with a third capacitor. 前記第4のダイオードと前記第8のスイッチ素子からなる並列回路を第4のコンデンサに置換え、前記第2のダイオードと前記第6のスイッチ素子からなる並列回路を第5のコンデンサに置換えた請求項1または請求項2記載の非接触電力伝送装置。  The parallel circuit composed of the fourth diode and the eighth switch element is replaced with a fourth capacitor, and the parallel circuit composed of the second diode and the sixth switch element is replaced with a fifth capacitor. The non-contact power transmission device according to claim 1 or 2. 前記第1のコンデンサの電圧を安定化させるために前記同期駆動回路が発生するパルスの幅を制御するPWM回路を付加した請求項1ないし請求項3のいずれかに記載の非接触電力伝送装置。  4. The non-contact power transmission apparatus according to claim 1, further comprising a PWM circuit that controls a width of a pulse generated by the synchronous drive circuit in order to stabilize the voltage of the first capacitor. 前記受電コイルと受電コンデンサからなる直列回路を前記受電コイルと受電コンデンサからなる並列回路に置換えた請求項1ないし請求項4のいずれかに記載の非接触電力伝送装置。  The non-contact power transmission device according to any one of claims 1 to 4, wherein a series circuit including the power receiving coil and a power receiving capacitor is replaced with a parallel circuit including the power receiving coil and the power receiving capacitor.
JP2014190507A 2014-09-01 2014-09-01 Non-contact power transmission device Pending JP2016052241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190507A JP2016052241A (en) 2014-09-01 2014-09-01 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190507A JP2016052241A (en) 2014-09-01 2014-09-01 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2016052241A true JP2016052241A (en) 2016-04-11

Family

ID=55659392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190507A Pending JP2016052241A (en) 2014-09-01 2014-09-01 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2016052241A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029438A1 (en) * 2005-09-01 2007-03-15 National University Corporation Saitama University Noncontact power feeder
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
WO2013118274A1 (en) * 2012-02-09 2013-08-15 株式会社 テクノバ Bidirectional contactless power supply system
JP2014079107A (en) * 2012-10-11 2014-05-01 Tdk Corp Non-contact power reception apparatus and non-contact power transmission system
WO2014126181A1 (en) * 2013-02-15 2014-08-21 株式会社村田製作所 Wireless power supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029438A1 (en) * 2005-09-01 2007-03-15 National University Corporation Saitama University Noncontact power feeder
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
WO2013118274A1 (en) * 2012-02-09 2013-08-15 株式会社 テクノバ Bidirectional contactless power supply system
JP2014079107A (en) * 2012-10-11 2014-05-01 Tdk Corp Non-contact power reception apparatus and non-contact power transmission system
WO2014126181A1 (en) * 2013-02-15 2014-08-21 株式会社村田製作所 Wireless power supply apparatus

Similar Documents

Publication Publication Date Title
JP4620151B2 (en) Non-contact power transmission circuit
US9391535B2 (en) Received power conversion device for resonant wireless charging system
JP2015208150A (en) Non-contact power transmission/reception system
KR101751114B1 (en) Synchronous rectifier and circuit for controlling the same
JP2015162919A (en) power conversion circuit system
JP2014180110A (en) DC-DC converter
JP2014045594A (en) Switching power supply device
JP2018093692A (en) Wireless power reception device and wireless power transmission device using the same, and rectifier
US20110175588A1 (en) Control circuit and method for switching supply
KR20140145830A (en) Power supplying device
JP5194600B2 (en) Switching power supply
US10333428B2 (en) Resonant load power conversion device and time division operation method for resonant load power conversion device
KR101937755B1 (en) Ionizer
JP6350818B2 (en) Non-contact power transmission device
WO2016147562A1 (en) Non-contact power feeding device and non-contact power receiving device
TWI573377B (en) Method for generating a clock signal for an oscillator of a switched mode power supply
EP2961056A1 (en) Alternating current power source device
EP2999080B1 (en) Wireless power supply device
KR20190064962A (en) DC to DC Converting System
JP6783738B2 (en) converter
JP2016052241A (en) Non-contact power transmission device
CN112448482B (en) Non-contact power supply device and power transmission device
TWI586092B (en) Single-stage ac-to-dc converter
JP6681532B2 (en) Drive
JP2013251965A (en) Power-supply circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002